1
|
Yeo YH, Abdelmalek M, Khan S, Moylan CA, Rodriquez L, Villanueva A, Yang JD. Current and emerging strategies for the prevention of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:173-190. [PMID: 39653784 DOI: 10.1038/s41575-024-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 01/05/2025]
Abstract
Liver cancer is the third leading cause of cancer-related deaths globally, with incident cases expected to rise from 905,700 in 2020 to 1.4 million by 2040. Hepatocellular carcinoma (HCC) accounts for about 80% of all primary liver cancers. Viral hepatitis and chronic excessive alcohol consumption are major risk factors for HCC, but metabolic dysfunction-associated steatotic liver disease is also becoming a dominant cause. The increasing numbers of cases of HCC and changes in risk factors highlight the urgent need for updated and targeted prevention strategies. Preventive interventions encompass strategies to decrease the burden of chronic liver diseases and their progression to HCC. These strategies include nutritional interventions and medications that have shown promise in preclinical models. Although prevailing approaches focus on treating chronic liver disease, leveraging a wider range of interventions represents a promising area to safeguard at-risk populations. In this Review, we explore existing evidence for preventive strategies by highlighting established and potential paths to reducing HCC risk effectively and safely, especially in individuals with chronic liver diseases. We categorize the preventive strategies by the mechanism of action, including anti-inflammatory, antihyperglycaemic, lipid-lowering, nutrition and dietary, antiviral, and antifibrotic pathways. For each category, we discuss the efficacy and safety information derived from mechanistic, translational, observational and clinical trial data, pinpointing knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manal Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Seema Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University Health System, Durham, NC, USA
| | - Luz Rodriquez
- Gastrointestinal & Other Cancers Research Group, NCI, Rockville, MD, USA
| | - Augusto Villanueva
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Zhang CY, Liu S, Sui YX, Yang M. Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 inflammasome: From action mechanism to therapeutic target in clinical trials. World J Gastrointest Oncol 2025; 17:100094. [PMID: 39958558 PMCID: PMC11756006 DOI: 10.4251/wjgo.v17.i2.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 01/18/2025] Open
Abstract
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a critical modulator in inflammatory disease. Activation and mutation of NLRP3 can cause severe inflammation in diseases such as chronic infantile neurologic cutaneous and articular syndrome, Muckle-Wells syndrome, and familial cold autoinflammatory syndrome 1. To date, a great effort has been made to decode the underlying mechanisms of NLRP3 activation. The priming and activation of NLRP3 drive the maturation and release of active interleukin (IL)-18 and IL-1β to cause inflammation and pyroptosis, which can significantly trigger many diseases including inflammatory diseases, immune disorders, metabolic diseases, and neurodegenerative diseases. The investigation of NLRP3 as a therapeutic target for disease treatment is a hot topic in both preclinical studies and clinical trials. Developing potent NLRP3 inhibitors and downstream IL-1 inhibitors attracts wide-spectrum attention in both research and pharmaceutical fields. In this minireview, we first updated the molecular mechanisms involved in NLRP3 inflammasome activation and the associated downstream signaling pathways. We then reviewed the molecular and cellular pathways of NLRP3 in many diseases, including obesity, diabetes, and other metabolic diseases. In addition, we briefly reviewed the roles of NLRP3 in cancer growth and relative immune checkpoint therapy. Finally, clinical trials with treatments targeting NLRP3 and its downstream signaling pathways were summarized.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Yu-Xiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Ming Yang
- Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, United States
| |
Collapse
|
3
|
Yang W, Zeng S, Shao R, Jin R, Huang J, Wang X, Liu E, Zhou T, Li F, Chen Y, Chen D. Sulforaphane regulation autophagy-mediated pyroptosis in autoimmune hepatitis via AMPK/mTOR pathway. Int Immunopharmacol 2025; 146:113826. [PMID: 39673998 DOI: 10.1016/j.intimp.2024.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Autoimmune hepatitis (AIH) is a liver disease marked by inflammation of unknown origin. If untreated, it can progress to cirrhosis or liver failure, posing a significant health risk. Currently, effective drug therapies are lacking in clinical practice. Sulforaphane (SFN), a natural anti-inflammatory and antioxidant compound found in various cruciferous vegetables, alleviate pyroptosis and improve impaired autophagic flux, both of which contribute to AIH progression. However, whether SFN modulates autophagic flux and pyroptosis in S100-induced EAH through the AMPK/mTOR pathway remains unclear. Therefore, this study aims to investigate whether SFN can regulate AIH and elucidate its potential mechanisms of action. In this study, experimental AIH (EAH) was induced in male C57BL/6 J mice through intraperitoneal (i.p.) injection of S100. SFN was administered intraperitoneally every other day. After 28 days, the mice were euthanized, and their livers and serum were collected for histological and biochemical analyses. AML12 cells were used for the in vitro studies. The results showed that SFN mitigated pyroptosis by inhibiting the NLRP3 inflammasome and improving autophagic flux, which alleviates S100-induced EAH. Conversely, the autophagy inhibitor 3-MA negated the protective effects of SFN against inflammasome-mediated pyroptosis. Furthermore, SFN activated the AMPK/mTOR signaling pathway, offering protection against S100-induced EAH. Selective inhibition of AMPK suppressed the improvement in autophagic flux and protected against SFN-induced pyroptosis. Overall, SFN significantly ameliorates S100-induced EAH by enhancing autophagic flux and mitigating pyroptosis through activation of the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Weijian Yang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Shiyi Zeng
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Rongrong Shao
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Ru Jin
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Jiayin Huang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Xinyu Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Enqian Liu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Tenghui Zhou
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Fengfan Li
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China.
| | - Dazhi Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China; School of Clinical Medicine, The First People's Hospital of Lin'an District, Hangzhou, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou 311300, China.
| |
Collapse
|
4
|
Yang S, Zou Y, Zhong C, Zhou Z, Peng X, Tang C. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1522206. [PMID: 39917567 PMCID: PMC11798966 DOI: 10.3389/fcell.2025.1522206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Pyroptosis, a form of programmed cell death induced by inflammasome with a mechanism distinct from that of apoptosis, occurs via one of the three pathway types: classical, non-classical, and granzyme A/B-dependent pyroptosis pathways. Pyroptosis is implicated in various diseases, notably exhibiting a dual role in liver diseases. It facilitates the clearance of damaged hepatocytes, preventing secondary injury, and triggers immune responses to eliminate pathogens and damaged cells. Conversely, excessive pyroptosis intensifies inflammatory responses, exacerbates hepatocyte damage and promotes the activation and proliferation of hepatic stellate cells, accelerating liver fibrosis. Furthermore, by sustaining an inflammatory state, impacts the survival and proliferation of cancer cells. This review comprehensively summarizes the dual role of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical foundations and practical guidance for preventing and treating of liver diseases.
Collapse
Affiliation(s)
| | | | | | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Zhao H, Zhou J, Yuan L, Sun Z, Liu Y, Zhao X, Ye F. Exploring the alleviating effects of Bifidobacterium metabolite lactic acid on non-alcoholic steatohepatitis through the gut-liver axis. Front Microbiol 2025; 15:1518150. [PMID: 39850131 PMCID: PMC11756523 DOI: 10.3389/fmicb.2024.1518150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This study investigates the protective effects of lactic acid, a metabolite of Bifidobacterium, on non-alcoholic fatty liver disease (NAFLD) induced by a high-sugar, high-fat diet (HFD) in mice, in the context of the gut-liver axis. Methods A NAFLD mouse model was established using a HFD, and different intervention groups were set up to study the protective effects of Bifidobacterium and its metabolite lactic acid. The groups included a control group, NAFLD group, Bifidobacterium treatment group, Glyceraldehyde-3-P (G-3P) co-treatment group, and NOD-like receptor family pyrin domain containing 3 (NLRP3) overexpression group. The evaluation of liver function and lipid metabolism was conducted using the liver-to-body weight ratio, histological staining, and biochemical assays. Enzyme-linked immunosorbent assay (ELISA) was performed to measure inflammatory cytokines, and western blotting was used to analyze the expression of NLRP3 inflammasome and autophagy-related molecules. In vitro, an NAFLD cell model was established using oleic acid, with cells treated with lactic acid and NLRP3 overexpression to assess lipid droplet accumulation and inflammation. Results In vivo findings indicated that, in comparison to CBX group (Control group without antibiotic treatment), NAFLD/CBX group (NAFLD group without antibiotic administration) and NAFLD/ABX group (NAFLD group with antibiotic administration) exhibited increased liver-to-body weight ratio, higher lipid droplet accumulation, aggravated liver histopathological damage, and elevated levels of AST (Aspartate Aminotransferase), ALT (Alanine Aminotransferase), TC (Total Cholesterol), TG (Triglycerides), LDL-C (Low-Density Lipoprotein Cholesterol), IL-6 (Interleukin-6), TNF-α (Tumor Necrosis Factor-alpha), IL-1β (Interleukin-1 beta), and NLRP3-related molecules, while HDL-C (High-Density Lipoprotein Cholesterol) levels significantly decreased. Intervention with Bifidobacterium significantly reversed these adverse changes. Further addition of G-3P led to more pronounced improvement in NAFLD symptoms, while overexpression of NLRP3 weakened the protective effects of Bifidobacterium. In vitro results indicated that Ole group exhibited heightened lipid droplet accumulation and expression of NLRP3 inflammasome-related molecules relative to the control group. Treatment with lactic acid effectively reversed these changes; however, the protective effect of lactic acid was significantly weakened with NLRP3 overexpression. Conclusion Lactic acid can alleviate lipid metabolism disorders in NAFLD induced by diet through the inhibition of inflammation mediated by the NLRP3 inflammasome and the regulation of the autophagy process.
