1
|
Nourbakhsh NS, Naeimi S, Moghanibashi M, Baradaran B. Bicalutamide reveals immunomodulatory effects in prostate cancer by regulating immunogenic dendritic cell maturation. Tissue Cell 2024; 91:102530. [PMID: 39191051 DOI: 10.1016/j.tice.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Prostate cancer poses a significant global health challenge, ranking as the second most prevalent and fifth most lethal malignancy among males. The intricate interplay between androgen signaling and the immune microenvironment underscores the complexity of prostate cancer progression. Notably, androgen receptor (AR) signaling has been shown to affect immune response mediated by tumor antigen-presenting dendritic cells (DCs). Therefore, this study aimed to explore the potential of Bicalutamide, a nonsteroidal anti-androgen, in modulating DCs-mediated immune responses. Peripheral blood mononuclear cells (PBMCs) were isolated, and monocytes were extracted, followed by their differentiation into immature dendritic cells (iDCs) using GM-CSF and IL-4. Harvested tumor cell lysates from human prostate cancer cells were then utilized to induce the transformation of iDCs into mature dendritic cells (mDCs). Then, mDCs were treated with non-toxic concentration of Bicalutamide determined by annexin V/PI assay. The morphological characteristics of mDCs were investigated using an inverted light microscope. Flow cytometry was used to determine the cell surface expression of molecular markers of DC maturation, and qRT-PCR was employed to evaluate expression levels of proinflammatory genes involved in DC maturation. The obtained results indicated that Bicalutamide treatment of monocyte-derived mDCs induces an immunogenic and matured phenotype, marked by increased expression of CD86 and HLA-DR. Besides, qRT-PCR results evidenced that Bicalutamide decreased the expression of anti-inflammatory genes, including Interleukin-10 (IL-10) and TGF-beta, as an indication of immunogenic DCs. These findings suggest that beyond its established anti-androgen role, Bicalutamide may exert anti-tumor effects through the modulation of DCs-mediated immune responses. This novel immunomodulatory feature holds promise for the development of novel therapies, including combination therapies, in prostate cancer treatment.
Collapse
Affiliation(s)
| | - Sirous Naeimi
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran.
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Sohn R, Jenei-Lanzl Z. Role of the Sympathetic Nervous System in Mild Chronic Inflammatory Diseases: Focus on Osteoarthritis. Neuroimmunomodulation 2023; 30:143-166. [PMID: 37429263 PMCID: PMC10428144 DOI: 10.1159/000531798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The sympathetic nervous system (SNS) is a major regulatory mediator connecting the brain and the immune system that influences accordingly inflammatory processes within the entire body. In the periphery, the SNS exerts its effects mainly via its neurotransmitters norepinephrine (NE) and epinephrine (E), which are released by peripheral nerve endings in lymphatic organs and other tissues. Depending on their concentration, NE and E bind to specific α- and β-adrenergic receptor subtypes and can cause both pro- and anti-inflammatory cellular responses. The co-transmitter neuropeptide Y, adenosine triphosphate, or its metabolite adenosine are also mediators of the SNS. Local pro-inflammatory processes due to injury or pathogens lead to an activation of the SNS, which in turn induces several immunoregulatory mechanisms with either pro- or anti-inflammatory effects depending on neurotransmitter concentration or pathological context. In chronic inflammatory diseases, the activity of the SNS is persistently elevated and can trigger detrimental pathological processes. Recently, the sympathetic contribution to mild chronic inflammatory diseases like osteoarthritis (OA) has attracted growing interest. OA is a whole-joint disease and is characterized by mild chronic inflammation in the joint. In this narrative article, we summarize the underlying mechanisms behind the sympathetic influence on inflammation during OA pathogenesis. In addition, OA comorbidities also accompanied by mild chronic inflammation, such as hypertension, obesity, diabetes, and depression, will be reviewed. Finally, the potential of SNS-based therapeutic options for the treatment of OA will be discussed.
Collapse
Affiliation(s)
- Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Singh A, Ranjan A. Adrenergic receptor signaling regulates the CD40-receptor mediated anti-tumor immunity. Front Immunol 2023; 14:1141712. [PMID: 37006295 PMCID: PMC10050348 DOI: 10.3389/fimmu.2023.1141712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
InroductionAnti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality.Method/ResultsHere, we reveal that β-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that β-2 adrenergic receptor (β2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan β-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy.Discussion/ConclusionThus, our study highlights an important mechanistic link between stress-induced β2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.
Collapse
|
4
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
5
|
Bufan B, Arsenović-Ranin N, Živković I, Petrović R, Leposavić G. B-cell response to seasonal influenza vaccine in mice is amenable to pharmacological modulation through β-adrenoceptor. Life Sci 2022; 301:120617. [PMID: 35533760 DOI: 10.1016/j.lfs.2022.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
AIMS Given that deprivation of noradrenaline acting on lymphocytes through β-adrenoceptor influences antibody response, the effects of propranolol treatment beginning two days before immunization with quadrivalent inactivated influenza vaccine (QIV) on IgG response and underlying cellular molecular mechanism in mice were investigated. MAIN METHODS Twenty-one days post-immunization the total QIV antigen-specific IgG titer and IgG subclass titers in sera were determined using ELISA. Additionally, the total counts of germinal centre (GC) B cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in draining lymph nodes (dLNs) and spleens, in vitro proliferation of interacting B cells and Th cells and IL-21 synthesis in Th cells in response to QIV antigens and/or mitogen were attested using flow cytometry analysis. In QIV antigen-stimulated dLN cell and splenocyte cultures were also measured concentrations of INF-γ and IL-4, cytokines upregulating IgG2a and IgG1 synthesis, respectively. KEY FINDINGS Propranolol decreased the total QIV antigen-specific IgG titer. This correlated with lower GC B cell count and the shift in Tfr/Tfh cell and Tfr/GC B cell ratio towards Tfr in propranolol-treated mice compared with controls. Consistently, QIV antigen-stimulated proliferation of B cells and Th cells from propranolol-treated mice in vitro was impaired. This correlated with the lower frequency of QIV antigen-specific IL-21-producing cells among Th cells. Additionally, in propranolol-treated mice, in accordance with the changes in INF-γ/IL-4 ratio in dLN cell/splenocyte cultures, serum IgG2a/IgG1 ratio was shifted towards IgG1 reflecting decreased IgG2a response. SIGNIFICANCE The study indicates that chronic propranolol treatment may impair response to QIV.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
