1
|
Li SB, Zhao TSY, Ye Z, Zou J, Yuan X, Zhou XL, Liang CQ, Li KZ, Huang LZ. Antitumor effects of BPCO on liver cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-13. [PMID: 39985778 DOI: 10.1080/10286020.2025.2467318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Esculetin is a coumarin compound with anticancer, antioxidant, and anti-inflammatory activities. In this study, we synthesized an esculetin derivative, 6,7-bis(Pentyloxy)-2H-Chromen-2-One (BPCO), through etherification. BPCO inhibited the proliferation of HepG2 cells in a dose- and time-dependent manner. It also inhibited cell migration, promoted apoptosis, and caused cell cycle arrest at the G1 phase. Additionally, BPCO downregulated the expression levels of Bcl-2 and Bcl-XL and upregulated the expression levels of Bax and Bak. This study shows that BPCO inhibits hepatocellular carcinoma cell proliferation and induces apoptosis, providing a basis for further study of BPCO as an antitumor agent.
Collapse
Affiliation(s)
- Shan-Bin Li
- College of Biotechnology, Guilin Medical University, Guilin541199, China
- Key Laboratory of Molecular Medical Engineering, Education Department of Guangxi Zhuang Autonomous Region, Guilin541199, China
| | - Tong-Shi-Yao Zhao
- College of Biotechnology, Guilin Medical University, Guilin541199, China
| | - Zhen Ye
- College of Pharmacy, Guilin Medical University, Guilin541199, China
| | - Jian Zou
- College of Biotechnology, Guilin Medical University, Guilin541199, China
| | - Xi Yuan
- College of Biotechnology, Guilin Medical University, Guilin541199, China
| | - Xian-Li Zhou
- College of Biotechnology, Guilin Medical University, Guilin541199, China
- Key Laboratory of Molecular Medical Engineering, Education Department of Guangxi Zhuang Autonomous Region, Guilin541199, China
| | - Cheng-Qin Liang
- College of Pharmacy, Guilin Medical University, Guilin541199, China
| | - Kang-Zhi Li
- College of Biotechnology, Guilin Medical University, Guilin541199, China
| | - Lan-Zhen Huang
- Science Experiment Center, Guilin Medical University, Guilin541199, China
| |
Collapse
|
2
|
Summer S, Borrell-Pages M, Bruno RM, Climie RE, Dipla K, Dogan A, Eruslanova K, Fraenkel E, Mattace-Raso F, Pugh CJA, Rochfort KD, Ross M, Roth L, Schmidt-Trucksäss A, Schwarz D, Shadiow J, Sohrabi Y, Sonnenberg J, Tura-Ceide O, Guvenc Tuna B, Julve J, Dogan S. Centenarians-the way to healthy vascular ageing and longevity: a review from VascAgeNet. GeroScience 2025; 47:685-702. [PMID: 39725804 PMCID: PMC11872877 DOI: 10.1007/s11357-024-01467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The prevalence of centenarians, people who lived 100 years and longer, is steadily growing in the last decades. This exceptional longevity is based on multifaceted processes influenced by a combination of intrinsic and extrinsic factors such as sex, (epi-)genetic factors, gut microbiota, cellular metabolism, exposure to oxidative stress, immune status, cardiovascular risk factors, environmental factors, and lifestyle behavior. Epidemiologically, the incidence rate of cardiovascular diseases is reduced in healthy centenarians along with late onset of age-related diseases compared with the general aged population. Understanding the mechanisms that affect vascular ageing in centenarians and the underlying factors could offer valuable insights for developing strategies to improve overall healthy life span in the elderly. This review discusses these key factors influencing vascular ageing and how their modulation could foster healthy longevity.
Collapse
Affiliation(s)
- Sabrina Summer
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Maria Borrell-Pages
- Molecular Pathology and Therapeutic of Ischemic and Atherothrombotic Diseases, Institute de Recerca Sant Pau (IR-Sant Pau), Barcelona Spain. CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa-Maria Bruno
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center-PARCC, Paris, France
- Clinical Pharmacology Unit, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Konstantina Dipla
- Department of Sports Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aysenur Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Kseniia Eruslanova
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Emil Fraenkel
- Department of Internal Medicine, University of Košice, Košice, Slovakia
| | | | | | - Keith D Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Mark Ross
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, UK
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division of Sport and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Dennis Schwarz
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, University of Münster, Münster, Germany
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, University of Münster, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jannik Sonnenberg
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, University of Münster, Münster, Germany
| | | | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Josep Julve
- Endocrinology, Diabetes and Nutrition Group, Institut de Recerca SANT PAU, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Türkiye.
| |
Collapse
|
3
|
Della-Morte D, Pacifici F, Simonetto M, Dong C, Dueker N, Blanton SH, Wang L, Rundek T. The role of sirtuins and uncoupling proteins on vascular aging: The Northern Manhattan Study experience. Free Radic Biol Med 2024; 220:262-270. [PMID: 38729451 DOI: 10.1016/j.freeradbiomed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, 00133, Rome, Italy; Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy.
| | - Francesca Pacifici
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, 00133, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Marialaura Simonetto
- Department of Neurology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Chuanhui Dong
- Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nicole Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Tatjana Rundek
- Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
4
|
Singuru G, Pulipaka S, Shaikh A, Sahoo S, Jangam A, Thennati R, Kotamraju S. Mitochondria targeted esculetin administration improves insulin resistance and hyperglycemia-induced atherosclerosis in db/db mice. J Mol Med (Berl) 2024; 102:927-945. [PMID: 38758435 DOI: 10.1007/s00109-024-02449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The development and progression of hyperglycemia (HG) and HG-associated atherosclerosis are exacerbated by mitochondrial dysfunction due to dysregulated mitochondria-derived ROS generation. We recently synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and tested its dose-response therapeutic efficacy in mitigating HG-induced atherosclerosis in db/db mice. In comparison to simvastatin and pioglitazone, Mito-Esc administration resulted in a considerable reduction in body weights and improved glucose homeostasis, possibly by reducing hepatic gluconeogenesis, as indicated by a reduction in glycogen content, non-esterified free fatty acids (NEFA) levels, and fructose 1,6-bisphosphatase (FBPase) activity. Interestingly, Mito-Esc treatment, by regulating phospho-IRS and phospho-AKT levels, greatly improved palmitate-induced insulin resistance, resulting in enhanced glucose uptake in adipocytes and HepG2 cells. Also, and importantly, Mito-Esc administration prevented HG-induced atheromatous plaque formation and lipid accumulation in the descending aorta. In addition, Mito-Esc administration inhibited the HG-mediated increase in VACM, ICAM, and MAC3 levels in the aortic tissue, as well as reduced the serum pro-inflammatory cytokines and markers of senescence. In line with this, Mito-Esc significantly inhibited monocyte adherence to human aortic endothelial cells (HAECs) treated with high glucose and reduced high glucose-induced premature senescence in HAECs by activating the AMPK-SIRT1 pathway. In contrast, Mito-Esc failed to regulate high glucose-induced endothelial cell senescence under AMPK/SIRT1-depleted conditions. Together, the therapeutic efficacy of Mito-Esc in the mitigation of hyperglycemia-induced insulin resistance and the associated atherosclerosis is in part mediated by potentiating the AMPK-SIRT1 axis. KEY MESSAGES: Mito-Esc administration significantly mitigates diabetes-induced atherosclerosis. Mito-Esc improves hyperglycemia (HG)-associated insulin resistance. Mito-Esc inhibits HG-induced vascular senescence and inflammation in the aorta. Mito-Esc-mediated activation of the AMPK-SIRT1 axis regulates HG-induced endothelial cell senescence.