Collapse
Affiliation(s)
- Hongmei Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Gastroenterology and Nutrition, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Juan Zhou
- Department of Gastroenterology and Nutrition, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Lingzhi Yuan
- Department of Gastroenterology and Nutrition, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Zhiyi Sun
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yi Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Zhao
- Department of Pediatrics, Changsha County Maternal and Child Health Hospital, Changsha, China
| | - Feng Ye
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Jang AR, Jung DH, Lee TS, Kim JK, Lee YB, Lee JY, Kim SY, Yoo YC, Ahn JH, Hong EH, Kim CW, Kim SM, Yoo HH, Huh JY, Ko HJ, Park JH. Lactobacillus plantarum NCHBL-004 modulates high-fat diet-induced weight gain and enhances GLP-1 production for blood glucose regulation. Nutrition 2024; 128:112565. [PMID: 39326237 DOI: 10.1016/j.nut.2024.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES This study investigated the therapeutic potential of Lactobacillus plantarum NCHBL-004 (NCHBL-004) in the treatment of obesity and associated metabolic disorders. METHODS Mice were fed either a normal diet (ND) or a high-fat diet (HFD) with oral administration of NCHBL-004. After euthanasia, blood, liver and adipose tissue were collected. Furthermore, the microbiome and short-chain fatty acids (SCFAs) were analyzed from feces. RESULTS Oral administration of live NCHBL-004 to mice fed a HFD resulted in notable reductions in weight gain, improvements in glucose metabolism, and maintenance of balanced lipid levels. A comparative analysis with other Lactobacillus strains highlighted the superior efficacy of NCHBL-004. Moreover, heat-killed NCHBL-004 demonstrated beneficial effects similar to those of live NCHBL-004. Additionally, administration of live NCHBL-004 induced glucagon-like peptide 1 (GLP-1) production and increased the levels of short-chain fatty acids (SCFAs), including acetate and propionate, in feces, positively influencing liver lipid metabolism and mitigating inflammation. Consistent with this, analysis of the gut microbiome following NCHBL-004 administration showed increases in SCFA-producing microbes with increased proportions of Lactobacillus spp. and a significant increase in the proportion of microbes capable of promoting GLP-1 secretion. CONCLUSIONS These findings underscore the potential of both live and inactivated NCHBL-004 as potential therapeutic approaches to managing obesity and metabolic disorders, suggesting avenues for further investigation and clinical applications.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Young Lee
- Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - So-Yeon Kim
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hye Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chae-Won Kim
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Balducci M, Pérez JT, del Río CT, Pérez MC, Carranza ADV, Gomez Escribano AP, Vázquez-Manrique RP, Tarozzi A. Erucin, a Natural Isothiocyanate, Prevents Polyglutamine-Induced Toxicity in Caenorhabditis elegans via aak-2/AMPK and daf-16/FOXO Signaling. Int J Mol Sci 2024; 25:12220. [PMID: 39596283 PMCID: PMC11594550 DOI: 10.3390/ijms252212220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Several neurodegenerative diseases (NDDs), such as Huntington's disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we investigated the modulatory effect against polyQ neurotoxic aggregates exerted by erucin (ERN), an isothiocyanate naturally present in its precursor glucoerucin in rocket salad leaves and in its oxidized form, sulforaphane (SFN), in broccoli. Using C. elegans models expressing polyQ in different tissues, we demonstrated that ERN protects against polyQ-induced toxicity and that its action depends on the catalytic subunit of AMP-activated protein kinase (aak-2/AMPKα2) and, downstream in this pathway, on the daf-16/FOXO transcription factor, since nematodes deficient in aak-2/AMPKα2 and daf-16 did not respond to the treatment, respectively. Although triggered by a different source of neurotoxicity than polyQ diseases, i.e., by α-synuclein (α-syn) aggregates, Parkinson's disease (PD) was also considered in our study. Our results showed that ERN reduces α-syn aggregates and slightly improves the motility of worms. Therefore, further preclinical studies in mouse models of protein aggregation are justified and could provide insights into testing whether ERN could be a potential neuroprotective compound in humans.
Collapse
Affiliation(s)
- Martina Balducci
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Julia Tortajada Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Cristina Trujillo del Río
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Mar Collado Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Andrea del Valle Carranza
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Ana Pilar Gomez Escribano
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Andrea Tarozzi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
| |
Collapse
|
8
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
9
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Seok JK, Yang G, Jee JI, Kang HC, Cho YY, Lee HS, Lee JY. Hepatocyte-specific RIG-I loss attenuates metabolic dysfunction-associated steatotic liver disease in mice via changes in mitochondrial respiration and metabolite profiles. Toxicol Res 2024; 40:683-695. [PMID: 39345739 PMCID: PMC11436585 DOI: 10.1007/s43188-024-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Pattern recognition receptor (PRR)-mediated inflammation is an important determinant of the initiation and progression of metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated whether RIG-I is involved in hepatic metabolic reprogramming in a high-fat diet (HFD)-induced MASLD model in hepatocyte-specific RIG-I-KO (RIG-I∆hep) mice. Our study revealed that hepatic deficiency of RIG-I improved HFD-induced metabolic imbalances, including glucose impairment and insulin resistance. Hepatic steatosis and liver triglyceride levels were reduced in RIG-I-deficient hepatocytes in HFD-induced MASLD mice, and this was accompanied by the reduced expression of lipogenesis genes, such as PPARγ, Dga2, and Pck1. Hepatic RIG-I deficiency alters whole-body metabolic rates in the HFD-induced MASLD model; there is higher energy consumption in RIG-I∆hep mice. Deletion of RIG-I activated glycolysis and tricarboxylic acid (TCA) cycle-related metabolites in hepatocytes from both HFD-induced MASLD mice and methionine-choline-deficient diet (MCD)-fed mice. RIG-I deficiency enhanced AMPK activation and mitochondrial function in hepatocytes from HFD-induced MASLD mice. These findings indicate that deletion of RIG-I can activate cellular metabolism in hepatocytes by switching on both glycolysis and mitochondrial respiration, resulting in metabolic changes induced by a HFD and stimulation of mitochondrial activity. In summary, RIG-I may be a key regulator of cellular metabolism that influences the development of metabolic diseases such as MASLD. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00264-x.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonbuk, 55338 Republic of Korea
| | - Jung In Jee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
11
|
Cao D, Xi R, Li H, Zhang Z, Shi X, Li S, Jin Y, Liu W, Zhang G, Liu X, Dong S, Feng X, Wang F. Discovery of a Covalent Inhibitor of Pro-Caspase-1 Zymogen Blocking NLRP3 Inflammasome Activation and Pyroptosis. J Med Chem 2024; 67:15873-15891. [PMID: 39159426 DOI: 10.1021/acs.jmedchem.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Caspase-1 plays a central role in innate immunity, as its activation by inflammasomes induces the production of proinflammatory cytokines and pyroptosis. However, specific inhibition of the enzymatic activity of this protease is not effective in suppressing inflammation, owing to its enzyme-independent function. Herein, we identified a cyclohexenyl isothiocyanate compound (CIB-1476) that potently inhibited caspase-1 activity and suppressed the assembly and activation of the NLRP3 inflammasome and gasdermin-D-mediated pyroptosis. Mechanistically, CIB-1476 directly targeted pro-caspase-1 as an irreversible covalent inhibitor by binding to Cys285 and Cys397, resulting in more durable anti-inflammatory effects in the suppression of enzyme-dependent IL-1β production and enzyme-independent nuclear factor κB activation. Chemoproteomic profiling demonstrated the engagement of CIB-1476 with caspase-1. CIB-1476 showed potent therapeutic effects by suppressing inflammasome activation in mice, which was abolished in Casp1-/- mice. These results warrant further development of CIB-1476 along with its analogues as a novel strategy for caspase-1 inhibitors.
Collapse
Affiliation(s)
- Dongyi Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650500, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongye Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhonghui Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 511400, China
| | - Xiaoke Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Jin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
12
|
Komatsu W, Kishi H, Uchiyama K, Ohhira S, Kobashi G. Urolithin A suppresses NLRP3 inflammasome activation by inhibiting the generation of reactive oxygen species and prevents monosodium urate crystal-induced peritonitis. Biosci Biotechnol Biochem 2024; 88:966-978. [PMID: 38772744 DOI: 10.1093/bbb/zbae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1β (IL-1β) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1β, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.