6
|
Zhang J, Li Z, Chandrasekar A, Li S, Ludolph A, Boeckers TM, Huber-Lang M, Roselli F, Olde Heuvel F. Fast Maturation of Splenic Dendritic Cells Upon TBI Is Associated With FLT3/FLT3L Signaling. Front Immunol 2022; 13:824459. [PMID: 35281004 PMCID: PMC8907149 DOI: 10.3389/fimmu.2022.824459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
The consequences of systemic inflammation are a significant burden after traumatic brain injury (TBI), with almost all organs affected. This response consists of inflammation and concurrent immunosuppression after injury. One of the main immune regulatory organs, the spleen, is highly interactive with the brain. Along this brain–spleen axis, both nerve fibers as well as brain-derived circulating mediators have been shown to interact directly with splenic immune cells. One of the most significant comorbidities in TBI is acute ethanol intoxication (EI), with almost 40% of patients showing a positive blood alcohol level (BAL) upon injury. EI by itself has been shown to reduce proinflammatory mediators dose-dependently and enhance anti-inflammatory mediators in the spleen. However, how the splenic immune modulatory effect reacts to EI in TBI remains unclear. Therefore, we investigated early splenic immune responses after TBI with and without EI, using gene expression screening of cytokines and chemokines and fluorescence staining of thin spleen sections to investigate cellular mechanisms in immune cells. We found a strong FLT3/FLT3L induction 3 h after TBI, which was enhanced by EI. The FLT3L induction resulted in phosphorylation of FLT3 in CD11c+ dendritic cells, which enhanced protein synthesis, maturation process, and the immunity of dendritic cells, shown by pS6, peIF2A, MHC-II, LAMP1, and CD68 by immunostaining and TNF-α expression by in-situ hybridization. In conclusion, these data indicate that TBI induces a fast maturation and immunity of dendritic cells which is associated with FLT3/FLT3L signaling and which is enhanced by EI prior to TBI.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Zhenghui Li
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Akila Chandrasekar
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Shun Li
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany
| | - Tobias Maria Boeckers
- German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [PMID: 35461901 DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
8
|
Hwang HS, Lee MH, Go DJ, Kim HA. Norepinephrine modulates IL-1β-induced catabolic response of human chondrocytes. BMC Musculoskelet Disord 2021; 22:724. [PMID: 34425806 PMCID: PMC8383445 DOI: 10.1186/s12891-021-04598-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/03/2021] [Indexed: 01/13/2023] Open
Abstract
Background The influence of the sympathetic nervous system (SNS) on metabolism of bone and cartilage expressing β-adrenergic receptors (AR) was suggested. Here, we investigated whether the SNS functions as a modulator of cartilage metabolism induced by interleukin-1beta (IL-1β). Methods Human articular chondrocytes and articular cartilage were collected from patients with osteoarthritis (OA). Chondrocyte monolayer and cartilage explant culture were stimulated with IL-1β. The activity of β-ARs was modulated by an agonist, norepinephrine (NE), and antagonists, including propranolol, atenolol, nebivolol, and nadolol. Results The levels of β1-, β2-, and β3-AR in OA cartilage and IL-1β-treated chondrocytes were lower than normal cartilage and untreated cells. Treatment of chondrocytes with IL-1β and β-blockers, including propranolol, atenolol, nebivolol, and nadolol, for 6 h significantly upregulated IL-1β-induced expression of MMP-1, -3, and − 13, compared to chondrocytes treated with IL-1β alone, indicating that antagonism of β-AR confers catabolic signals. On the other hand, NE antagonized IL-1β-induced catabolic response. In addition, NE significantly inhibited IL-1β-induced release of glycosaminoglycan (GAG) from cartilage explant culture. In addition, β-AR activity significantly affected IL-1β-stimulated phosphorylation of JNK and ERK. These results indicate that β-AR signal is associated with cartilage metabolism. Conclusions Our findings showed that β-ARs is a regulator of cartilage catabolism induced with IL-1β. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04598-7.
Collapse
Affiliation(s)
- Hyun Sook Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Kyunggi, 14068, Korea.,Institute for Skeletal Aging, Hallym University, Chunchon, Gangwon, 24251, Korea
| | - Mi Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Kyunggi, 14068, Korea.,Institute for Skeletal Aging, Hallym University, Chunchon, Gangwon, 24251, Korea
| | - Dong Jin Go
- Division of Rheumatology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, 07442, Korea.
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Kyunggi, 14068, Korea. .,Institute for Skeletal Aging, Hallym University, Chunchon, Gangwon, 24251, Korea.
| |
Collapse
|
9
|
Hoang QTM, Nguyen VK, Oberacher H, Fuchs D, Hernandez-Vargas EA, Borucki K, Waldburg N, Wippermann J, Schreiber J, Bruder D, Veluswamy P. Serum Concentration of the Phytohormone Abscisic Acid Is Associated With Immune-Regulatory Mediators and Is a Potential Biomarker of Disease Severity in Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2021; 8:676058. [PMID: 34169084 PMCID: PMC8217626 DOI: 10.3389/fmed.2021.676058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
COPD and asthma are two distinct but sometimes overlapping diseases exhibiting varying degrees and types of inflammation on different stages of the disease. Although several biomarkers are defined to estimate the inflammatory endotype and stages in these diseases, there is still a need for new markers and potential therapeutic targets. We investigated the levels of a phytohormone, abscisic acid (ABA) and its receptor, LANCL2, in COPD patients and asthmatics. In addition, PPAR-γ that is activated by ABA in a ligand-binding domain-independent manner was also included in the study. In this study, we correlated ABA with COPD-propagating factors to define the possible role of ABA, in terms of immune regulation, inflammation, and disease stages. We collected blood from 101 COPD patients, 52 asthmatics, and 57 controls. Bronchoscopy was performed on five COPD patients and 29 controls. We employed (i) liquid chromatography–tandem mass spectrometry and HPLC to determine the ABA and indoleamine 2,3-dioxygenase levels, respectively; (ii) real-time PCR to quantify the gene expression of LANCL2 and PPAR-γ; (iii) Flow cytometry to quantify adipocytokines; and (iv) immunoturbidimetry and ELISA to measure CRP and cytokines, respectively. Finally, a multinomial regression model was used to predict the probability of using ABA as a biomarker. Blood ABA levels were significantly reduced in COPD patients and asthmatics compared to age- and gender-matched normal controls. However, PPAR-γ was elevated in COPD patients. Intriguingly, ABA was positively correlated with immune-regulatory factors and was negatively correlated with inflammatory markers, in COPD. Of note, ABA was increased in advanced COPD stages. We thereby conclude that ABA might be involved in regulation of COPD pathogenesis and might be regarded as a potential biomarker for COPD stages.