Collapse
Affiliation(s)
- Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Aruna Jangam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd., Vadodara, 390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Pulipaka S, Chempon H, Singuru G, Sahoo S, Shaikh A, Kumari S, Thennati R, Kotamraju S. Mitochondria-targeted esculetin and metformin delay endothelial senescence by promoting fatty acid β-oxidation: Relevance in age-associated atherosclerosis. Mech Ageing Dev 2024; 219:111931. [PMID: 38554949 DOI: 10.1016/j.mad.2024.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Impaired mitochondrial fatty acid β-oxidation (FAO) plays a role in the onset of several age-associated diseases, including atherosclerosis. In the current work, we investigated the efficacies of mitochondria-targeted esculetin (Mito-Esc) and metformin in enhancing FAO in human aortic endothelial cells (HAECs), and its relevance in the delay of cellular senescence and age-associated atherosclerotic plaque formation in Apoe-/- mice. Chronic culturing of HAECs with either Mito-Esc or metformin increased oxygen consumption rates (OCR), and caused delay in senescence features. Conversely, etomoxir (CPT1 inhibitor) reversed Mito-Esc- and metformin-induced OCR, and caused premature endothelial senescence. Interestingly, Mito-Esc, unlike metformin, in the presence of etomoxir failed to preserve OCR. Thereby, underscoring Mito-Esc's exclusive reliance on FAO as an energy source. Mechanistically, chronic culturing of HAECs with either Mito-Esc or metformin led to AMPK activation, increased CPT1 activity, and acetyl-CoA levels along with a concomitant reduction in malonyl-CoA levels, and lipid accumulation. Similar results were observed in Apoe-/- mice aorta and liver tissue with a parallel reduction in age-associated atherosclerotic plaque formation and degeneration of liver with either Mito-Esc or metformin administration. Together, Mito-Esc and metformin by potentiating FAO, may have a role in the delay of cellular senescence by modulating mitochondrial function.
Collapse
Affiliation(s)
- Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Hridya Chempon
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sunita Kumari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd, Vadodara 390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
6
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Pulipaka S, Singuru G, Sahoo S, Shaikh A, Thennati R, Kotamraju S. Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation. GeroScience 2024; 46:2391-2408. [PMID: 37968424 PMCID: PMC10828355 DOI: 10.1007/s11357-023-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Atherosclerosis, in general, is an age-associated cardiovascular disease wherein a progressive decline in mitochondrial function due to aging majorly contributes to the disease development. Mitochondria-derived ROS due to dysregulated endothelial cell function accentuates the progression of atherosclerotic plaque formation. To circumvent this, mitochondrially targeted antioxidants are emerging as potential candidates to combat metabolic abnormalities. Recently, we synthesized an alkyl TPP+ tagged esculetin (Mito-Esc), and in the current study, we investigated the therapeutic efficacies of Mito-Esc and metformin, a well-known anti-diabetic drug, in the amelioration of age-associated plaque formation in the aortas of 12 months aged Apoe-/- and 20 months aged C57BL/6 mice, in comparison to young C57BL/6 control mice. Administration of Mito-Esc or metformin significantly reduced age-induced atherosclerotic lesion area, macrophage polarization, vascular inflammation, and senescence. Further, chronic passaging of human aortic endothelial cells (HAEC) with either Mito-Esc or metformin significantly delayed cellular senescence via the activation of the AMPK-SIRT1/SIRT6 axis. Conversely, depletion of either AMPK/SIRT1/SIRT6 caused premature senescence. Consistent with this, Mito-Esc or metformin treatment attenuated NFkB-mediated inflammatory signaling and enhanced ARE-mediated anti-oxidant responses in comparison to late passage control HAECs. Importantly, culturing of HAECs for several passages with either Mito-Esc or metformin significantly improved mitochondrial function. Overall, Mito-Esc and metformin treatments delay age-associated atherosclerosis by regulating vascular senescence via the activation of AMPK-SIRT1/SIRT6 axis.
Collapse
Affiliation(s)
- Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd, Vadodara-390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India.
| |
Collapse
|
8
|
Chen S, Chen W, Li Z, Yue J, Yung KKL, Li R. Regulation of PM 2.5 on mitochondrial damage in H9c2 cells through miR-421/SIRT3 pathway and protective effect of miR-421 inhibitor and resveratrol. J Environ Sci (China) 2024; 138:288-300. [PMID: 38135396 DOI: 10.1016/j.jes.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 12/24/2023]
Abstract
Fine particulate matter (PM2.5) exposure is associated with cardiovascular disease (CVD) morbidity and mortality. Mitochondria are sensitive targets of PM2.5, and mitochondrial dysfunction is closely related to the occurrence of CVD. The epigenetic mechanism of PM2.5-triggered mitochondrial injury of cardiomyocytes is unclear. This study focused on the miR-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance in rat H9c2 cells induced by PM2.5. Results illustrated that PM2.5 impaired mitochondrial function and caused dynamics homeostasis imbalance. Besides, PM2.5 up-regulated miR-421 and down-regulated SIRT3 gene expression, along with decreasing p-FOXO3a (SIRT3 downstream target gene) and p-Parkin expression and triggering abnormal expression of fusion gene OPA1 and fission gene Drp1. Further, miR-421 inhibitor (miR-421i) and resveratrol significantly elevated the SIRT3 levels in H9c2 cells after PM2.5 exposure and mediated the expression of SOD2, OPA1 and Drp1, restoring the mitochondrial morphology and function. It suggests that miR-421/SIRT3 pathway plays an epigenetic regulatory role in mitochondrial damage induced by PM2.5 and that miR-421i and resveratrol exert protective effects against PM2.5-incurred cardiotoxicity.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenqi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiping Li
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China
| | - Jianwei Yue
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China; Shanxi Yellow River Laboratory, Taiyuan 030006, China.
| |
Collapse
|
9
|
Xia M, Wu Z, Wang J, Buist-Homan M, Moshage H. The Coumarin-Derivative Esculetin Protects against Lipotoxicity in Primary Rat Hepatocytes via Attenuating JNK-Mediated Oxidative Stress and Attenuates Free Fatty Acid-Induced Lipid Accumulation. Antioxidants (Basel) 2023; 12:1922. [PMID: 38001774 PMCID: PMC10669015 DOI: 10.3390/antiox12111922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation. Primary cultures of rat hepatocytes were exposed to palmitic acid (PA) and palmitic acid plus oleic acid (OA/PA) as models of lipotoxicity and lipid accumulation, respectively. Esculetin significantly reduced oxidative stress in PA-treated hepatocytes, as shown by decreased total reactive oxygen species (ROS) and mitochondrial superoxide production and elevated expression of antioxidant genes, including Nrf2 and Gpx1. In addition, esculetin protects against PA-induced necrosis. Esculetin also improved lipid metabolism in primary hepatocytes exposed to nonlipotoxic OA/PA by decreasing the expression of the lipogenesis-related gene Srebp1c and increasing the expression of the fatty acid β-oxidation-related gene Ppar-α. Moreover, esculetin attenuated lipid accumulation in OA/PA-treated hepatocytes. The protective effects of esculetin against lipotoxicity and lipid accumulation were shown to be dependent on the inhibition of JNK and the activation of AMPK, respectively. We conclude that esculetin is a promising compound to target lipotoxicity and lipid accumulation in the treatment of MAFLD.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
10
|
Shen X, Shi H, Chen X, Han J, Liu H, Yang J, Shi Y, Ma J. Esculetin Alleviates Inflammation, Oxidative Stress and Apoptosis in Intestinal Ischemia/Reperfusion Injury via Targeting SIRT3/AMPK/mTOR Signaling and Regulating Autophagy. J Inflamm Res 2023; 16:3655-3667. [PMID: 37641705 PMCID: PMC10460583 DOI: 10.2147/jir.s413941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Aim Intestinal ischemia/reperfusion (I/R) injury is a challenging pathological phenomenon accountable for significant mortality in clinical scenarios. Substantial evidence has supported the protective role of esculetin in myocardial I/R injury. This study is designed to reveal the specific impacts of esculetin on intestinal I/R injury and disclose the underlying mechanism. Methods First, intestinal I/R injury model and intestinal epithelial cell line hypoxia/reoxygenation (H/R) model were established. Pathologic damages to intestinal tissues were observed through H&E staining. Serum diamine oxidase (DAO) levels were examined. RT-qPCR and Western blot examined the expression of inflammatory mediators. Commercial kits were used for detecting the levels of oxidative stress markers. TUNEL assay and caspase 3 activity assay measured cell apoptosis. Immunofluorescence (IF) staining measured autophagy levels. Western blot analyzed the expression of apoptosis-, Sirtuin 3 (SIRT3)/AMP activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling- and autophagy-related proteins. Molecular docking verified the interaction of esculetin with SIRT3. Cell viability was explored via CCK-8 assay. Results The experimental results revealed that esculetin treatment mitigated pathological damage of intestinal tissues, reduced serum DAO level, ameliorated inflammation, oxidative stress and apoptosis and promoted autophagy in intestinal I/R rats. Moreover, esculetin bond to SIRT3 and activated SIRT3/AMPK/mTOR signaling both in vitro and in vivo. Furthermore, esculetin treatment enhanced cell viability and SIRT3 silencing reversed the impacts of esculetin on autophagy, inflammation, oxidative stress and apoptosis in H/R cell model. Conclusion In a word, esculetin activated SIRT3/AMPK/mTOR signaling and autophagy to protect against inflammation, oxidative stress and apoptosis in intestinal I/R injury.