Collapse
Affiliation(s)
- Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
13
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
14
|
Alzahrani NA, Bahaidrah KA, Mansouri RA, Aldhahri RS, Abd El-Aziz GS, Alghamdi BS. Possible Prophylactic Effects of Sulforaphane on LPS-Induced Recognition Memory Impairment Mediated by Regulating Oxidative Stress and Neuroinflammatory Proteins in the Prefrontal Cortex Region of the Brain. Biomedicines 2024; 12:1107. [PMID: 38791068 PMCID: PMC11118062 DOI: 10.3390/biomedicines12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant global health concern, characterized by neurodegeneration and cognitive decline. Neuroinflammation is a crucial factor in AD development and progression, yet effective pharmacotherapy remains elusive. Sulforaphane (SFN), derived from cruciferous vegetables and mainly from broccoli, has shown a promising effect via in vitro and in vivo studies as a potential treatment for AD. This study aims to investigate the possible prophylactic mechanisms of SFN against prefrontal cortex (PFC)-related recognition memory impairment induced by lipopolysaccharide (LPS) administration. METHODOLOGY Thirty-six Swiss (SWR/J) mice weighing 18-25 g were divided into three groups (n = 12 per group): a control group (vehicle), an LPS group (0.75 mg/kg of LPS), and an LPS + SFN group (25 mg/kg of SFN). The total duration of the study was 3 weeks, during which mice underwent treatments for the initial 2 weeks, with daily monitoring of body weight and temperature. Behavioral assessments via novel object recognition (NOR) and temporal order recognition (TOR) tasks were conducted in the final week of the study. Inflammatory markers (IL-6 and TNF), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant (MDA) level, in addition to acetylcholine esterase (AChE) activity and active (caspase-3) and phosphorylated (AMPK) levels, were evaluated. Further, PFC neuronal degeneration, Aβ content, and microglial activation were also examined using H&E, Congo red staining, and Iba1 immunohistochemistry, respectively. RESULTS SFN pretreatment significantly improved recognition memory performance during the NOR and TOR tests. Moreover, SFN was protected from neuroinflammation and oxidative stress as well as neurodegeneration, Aβ accumulation, and microglial hyperactivity. CONCLUSION The obtained results suggested that SFN has a potential protective property to mitigate the behavioral and biochemical impairments induced by chronic LPS administration and suggested to be via an AMPK/caspase-3-dependent manner.
Collapse
Affiliation(s)
- Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Khulud Abdullah Bahaidrah
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Gao WC, Yang TH, Wang BB, Liu Q, Li Q, Zhou XH, Zheng CB, Chen P. Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation. Clin Exp Pharmacol Physiol 2024; 51:e13845. [PMID: 38382550 DOI: 10.1111/1440-1681.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wen-Cong Gao
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Tie-Hua Yang
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bin-Bao Wang
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Qian Liu
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing Li
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Chinese Academy of Sciences, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Huan Zhou
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Chang-Bo Zheng
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Kunming Medical University, College of Modern biomedical industry, Kunming, China
- Yunnan Vaccine Laboratory, Kunming, China
| | - Peng Chen
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Kunming Medical University, College of Modern biomedical industry, Kunming, China
| |
Collapse
|
16
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Wang N, Huo Y, Gao X, Li Y, Cheng F, Zhang Z. Lead exposure exacerbates liver injury in high-fat diet-fed mice by disrupting the gut microbiota and related metabolites. Food Funct 2024; 15:3060-3075. [PMID: 38414441 DOI: 10.1039/d3fo05148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lead (Pb) is a widespread toxic endocrine disruptor that could cause liver damage and gut microbiota dysbiosis. However, the causal relationship and underlying mechanisms between the gut microbiota and Pb-induced liver injury are unclear. In this study, we investigated the metabolic toxicity caused by Pb exposure in normal chow (Chow) and high-fat diet (HFD) mice and confirmed the causal relationship by fecal microbial transplantation (FMT) and antibiotic cocktail experiments. The results showed that Pb exposure exacerbated HFD-induced hepatic lipid deposition, fibrosis, and inflammation, but it had no significant effect on Chow mice. Pb increased serum lipopolysaccharide (LPS) levels and induced intestinal inflammation and barrier damage by activating TLR4/NFκB/MLCK in HFD mice. Furthermore, Pb exposure disrupted the gut microbiota, reduced short-chain fatty acid (SCFA) concentrations and the colonic SCFA receptors, G protein-coupled receptor (GPR) 41/43/109A, in HFD mice. Additionally, Pb significantly inhibited the hepatic GPR109A-mediated adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway, resulting in hepatic lipid accumulation. FMT from Pb-exposed HFD mice exacerbated liver damage, disturbed lipid metabolic pathways, impaired intestinal barriers, and altered the gut microbiota and metabolites in recipient mice. However, mice exposed to HFD + Pb and HFD mice had similar levels of these biomarkers in microbiota depleted by antibiotics. In conclusion, our study provides new insights into gut microbiota dysbiosis as a potential novel mechanism for human health related to liver function impairment caused by Pb exposure.
Collapse
Affiliation(s)
- Nana Wang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Yuan Huo
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Xue Gao
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Yuting Li
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Fangru Cheng
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
18
|
Sun M, Zhang Y, Guo A, Xia Z, Peng L. Progress in the Correlation Between Inflammasome NLRP3 and Liver Fibrosis. J Clin Transl Hepatol 2024; 12:191-200. [PMID: 38343611 PMCID: PMC10851067 DOI: 10.14218/jcth.2023.00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 01/04/2025] Open
Abstract
Liver fibrosis is a reversible condition that occurs in the early stages of chronic liver disease. To develop effective treatments for liver fibrosis, understanding the underlying mechanism is crucial. The NOD-like receptor protein 3 (NLRP3) inflammasome, which is a part of the innate immune system, plays a crucial role in the progression of various inflammatory diseases. NLRP3 activation is also important in the development of various liver diseases, including viral hepatitis, alcoholic or nonalcoholic liver disease, and autoimmune liver disease. This review discusses the role of NLRP3 and its associated molecules in the development of liver fibrosis. It also highlights the signal pathways involved in NLRP3 activation, their downstream effects on liver disease progression, and potential therapeutic targets in liver fibrosis. Further research is encouraged to develop effective treatments for liver fibrosis.