Collapse
Affiliation(s)
- Quynh Trang Mi Hoang
- Department of Pneumonology, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany.,Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Van Kinh Nguyen
- Department of Infectious Diseases Epidemiology, Imperial College, London, United Kingdom
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Esteban A Hernandez-Vargas
- Systems Medicine for Infectious Diseases, Frankfurt Institute for Advanced Studies, Frankfurt, Germany.,Instituto de Matematicas, Universidad Nacional Autónoma de México (UNAM), Queretaro, Mexico
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumonology, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Hospital, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Priya Veluswamy
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Hospital, Magdeburg, Germany.,Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany
| |
Collapse
|
10
|
Ling Y, Yang J, Hua D, Wang D, Zhao C, Weng L, Yue D, Cai X, Meng Q, Chen J, Sun X, Kong W, Zhu L, Cao P, Hu C. ZhiJingSan Inhibits Osteoclastogenesis via Regulating RANKL/NF-κB Signaling Pathway and Ameliorates Bone Erosion in Collagen-Induced Mouse Arthritis. Front Pharmacol 2021; 12:693777. [PMID: 34122118 PMCID: PMC8193094 DOI: 10.3389/fphar.2021.693777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
Bone erosion is the most evident pathological condition of rheumatoid arthritis (RA), which is the main cause of joint deformities and disability in RA patients. At present, the conventional RA drugs have not achieved satisfactory effect in improving bone erosion. ZhiJingSan (ZJS), which is a traditional Chinese prescription composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch, scolopendridae) and scorpion (dried body of Buthus martensii Karsch, Buthus), exhibits anti-rheumatism, analgesic and joint deformities improvement effects. This study aimed to assess the therapeutic effect of ZJS on RA bone erosion and to elucidate the underlying mechanism. The effect of ZJS on RA bone erosion was investigated in a murine model of bovine collagen-induced arthritis (CIA), and the underlying mechanism was investigated in vitro in an osteoclast differentiation cell model. Administration of ZJS delayed the onset of arthritis, alleviated joint inflammation, and attenuated bone erosion in the CIA mice. Meanwhile, ZJS decreased the serum levels of TNF-α, IL-6, and anti-bovine collagen II-specific antibodies. Furthermore, ZJS treatment reduced the number of osteoclasts and the expression of cathepsin K in the ankle joints of CIA mice. ZJS also inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and the expression of MMP9 and cathepsin K in vitro. Mechanistically, ZJS blocked RANKL-induced p65 phosphorylation, nucleation, and inhibited the expression of downstream NFATc1 and c-Fos in bone marrow-derived macrophages (BMMs). Taken together, ZJS exerts a therapeutic effect on bone erosion in CIA mice by inhibiting RANKL/NF-κB-mediated osteoclast differentiation, which suggested that ZJS is a promising prescription for treating RA bone erosion.
Collapse
Affiliation(s)
- Yuanyuan Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Hua
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenglei Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Weng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Yue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weikang Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizhong Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Hua D, Yang J, Meng Q, Ling Y, Wei Q, Wang Z, Wei Q, Chen J, Ye J, Han X, Su K, Kong W, Xu C, Cao P, Hu C. Soufeng sanjie formula alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation. Chin Med 2021; 16:39. [PMID: 33985537 PMCID: PMC8117632 DOI: 10.1186/s13020-021-00448-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease. Soufeng sanjie formula (SF), which is composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch), scorpion (dried body of Buthus martensii Karsch), astragali radix (dried root of Astragalus membranaceus (Fisch.) Bge), and black soybean seed coats (seed coats of Glycine max (L.) Merr), is a traditional Chinese prescription for treating RA. However, the mechanism of SF in treating RA remains unclear. This study was aim to investigate the anti-arthritic effects of SF in a collagen-induced arthritis (CIA) mouse model and explore the mechanism by which SF alleviates arthritis in CIA mice. Methods For in vivo studies, female DBA/1J mice were used to establish the CIA model, and either SF (183 or 550 mg/kg/day) or methotrexate (MTX, 920 mg/kg, twice/week) was orally administered to the mice from the day of arthritis onset. After administration for 30 days, degree of ankle joint destruction and serum levels of IgG and inflammatory cytokines were determined. The balance of Th17/Treg cells in the spleen and lymph nodes was analyzed using flow cytometry. Moreover, the expression levels of retinoic acid receptor-related orphan nuclear receptor (ROR) γt and phosphorylated STAT3 (pSTAT3, Tyr705) in the spleen were detected by immunohistochemistry. Furthermore, the effect of SF on Th17 cells differentiation in vitro was investigated in CD4+ T cells under Th17 polarization conditions. Results SF decreased the arthritis score, ameliorated paw swelling, and reduced cartilage loss in the joint of CIA mice. In addition, SF decreased the levels of bovine collagen-specific IgG in sera of CIA mice. SF decreased the levels of inflammatory cytokines (TNF-α, IL-6, and IL-17A) and increased the level of IL-10 both in the sera and the joint of CIA mice. Moreover, SF treatment rebalanced the Th17/Treg ratio in the spleen and lymph nodes of CIA mice. SF also reduced the expression levels of ROR γt and pSTAT3 (Tyr705) in the spleen of CIA mice. In vitro, SF treatment reduced Th17 cell generation and IL-17A production and inhibited the expression of RORγt, IRF4, IL-17A, and pSTAT3 (Tyr705) under Th17 polarization conditions. Conclusions Our results suggest that SF exhibits anti-arthritic effects and restores Th17/Treg homeostasis in CIA mice by inhibiting Th17 cell differentiation. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00448-9.
Collapse
Affiliation(s)
- Di Hua
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Qinghai Meng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Qin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhigang Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Qingyun Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xuan Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Kelei Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Weikang Kong
- Affiliated Hospital of Yifu, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
12
|
Witkowska-Piłaszewicz O, Pingwara R, Szczepaniak J, Winnicka A. The Effect of the Clenbuterol-β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro. Cells 2021; 10:cells10040936. [PMID: 33920705 PMCID: PMC8072563 DOI: 10.3390/cells10040936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Clenbuterol, the β2-adrenoceptor agonist, is gaining growing popularity because of its effects on weight loss (i.e., chemical liposuction). It is also popular in bodybuilding and professional sports, due to its effects that are similar to anabolic steroids. However, it is prohibited by anti-doping control. On the other hand, it is suggested that clenbuterol can inhibit the inflammatory process. The cells from 14 untrained and 14 well-trained race horses were collected after acute exercise and cultured with clenbuterol. The expressions of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ and TNF-α concentrations were evaluated by ELISA. β2-adrenoceptor stimulation leads to enhanced anti-inflammatory properties in well-trained horses, as do low doses in untrained animals. In contrast, higher clenbuterol doses create a pro-inflammatory environment in inexperienced horses. In conclusion, β2-adrenoceptor stimulation leads to a biphasic response. In addition, the immune cells are more sensitive to drug abuse in inexperienced individuals under physical training.