Collapse
Affiliation(s)
- Xin Shen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Hai Shi
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Xinli Chen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Junwei Han
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Haiwang Liu
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Jie Yang
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Yuan Shi
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jiajia Ma
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
11
|
Gong H, Liu J, Xue Z, Wang W, Li C, Xu F, Du Y, Lyu X. SIRT3
attenuates coronary atherosclerosis in diabetic patients by regulating endothelial cell function. J Clin Lab Anal 2022; 36:e24586. [PMID: 35791925 PMCID: PMC9396194 DOI: 10.1002/jcla.24586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022] Open
Abstract
Background This study aimed to explore the relationship between the Sirtuin 3 (SIRT3) gene and endothelial cell dysfunction, contributing to the progression of coronary atherosclerosis driven by hyperglycemia. Methods We measured serum SIRT3 levels using enzyme‐linked immunosorbent assay in 95 patients with type 2 diabetes mellitus (T2DM) who underwent diagnostic coronary angiography. The patients were divided into two groups according to the presence (n = 45) or absence (n = 50) of coronary artery disease (CAD). Human aortic endothelial cells (HAECs) grown in vitro in a medium with various concentrations of glucose (5.5, 11, 16.5, 22, 27.5, 33, and 38.5 mM) for 24 h were assessed for protein expression of SIRT3, peroxisome proliferator‐activated receptor alpha (PPAR‐α), endothelial nitric oxide (NO) synthase (eNOS), and inducible NO synthase (iNOS) using Western blot analysis. HAECs were subjected to SIRT3 overexpression or inhibition through SIRT3 adenovirus and siRNA transfection. Results Serum SIRT3 levels were significantly lower in T2DM patients with CAD than in those without CAD (p = 0.048). The in vitro results showed that HG significantly increased SIRT3, PPAR‐α, and eNOS protein expression in a concentration‐dependent manner. Moreover, iNOS expression was decreased in HAECs in response to HG. Reduced PPAR‐α and eNOS levels and increased iNOS levels were observed in SIRT3 silenced HAECs cells. In contrast, SIRT3 overexpression significantly improved PPAR‐α and eNOS expression and suppressed iNOS expression. Conclusion SIRT3 was associated with the progression of atherosclerosis in T2DM patients through upregulation of PPAR‐α and eNOS and downregulation of iNOS, which are involved in endothelial dysfunction under hyperglycemic conditions.
Collapse
Affiliation(s)
- Huiping Gong
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Jing Liu
- Department of Cardiology The Second Hospital of Shandong University Jinan China
| | - Zhiwei Xue
- Cheeloo College of Medicine Shandong University Jinan China
| | - Wenwen Wang
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Cuicui Li
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Fanfan Xu
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Yimeng Du
- Department of Cardiology The Second Hospital of Shandong University Jinan China
| | - Xiaona Lyu
- Department of Pediatric Surgery Qilu Hospital of Shandong University Jinan China
| |
Collapse
|
12
|
Karnewar S, Pulipaka S, Katta S, Panuganti D, Neeli PK, Thennati R, Jerald MK, Kotamraju S. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe mice. Atherosclerosis 2022; 356:28-40. [DOI: 10.1016/j.atherosclerosis.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
|
13
|
Abstract
Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.,Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| | - Zhi-You Cai
- Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
14
|
Improvement effects of esculetin on the formation and development of atherosclerosis. Biomed Pharmacother 2022; 150:113001. [PMID: 35658220 DOI: 10.1016/j.biopha.2022.113001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is one of the potential causes of death in patients with cardiovascular disease. With the discovery of new anti atherosclerotic drugs becoming the pursuit of the pharmaceutical industry, natural products have attracted more and more attention because of their unique efficacy in the treatment of atherosclerosis. More and more studies have shown that esculetin, a coumarin mainly found in cortex fraxini, can improve atherosclerosis by participating in cellular antioxidant responses and reducing inflammation related pathogenesis. This paper summarizes the researches of esculetin on anti-atherosclerosis in the past two decades. Esculetin plays an anti atherosclerotic role through reducing blood triglyceride level, preventing the proliferation of vascular smooth muscle cells (VSMC) and the production of matrix metallopeptidase 9 (MMP-9), inhibiting the oxidation of low density lipoprotein (LDL) and the secretion of adhesion factors and chemokines, and increasing the outflow level of high density lipoprotein cholesterol (HDL-C). Esculetin is safe and reliable, easy to be absorbed by the body and can be synthesized in a variety of ways. Although there are still few clinical studies on anti-atherosclerosis, in vivo experiments have proved that esculetin has high bioavailability. From the current research, the anti-atherosclerotic effect of esculetin is positive and encouraging. However, much work remains to be done to clarify the molecular mechanism of esculetin in the treatment of atherosclerosis.
Collapse
|
15
|
Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria Related Cell Death Modalities and Disease. Front Cell Dev Biol 2022; 10:832356. [PMID: 35321239 PMCID: PMC8935059 DOI: 10.3389/fcell.2022.832356] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are well known as the centre of energy metabolism in eukaryotic cells. However, they can not only generate ATP through the tricarboxylic acid cycle and oxidative phosphorylation but also control the mode of cell death through various mechanisms, especially regulated cell death (RCD), such as apoptosis, mitophagy, NETosis, pyroptosis, necroptosis, entosis, parthanatos, ferroptosis, alkaliptosis, autosis, clockophagy and oxeiptosis. These mitochondria-associated modes of cell death can lead to a variety of diseases. During cell growth, these modes of cell death are programmed, meaning that they can be induced or predicted. Mitochondria-based treatments have been shown to be effective in many trials. Therefore, mitochondria have great potential for the treatment of many diseases. In this review, we discuss how mitochondria are involved in modes of cell death, as well as basic research and the latest clinical progress in related fields. We also detail a variety of organ system diseases related to mitochondria, including nervous system diseases, cardiovascular diseases, digestive system diseases, respiratory diseases, endocrine diseases, urinary system diseases and cancer. We highlight the role that mitochondria play in these diseases and suggest possible therapeutic directions as well as pressing issues that need to be addressed today. Because of the key role of mitochondria in cell death, a comprehensive understanding of mitochondria can help provide more effective strategies for clinical treatment.