Collapse
Affiliation(s)
- Meihua Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yanqing Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Anbing Guo
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zongting Xia
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Lijun Peng
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
19
|
Bu J, Mahan Y, Zhang S, Wu X, Zhang X, Zhou L, Zhang Y. Acacetin inhibits inflammation by blocking MAPK/NF-κB pathways and NLRP3 inflammasome activation. Front Pharmacol 2024; 15:1286546. [PMID: 38389927 PMCID: PMC10883387 DOI: 10.3389/fphar.2024.1286546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Objective: Our preliminary research indicates that acacetin modulates the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome, providing protection against Alzheimer's Disease (AD) and cerebral ischemic reperfusion injury. The mechanisms of acacetin to inhibit the activation of the NLRP3 inflammasome remain fully elucidated. This study aims to investigate the effects and potential mechanisms of acacetin on various agonists induced NLRP3 inflammasome activation. Methods: A model for the NLRP3 inflammasome activation was established in mouse bone marrow-derived macrophages (BMDMs) using Monosodium Urate (MSU), Nigericin, Adenosine Triphosphate (ATP), and Pam3CSK4, separately. Western blot analysis (WB) was employed to detect Pro-caspase-1, Pro-Interleukin-1β (Pro-IL-1β) in cell lysates, and caspase-1, IL-1β in supernatants. Enzyme-Linked Immunosorbent Assay (ELISA) was used to measured the release of IL-1β, IL-18, and Tumor Necrosis Factor-alpha (TNF-α) in cell supernatants to assess the impact of acacetin on NLRP3 inflammasome activation. The lactate dehydrogenase (LDH) release was also assessed. The Nuclear Factor Kappa B (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways related proteins were evaluated by WB, and NF-κB nuclear translocation was observed via laser scanning confocal microscopy (LSCM). Disuccinimidyl Suberate (DSS) cross-linking was employed to detect oligomerization of Apoptosis-associated Speck-like protein containing a Caspase Recruitment Domain (ASC), and LSCM was also used to observe Reactive Oxygen Species (ROS) production. Inductively Coupled Plasma (ICP) and N-(6-methoxyquinolyl) acetoethyl ester (MQAE) assays were utilized to determined the effects of acacetin on the efflux of potassium (K+) and chloride (Cl-) ions. Results: Acacetin inhibited NLRP3 inflammasome activation induced by various agonists, reducing the release of TNF-α, IL-1β, IL-18, and LDH. It suppressed the expression of Lipopolysaccharides (LPS)-activated Phosphorylated ERK (p-ERK), p-JNK, and p-p38, inhibited NF-κB p65 phosphorylation and nuclear translocation. Acacetin also reduced ROS production and inhibited ASC aggregation, thus suppressing NLRP3 inflammasome activation. Notably, acacetin did not affect K+ and Cl-ions efflux during the activation process. Conclusion: Acacetin shows inhibitory effects on both the priming and assembly processes of the NLRP3 inflammasome, positioning it as a promising new candidate for the treatment of NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Juan Bu
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yeledan Mahan
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shengnan Zhang
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuanxia Wu
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaoling Zhang
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ling Zhou
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yanmin Zhang
- Scientific Research and Education Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
20
|
Zuo YF, Zhang BH, Guo MR, Li BB, Wang BC, Duan D, Wang YX, Xi J, He M, Sun TL. HFD-exacerbated Metabolic Side Effects of Olanzapine Are Suppressed by ER Stress Inhibitor. Curr Med Sci 2023; 43:1116-1132. [PMID: 38079053 DOI: 10.1007/s11596-023-2781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Numerous schizophrenic patients are suffering from obesity primarily attributed to antipsychotic medication and poor dietary habits. This study investigated the progressive deterioration of olanzapine-induced metabolic disorders in the presence of a high-fat diet (HFD) and explored the involvement of endoplasmic reticulum (ER) stress. METHODS Female Sprague-Dawley rats fed on a standard chow diet or HFD were treated with olanzapine (3 mg/kg/day) and the ER stress inhibitor 4-phenylbutyric acid (4-PBA, 1 and 0.5 g/kg/day) for 8 days. Changes in body weight, food intake, and plasma lipids were assessed. Hepatic fat accumulation was evaluated using oil red O staining. Western blotting and immunofluorescence assays were employed to examine the expression of ER stress markers, NOD-like receptor pyrin domain-containing protein 3 (NLRP3), and proopiomelanocortin (POMC) in the hypothalamus or liver. RESULTS Compared to olanzapine alone, olanzapine+HFD induced greater weight gain, increased hyperlipidemia, and enhanced hepatic fat accumulation (P<0.05). Co-treatment with 4-PBA exhibited a dose-dependent inhibition of these effects (P<0.05). Further mechanistic investigations revealed that olanzapine alone activated ER stress, upregulated NLRP3 expression in the hypothalamus and liver, and downregulated hypothalamic POMC expression. The HFD exacerbated these effects by 50%-100%. Moreover, co-administration of 4-PBA dose-dependently attenuated the olanzapine+HFD-induced alterations in ER stress, NLRP3, and POMC expression in the hypothalamus and liver (P<0.05). CONCLUSION HFD worsened olanzapine-induced weight gain and lipid metabolic disorders, possibly through ER stress-POMC and ER stress-NLRP3 signaling. ER stress inhibitors could be effective in preventing olanzapine+HFD-induced metabolic disorders.
Collapse
Affiliation(s)
- Yu-Feng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bao-Hua Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Ming-Rui Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Ben-Ben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bao-Cui Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Deng Duan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Xin Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Xi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Tao-Lei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
21
|
Dai Y, Zhang X, Xu Y, Wu Y, Yang L. The Protective Effects of Cinnamyl Alcohol Against Hepatic Steatosis, Oxidative and Inflammatory Stress in Nonalcoholic Fatty Liver Disease Induced by Childhood Obesity. Immunol Invest 2023; 52:1008-1022. [PMID: 37962037 DOI: 10.1080/08820139.2023.2280248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive intracellular lipid accumulation, oxidative stress, and inflammation. Cinnamyl alcohol (CA), one of the cinnamon extracts, has been shown to exhibit anti-oxidative and anti-inflammatory activities. We proposed that CA was beneficial to NAFLD. METHODS Serum cytokines and components of the lipid metabolism were determined in children with NAFLD against age-matched comparisons. A NAFLD mouse model was established by high fat and high carbohydrate (HFHC) diet in male C57BL/6 mouse pups, followed by administration of CA. The effects of CA on lipid metabolism, oxidative stress, and inflammation in hepatic tissues were assessed. RESULTS Abnormal lipid metabolism and inflammatory responses were observed in the children with NAFLD as compared with the controls. CA reduced the weight of obese mice without affecting food intake as well as alleviating liver injury caused by HFHC feeding. CA was found to mitigate dyslipidemia and reduce hepatic steatosis in HFHC-fed mice by down-regulating genes related to lipogenesis, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor-1c (SREBP-1c), and acetyl-CoA carboxylase 1 (ACC1). Additionally, CA treatment reversed HFHC-induced oxidative stress and inflammation, evidenced by the decreased liver reactive oxygen species (ROS), hepatic inflammatory cytokine levels, and F4/80-positive macrophage infiltration in HFHC diet mice. CA reduced the protein levels of pyrin domain-containing protein 3 (NLRP3), adapter protein apoptosis-associated speck-like protein (ASC), and caspase-1 in the liver tissues significantly. CONCLUSION CA alleviates HFHC-induced NAFLD in mice, which is associated with the amelioration in lipid metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pediatrics, Anhui Public Health Clinical Center, Hefei, China
| | - Xuemin Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pediatrics, Anhui Public Health Clinical Center, Hefei, China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pediatrics, Anhui Public Health Clinical Center, Hefei, China
| | - Ya Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pediatrics, Anhui Public Health Clinical Center, Hefei, China
| | - Liqi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Jiang L, Liu T, Lyu K, Chen Y, Lu J, Wang X, Long L, Li S. Inflammation-related signaling pathways in tendinopathy. Open Life Sci 2023; 18:20220729. [PMID: 37744452 PMCID: PMC10512452 DOI: 10.1515/biol-2022-0729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Tendon is a connective tissue that produces movement by transmitting the force produced by muscle contraction to the bones. Most tendinopathy is caused by prolonged overloading of the tendon, leading to degenerative disease of the tendon. When overloaded, the oxygen demand of tenocytes increases, and the tendon structure is special and lacks blood supply, which makes it easier to form an oxygen-deficient environment in tenocytes. The production of reactive oxygen species due to hypoxia causes elevation of inflammatory markers in the tendon, including PGE2, IL-1β, and TNF-α. In the process of tendon healing, inflammation is also a necessary stage. The inflammatory environment formed by cytokines and various immune cells play an important role in the clearance of necrotic material, the proliferation of tenocytes, and the production of collagen fibers. However, excessive inflammation can lead to tendon adhesions and hinder tendon healing. Some important and diverse biological functions of the body originate from intercellular signal transduction, among which cytokine mediation is an important way of signal transduction. In particular, NF-κB, NLRP3, p38/MAPK, and signal transducer and activator of transcription 3, four common signaling pathways in tendinopathy inflammatory response, play a crucial role in the regulation and transcription of inflammatory factors. Therefore, summarizing the specific mechanisms of inflammatory signaling pathways in tendinopathy is of great significance for an in-depth understanding of the inflammatory response process and exploring how to inhibit the harmful part of the inflammatory response and promote the beneficial part to improve the healing effect of the tendon.