Collapse
Affiliation(s)
- Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Science—SGGW, 02-787 Warsaw, Poland;
- Correspondence:
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Science—SGGW, 02-787 Warsaw, Poland;
| |
Collapse
|
13
|
Arora V, Morado-Urbina CE, Gwak YS, Parker RA, Kittel CA, Munoz-Islas E, Miguel Jimenez-Andrade J, Romero-Sandoval EA, Eisenach JC, Peters CM. Systemic administration of a β2-adrenergic receptor agonist reduces mechanical allodynia and suppresses the immune response to surgery in a rat model of persistent post-incisional hypersensitivity. Mol Pain 2021; 17:1744806921997206. [PMID: 33829907 PMCID: PMC8040570 DOI: 10.1177/1744806921997206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Beta 2 adrenergic receptor (β2 AR) activation in the central and peripheral nervous system has been implicated in nociceptive processing in acute and chronic pain settings with anti-inflammatory and anti-allodynic effects of β2-AR mimetics reported in several pain states. In the current study, we examined the therapeutic efficacy of the β2-AR agonist clenbuterol in a rat model of persistent postsurgical hypersensitivity induced by disruption of descending noradrenergic signaling in rats with plantar incision. We used growth curve modeling of ipsilateral mechanical paw withdrawal thresholds following incision to examine effects of treatment on postoperative trajectories. Depletion of spinal noradrenergic neurons delayed recovery of hypersensitivity following incision evident as a flattened slope compared to non-depleted rats (-1.8 g/day with 95% CI -2.4 to -1.085, p < 0.0001). Chronic administration of clenbuterol reduced mechanical hypersensitivity evident as a greater initial intercept in noradrenergic depleted (6.2 g with 95% CI 1.6 to 10.8, p = 0.013) and non-depleted rats (5.4 g with 95% CI 1.2 to 9.6, p = 0.018) with plantar incision compared to vehicle treated rats. Despite a persistent reduction in mechanical hypersensitivity, clenbuterol did not alter the slope of recovery when modeled over several days (p = 0.053) or five weeks in depleted rats (p = 0.64). Systemic clenbuterol suppressed the enhanced microglial activation in depleted rats and reduced the density of macrophage at the site of incision. Direct spinal infusion of clenbuterol failed to reduce mechanical hypersensitivity in depleted rats with incision suggesting that beneficial effects of β2-AR stimulation in this model are largely peripherally mediated. Lastly, we examined β2-AR distribution in the spinal cord and skin using in-situ hybridization and IHC. These data add to our understanding of the role of β2-ARs in the nervous system on hypersensitivity after surgical incision and extend previously observed anti-inflammatory actions of β2-AR agonists to models of surgical injury.
Collapse
Affiliation(s)
- Vipin Arora
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | - Young S Gwak
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Renee A Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol A Kittel
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - James C Eisenach
- FM James III Professor of Anesthesiology and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Christopher M Peters, Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
14
|
Sohn R, Rösch G, Junker M, Meurer A, Zaucke F, Jenei-Lanzl Z. Adrenergic signalling in osteoarthritis. Cell Signal 2021; 82:109948. [PMID: 33571663 DOI: 10.1016/j.cellsig.2021.109948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as 'joint' or 'cartilage' or 'synovium' or 'bone' and 'osteoarthritis' and/or 'trauma' and 'sympathetic nerve fibers' and/or 'norepinephrine' and 'adrenergic receptors / adrenoceptors' as well as 'adrenergic therapy'.
Collapse
Affiliation(s)
- Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Gundula Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Marius Junker
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany.
| |
Collapse
|
15
|
Forte E, Panahi M, Baxan N, Ng FS, Boyle JJ, Branca J, Bedard O, Hasham MG, Benson L, Harding SE, Rosenthal N, Sattler S. Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart. J Cell Mol Med 2021; 25:229-243. [PMID: 33249764 PMCID: PMC7810962 DOI: 10.1111/jcmm.15937] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol-induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
| | - Mona Panahi
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoleta Baxan
- Biological Imaging CentreCentral Biomedical ServicesImperial College LondonLondonUK
| | - Fu Siong Ng
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Joseph J. Boyle
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | | | | | | - Lindsay Benson
- Central Biomedical ServicesImperial College LondonLondonUK
| | - Sian E. Harding
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | | - Susanne Sattler
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
16
|
Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:202-217. [PMID: 35492402 PMCID: PMC9040148 DOI: 10.1016/j.crimmu.2021.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroimmune communication plays a crucial role in maintaining homeostasis and promptly responding to any foreign insults. Sympathetic nerve fibres are innervated into all the lymphoid organs (bone marrow, thymus, spleen, and lymph nodes) and provide a communication link between the central nervous system (CNS) and ongoing immune response in the tissue microenvironment. Neurotransmitters such as catecholamines (epinephrine and norepinephrine) bind to adrenergic receptors present on most immune and non-immune cells, establish a local neuroimmune-communication system, and help regulate the ongoing immune response. The activation of these receptors varies with the type of receptor-activated, target cell, the activation status of the cells, and timing of activation. Activating adrenergic receptors, specifically β-adrenergic signalling in immune cells leads to activation of the cAMP-PKA pathway or other non-canonical pathways. It predominantly leads to immune suppression such as inhibition of IL-2 secretion and a decrease in macrophages phagocytosis. This review discusses the expression of different adrenergic receptors in various immune cells, signalling, and how it modulates immune cell function and contributes to health and diseases. Understanding the neuroimmune communication through adrenergic receptor signalling in immune cells could help to design better strategies to control inflammation and autoimmunity. Primary and secondary lymphoid organs are innervated with sympathetic nerve fibres. Adrenergic receptor expression on immune and non-immune cells establishes a local neuroimmune communication system. Adrenergic receptor signalling in immune cells controls the differentiation and function of various immune cells. Modulating adrenergic receptor signalling with a specific agonist or antagonist also affect the immune response.
Collapse
Affiliation(s)
| | - Girdhari Lal
- Corresponding author. National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
17
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
18
|
Dai X, Yang D, Bao J, Zhang Q, Ding J, Liu M, Ding M, Liu M, Liang J, Jia X. Er Miao San, a traditional Chinese herbal formula, attenuates complete Freund's adjuvant-induced arthritis in rats by regulating Th17/Treg cells. PHARMACEUTICAL BIOLOGY 2020; 58:157-164. [PMID: 32037930 PMCID: PMC7034067 DOI: 10.1080/13880209.2020.1720745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Context: Er Miao San (EMS) is a traditional Chinese medicine composed of Atractylodis Rhizoma and Phellodendri Cortex in a 1:1 weight ratio. EMS has been used to treat rheumatism in China for many years.Objective: To evaluate the anti-arthritic activity of EMS extract on adjuvant-induced arthritis (AA) in Sprague-Dawley rats and to clarify its mechanisms of action.Materials and methods: EMS (0.75, 1.5 and 3 g/kg, once daily) was orally administered from day 18 after immunization to day 31. The effects of EMS on AA rats were evaluated by histopathological examination, paw swelling and polyarthritis index. The proliferation of fibroblast-like synoviocyte (FLS) and T cells was detected by CCK-8. The percentages of Th17 cells and Treg cells in splenocytes were determined by flow cytometry. Levels of cytokines in serum were detected by ELISA.Results: EMS treatment significantly decreased the paw volume (from 1.20 to 0.81), polyarthritis index (from 9.56 to 4.46) and alleviated ankle joint histopathology in AA rats. EMS inhibited the proliferation of FLS and T cells. Furthermore, EMS treatment decreased Th17 cells (from 4.62 to 2.08%) and increased Treg cells (from 2.77 to 4.75%) in splenocytes. The levels of IL-17A, TNF-α and IL-6 were remarkably decreased in the serum of EMS-treated rats, whereas the levels of IL-10 and TGF-β1 were significantly increased.Conclusions: EMS exhibits anti-arthritic activity in the AA model by regulating the balance of cytokines and the ratio of Th17 and Treg cells. These insights may provide an experimental basis for the clinical treatment of RA.