Collapse
Affiliation(s)
- Chuwen Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuoshu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| |
Collapse
|
16
|
Li H, Liu L, Cao Z, Li W, Liu R, Chen Y, Li C, Song Y, Liu G, Hu J, Liu Z, Lu C, Liu Y. Naringenin ameliorates homocysteine induced endothelial damage via the AMPKα/Sirt1 pathway. J Adv Res 2021; 34:137-147. [PMID: 35024186 PMCID: PMC8655233 DOI: 10.1016/j.jare.2021.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Endothelial damage (ED) has been implicated in accelerating the development of atherosclerosis. The latter condition is a risk factor for developing several cardiovascular diseases (CVDs) associated with high morbidity and mortality rates worldwide. Objectives In our previous studies, we found naringenin (Nar), a bioactive flavanone compound, to protect against mitochondrial damage and oxidative stress. Though the pleiotropic effects of Nar have been well described, precise cytoprotective mechanisms of Nar against homocysteine (Hcy) induced ED remains elusive. Understanding these events may give an insight in to prevention and treatment of CVDs. Methods After ruling out the NMDA-R1 mediated pathway, RNA-Seq, a novel transcriptomic technique uncovered AMPK signaling pathway was identified as the mechanism with which Nar corrects ED. Further in vivo and in vitro tests validated the role of Nar against ED. Results In particular, Nar activates AMPKα/Sirt1 signaling pathway, which restores mitochondrial Ca2+ balance and ultimately lowered production of reactive oxygen species (ROS). Activated AMPKα/Sirt1 signaling pathway also up-regulates endothelial nitric oxide synthase (eNOS) activity, and then increasing the production of nitric oxide (NO), ultimately ameliorating ED. Conclusion Nar could increase the ROS elimination and decrease eNOS uncoupling, subsequently upregulate the NO bioavailability and endothelial function by activating AMPKα/Sirt1 signaling pathway.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinghong Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
17
|
Shaikh A, Neeli PK, Singuru G, Panangipalli S, Banerjee R, Maddi SR, Thennati R, Bathula SR, Kotamraju S. A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun (Camb) 2021; 57:12329-12332. [PMID: 34740232 DOI: 10.1039/d1cc03497a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we document a self-assembling octyl-TPP tagged esculetin (Mito-Esc) as functionally active and as a novel small molecule siRNA delivery vector. While Mito-Esc itself induces selective breast cancer cell death, the amphiphilic nature of Mito-Esc delivers therapeutic siRNAs intracellularly without the need for any excipient to exacerbate the anti-proliferative effects.
Collapse
Affiliation(s)
- Altab Shaikh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Praveen Kumar Neeli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Gajalakshmi Singuru
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Sravya Panangipalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Rajkumar Banerjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Sridhar Reddy Maddi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | | | - Surendar Reddy Bathula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Srigiridhar Kotamraju
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| |
Collapse
|
18
|
Raghunandan S, Ramachandran S, Ke E, Miao Y, Lal R, Chen ZB, Subramaniam S. Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Front Cell Dev Biol 2021; 9:702974. [PMID: 34595164 PMCID: PMC8476872 DOI: 10.3389/fcell.2021.702974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and are central to sensing chemical perturbations that can lead to oxidative stress. The degree of stress is correlated with divergent phenotypes such as quiescence, cell death, or senescence. Each possible cell fate is relevant for a different aspect of endothelial function, and hence, the regulation of cell fate decisions is critically important in maintaining vascular health. This study examined the oxidative stress response (OSR) in human ECs at the boundary of cell survival and death through longitudinal measurements, including cellular, gene expression, and perturbation measurements. 0.5 mM hydrogen peroxide (HP) produced significant oxidative stress, placed the cell at this junction, and provided a model to study the effectors of cell fate. The use of systematic perturbations and high-throughput measurements provide insights into multiple regimes of the stress response. Using a systems approach, we decipher molecular mechanisms across these regimes. Significantly, our study shows that heme oxygenase-1 (HMOX1) acts as a gatekeeper of cell fate decisions. Specifically, HP treatment of HMOX1 knockdown cells reversed the gene expression of about 51% of 2,892 differentially expressed genes when treated with HP alone, affecting a variety of cellular processes, including anti-oxidant response, inflammation, DNA injury and repair, cell cycle and growth, mitochondrial stress, metabolic stress, and autophagy. Further analysis revealed that these switched genes were highly enriched in three spatial locations viz., cell surface, mitochondria, and nucleus. In particular, it revealed the novel roles of HMOX1 on cell surface receptors EGFR and IGFR, mitochondrial ETCs (MTND3, MTATP6), and epigenetic regulation through chromatin modifiers (KDM6A, RBBP5, and PPM1D) and long non-coding RNA (lncRNAs) in orchestrating the cell fate at the boundary of cell survival and death. These novel aspects suggest that HMOX1 can influence transcriptional and epigenetic modulations to orchestrate OSR affecting cell fate decisions.
Collapse
Affiliation(s)
- Sindhushree Raghunandan
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Eugene Ke
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, United States
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Zhang R, An R, Gu Z, Sun H, Ye D, Liu H. Dehydroberberine Analogue Nanoassemblies for Inducing and Self-Reporting Mitochondrial Dysfunction in Tumor Cells. ACS APPLIED BIO MATERIALS 2021; 4:2033-2043. [DOI: 10.1021/acsabm.0c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem-BIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanni Gu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haifeng Sun
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem-BIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
21
|
Groh LA, Riksen NP. Macrophage mitochondrial superoxides as a target for atherosclerotic disease treatment. Int J Biochem Cell Biol 2020; 129:105883. [PMID: 33176186 DOI: 10.1016/j.biocel.2020.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. Although many effective therapies exist, a substantial portion of patients remain unprotected by current measures. Recent advances in the understanding of the underpinning cause of CVD, atherosclerosis, have demonstrated the important causative role of inflammation in disease progression. Monocytes are important protagonists of atherosclerosis, and they have been shown to have elevated reliance on mitochondrial metabolism producing elevated levels of superoxides as a noxious byproduct. There exists a key link between mitochondrial superoxides production and inflammatory output in monocytes in the context of atherosclerosis. In this review we describe mitochondrial superoxide lowering strategies in order to broaden the scope of treatment strategies for CVD. We further explore strategies for more effective and selective targeting of the involved monocytes and macrophages in order to increase potency of effect and diminish side effects.
Collapse
Affiliation(s)
- Laszlo A Groh
- Department of Internal Medicine & Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine & Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review aims to highlight the association between gut microbiome and cardiovascular disease (CVD) with emphasis on the possible molecular mechanisms by which how gut microbiome contributes to CVD. RECENT FINDINGS Increasingly, the roles of gut microbiome in cardiovascular health and disease have gained much attention. Most of the investigations focus on how the gut dysbiosis contributes to CVD risk factors and which gut microbial-derived metabolites mediate such effects. SUMMARY In this review, we discuss the molecular mechanisms of gut microbiome contributing to CVD, which include gut microbes translocalization to aortic artery because of gut barrier defect to initiate inflammation and microbial-derived metabolites inducing inflammation-signaling pathway and renal insufficiency. Specifically, we categorize beneficial and deleterious microbial-derived metabolites in cardiovascular health. We also summarize recent findings in the gut microbiome modulation of drug efficacy in treatment of CVD and the microbiome mechanisms by which how physical exercise ameliorates cardiovascular health. Gut microbiome has become an essential component of cardiovascular research and a crucial consideration factor in cardiovascular health and disease.