Collapse
Affiliation(s)
- Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Tianzhu Liu
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqiang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Longhai Long
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, 210000, China
| |
Collapse
|
23
|
Yan L, Yan Y. Therapeutic potential of sulforaphane in liver diseases: a review. Front Pharmacol 2023; 14:1256029. [PMID: 37705537 PMCID: PMC10495681 DOI: 10.3389/fphar.2023.1256029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
The burden of liver diseases such as metabolic-associated fatty liver diseases and hepatocellular carcinoma has increased rapidly worldwide over the past decades. However, pharmacological therapies for these liver diseases are insufficient. Sulforaphane (SFN), an isothiocyanate that is mainly found in cruciferous vegetables, has been found to have a broad spectrum of activities like antioxidation, anti-inflammation, anti-diabetic, and anticancer effects. Recently, a growing number of studies have reported that SFN could significantly ameliorate hepatic steatosis and prevent the development of fatty liver, improve insulin sensitivity, attenuate oxidative damage and liver injury, induce apoptosis, and inhibit the proliferation of hepatoma cells through multiple signaling pathways. Moreover, many clinical studies have demonstrated that SFN is harmless to the human body and well-tolerated by individuals. This emerging evidence suggests SFN to be a promising drug candidate in the treatment of liver diseases. Nevertheless, limitations exist in the development of SFN as a hepatoprotective drug due to its special properties, including instability, water insolubility, and high inter-individual variation of bioavailability when used from broccoli sprout extracts. Herein, we comprehensively review the recent progress of SFN in the treatment of common liver diseases and the underlying mechanisms, with the aim to provide a better understanding of the therapeutic potential of SFN in liver diseases.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|
24
|
Kountouras J, Kazakos E, Kyrailidi F, Polyzos SA, Zavos C, Arapoglou S, Boziki M, Mouratidou MC, Tzitiridou-Chatzopoulou M, Chatzopoulos D, Doulberis M, Papaefthymiou A, Vardaka E. Innate immunity and nonalcoholic fatty liver disease. Ann Gastroenterol 2023; 36:244-256. [PMID: 37144011 PMCID: PMC10152810 DOI: 10.20524/aog.2023.0793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 05/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed as metabolic (dysfunction)-associated fatty liver disease (MAFLD), is a complex, multifactorial disease that progresses via nonalcoholic steatohepatitis (NASH) towards severe liver complications. MAFLD/NAFLD affects up to a third of the global population. It is connected with metabolic syndrome parameters and has been increasing in parallel with the rates of metabolic syndrome parameters worldwide. This disease entity exhibits a strong immune-inflammatory dimension. In MAFLD/NAFLD/NASH, a vast network of innate immune cells is mobilized that can provoke liver damage, leading to advanced fibrosis, cirrhosis and its complications, including hepatocellular carcinoma. However, our understanding of the inflammatory signals that drive the onset and progression of MAFLD/NAFLD/NASH is fragmented. Thus, further investigation is required to better understand the role of specific innate immune cell subsets in the disease, and to aid the design of innovative therapeutic agents to target MAFLD/NAFLD/NASH. In this review, we discuss current concepts regarding the role of innate immune system involvement in MAFLD/NAFLD/NASH onset and progression, along with presenting potential stress signals affecting immune tolerance that may trigger aberrant immune responses. A comprehensive understanding of the innate immune mechanisms involved in MAFLD/NAFLD/NASH pathophysiology will help the discovery of early interventions to prevent the disease, and lead to potential innovative therapeutic strategies that may limit its worldwide burden.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece (Evangelos Kazakos)
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios A. Polyzos, Michael Doulberis, Apostolis Papaefthymiou)
| | - Christos Zavos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Stergios Arapoglou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- Fifth Surgical Department, Medical School, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios Arapoglou)
| | - Marina Boziki
- 2 Neurology Department, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Macedonia, Greece (Marina Boziki)
| | - Maria C. Mouratidou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece (Maria Tzitiridou-Chatzopoulou)
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios A. Polyzos, Michael Doulberis, Apostolis Papaefthymiou)
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland (Michael Doulberis)
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios A. Polyzos, Michael Doulberis, Apostolis Papaefthymiou)
- Pancreaticobiliary Medicine Unit, University College London Hospitals (UCLH), London, UK (Apostolis Papaefthymiou)
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, Macedonia, Greece (Elisabeth Vardaka)
| |
Collapse
|
25
|
Lo CW, Yen CC, Chen CY, Chen HW, Lii CK. Benzyl isothiocyanate attenuates activation of the NLRP3 inflammasome in Kupffer cells and improves diet-induced steatohepatitis. Toxicol Appl Pharmacol 2023; 462:116424. [PMID: 36775252 DOI: 10.1016/j.taap.2023.116424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The NLRP3 inflammasome plays an important role in the pathogenesis of numerous inflammation-related diseases. Benzyl isothiocyanate (BITC) is rich in cruciferous vegetables and possesses potent antioxidant, anti-inflammatory, anti-cancer, and anti-obesogenic properties. In this study, we investigated the role of the NLRP3 inflammasome in the protection by BITC against steatohepatitis and insulin resistance. A mouse model of high-fat/cholesterol/cholic acid diet (HFCCD)-induced steatohepatitis, LPS/nigericin-stimulated primary Kupffer cells, and IL-1β treated primary hepatocytes were used. BITC attenuated LPS/nigericin-induced activation of the NLRP3 inflammasome by enhancing protein kinase A-dependent NLRP3 ubiquitination, which increased the degradation of NLRP3 and reduced IL-1β secretion in Kupffer cells. In hepatocytes, BITC pretreatment reversed the IL-1β-induced decrease in the phosphorylation of IR, AKT, and GSK3β in response to insulin. After 12 weeks of HFCCD feeding, increases in blood alanine aminotransferase (ALT) and glucose levels were ameliorated by BITC. Hepatic IL-1β production, macrophage infiltration, and collagen expression induced by HFCCD were also mitigated by BITC. BITC suppresses activation of the NLRP3 inflammasome in Kupffer cells by enhancing the PKA-dependent ubiquitination of NLRP3, which leads to suppression of IL-1β production and subsequently ameliorates hepatic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chun-You Chen
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 406, Taiwan.
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 406, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
26
|
Jang JH, Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Loganin Prevents Hepatic Steatosis by Blocking NLRP3 Inflammasome Activation. Biomol Ther (Seoul) 2023; 31:40-47. [PMID: 36111592 PMCID: PMC9810450 DOI: 10.4062/biomolther.2022.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1β and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.
Collapse
Affiliation(s)
- Joo Hyeon Jang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-2164-4095, Fax: +82-2-2164-4059
| |
Collapse
|
27
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
28
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Lei P, Hu Y, Gao P, Ding Q, Yan J, Zhao J, Li B, Shan Y. Sulforaphane Ameliorates Hepatic Lipid Metabolism via Modulating Lipophagy In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15126-15133. [PMID: 36420856 DOI: 10.1021/acs.jafc.2c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although sulforaphane (SFN) is reported to ameliorate the excessive accumulation of lipid droplets (LDs) in hepatocytes, its underlying mechanism remains unclear. This paper aims to investigate how SFN induces hepatic LD degradation via activating macroautophagy. High-fat diet and free fatty acids (FFAs) were used to induce excessive LD formation in hepatocytes in vivo and in vitro, respectively. SFN-induced macroautophagy was shown by the increased LC3 protein expression both (1.32 ± 0.18) in vivo and (2.43 ± 0.22) in vitro. The mRNA levels of Lc3 (1.99 ± 0.16), Atg4 (2.12 ± 0.23), Ulk1 (1.19 ± 0.12), Atg7 (1.25 ± 0.11), and Atg5 (0.81 ± 0.1) genes were elevated by SFN. SFN individually enhanced the localization of LC3 (0.41 ± 0.15), LAMP1 (0.66 ± 0.14), ATG7 (0.26 ± 0.08), and ATG5 (0.38 ± 0.09) with LDs, indicating the occurrence of lipophagy. In the components of LDs isolated from SFN treatment, the expressions of LC3, ATG7, and ATG5 protein were largely increased both in vivo and in vitro. LDs were visualized in autophagosomes which confirmed that the lipophagy was triggered by SFN. Moreover, SFN treatment improved the profile of FFAs which was characterized by increasing the FFAs in liver (total FFA: 261.51 ± 39.58 μM/g) and serum (total FFA: 967.59 ± 239.18 nM/mL). After silencing the nrf2 gene, ATG7 and ATG5 protein expressions were decreased and attenuated this induction by SFN. Nrf2 gene silencing inversely increased TG contents. In summary, SFN enhanced the LD degradation via stimulating lipophagy in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Peng Lei
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yunqi Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Peng Gao
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Qi Ding
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jielin Yan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiahe Zhao
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Baolong Li
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
30
|
Hao YY, Cui WW, Gao HL, Wang MY, Liu Y, Li CR, Hou YL, Jia ZH. Jinlida granules ameliorate the high-fat-diet induced liver injury in mice by antagonising hepatocytes pyroptosis. PHARMACEUTICAL BIOLOGY 2022; 60:274-281. [PMID: 35138995 PMCID: PMC8843117 DOI: 10.1080/13880209.2022.2029501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Jinlida (JLD) as a traditional Chinese medicine formula has been used to treat type 2 diabetes mellitus (T2DM) and studies have shown its anti-obesity effect. OBJECTIVE To investigate the therapeutic effects of JLD in a mouse model of non-alcoholic fatty liver (NAFL). MATERIALS AND METHODS C57BL/6J mice were divided into three groups and fed a low-diet diet (LFD), high-fat diet (HFD), or HFD + JLD (3.8 g/kg) for 16 weeks, respectively. The free fatty acids-induced lipotoxicity in HepG2 cells were used to evaluate the anti-pyroptotic effects of JLD. The pharmacological effects of JLD on NAFL were investigated by pathological examination, intraperitoneal glucose and insulin tolerance tests, western blotting, and quantitative real-time PCR. RESULTS In vivo studies showed that JLD ameliorated HFD-induced liver injury, significantly decreased body weight and enhanced insulin sensitivity and improved glucose tolerance. Furthermore, JLD suppressed both the mRNA expression of caspase-1 (1.58 vs. 2.90), IL-1β (0.93 vs. 3.44) and IL-18 (1.34 vs. 1.60) and protein expression of NLRP3 (2.04 vs. 5.71), pro-caspase-1 (2.68 vs. 4.92) and IL-1β (1.61 vs. 2.60). In vitro, JLD inhibited the formation of lipid droplets induced by 2 mM FFA (IC50 = 2.727 mM), reduced the protein expression of NLRP3 (0.74 vs. 2.27), caspase-1 (0.57 vs. 2.68), p20 (1.67 vs. 3.33), and IL-1β (1.44 vs. 2.41), and lowered the ratio of p-IKB-α/IKB-α (0.47 vs. 2.19). CONCLUSION JLD has a protective effect against NAFLD, which may be related to its anti-pyroptosis, suggesting that JLD has the potential as a novel agent in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuan-yuan Hao