Collapse
Affiliation(s)
- Xing Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Dongping Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinping Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qiying Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiemin Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Meihuizi Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengli Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Juan Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- CONTACT Xiaoyi Jia School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| |
Collapse
|
19
|
Chen J, Wang W, Jiang M, Yang M, Wei W. Combination therapy of ginsenoside compound K and methotrexate was efficient in elimination of anaemia and reduction of disease activity in adjuvant-induced arthritis rats. PHARMACEUTICAL BIOLOGY 2020; 58:1131-1139. [PMID: 33198544 PMCID: PMC7671656 DOI: 10.1080/13880209.2020.1844761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Ginsenoside compound K (CK) has anti-inflammatory, immunoregulatory, and myelosuppressive protective effects. Methotrexate (MTX) is widely used in combination therapy for rheumatoid arthritis (RA). OBJECTIVE To evaluate the effects of combination therapy of CK and MTX on anaemia and anti-arthritis in adjuvant-induced arthritis (AA) rats. MATERIALS AND METHODS AA was induced in rats by Complete Freund's adjuvant, and divided into five groups (n = 10): normal, AA, CK 80 mg/kg, combination therapy (80 mg/kg CK combined with 0.5 mg/kg MTX), and MTX 0.5 mg/kg. From day 12, CK (once a day for 15 days) or MTX (once every 3 days, five times) were intragastrically administered. RESULTS Combination therapy showed increased haemoglobin to 148.5 ± 10.1 g/L compared with AA (129.8 ± 11.7 g/L) and MTX (128.8 ± 18.4 g/L), and decreased reticulocytes in peripheral blood to 4.9 ± 1.1% compared with MTX (9.3 ± 3.3%). In combination therapy group, paw swelling decreased to 5.6 ± 4.3 mL compared with CK (9.4 ± 3.9 mL) and MTX (13.5 ± 7.4 mL), and swollen joint count decreased to 1.4 ± 0.8 compared with CK (2.1 ± 1.0) and MTX (2.4 ± 1.2) at day 24. Combination therapy showed decreased IL-6 to 25.1 ± 17.2 pg/mL compared with MTX (44.9 ± 4.8 pg/mL), and decreased IL-17 to 5.8 ± 3.9 pg/mL compared with MTX (10.7 ± 4.2 pg/mL). CONCLUSION The anti-anaemia effect of CK deserves further study, and CK can be a candidate effective drug for combined treatment in RA with anaemia.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
- Jingyu Chen Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wu Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mengya Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mei Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
- CONTACT Wei Wei
| |
Collapse
|
20
|
Xu F, He L, Zhan X, Chen J, Xu H, Huang X, Li Y, Zheng X, Lin L, Chen Y. DNA methylation-based lung adenocarcinoma subtypes can predict prognosis, recurrence, and immunotherapeutic implications. Aging (Albany NY) 2020; 12:25275-25293. [PMID: 33234739 PMCID: PMC7803536 DOI: 10.18632/aging.104129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The marked heterogeneity of lung adenocarcinoma (LUAD) makes its diagnosis and treatment difficult. In addition, the aberrant DNA methylation profile contributes to tumor heterogeneity and alters the immune response. We used DNA methylation array data from publicly available databases to establish a predictive model for LUAD prognosis. Thirty-three methylation sites were identified as specific prognostic biomarkers, independent of patients' clinical characteristics. These methylation profiles were used to identify potential drug candidates and study the immune microenvironment of LUAD and response to immunotherapy. When compared with the high-risk group, the low-risk group had a lower recurrence rate and favorable prognosis. The tumor microenvironment differed between the two groups as reflected by the higher number of resting dendritic cells and a lower number of monocytes and resting mast cells in the low-risk group. Moreover, low-risk patients reported higher immune and stromal scores, lower tumor purity, and higher expression of HLA genes. Low-risk patients responded well to immunotherapy due to higher expression of immune checkpoint molecules and lower stemness index. Thus, our model predicted a favorable prognosis and increased overall survival for patients in the low-risk methylation group. Further, this model could provide potential drug targets to develop effective immunotherapies for LUAD.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiexin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huan Xu
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoling Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yangyi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaohe Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Lin
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongsong Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
21
|
Leng YF, He J, Li C, Chen B, Wang DW, Chen FQ, Xie T, Xu X, Sun ZL. Urinary metabolomics reveals the therapeutic mechanism of moxibustion on collagen-induced arthritis in rats. Eur J Integr Med 2020; 37:101160. [DOI: 10.1016/j.eujim.2020.101160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
The IL-33-induced p38-/JNK1/2-TNFα axis is antagonized by activation of β-adrenergic-receptors in dendritic cells. Sci Rep 2020; 10:8152. [PMID: 32424229 PMCID: PMC7235212 DOI: 10.1038/s41598-020-65072-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
IL-33, an IL-1 cytokine superfamily member, induces the activation of the canonical NF-κB signaling, and of Mitogen Activated Protein Kinases (MAPKs). In dendritic cells (DCs) IL-33 induces the production of IL-6, IL-13 and TNFα. Thereby, the production of IL-6 depends on RelA whereas the production of IL-13 depends on the p38-MK2/3 signaling module. Here, we show that in addition to p65 and the p38-MK2/3 signaling module, JNK1/2 are essential for the IL-33-induced TNFα production. The central roles of JNK1/2 and p38 in DCs are underpinned by the fact that these two MAPK pathways are controlled by activated β-adrenergic receptors resulting in a selective regulation of the IL-33-induced TNFα response in DCs.