Collapse
|
23
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
24
|
Butyrate mitigates TNF-α-induced attachment of monocytes to endothelial cells. J Bioenerg Biomembr 2020; 52:247-256. [DOI: 10.1007/s10863-020-09841-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
|
25
|
Jiang W, Geng H, Lv X, Ma J, Liu F, Lin P, Yan C. Idebenone Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice Via Activation of the SIRT3-SOD2-mtROS Pathway. Cardiovasc Drugs Ther 2020; 35:1129-1145. [DOI: 10.1007/s10557-020-07018-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Baselet B, Driesen RB, Coninx E, Belmans N, Sieprath T, Lambrichts I, De Vos WH, Baatout S, Sonveaux P, Aerts A. Rosiglitazone Protects Endothelial Cells From Irradiation-Induced Mitochondrial Dysfunction. Front Pharmacol 2020; 11:268. [PMID: 32231569 PMCID: PMC7082323 DOI: 10.3389/fphar.2020.00268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Up to 50–60% of all cancer patients receive radiotherapy as part of their treatment strategy. However, the mechanisms accounting for increased vascular risks after irradiation are not completely understood. Mitochondrial dysfunction has been identified as a potential cause of radiation-induced atherosclerosis. Materials and Methods Assays for apoptosis, cellular metabolism, mitochondrial DNA content, functionality and morphology were used to compare the response of endothelial cells to a single 2 Gy dose of X-rays under basal conditions or after pharmacological treatments that either reduced (EtBr) or increased (rosiglitazone) mitochondrial content. Results Exposure to ionizing radiation caused a persistent reduction in mitochondrial content of endothelial cells. Pharmacological reduction of mitochondrial DNA content rendered endothelial cells more vulnerable to radiation-induced apoptosis, whereas rosiglitazone treatment increased oxidative metabolism and redox state and decreased the levels of apoptosis after irradiation. Conclusion Pre-existing mitochondrial damage sensitizes endothelial cells to ionizing radiation-induced mitochondrial dysfunction. Rosiglitazone protects endothelial cells from the detrimental effects of radiation exposure on mitochondrial metabolism and oxidative stress. Thus, our findings indicate that rosiglitazone may have potential value as prophylactic for radiation-induced atherosclerosis.
Collapse
Affiliation(s)
- Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Ronald B Driesen
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Emma Coninx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Niels Belmans
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Tom Sieprath
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ivo Lambrichts
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Winnok H De Vos
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
27
|
Chen L, Hu L, Li Q, Ma J, Li H. Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1233-1241. [PMID: 31768526 DOI: 10.1093/abbs/gmz123] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 01/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) play an important role in the pathological process of atherosclerosis (AS). This study aims to evaluate whether exosomes from oxidized low-density lipoprotein (ox-LDL)-treated vascular endothelial cells (VECs) aggravate AS by inducing NET formation. Exosomes from the peripheral blood of healthy donors and AS patients (namely NC-EXO and AS-EXO, respectively) and exosomes from human umbilical vein endothelial cells (HUVECs) treated without or with ox-LDL (namely normal EXO and ox-LDL-EXO, respectively) were isolated, identified, and co-cultured with neutrophils from peripheral blood of healthy donors. NET formation was evaluated by immunofluorescence staining and determining the content of cell-free DNA and myeloperoxidase-DNA complex. Dual-luciferase reporter assay, chromatin immunoprecipitation assay, quantitative reverse transcription polymerase chain reaction, and western blot analysis were performed to explore the underlying mechanisms. We found that AS-EXO and ox-LDL-EXO induced NET release from neutrophils. Mechanistically, ox-LDL treatment in HUVECs might activate the NF-κB pathway, which transcriptionally activates miR-505, and then the exosome-encapsulated high miR-505 expression targeted and inhibited SIRT3 in neutrophils, thereby inducing reactive oxygen species (ROS) level increase and NET release by neutrophils. Further in vivo experiments showed that ox-LDL-EXO accelerated AS progression in AS mice. In summary, exosome-encapsulated miR-505 from ox-LDL-treated VECs aggravates AS by inducing NET formation.
Collapse
Affiliation(s)
- Li Chen
- Department of Gerontology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Anhui Institute of Cardiovascular Disease, Hefei 230001, China
| | - Liqun Hu
- Department of Gerontology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Anhui Institute of Cardiovascular Disease, Hefei 230001, China
| | - Qing Li
- The Central Laboratory of Medical Research Center, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Jian Ma
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Hongqi Li
- Department of Gerontology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Anhui Institute of Cardiovascular Disease, Hefei 230001, China
| |
Collapse
|
28
|
Andreas E, Reid M, Zhang W, Moley KH. The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. Mol Hum Reprod 2019; 25:717-728. [PMID: 31588490 PMCID: PMC6884416 DOI: 10.1093/molehr/gaz049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Observational human data and several lines of animal experimental data indicate that maternal obesity impairs offspring health. Here, we comprehensively tested the model that maternal obesity causes defects in the next three generations of oocytes and embryos. We exposed female F0 mice to a high-fat/high-sugar (HF/HS) diet for 6 weeks before conception until weaning. Sires, F1 offspring and all subsequent generations were fed control chow diet. Oocytes from F1, F2 and F3 offspring of obese mothers had lower mitochondrial mass and less ATP and citrate than oocytes from offspring of control mothers. F0 blastocysts from HF/HS-exposed mice, but not F1 and F2 blastocysts, had lower mitochondrial mass and membrane potential, less citrate and ATP and smaller total cell number than F0 blastocysts from control mothers. Finally, supplementation of IVF media with the anti-oxidant mito-esculetin partially prevented the oocyte mitochondrial effects caused by maternal HF/HS diet. Our results support the idea that maternal obesity impairs offspring oocyte quality and suggest that antioxidant supplementation should be tested as a means to improve IVF outcomes for obese women.
Collapse
Affiliation(s)
- E Andreas
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 South Euclid Avenue, St. Louis, MO 63110, USA
| | - M Reid
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 South Euclid Avenue, St. Louis, MO 63110, USA
| | - W Zhang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 South Euclid Avenue, St. Louis, MO 63110, USA
| | - K H Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Aqueous extract of Houttuynia cordata ameliorates aortic endothelial injury during hyperlipidemia via FoxO1 and p38 MAPK pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
31
|
miR-19 family: A promising biomarker and therapeutic target in heart, vessels and neurons. Life Sci 2019; 232:116651. [PMID: 31302195 DOI: 10.1016/j.lfs.2019.116651] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
The miR-19 family, including miR-19a, miR-19b-1 and miR-19b-2, arises from two different paralogous clusters miR-17-92 and miR-106a-363. Although it is identified as oncogenic miRNA, the miR-19 family has also been found to play important roles in regulating normal tissue development. The precise control of miR-19 family level is essential for keeping tissue homeostasis and normal development of organisms. Its dysregulation leads to dysplasia, disease and even cancer. Therefore, this review focuses on the roles of miR-19 family in the development and disease of heart, vessels and neurons to estimate the potential value of miR-19 family as diagnostic biomarker or therapeutic target of cardiac, neurological, and vascular diseases.