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Wen-wen Cui
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Pharmaceutical Research Institute, Hebei, China
| | - Huai-lin Gao
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Hospital, Hebei, China
| | - Ming-ye Wang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Yan Liu
- Xianghe Hospital of Traditional Chinese Medicine, Hebei, China
| | - Cui-ru Li
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Yun-long Hou
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Pharmaceutical Research Institute, Hebei, China
| | - Zhen-hua Jia
- Hebei Yiling Hospital, Hebei, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| |
Collapse
|
31
|
Yen CC, Lii CK, Chen CC, Li CC, Tseng MH, Lo CW, Liu KL, Yang YC, Chen HW. Andrographolide Inhibits Lipotoxicity-Induced Activation of the NLRP3 Inflammasome in Bone Marrow-Derived Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:129-147. [PMID: 36419253 DOI: 10.1142/s0192415x23500088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Andrographolide is the major bioactive component of the herb Andrographis paniculata and is a potent anti-inflammatory agent. Obesity leads to an excess of free fatty acids, particularly palmitic acid (PA), in the circulation. Obesity also causes the deposition of ectopic fat in nonadipose tissues, which leads to lipotoxicity, a condition closely associated with inflammation. Here, we investigated whether andrographolide could inhibit PA-induced inflammation by activating autophagy, activating the antioxidant defense system, and blocking the activation of the NLRP3 inflammasome. Bone marrow-derived macrophages (BMDMs) were primed with lipopolysaccharide (LPS) and then activated with PA. LPS/PA treatment increased both the mRNA expression of NLRP3 and IL-1[Formula: see text] and the release of IL-1[Formula: see text] in BMDMs. Andrographolide inhibited the LPS/PA-induced protein expression of caspase-1 and the release of IL-1[Formula: see text]. Furthermore, andrographolide attenuated LPS/PA-induced mtROS generation by first promoting autophagic flux and catalase activity, and ultimately inhibiting activation of the NLRP3 inflammasome. Our results suggest that the mechanisms by which andrographolide downregulates LPS/PA-induced IL-1[Formula: see text] release in BMDMs involve promoting autophagic flux and catalase activity. Andrographolide may thus be a candidate to prevent obesity- and lipotoxicity-driven chronic inflammatory disease.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Meng-Hsien Tseng
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Kemper C, Sack MN. Linking nutrient sensing, mitochondrial function, and PRR immune cell signaling in liver disease. Trends Immunol 2022; 43:886-900. [PMID: 36216719 PMCID: PMC9617785 DOI: 10.1016/j.it.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Caloric overconsumption in vertebrates promotes adipose and liver fat accumulation while perturbing the gut microbiome. This triad triggers pattern recognition receptor (PRR)-mediated immune cell signaling and sterile inflammation. Moreover, immune system activation perpetuates metabolic consequences, including the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic hepatic steatohepatitis (NASH). Recent findings show that sensing of nutrient overabundance disrupts the activity and homeostasis of the central cellular energy-generating organelle, the mitochondrion. In parallel, whether caloric excess-initiated PRR signaling and mitochondrial perturbations are coordinated to amplify this inflammatory process in NASH progression remains in question. We hypothesize that altered mitochondrial function, classic PRR signaling, and complement activation in response to nutrient overload together play an integrated role across the immune cell landscape, leading to liver inflammation and NASH progression.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Clare K, Dillon JF, Brennan PN. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J Clin Transl Hepatol 2022; 10:939-946. [PMID: 36304513 PMCID: PMC9547261 DOI: 10.14218/jcth.2022.00067] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
The pathogenesis of metabolic-associated fatty liver disease (MAFLD) is complex and thought to be dependent on multiple parallel hits on a background of genetic susceptibility. The evidence suggests that MAFLD progression is a dynamic two-way process relating to repetitive bouts of metabolic stress and inflammation interspersed with endogenous anti-inflammatory reparative responses. In MAFLD, excessive hepatic lipid accumulation causes the production of lipotoxins that induce mitochondrial dysfunction, endoplasmic reticular stress, and over production of reactive oxygen species (ROS). Models of MAFLD show marked disruption of mitochondrial function and reduced oxidative capacitance with impact on cellular processes including mitophagy, oxidative phosphorylation, and mitochondrial biogenesis. In excess, ROS modify insulin and innate immune signaling and alter the expression and activity of essential enzymes involved in lipid homeostasis. ROS can also cause direct damage to intracellular structures causing hepatocyte injury and death. In select cases, the use of anti-oxidants and ROS scavengers have been shown to diminish the pro-apoptopic effects of fatty acids. Given this link, endogenous anti-oxidant pathways have been a target of interest, with Nrf2 activation showing a reduction in oxidative stress and inflammation in models of MAFLD. Thyroid hormone receptor β (THRβ) agonists and nuclear peroxisome proliferation-activated receptor (PPAR) family have also gained interest in reducing hepatic lipotoxicity and restoring hepatic function in models of MAFLD. Unfortunately, the true interplay between the clinical and molecular components of MAFLD progression remain only partly understood. Most recently, multiomics-based strategies are being adopted for hypothesis-free analysis of the molecular changes in MAFLD. Transcriptome profiling maps the unique genotype-phenotype associations in MAFLD and with various single-cell transcriptome-based projects underway, there is hope of novel physiological insights to MAFLD progression and uncover therapeutic targets.
Collapse
Affiliation(s)
- Kathleen Clare
- Royal Alexandra Hospital, Paisley, NHS Greater Glasgow and Clyde, PA2 9PN, UK
| | - John F. Dillon
- University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Paul N. Brennan
- University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, EH16 4UU, UK
- Correspondence to: Paul N. Brennan, University of Dundee, Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK. ORCID: https://orcid.org/0000-0001-8368-1478. Tel: +44-7445308786, E-mail:
| |
Collapse
|
34
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
35
|
da Cruz LL, Vesentini G, Sinzato YK, Villaverde AISB, Volpato GT, Damasceno DC. Effects of high-fat diet-induced diabetes on autophagy in the murine liver: A systematic review and meta-analysis. Life Sci 2022; 309:121012. [PMID: 36179817 DOI: 10.1016/j.lfs.2022.121012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 12/09/2022]
Abstract
AIMS We conducted a meta-analysis to investigate whether diabetes induced by a high-fat diet (HFD) has the potential to alter the process of autophagy in the murine liver. METHODS A systematic literature search was performed with electronic databases (PubMed, EMBASE, Web of Science). Study design, population, intervention, outcome, and risk of bias were analyzed. Given the availability of studies, a quantitative meta-analysis including 23 studies was performed. KEY FINDINGS The search found 5754 articles, with 48 matching the eligibility criteria, comprising of 1033 animals. The meta-analysis showed that diabetic murines fed with HFD presented an absence of p62 degradation (SMD 4.63, 95 % CI 2.02 to 7.24, p = 0.0005; I2 = 77 %), higher expression of p-mTOR/mTOR (SMD 5.20, 95 % CI 1.00 to 9.39, p = 0.01; I2 = 78 %), and a decreased p-AMPK/AMPK ratio (SMD -2.02, 95 % CI -3.96 to -0.09, p = 0.04; I2 = 85 %) when compared to nondiabetic murines. When associated with streptozotocin, the animals presented decreased ATG-7 and LC3-II. The meta-regression results showed a decrease in autophagy responses due to increased glycemic levels, fat content, and long-term exposure to HFD, and advanced animal age. The common and species-specific protein responses were also consistent with the inhibition of autophagy. SIGNIFICANCE The normal process of autophagy mechanisms in the liver is less competent after HFD consumption. The destabilization of (auto)phagolysosomes contributes to the perpetuation of diabetes, metabolic dysfunction-associated fatty liver disease, and cell death.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil; Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Giovana Vesentini
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Ana Izabel Silva Balbin Villaverde
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| |
Collapse
|
36
|
Xia Y, Ren M, Yang J, Cai C, Cheng W, Zhou X, Lu D, Ji F. Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: Correlation and causality. Front Microbiol 2022; 13:1003755. [PMID: 36204626 PMCID: PMC9531827 DOI: 10.3389/fmicb.2022.1003755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently related to a heavy socioeconomic burden and increased incidence. Since obesity is the most prevalent risk factor for NAFLD, weight loss is an effective therapeutic solution. Bariatric surgery (BS), which can achieve long-term weight loss, improves the overall health of patients with NAFLD. The two most common surgeries are the Roux-en-Y gastric bypass and sleeve gastrectomy. The gut-liver axis is the complex network of cross-talking between the gut, its microbiome, and the liver. The gut microbiome, involved in the homeostasis of the gut-liver axis, is believed to play a significant role in the pathogenesis of NAFLD and the metabolic improvement after BS. Alterations in the gut microbiome in NAFLD have been confirmed compared to that in healthy individuals. The mechanisms linking the gut microbiome to NAFLD have been proposed, including increased intestinal permeability, higher energy intake, and other pathophysiological alterations. Interestingly, several correlation studies suggested that the gut microbial signatures after BS become more similar to those of lean, healthy controls than that of patients with NAFLD. The resolution of NAFLD after BS is related to changes in the gut microbiome and its metabolites. However, confirming a causal link remains challenging. This review summarizes characteristics of the gut microbiome in patients with NAFLD before and after BS and accumulates existing evidence about the underlying mechanisms of the gut microbiome.