Collapse
|
23
|
The Protective Effect of Different Polar Solvent Extracts of Er Miao San on Rats with Adjuvant Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5305278. [PMID: 32148544 PMCID: PMC7053457 DOI: 10.1155/2020/5305278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Objective The aim of this study was to evaluate the antiarthritic effects of different polar solvent extracts of Er Miao San (EMS) on model rats with adjuvant arthritis (AA) and screen the effective pats of EMS in the treatment of arthritis. Methods Four different polar solvent extracts of EMS such as petroleum ether (PE), methylene chloride (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-butanol ( Results Administration of EtOAc and CH2Cl2 parts remarkably inhibited the paw swelling, decreased the index of arthritis, decreased the body weight loss, and improved the changes of histopathology. Furthermore, the concentrations of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) were significantly lower, while the anti-inflammatory cytokine (IL-10) was remarkably higher compared with that in the model group. And the result of UHPLC analysis indicated that the effective parts of EMS contain berberine and atractylodin. Conclusions EtOAc and CH2Cl2 are the effective parts of EMS that can improve arthritis. In particular, berberine and atractylodin may be responsible for the antiarthritic activity of EMS. This research provided pharmacological and chemical foundation for the application of EMS in treating rheumatoid arthritis (RA).
Collapse
|
24
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
25
|
Kanashiro A, Leoncio TODL, Schneider AH, Alves HR, Bassi GS, Dutra SGV, Cunha FDQ, Ulloa L, Malvar DDC. Regulation of murine arthritis by systemic, spinal, and intra-articular adrenoceptors. Pharmacol Rep 2019; 71:1095-1103. [PMID: 31629939 DOI: 10.1016/j.pharep.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The regulation of the immune system by the sympathetic nervous system is allowing the design of novel treatments for inflammatory disorders such as arthritis. In this study, we have analyzed the effects of α- and β-adrenoceptor agonists injected subcutaneously, intrathecally, or intra-articularly in zymosan-induced arthritis. METHODS Murine arthritis was induced by intra-articular (knee joint) injection of zymosan. α1 (phenylephrine), α2 (clonidine), β1 (dobutamine), or β2 (salbutamol)-adrenoceptor agonists were injected subcutaneously (sc), intrathecally (it), or intra-articularly (ia) to activate peripheral, spinal, or intra-articular adrenoceptors and to study their effects on articular edema formation and neutrophil migration into the synovial cavity. RESULTS Treatments with phenylephrine did not affect the edema formation, but it increased neutrophil migration when injected subcutaneously (155.3%) or intra-articularly (187.7%). Treatments with clonidine inhibited neutrophil migration (59.9% sc, 68.7% it, 42.8% ia) regardless of the route of administration, but it inhibited edema formation only when injected intrathecally (66.7%) or intra-articularly (36%) but not subcutaneously. Treatments with dobutamine inhibited both edema (42.0% sc, 69.5% it, 61.6% ia) and neutrophil migration (28.4% sc, 70.3% it, 82.4% ia) in a concentration dependent manner. Likewise, all the treatments with salbutamol also inhibited edema formation (89.9% sc, 62.4% it, 69.8% ia) and neutrophil migration (76.6% sc, 39.1% it, 71.7% ia). CONCLUSION Whereas the β-adrenoceptor agonists induced anti-inflammatory effects regardless of their route of administration, α1- and α2-adrenoceptor agonists induced either pro- and anti-inflammatory effects, respectively.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil; Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Ayda Henriques Schneider
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Hélio Rocha Alves
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Gabriel Shimizu Bassi
- Department of Surgery, Center of Immunology and Inflammation, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | | | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology and Inflammation, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - David do Carmo Malvar
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
26
|
Jia XY, Chang Y, Wei F, Dai X, Wu YJ, Sun XJ, Xu S, Wu HX, Wang C, Yang XZ, Wei W. CP-25 reverses prostaglandin E4 receptor desensitization-induced fibroblast-like synoviocyte dysfunction via the G protein-coupled receptor kinase 2 in autoimmune arthritis. Acta Pharmacol Sin 2019; 40:1029-1039. [PMID: 30643209 DOI: 10.1038/s41401-018-0196-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
Paeoniflorin-6'-O-benzene sulfonate (CP-25) is a novel compound derived from paeoniflorin that has been demonstrated to have therapeutic effects in a rat model of rheumatoid arthritis (RA). However, the underlying mechanism has not been elucidated to date. We explored this mechanism in the present study by treating rats with adjuvant arthritis (AA) with CP-25. We found that the membrane EP4 protein level was downregulated; whereas, GRK2 was upregulated, in fibroblast-like synoviocyte (FLS)s of AA rats. Prostaglandin (PGE)2 stimulated FLS proliferation and enhanced the membrane EP4 receptor protein level; the latter was reversed by the administration of an EP4 receptor agonist, whereas the membrane GRK2 protein level gradually increased. The changes in the EP4 receptor and GRK2 expression were enhanced by TNF-α, and the former was accompanied by an alteration in the cyclic (c)AMP level. The EP4 receptor agonist stimulation increased the association between GRK2 and the EP4 receptor. GRK2 knockdown abrogated the abnormalities in FLS proliferation. The CP-25 treatment (100 mg/kg) suppressed joint inflammation with an efficacy that was similar to that of methotrexate. This finding was associated with EP4 upregulation and GRK2 downregulation in FLSs. Thus, GRK2 plays an important role in the abnormal FLS proliferation observed in AA possibly by promoting EP4 receptor desensitization and decreasing the cAMP level. Our results demonstrate that CP-25 has therapeutic potential for the treatment of human RA via GRK2 regulation.
Collapse
|
27
|
Kurozumi S, Kaira K, Matsumoto H, Hirakata T, Yokobori T, Inoue K, Horiguchi J, Katayama A, Koshi H, Shimizu A, Oyama T, Sloan EK, Kurosumi M, Fujii T, Shirabe K. β 2-Adrenergic receptor expression is associated with biomarkers of tumor immunity and predicts poor prognosis in estrogen receptor-negative breast cancer. Breast Cancer Res Treat 2019; 177:603-610. [PMID: 31290053 DOI: 10.1007/s10549-019-05341-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Antitumor immunity plays an important role in the progression of breast cancer. β2-adrenergic receptor (β2AR) was found to regulate the antitumor immune response and breast cancer progression in preclinical studies. To understand the clinical role of β2AR in cancer progression, we investigated the clinicopathological and prognostic significance of β2AR expression in invasive breast cancer. METHODS β2AR levels in breast tumors were evaluated by immunohistochemistry in a well-characterized patient cohort with long-term follow-up (n = 278). We evaluated the relationship of β2AR expression to patient survival and clinicopathological factors, including immune biomarkers such as tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. Breast cancer-specific survival was compared between high- and low-β2AR expression groups. RESULTS Although β2AR was not related to clinicopathological factors across the whole cohort, high β2AR was significantly related to PD-L1 negativity in estrogen receptor (ER)-negative patients. Tumors with high β2AR tended to have low TIL grade, and high β2AR was an independent prognostic factor for reduced survival in ER-negative patients. CONCLUSIONS β2AR is an independent poor prognostic factor in ER-negative breast cancer. The findings suggest that tumor β2AR regulates immune checkpoint activity, which may have therapeutic implications for patients with ER-negative breast cancer.