Collapse
|
32
|
Miao X, Li W, Niu B, Li J, Sun J, Qin M, Zhou Z. Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol 2019; 39:1424-1432. [DOI: 10.1002/jat.3828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyan Miao
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Wenke Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Bingyu Niu
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jiangshuai Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jingjie Sun
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Mengnan Qin
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Zhixiang Zhou
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| |
Collapse
|
33
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
34
|
Liu Y, Yu B. MicroRNA‑186‑5p is expressed highly in ethanol‑induced cardiomyocytes and regulates apoptosis via the target gene XIAP. Mol Med Rep 2019; 19:3179-3189. [PMID: 30816481 PMCID: PMC6423630 DOI: 10.3892/mmr.2019.9953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Ethanol has a toxic effect on the heart, resulting in cardiomyocyte damage. Long-term high intake of ethanol leads to a non-ischemic dilated cardiomyopathy termed alcoholic cardiomyopathy (ACM). However, the pathogenesis of alcoholic cardiomyopathy remains unclear. The apoptosis of cardiomyocytes serves an important role in the pathogenesis of ACM. X-linked inhibitor of apoptosis protein (XIAP) is an important anti-apoptotic protein in human tissue cells. To the best of our knowledge, no studies have reported on its function in ethanol-induced cardiomyopathy. Previous works have screened the ACM-associated differentially expressed microRNAs (miRs), including miR-186-5p and miR-488-3p. TargetScan bioinformatics software was used to predict 949 target genes associated with miR-186-5p, and XIAP was demonstrated to be a target of miR-186-5p. The present study firstly analyzed the levels of apoptosis in ethanol-treated cardiomyocytes using flow cytometry. Alterations in the expression levels of miR-186-5p and XIAP were subsequently evaluated in ethanol-treated AC16 cardiomyocytes to assess the specific molecular mechanisms of ethanol-induced cardiomyocyte apoptosis. The levels of apoptosis in AC16 cardiomyocytes increased following ethanol treatment, and further increased with the rise in concentration and action time of ethanol. The expression levels of miR-186-5p were upregulated, and the expression levels of XIAP were downregulated in ethanol-treated cardiomyocytes. miR-186-5p may regulate ethanol-induced apoptosis in cardiomyocytes using XIAP as the direct target gene. This study provides a novel therapeutic target for the prevention and treatment of ACM.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
35
|
Wu J, Zeng Z, Zhang W, Deng Z, Wan Y, Zhang Y, An S, Huang Q, Chen Z. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res 2018; 53:139-149. [PMID: 30458637 DOI: 10.1080/10715762.2018.1549732] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a nicotinamide adenine dinucleotide (NAD)+-dependent protein deacetylase, SIRT3 is highly expressed in tissues with high metabolic turnover and mitochondrial content. It has been demonstrated that SIRT3 plays a critical role in maintaining normal mitochondrial biological function through reversible protein lysine deacetylation. SIRT3 has a variety of substrates that are involved in mitochondrial biological processes such as energy metabolism, reactive oxygen species production and clearance, electron transport chain flux, mitochondrial membrane potential maintenance, and mitochondrial dynamics. In the suppression of SIRT3, functional deficiencies of mitochondria contribute to the development of various cardiovascular disorders. Activation of SIRT3 may represent a promising therapeutic strategy for the improvement of mitochondrial function and the treatment of relevant cardiovascular disorders. In the current review, we discuss the emerging roles of SIRT3 in mitochondrial derangements and subsequent cardiovascular malfunctions, including cardiac hypertrophy and heart failure, ischemia-reperfusion injury, and endothelial dysfunction in hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Jie Wu
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China.,b Department of Pathophysiology , Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University , Guangzhou , China
| | - Zhenhua Zeng
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China.,b Department of Pathophysiology , Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University , Guangzhou , China
| | - Weijin Zhang
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China.,b Department of Pathophysiology , Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University , Guangzhou , China
| | - Zhiya Deng
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Yahui Wan
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Yaoyuan Zhang
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Sheng An
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Qiaobing Huang
- b Department of Pathophysiology , Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University , Guangzhou , China
| | - Zhongqing Chen
- a Department of Critical Care Medicine , Nanfang Hospital, Southern Medical University , Guangzhou , China.,b Department of Pathophysiology , Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University , Guangzhou , China
| |
Collapse
|
36
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 729] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
37
|
Role of AMPK in the expression of tight junction proteins in heat-treated porcine Sertoli cells. Theriogenology 2018; 121:42-52. [DOI: 10.1016/j.theriogenology.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023]
|
38
|
Patel SS, Ray RS, Sharma A, Mehta V, Katyal A, Udayabanu M. Antidepressant and anxiolytic like effects of Urtica dioica leaves in streptozotocin induced diabetic mice. Metab Brain Dis 2018; 33:1281-1292. [PMID: 29704081 DOI: 10.1007/s11011-018-0243-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/17/2018] [Indexed: 01/17/2023]
Abstract
The present study was aimed to investigate the effect of Urtica dioica Linn. (UD) extract against chronic diabetes mediated anxiogenic and depressive like behavior in mice. Streptozotocin (STZ) (50 mg/kg, i.p.) for 5 consecutive days was used to induce diabetes followed by treatment with UD leaves extract (50 mg/kg, p.o.) and rosiglitazone (ROSI) (5 mg/kg, p.o.) for 8 weeks. STZ induced chronic diabetes significantly induced anxiety and depressive like behavior in mice. Chronic diabetes significantly downregulated BDNF (p < 0.001), TrKB (p < 0.001), Cyclin D1 (p < 0.001), Bcl2 (p < 0.05) and autophagy7 (p < 0.001), while upregulated iNOS (p < 0.05) mRNA expression in the hippocampus as compared to control mice. In addition, chronic diabetes significantly increased the expression of TNF-α in CA1 (p < 0.001), CA2 (p < 0.01), CA3 (p < 0.001) and DG (p < 0.001) regions of hippocampus as compared to control mice. Chronic diabetes mediated neuronal damage in the CA2, CA3 and DG regions of hippocampus. Chronic administration of UD leaves extract significantly reversed diabetes mediated anxiogenic and depressive like behavior in mice. Further, UD treatment significantly upregulated BDNF (p < 0.01), TrKB (p < 0.001), Cyclin D1 (p < 0.001), Bcl2 (p < 0.01), autophagy5 (p < 0.01) and autophagy7 (p < 0.001), while downregulated iNOS (p < 0.05) mRNA expression in the hippocampus of diabetic mice. Concomitantly, UD administration significantly decreased the expression of TNF-α in hippocampal CA1 (p < 0.001), CA2 (p < 0.01), CA3 (p < 0.001) and DG (p < 0.001) regions of diabetic mice. Diabetes mediated neuronal damage and DNA fragmentation in the hippocampus was substantially attenuated following UD treatment. UD leaves extract might prove to be effective for diabetes mediated anxiety and depressive like behavior.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - R S Ray
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi, 110 007, India
| | - Arun Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Vineet Mehta
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi, 110 007, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India.
| |
Collapse
|
39
|
An R, Gu Z, Sun H, Hu Y, Yan R, Ye D, Liu H. Self-assembly of Fluorescent Dehydroberberine Enhances Mitochondria-Dependent Antitumor Efficacy. Chemistry 2018; 24:9812-9819. [PMID: 29766578 DOI: 10.1002/chem.201801112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Indexed: 12/13/2022]
Abstract
Selective imaging and inducing mitochondrial dysfunction in tumor cells using mitochondria-targeting probes has become as a promising approach for cancer diagnosis and therapy. Here, we report the design of a fluorescent berberine analog, dehydroberberine (DH-BBR), as a new mitochondria-targeting probe capable of self-assembling into monodisperse organic nanoparticles (DTNPs) upon integration with a lipophilic counter anion, allowing for enhanced fluorescence imaging and treatment of tumors in living mice. X-ray crystallography revealed that the self-assembly process was attributed to a synergy of different molecular interactions, including π-π stacking, O⋅⋅⋅π interaction and electrostatic interaction between DH-BBR and counter anions. We demonstrated that DTNPs could efficiently enter tumor tissue following intravenous injection and enhance mitochondrial delivery of DH-BBR via an electrostatic interaction driven anion exchange process. Selective accumulation in the mitochondria capable of emitting strong fluorescence and causing mitochondrial dysfunction was achieved, enabling efficient inhibition of tumor growth in living mice. This study demonstrates promise for applying lipophilic anions to control molecular self-assembly and tune antitumor activity of mitochondria-targeting probes, which can facilitate to improve cancer treatment in vivo.