Collapse
Affiliation(s)
- Yi Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengting Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhou Cai
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Lu
- Department of Endoscopy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Ji,
| |
Collapse
|
37
|
Nanoparticle Emulsions Enhance the Inhibition of NLRP3. Int J Mol Sci 2022; 23:ijms231710168. [PMID: 36077562 PMCID: PMC9456257 DOI: 10.3390/ijms231710168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Antibacterial delivery emulsions are potential materials for treating bacterial infections. Few studies have focused on the role and mechanism of emulsions in inflammation relief. Therefore, based on our previous analysis, in which the novel and natural Pickering emulsions stabilized by antimicrobial peptide nanoparticles were prepared, the regulation effect of emulsion on inflammasome was explored in silico, in vitro and in vivo. Firstly, the interactions between inflammasome components and parasin I or Pickering emulsion were predicted by molecular docking. Then, the inflammasome stimulation by different doses of the emulsion was tested in RAW 264.7 and THP-1 cells. Finally, in Kunming mice with peritonitis, NLRP3 and IL-1β expression in the peritoneum were evaluated. The results showed that the Pickering emulsion could combine with ALK, casp-1, NEK7, or NLRP3 to affect the assembly of the NLRP3 and further relieve inflammation. LPNE showed a dose–dependent inhibition effect on the release of IL-1β and casp-1. With the concentration of parasin I increased from 1.5 mg/mL to 3 mg/mL, the LDH activity decreased in the chitosan peptide-embedded nanoparticles emulsion (CPENE) and lipid/peptide nanoparticles emulsion (LPNE) groups. However, from 1.5 to 6 mg/mL, LPNE had a dose–dependent effect on the release of casp-1. The CPENE and parasin I-conjugated chitosan nanoparticles emulsion (PCNE) may decrease the release of potassium and chloride ions. Therefore, it can be concluded that the LPNE may inhibit the activation of the inflammasome by decreasing LDH activity, potassium and chloride ions through binding with compositions of NLRP3.
Collapse
|
38
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
39
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
40
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
41
|
Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. J Nutr Biochem 2022; 106:109017. [PMID: 35461903 PMCID: PMC9447841 DOI: 10.1016/j.jnutbio.2022.109017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/30/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
Lipophagy, a form of selective autophagy, degrades lipid droplet (LD) in adipose tissue and the liver. The chemotherapeutic isothiocyanate sulforaphane (SFN) contributes to lipolysis through the activation of hormone-sensitive lipase and the browning of white adipocytes. However, the details concerning the regulation of lipolysis in adipocytes by SFN-mediated autophagy remain unclear. In this study, we investigated the effects of SFN on autophagy in the epididymal fat of mice fed a high-fat diet (HFD) or control-fat diet and on the molecular mechanisms of autophagy in differentiated 3T3-L1 cells. Western blotting revealed that the protein expression of lipidated LC3 (LC3-II), an autophagic substrate, was induced after 3T3-L1 adipocytes treatment with SFN. In addition, SFN increased the LC3-II protein expression in the epididymal fat of mice fed an HFD. Immunofluorescence showed that the SFN-induced LC3 expression was co-localized with LDs in 3T3-L1 adipocytes and with perilipin, the most abundant adipocyte-specific protein, in adipocytes of mice fed an HFD. Next, we confirmed that SFN activates autophagy flux in differentiated 3T3-L1 cells using the mCherry-EGFP-LC3 and GFP-LC3-RFP-LC3ΔG probe. Furthermore, we examined the induction mechanisms of autophagy by SFN in 3T3-L1 adipocytes using western blotting. ATG5 knockdown partially blocked the SFN-induced release of fatty acids from LDs in mature 3T3-L1 adipocytes. SFN time-dependently elicited the phosphorylation of AMPK, the dephosphorylation of mTOR, and the phosphorylation of ULK1 in differentiated 3T3-L1 cells. Taken together, these results suggest that SFN may provoke lipophagy through AMPK-mTOR-ULK1 pathway signaling, resulting in partial lipolysis of adipocytes.
Collapse
|
42
|
Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol 2022; 52:102322. [PMID: 35504134 PMCID: PMC9079118 DOI: 10.1016/j.redox.2022.102322] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress-mediated inflammasome activation play critical roles in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), or growth differentiation factor-15 (GDF15), is associated with many biological processes and diseases, including NAFLD. However, the role of NAG-1/GDF15 in regulating oxidative stress and whether this process is associated with absent in melanoma 2 (AIM2) inflammasome activation in NAFLD are unknown. In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Overexpression of NAG-1/GDF15 in transgenic (Tg) mice significantly alleviated HFD-induced obesity and hepatic steatosis, improved lipid homeostasis, enhanced fatty acid β-oxidation and lipolysis, inhibited fatty acid synthesis and uptake, and inhibited AIM2 inflammasome activation and the secretion of IL-18 and IL-1β, as compared to their wild-type (WT) littermates without reducing food intake. Furthermore, NAG-1/GDF15 overexpression attenuated FFA-induced triglyceride (TG) accumulation, lipid metabolism deregulation, and AIM2 inflammasome activation in hepatic steatotic cells, while knockdown of NAG-1/GDF15 demonstrated opposite effects. Moreover, NAG-1/GDF15 overexpression inhibited HFD- and FFA-induced oxidative stress and mitochondrial damage which in turn reduced double-strand DNA (dsDNA) release into the cytosol, while NAG-1/GDF15 siRNA showed opposite effects. The reduced ROS production and dsDNA release may be responsible for attenuated AIM2 activation by NAG-1/GDF15 upon fatty acid overload. In conclusion, our results provide evidence that other than regulating lipid homeostasis, NAG-1/GDF15 protects against hepatic steatosis through a novel mechanism via suppressing oxidative stress, mitochondrial damage, dsDNA release, and AIM2 inflammasome activation. NAG-1/GDF15 is downregulated in human steatotic liver and FFA-induced liver cells. NAG-1/GDF15 inhibits hepatic steatosis and improves lipid homeostasis. AIM2 inflammasome is activated in steatosis models and is inhibited by NAG-1/GDF15. NAG-1/GDF15 reduces oxidative stress and mitochondrial damage in steatosis models. NAG-1/GDF15 inhibits mitochondrial dsDNA release and thus inhibits AIM2 activation.
Collapse
|
43
|
Wu YK, Ren ZN, Zhu SL, Wu YZ, Wang G, Zhang H, Chen W, He Z, Ye XL, Zhai QX. Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway. Acta Pharmacol Sin 2022; 43:1473-1483. [PMID: 34654875 PMCID: PMC9159986 DOI: 10.1038/s41401-021-00786-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Most studies regarding the beneficial effect of sulforaphane (SFN) on non-alcoholic fatty liver disease (NAFLD) have focused on nuclear factor E2-related factor 2 (Nrf2). But the molecular mechanisms underlying the beneficial effect of SFN in the treatment of NAFLD remain controversial. Fibroblast growth factor (FGF) 21 is a member of the FGF family expressed mainly in liver but also in adipose tissue, muscle and pancreas, which functions as an endocrine factor and has been considered as a promising therapeutic candidate for the treatment of NAFLD. In the present study we investigated whether FGF21 was involved in the therapeutic effect of SFN against NAFLD. C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to generate NAFLD and continued on the HFD for additional 6 weeks with or without SFN treatment. We showed that administration of SFN (0.56 g/kg) significantly ameliorated hepatic steatosis and inflammation in NAFLD mice, along with the improved glucose tolerance and insulin sensitivity, through suppressing the expression of proteins responsible for hepatic lipogenesis, while enhancing proteins for hepatic lipolysis and fatty acids oxidation. SFN administration significantly increased hepatic expression of FGFR1 and fibroblast growth factor 21 (FGF21) in NAFLD mice, along with decreased phosphorylation of p38 MAPK (the downstream of FGF21). HepG2 cells were treated in vitro with FFAs (palmitic acid and oleic acid) followed by different concentrations of SFN. We showed that the effects of SFN on FGF21 and FGFR1 protein expression were replicated in FFAs-treated HepG2 cells. Moreover, the increased FGFR1 protein occurred earlier than increased FGF21 protein. Interestingly, the rapid effect of SFN on FGFR1 protein was not regulated by the FGFR1 gene transcription. Knockdown of FGFR1 and p38 genes weakened SFN-reduced lipid deposition in FFAs-treated HepG2 cells. SFN administration in combination with rmFGF21 (1.5 mg/kg, i.p., every other day) for 3 weeks further suppressed hepatic steatosis in NAFLD mice. In conclusion, SFN ameliorates lipid metabolism disorders in NAFLD mice by upregulating FGF21/FGFR1 pathway. Our results verify that SFN may become a promising intervention to treat or relieve NAFLD.