Collapse
Affiliation(s)
- Sasagu Kurozumi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan. .,Division of Breast Surgery, Saitama Cancer Center, Saitama, Japan.
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Saitama, Japan
| | | | - Tomoko Hirakata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma, Japan
| | - Kenichi Inoue
- Division of Breast Oncology, Saitama Cancer Center, Saitama, Japan
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, Chiba, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiromi Koshi
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Takaaki Fujii
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
28
|
Jia XY, Chang Y, Sun XJ, Wei F, Wu YJ, Dai X, Xu S, Wu HX, Wang C, Yang XZ, Wei W. Regulatory effects of paeoniflorin-6'-O-benzene sulfonate (CP-25) on dendritic cells maturation and activation via PGE2-EP4 signaling in adjuvant-induced arthritic rats. Inflammopharmacology 2019; 27:997-1010. [PMID: 30771056 DOI: 10.1007/s10787-019-00575-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. Dendritic cells (DCs) are one of the most powerful antigen-presenting cells, and they play an important role in RA pathogenesis. Prostaglandin E2 (PGE2) is a potent lipid mediator that can regulate the maturation and activation of DCs, but the molecular mechanisms have not been elucidated. In this study, both in vitro and in an RA rat model, we investigated the mechanisms involved by focusing on PGE2-mediated signaling and using a novel anti-inflammatory compound, paeoniflorin-6'-O-benzene sulfonate (CP-25). PGE2 combined with tumor necrosis factor-α promoted DC maturation and activation through EP4-cAMP signaling. Treatment with CP-25 increased the endocytic capacity of DCs induced by PGE2. CP-25 inhibited the potency of DCs induced by the EP4 receptor agonist, CAY10598, to stimulate allogeneic T cells. Consistent with these findings, the CAY10598-induced upregulation of DC surface activation markers and production of IL-23 was significantly inhibited by CP-25 in a concentration-dependent manner. In vivo administration of CP-25 alleviated adjuvant arthritis (AA) in rats through inhibition of DC maturation and activation. Our results indicate that PGE2-EP4-cAMP signal hyperfunction can lead to abnormal activation of DC functions, which correlates with the course of disease in AA rats and provides a possible treatment target. The inhibition of DC maturation and activation by CP-25 interference of the PGE2-EP4 pathway may significantly contribute to the immunoregulatory profile of CP-25 when used to treat RA and other immune cell-mediated disorders.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Pharmaceutic/adverse effects
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Cyclic AMP/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dinoprostone/metabolism
- Glucosides/pharmacology
- Male
- Monoterpenes/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Xiao-Yi Jia
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Sun
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Fang Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yu-Jing Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Shu Xu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hua-Xun Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xue-Zhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
29
|
Liu D, Li T, Luo H, Zuo X, Liu S, Wu S. The effect of the cholinergic anti-inflammatory pathway on collagen-induced arthritis involves the modulation of dendritic cell differentiation. Arthritis Res Ther 2018; 20:263. [PMID: 30486874 PMCID: PMC6262974 DOI: 10.1186/s13075-018-1759-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) has a strong anti-inflammatory effect on collagen-induced arthritis (CIA), a classic animal model of rheumatoid arthritis (RA). However, the underlying immune regulatory mechanism remains unclear. Here, we investigated the effect of the CAP on arthritis development and the involvement of dendritic cells (DCs). METHODS Forty DBA/1 mice were randomly divided into five groups: a control group (sham vagotomy+ phosphate-buffered saline; shamVGX+PBS), a CIA group (shamVGX+CIA + PBS), a vagotomy group (VGX + CIA + PBS), a GTS-21 (4 mg/kg) group (shamVGX+CIA + GTS-4), and a GTS-21 (8 mg/kg) group (shamVGX+CIA + GTS-8). The vagotomy group underwent left cervical vagotomy 4 days before arthritis induction, whereas the sham-vagotomy group underwent vagus nerve exposure. Mice were pretreated with GTS-21 by intraperitoneal injection on the day of surgery. The degree of arthritis was measured by using the arthritis score, hematoxylin and eosin staining, and TRAP (tartrate-resistant acid phosphatase) staining. Flow cytometry was used to detect the expression of CD80 and major histocompatibility complex II (MHC II) on CD11c+ DCs in the spleen. Luminex was used to detect the serum concentration of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), and IL-10. Immunohistochemistry was used to detect CD11c expression in the synovium. The effects of GTS-21 on DC differentiation and maturation were examined in vitro by treating bone marrow-derived DCs with GTS-21 and assessing differentiation and maturation. Flow cytometry was used to analyze CD80 and MHC II expression on the surface of DCs. RESULTS GTS-21 treatment ameliorated clinical arthritis in a mouse model of CIA in vivo, decreasing the secretion of pro-inflammatory cytokines in the serum and downregulating CD80 and MHC II expression on DCs in the spleen of CIA mice. GTS-21 treatment strongly suppressed the infiltration of DCs into the synovium. Vagotomy itself did not exacerbate the severity of arthritis in CIA mice. In vitro, GTS-21 (10 μmol/L) significantly downregulated CD80 and MHC II in bone marrow-derived immature DCs and this effect was blocked by the α7-nicotinic acetylcholine receptor antagonist methyllycaconitine (MLA). However, GTS-21 had no effects on mature DCs. CONCLUSIONS The present study provides new insight into the mechanism underlying the effects of the CAP on RA and indicates that the immunosuppressive effect of GTS-21 may be mediated by the inhibition of DC differentiation.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Tong Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Sijia Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
| | - Shiyao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
| |
Collapse
|
30
|
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q, Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol 2018; 9:1313. [PMID: 30538630 PMCID: PMC6277539 DOI: 10.3389/fphar.2018.01313] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Disorder of the sympathetic nervous system (SNS) is closely related to the pathogenesis of various autoimmune diseases (ADs). Catecholamine triggered beta2-adrenergic receptor (β2-AR) signaling is important in creating a bidirectional response in the progression of ADs due to factors including diverse expression patterns, single nucleotide polymorphisms (SNPs), biased signals, and desensitization of β2-AR, as well as different subtypes of Gα binding to β2-AR. In this review, we summarize the actions of β2-AR signaling in regulating the functions of immunocytes and in the pathogenesis of ADs, and the application of β2-AR agonists or antagonists in treating major types of ADs is also discussed. We suggest that restoring the immune balance via a soft regulation of the expression or activation of β2-AR is one of the promising therapeutic strategies for systematic ADs.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shanshan Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Rui Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Juan Tao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Butkovich LM, Houser MC, Tansey MG. α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Front Neurosci 2018; 12:626. [PMID: 30258347 PMCID: PMC6143806 DOI: 10.3389/fnins.2018.00626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus (LC) are among the most ubiquitous features of Parkinson's disease (PD). While noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical research suggests that the loss of LC norepinephrine (NE), and subsequently its immune modulatory and neuroprotective actions, may exacerbate or even accelerate disease progression. In this review, we discuss the mechanisms by which α-syn pathology and loss of central NE may directly impact brain health by interrupting neurotrophic factor signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive immune cells.