Collapse
Affiliation(s)
- Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhanni Gu
- State key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Haifeng Sun
- State key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Runqi Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Liu
- State key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| |
Collapse
|
40
|
Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Mol Neurobiol 2018; 56:1749-1769. [PMID: 29926377 DOI: 10.1007/s12035-018-1141-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are the key gasotransmitters with an imperious role in the maintenance of cerebrovascular homeostasis. A decline in their levels contributes to endothelial dysfunction that portends ischemic stroke (IS) or cerebral ischemia/reperfusion (CI/R). Nevertheless, their exorbitant production during CI/R is associated with exacerbation of cerebrovascular injury in the post-stroke epoch. NO-producing nitric oxide synthases are implicated in IS pathology and their activity is regulated, inter alia, by various post-translational modifications and chromatin-based mechanisms. These account for heterogeneous alterations in NO production in a disease setting like IS. Interestingly, NO per se has been posited as an endogenous epigenetic modulator. Further, there is compelling evidence for an ingenious crosstalk between NO and H2S in effecting the canonical (direct) and non-canonical (off-target collateral) functions. In this regard, NO-mediated S-nitrosylation and H2S-mediated S-sulfhydration of specific reactive thiols in an expanding array of target proteins are the principal modalities mediating the all-pervasive influence of NO and H2S on cell fate in an ischemic brain. An integrated stress response subsuming unfolded protein response and autophagy to cellular stressors like endoplasmic reticulum stress, in part, is entrenched in such signaling modalities that substantiate the role of NO and H2S in priming the cells for stress response. The precis presented here provides a comprehension on the multifarious actions of NO and H2S and their epigenetic underpinnings, their crosstalk in maintenance of cerebrovascular homeostasis, and their "Janus bifrons" effect in IS milieu together with plausible therapeutic implications.
Collapse
|
41
|
Gao F, Chen J, Zhu H. A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1024-1029. [PMID: 29675553 DOI: 10.1007/s11427-017-9285-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction is caused by many factors, such as dyslipidemia, endoplasmic reticulum (ER) stress, and inflammation. It has been demonstrated that endothelial dysfunction is the initial process of atherosclerosis. AMP-activated protein kinase (AMPK) is an important metabolic switch that plays a crucial role in lipid metabolism and inflammation. However, recent evidence indicates that AMPK could be a target for atherosclerosis by improving endothelial function. For instance, activation of AMPK inhibits the production of reactive oxygen species induced by mitochondrial dysfunction, ER stress, and NADPH oxidase. Moreover, activation of AMPK inhibits the production of pro-inflammatory factors induced by dyslipidemia and hyperglycemia and restrains production of perivascular adipose tissue-released adipokines. AMPK activation prevents endothelial dysfunction by increasing the bioavailability of nitric oxide. Therefore, we focused on the primary risk factors involved in endothelial dysfunction, and summarize the features of AMPK in the protection of endothelial function, by providing signaling pathways thought to be important in the pathological progress of risk factors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiemei Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
42
|
Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic Biol Med 2018; 118:85-97. [PMID: 29499335 DOI: 10.1016/j.freeradbiomed.2018.02.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Lipids are responsible for the atheromatous plaque formation during atherosclerosis by their deposition in the subendothelial intima of the aorta, leading to infarction. Sterol regulatory element-binding protein 2 (SREBP2), regulating cholesterol homeostasis, is suggested to play a pivotal role during the early incidence of atherosclerosis through dysregulation of lipid homeostasis. Here we demonstrate that oxidative stress stimulates SREBP2-mediated cholesterol uptake via low density lipoprotein receptor (LDLR), rather than cholesterol synthesis, in mouse vascular aortic smooth muscle cells (MOVAS) and THP-1 monocytes. The enhancement of mature form of SREBP2 (SREBP2-M) during oxidative stress was associated with the inhibition of AMP-activated protein kinase (AMPK) activation. In contrast, inhibition of either SREBP2 by fatostatin or LDLR by siLDLR resulted in decreased cholesterol levels during oxidative stress. Thereby confirming the role of SREBP2 in cholesterol regulation via LDLR. Metformin-mediated activation of AMPK was able to significantly abrogate cholesterol uptake by inhibiting SREBP2-M. Interestingly, although metformin administration attenuated angiotensin (Ang)-II-impaired lipid homeostasis in both aorta and liver tissues of ApoE-/- mice, the results indicate that SREBP2 through LDLR regulates lipid homeostasis in aorta but not in liver tissue. Taken together, AMPK activation inhibits oxidative stress-mediated SREBP2-dependent cholesterol uptake, and moreover, metformin-induced prevention of atheromatic events are in part due to its ability to regulate the SREBP2-LDLR axis.
Collapse
Affiliation(s)
- Raja Gopoju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, Chennai 600113, India
| | - Sravya Panangipalli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, Chennai 600113, India.
| |
Collapse
|
43
|
Kim WK, Byun WS, Chung HJ, Oh J, Park HJ, Choi JS, Lee SK. Esculetin suppresses tumor growth and metastasis by targeting Axin2/E-cadherin axis in colorectal cancer. Biochem Pharmacol 2018. [PMID: 29534875 DOI: 10.1016/j.bcp.2018.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) is the most common malignant disease worldwide due to its metastasis via the epithelial-mesenchymal transition (EMT) process. E-cadherin and Wnt signaling are emerging as potential targets for suppressing the EMT. In this context, Axin2 has been recognized as a negative regulator that inhibits glycogen synthase kinase 3β (GSK3β)-mediated degradation of Snail1, a transcriptional repressor of E-cadherin. However, Axin2 can also impede Wnt signaling via β-catenin degradation. Therefore, Axin2 may serve as either a promoter or suppressor of tumors, and the effects of its inhibition on the cell proliferation and metastasis of CRC require further elucidation. Here, esculetin (ES), a coumarin, was found to have the most potential effects on both β-catenin-responsive transcriptional and E-cadherin promoter activities. ES also showed anti-proliferative and anti-invasive activities in CRC cells. Mechanistically, Axin2 suppression by ES contributed to E-cadherin-mediated Wnt signaling inhibition. Moreover, the ability of ES to inhibit tumor growth and metastasis via Axin2 suppression was further supported in an HCT116-implanted orthotopic mouse model. Collectively, these findings suggest that targeting the Axin2/E-cadherin axis by ES may be an attractive therapeutic strategy for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Jin Chung
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06017, Republic of Korea
| | - Jedo Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
44
|
Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1115-1128. [PMID: 29366775 DOI: 10.1016/j.bbadis.2018.01.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Endothelial senescence in conjunction with mitochondrial dysfunction orchestrates age-associated cardiovascular disorders. In this study we investigated the causal link between these two processes and studied the molecular mechanisms by which metformin acts to coordinate the delay of endothelial senescence via enhancing mitochondrial biogenesis/function. AMPK activators metformin and AICAR delayed endothelial senescence via SIRT1-mediated upregulation of DOT1L, leading to increased trimethylation of H3K79 (H3K79me3). Treatment of cells with either siAMPK or siSIRT1 repressed DOT1L-mediated enhancement of H3K79me3. Moreover, the increase in SIRT3 expression and mitochondrial biogenesis/function by AMPK activators was H3K79me-dependent as H3K79N mutant or siDOT1L abrogated these effects. This was confirmed by the enrichment of H3K79me3 in the SIRT3 promoter with AMPK activation. Intriguingly, enhanced PGC-1α expression by SIRT3 via AMPK activation was responsible for increased hTERT expression and delayed endothelial senescence. In contrast, SIRT3 knockdown caused increased oxidative stress and premature senescence, possibly by depleting hTERT expression. Furthermore, a chronic low dose administration of metformin significantly attenuated vascular aging and inhibited age-associated atherosclerotic plaque formation in ApoE-/- mice. Overall, the results of this study show a novel regulation of mitochondrial biogenesis/function, and cellular senescence by H3K79me acting through SIRT3, thus providing a molecular basis for metformin-mediated age-delaying effects.