Collapse
Affiliation(s)
- Yi-kuan Wu
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Zheng-nan Ren
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Sheng-long Zhu
- grid.258151.a0000 0001 0708 1323School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Yun-zhou Wu
- grid.412243.20000 0004 1760 1136College of Life Science, Northeast Agricultural University, Harbin, 150038 China
| | - Gang Wang
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Hao Zhang
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 China
| | - Wei Chen
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 China
| | - Zhao He
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, 250012 China
| | - Xian-long Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000 China
| | - Qi-xiao Zhai
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
44
|
Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina (B Aires) 2022; 58:medicina58050641. [PMID: 35630058 PMCID: PMC9147364 DOI: 10.3390/medicina58050641] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the “multiple-hit” hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver–gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue’s hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.
Collapse
|
45
|
Yi YS. Regulatory Roles of Caspase-11 Non-Canonical Inflammasome in Inflammatory Liver Diseases. Int J Mol Sci 2022; 23:4986. [PMID: 35563377 PMCID: PMC9104167 DOI: 10.3390/ijms23094986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
An inflammatory response consists of two consecutive steps: priming and triggering, to prepare and activate inflammatory responses, respectively. The cardinal feature of the triggering step is the activation of intracellular protein complexes called inflammasomes, which provide a platform for the activation of inflammatory signaling pathways. Despite many studies demonstrating the regulatory roles of canonical inflammasomes in inflammatory liver diseases, the roles of newly discovered non-canonical inflammasomes in inflammatory liver diseases are still largely unknown. Recent studies have reported the regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory liver diseases, providing strong evidence that the caspase-11 non-canonical inflammasome may play key roles in the pathogenesis of inflammatory liver diseases. This review comprehensively discusses the emerging roles of the caspase-11 non-canonical inflammasome in the pathogenesis of inflammatory liver diseases, focusing on non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and inflammatory liver injuries and its underlying mechanisms. This review highlights the current knowledge on the regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory liver diseases, providing new insights into the development of potential therapeutics to prevent and treat inflammatory liver diseases by targeting the caspase-11 non-canonical inflammasome.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
46
|
Shaker ME. The contribution of sterile inflammation to the fatty liver disease and the potential therapies. Biomed Pharmacother 2022; 148:112789. [PMID: 35272137 DOI: 10.1016/j.biopha.2022.112789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022] Open
Abstract
Hepatic inflammation is prevalent in several metabolic liver diseases. Recent scientific advances about the pathogenesis of metabolic liver diseases showed an emerging role of several damage-associated molecular patterns (DAMPs), including DNA, high-mobility group box 1 (HMGB1), ATP and uric acid. For these DAMPs to induce inflammation, they should stimulate pattern recognition receptors (PRRs), which are located in the hepatic immune cells like resident Kupffer cells, infiltrated neutrophils, monocytes or dendritic cells. As a consequence, proinflammatory cytokines like interleukins (ILs)-1β and 18 alongside tumor necrosis factor (TNF)-α are overproduced and released, leading to pronounced hepatic inflammation and cellular death. This review highlights the contribution of these DAMPs and PRRs in the settings of alcoholic and nonalcoholic steatohepatitis. The review also summarizes the therapeutic usefulness of targeting NLR family pyrin domain containing 3 (NLRP3)-inflammasome, Toll-like receptors (TLRs) 4 and 9, IL-1 receptor (IL-1R), caspase 1, uric acid and GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) in these hepatic inflammatory disorders.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| |
Collapse
|
47
|
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Front Pharmacol 2022; 13:780496. [PMID: 35350750 PMCID: PMC8957978 DOI: 10.3389/fphar.2022.780496] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,The Third Clinical College of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Wei Hong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shen Lu
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yaya Guan
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Xiaogang Weng
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
48
|
Williams EJ, Guilleminault L, Berthon BS, Eslick S, Wright T, Karihaloo C, Gately M, Baines KJ, Wood LG. Sulforaphane Reduces Pro-Inflammatory Response To Palmitic Acid In Monocytes And Adipose Tissue Macrophages. J Nutr Biochem 2022; 104:108978. [PMID: 35271969 DOI: 10.1016/j.jnutbio.2022.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
|
49
|
Muz OE, Orhan C, Tuzcu M, Er B, Morde AA, Padigaru M, Ozercan IH, Sahin K. Protective Effect of Allyl Isothiocyanate in an Experimentally Induced Rat Model for Dry Eye Syndrome. Curr Eye Res 2022; 47:704-714. [PMID: 35176939 DOI: 10.1080/02713683.2021.2021538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE/AIM OF THE STUDY Growing evidence emphasizes the role of inflammation and oxidative stress in the pathogenesis of Dry Eye Syndrome (DES). Concordantly, the importance of agents targeting the inflammatory cascade and oxidative stress in the treatment is also progressively increasing. Herein, the study has investigated the protective effects and underlying mechanism of allyl isothiocyanate (AITC) on the ocular surface in a benzalkonium chloride (BAC)-induced dry eye rat model. MATERIALS AND METHODS A total of twenty-one Wistar albino rats were used to form the following three groups: Control, BAC, BAC + AITC. DES was established by topical application of BAC (four times daily for two weeks) in two groups, of which one group was treated with AITC (10 mg/kg BW daily oral dosage) for four weeks. Rats were monitored by dry eye diagnostic tests during the study period, and eventually, corneal tissues were used to evaluate for histopathologic analyzes and inflammatory and oxidative status. RESULTS A significant improvement was observed in various histopathologic and ophthalmologic findings, including tear volume, tear film integrity, ocular surface damage, ocular inflammatory signs, corneal thickness, and edema through AITC supplementation. AITC prominently balanced the inflammatory status and oxidative stress by lowering key proinflammatory mediators (NF-κB, TNF-α, IL-1β, IL-6, and IL-8) and increasing the activities of antioxidant enzymes (SOD, GSH-Px). Also, levels of protective tear proteins, including Muc1, Muc4, and Muc5 were recovered with AITC supplementation. CONCLUSION AITC alleviates clinical and histopathologic signs related to DES. Antioxidative and anti-inflammatory properties of AITC play a significant role in the mechanism of action.
Collapse
Affiliation(s)
- Omer Ersin Muz
- Department of Ophthalmology, Yunus Emre State Hospital, Eskisehir, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | | | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
50
|
Zou J, Yan C, Wan JB. Red yeast rice ameliorates non-alcoholic fatty liver disease through inhibiting lipid synthesis and NF-κB/NLRP3 inflammasome-mediated hepatic inflammation in mice. Chin Med 2022; 17:17. [PMID: 35078487 PMCID: PMC8788078 DOI: 10.1186/s13020-022-00573-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Red yeast rice (RYR), a nutraceutical with a profound cholesterol-lowering effect, was found to attenuate non-alcoholic fatty liver disease (NAFLD) in mice. Despite monacolin K in RYR being a specific inhibitor of hydroxymethylglutaryl-coenzyme A reductase (HMCGR), the mechanisms underlying the protective effects of RYR against NAFLD are not fully elucidated. METHODS Using a mouse model of high-fat diet (HFD) feeding and a cellular model of HepG2 cells challenged by lipopolysaccharide (LPS) and palmitic acid (PA), the possible molecular mechanisms were exploited in the aspects of NF-κB/NLRP3 inflammasome and mTORC1-SREBPs signaling pathways by examining the relevant gene/protein expressions. Subsequently, the correlation between these two signals was also verified using cellular experiments. RESULTS RYR ameliorated lipid accumulation and hepatic inflammation in vivo and in vitro. RYR improved lipid metabolism through modulating mTORC1-SREBPs and their target genes related to triglyceride and cholesterol synthesis. Furthermore, RYR suppressed hepatic inflammation by inhibiting the NF-κB/NLRP3 inflammasome signaling. Interestingly, the treatment with RYR or MCC950, a specific NLRP3 inhibitor, resulted in the reduced lipid accumulation in HepG2 cells challenged by LPS plus PA, suggesting that the inhibitory effects of RYR on NLRP3 inflammasome-mediated hepatic inflammation may partially, in turn, contribute to the lipid-lowering effect of RYR. CONCLUSIONS The modulation of NF-κB/NLRP3 inflammasome and lipid synthesis may contribute to the ameliorative effects of RYR against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|