Collapse
|
45
|
Esculetin ameliorates vascular perturbation by intervening in the occupancy of H2BK120Ub at At1, At2, Tgfβ1 and Mcp1 promoter gene in thoracic aorta of IR and T2D rats. Biomed Pharmacother 2017; 95:1461-1468. [DOI: 10.1016/j.biopha.2017.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/25/2022] Open
|
46
|
Jung YH, Lee HJ, Kim JS, Lee SJ, Han HJ. EphB2 signaling-mediated Sirt3 expression reduces MSC senescence by maintaining mitochondrial ROS homeostasis. Free Radic Biol Med 2017; 110:368-380. [PMID: 28687409 DOI: 10.1016/j.freeradbiomed.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
Disruption of mitochondrial reactive oxygen species (mtROS) homeostasis is a key factor inducing UCB-MSC senescence. Accordingly, preventing mtROS accumulation will help in suppressing the UCB-MSC senescence. In this study, we observed that the expressions of EphrinB2 and EphB2 were inversely regulated by UCB-MSC passage-dependent manner. EphB2 signaling induced mitochondrial translocation of Sirt3. The knockdown of SIRT3 inhibited the effect of EphB2 signaling in UCB-MSCs. Subsequently, EphrinB2-Fc induced the nuclear translocation of Nrf-2 via c-Src phosphorylation dependent manner, and Sirt3 expression was regulated by Nrf-2. Among Sirt3 target genes, EphB2 signaling increased MnSOD and reduced the mtROS level in UCB-MSCs. Furthermore, the deacetylase effect of Sirt3 enhanced the MnSOD activity by deacetylation at the lysine 68 residue and therapeutic effect of UCB-MSCs on skin-wound healing was increased by EphB2 activation. In conclusion, the EphB2 can serve as a novel target for the optimizing the therapeutic use of UCB-MSCs in wound repair by MnSOD-mediated mtROS scavenging through EphB2/c-Src signaling pathway and Nrf-2-dependent Sirt3 expression.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
47
|
Wang X, Peng Q, Jiang F, Xue L, Li J, Fan Z, Chen P, Chen G, Cai Y. Secreted frizzled-related protein 5 protects against oxidative stress-induced apoptosis in human aortic endothelial cells via downregulation of Bax. J Biochem Mol Toxicol 2017; 31. [PMID: 28834606 DOI: 10.1002/jbt.21978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
This study was undertaken to determine the role of secreted frizzled-related protein 5 (SFRP5) in endothelial oxidative injury. Human aortic endothelial cells (HAECs) were exposed to different oxidative stimuli and examined for SFRP5 expression. The effects of SFRP5 overexpression and knockdown on cell viability, apoptosis, and reactive oxygen species production were measured. HAECs treated with angiotensin (Ang) II (1 μM) or oxidized low-density lipoprotein (oxLDL) (150 μg/mL) showed a significant increase in SFRP5 expression. Overexpression of SFRP5 significantly attenuated the viability suppression and apoptosis induction by Ang II and oxLDL, whereas the knockdown of SFRP5 exerted opposite effects. Overexpression of SFRP5 prevented ROS formation and β-catenin activation and reduced Bax expression. Co-expression of Bax significantly reversed the anti-apoptotic effect of SFRP5 overexpression, whereas knockdown of Bax restrained Ang II- and oxLDL-induced apoptosis in HAECs. Taken together, SFRP5 confers protection against oxidative stress-induced apoptosis through inhibition of β-catenin activation and downregulation of Bax.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Endocrinology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qing Peng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Feng Jiang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Xue
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Pan Chen
- Department of Endocrinology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Guo Chen
- Department of Endocrinology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yihua Cai
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Wiśniewska A, Olszanecki R, Totoń-Żurańska J, Kuś K, Stachowicz A, Suski M, Gębska A, Gajda M, Jawień J, Korbut R. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice. Int J Mol Sci 2017; 18:ijms18081706. [PMID: 28777310 PMCID: PMC5578096 DOI: 10.3390/ijms18081706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Gębska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland.
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| |
Collapse
|
49
|
Katta S, Karnewar S, Panuganti D, Jerald MK, Sastry BKS, Kotamraju S. Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: Role in acute coronary artery syndrome. J Cell Physiol 2017; 233:214-225. [PMID: 28213977 DOI: 10.1002/jcp.25865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022]
Abstract
In this study we explored the microRNAs responsible for the regulation of PAI-1 during LPS-stimulated inflammation in human aortic endothelial cells and subsequently studied the effect of a newly synthesized mitochondria-targeted esculetin (Mito-Esc) that was shown for its anti-atherosclerotic potential, in modulating PAI-1 levels and its targeted miRs during angiotensin-II-induced atherosclerosis in ApoE-/- mice. LPS-stimulated PAI-1 was accompanied with an upregulation of miR-19b and down-regulation of miR-30c. These effects of LPS on PAI-1 were reversed in the presence of both parent esculetin and Mito-Esc. However, the effect of Mito-Esc was more pronounced in the regulation of PAI-1. In addition, LPS-stimulated PAI-1 expression was significantly decreased in cells treated with Anti-miR-19b, thereby suggesting that miR-19b co-expression plays a key role in PAI-1 regulation. The results also show that incubation of cells with Stattic, an inhibitor of STAT-3, inhibited LPS-stimulated PAI-1 expression. Interestingly, knockdown of SIRT3, a mitochondrial biogenetic marker, enhanced PAI-1 levels via modulation of miR-19b and -30c. Mito-Esc treatment significantly inhibited Ang-II-induced PAI-1, possibly via altering miR-19b and 30c in ApoE-/- mice. The association between PAI-1, miR-19b and -30c were further confirmed in plasma and microparticles isolated from patients suffering from acute coronary syndrome of various degrees. Taken together, LPS-induced PAI-1 involves co-expression of miR-19b and down regulation of miR-30c, and Mito-Esc treatment by modulating miR-19b and miR-30c through SIRT3 activation, inhibits PAI-1 levels that, in part, contribute to its anti-atherosclerotic effects. Moreover, there exists a strong positive correlation between miR-19b and PAI-1 in patients suffering from ST-elevated myocardial infarction.
Collapse
Affiliation(s)
- Sujana Katta
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Santosh Karnewar
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, Taramani, Chennai, Tamilnadu, India
| | - Devayani Panuganti
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - B K S Sastry
- Department of Cardiology, CARE Hospitals and CARE Foundation, Hyderabad, India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, Taramani, Chennai, Tamilnadu, India
| |
Collapse
|
50
|
Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the Dead to Keep Atherosclerosis at Bay. Front Cardiovasc Med 2017; 4:2. [PMID: 28194400 PMCID: PMC5277199 DOI: 10.3389/fcvm.2017.00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is the primary cause of coronary heart disease (CHD), ischemic stroke, and peripheral arterial disease. Despite effective lipid-lowering therapies and prevention programs, atherosclerosis is still the leading cause of mortality in the United States. Moreover, the prevalence of CHD in developing countries worldwide is rapidly increasing at a rate expected to overtake those of cancer and diabetes. Prominent risk factors include the hardening of arteries and high levels of cholesterol, which lead to the initiation and progression of atherosclerosis. However, cell death and efferocytosis are critical components of both atherosclerotic plaque progression and regression, yet, few currently available therapies focus on these processes. Thus, understanding the causes of cell death within the atherosclerotic plaque, the consequences of cell death, and the mechanisms of apoptotic cell clearance may enable the development of new therapies to treat cardiovascular disease. Here, we review how endoplasmic reticulum stress and cholesterol metabolism lead to cell death and inflammation, how dying cells affect plaque progression, and how autophagy and the clearance of dead cells ameliorates the inflammatory environment of the plaque. In addition, we review current research aimed at alleviating these processes and specifically targeting therapeutics to the site of the plaque.
Collapse
Affiliation(s)
- Megan L Brophy
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yunzhou Dong
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hao Wu
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - H N Ashiqur Rahman
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Kai Song
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hong Chen
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| |
Collapse
|