Collapse
Affiliation(s)
| | | | - Malú G. Tansey
- Tansey Laboratory, Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
32
|
Meller KA, Całka J, Kaczmarek M, Jana B. Expression of alpha and beta adrenergic receptors in the pig uterus during inflammation. Theriogenology 2018; 119:96-104. [PMID: 29990768 DOI: 10.1016/j.theriogenology.2018.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
Abstract
Under physiological conditions, noradrenaline (NA) and adrenergic receptors (ARs) are implicated in the function of the uterus. The role of NA and the expression of ARs in the inflamed uterus is not fully understood. The aim of the present study was to determine the effect of inflammation on the levels of α1 (A, B, D)-, α2 (A, B, C)- and β (1, 2, 3)-ARs mRNA and protein expression and the localization of these receptors in the porcine uterus. On Day 3 of the estrous cycle (Day 0 of the study), 50 ml of either saline (group SAL) or E. coli suspension (109 colony-forming units/ml, group E. coli) were injected into each uterine horn. In the control pigs (group CON), only laparotomy was performed. Eight days later, α1D-ARs mRNA (P < 0.001) and protein (P < 0.05) levels and α2A-ARs protein level (P < 0.05) were increased in the inflamed endometrium, while the α2C-ARs protein level (P < 0.001) was lowered, as compared to the SAL and CON groups. In the inflamed endometrium, β2-ARs mRNA (P < 0.01) and protein (CON: P < 0.01, SAL: P < 0.001) expression was lower than in the other two groups, and β1-ARs mRNA (P < 0.001) and protein (P < 0.01) expression was higher compared to the SAL group. After bacterial treatment, α2A- (P < 0.001) and α2B (P < 0.05) -ARs protein levels and β2-ARs mRNA (CON: P < 0.01, SAL: P < 0.05) and protein (CON: P < 0.01, SAL: P < 0.05) expression in myometrium were found to be increased compared to both groups. In turn, in myometrium following E. coli infusion, the α2C-ARs protein level was lower (P < 0.01) than in the CON group. All studied receptors were present in the luminal and glandular epithelium, blood vessels and myometrial muscular cells of the gilt uteri in the E. coli, SAL and CON groups. The data show that inflammation changes the ARs expression in porcine uterus, suggesting their importance in the course/consequences of uterine inflammation. Those affected ARs may constitute a therapeutic target in an inflamed uterus.
Collapse
Affiliation(s)
- K A Meller
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - J Całka
- Division of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14 Str., 11-041 Olsztyn, Poland
| | - M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - B Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| |
Collapse
|
33
|
Chen J, Wang Y, Wu H, Yan S, Chang Y, Wei W. A Modified Compound From Paeoniflorin, CP-25, Suppressed Immune Responses and Synovium Inflammation in Collagen-Induced Arthritis Mice. Front Pharmacol 2018; 9:563. [PMID: 29930509 PMCID: PMC5999790 DOI: 10.3389/fphar.2018.00563] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Paeoniflorin-6’-O-benzene sulfonate (CP-25) is a modified paeoniflorin, which is the main bioactive component of total glucosides of peony. This study evaluated the anti-inflammatory and immunoregulatory effects of CP-25 in mice with collagen-induced arthritis (CIA) and the potential mechanisms underlying these effects. After the onset of CIA, mice were given CP-25 (17.5, 35, or 70 mg/kg) or methotrexate (MTX, 2.0 mg/kg). The arthritis index, swollen joint count, and joint and spleen histopathology were evaluated. T and B cell subsets were assayed using flow cytometry, while the proliferation of these cells and fibroblast-like synoviocytes (FLSs) were evaluated using the Cell Counting Kit-8. β2-adrenoceptor (β2-AR) expression was assayed using flow cytometry, immunohistochemistry, and western blotting. FLS migration and invasion were assayed using Transwells. CP-25 (35 or 70 mg/kg) attenuated the arthritis index and swollen joint count, alleviated joint and spleen histopathology, suppressed excessive T cell activation, and attenuated humoral immunity in CIA mice. CP-25 increased β2-AR expression on T cells, B cells, dendritic cells, and the synovium in CIA mice. CP-25 up-regulated the β2-AR agonist response and attenuated FLS activation; these effects may reflect CP-25-mediated reduction of β2-AR desensitization due to down-regulation of membrane G protein-coupled receptor kinase 2 expression. These results suggest that CP-25 suppressed immune responses and synovium inflammation in mice with CIA, effects that were associated with reduced β2-AR desensitization and the promotion of β2-AR signaling.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Ying Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Huaxun Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Shangxue Yan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
34
|
Abstract
Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as β-adrenergic receptor (βAR). Given that βARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating βAR function.
Collapse
Affiliation(s)
- Maradumane L Mohan
- *Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and †Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
35
|
β2-adrenoceptor signaling reduction is involved in the inflammatory response of fibroblast-like synoviocytes from adjuvant-induced arthritic rats. Inflammopharmacology 2018; 27:271-279. [DOI: 10.1007/s10787-018-0477-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022]
|
36
|
Mohammadpour H, O'Neil R, Qiu J, McCarthy PL, Repasky EA, Cao X. Blockade of Host β2-Adrenergic Receptor Enhances Graft-versus-Tumor Effect through Modulating APCs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2479-2488. [PMID: 29445008 DOI: 10.4049/jimmunol.1701752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation is a potential curative therapy for hematologic malignancies. Host APCs are pivotal to the desired graft-versus-tumor (GVT) effect. Recent studies have shown that β2-adrenergic receptor (β2AR) signaling can have an important impact on immune cell function, including dendritic cells (DCs). In this article, we demonstrate that pretreatment of host mice with a β2AR blocker significantly increases the GVT effect of donor CD8+ T cells by decreasing tumor burden without increasing graft-versus-host disease. β2AR-deficient host mice have significantly increased effector memory and central memory CD8+ T cells and improved reconstitution of T cells, including CD4+Foxp3+ regulatory T cells. Notably, β2AR deficiency induces increased CD11c+ DC development. Also, β2AR-deficient bone marrow-derived DCs induce higher CD8+ T cell proliferation and improved tumor killing in vitro. Metabolic profiling shows that β2AR deficiency renders DCs more immunogenic through upregulation of mTOR activity and reduction of STAT3 phosphorylation. Altogether, these findings demonstrate an important role for host β2AR signaling in suppressing T cell reconstitution and GVT activity.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Rachel O'Neil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263; .,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
37
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
38
|
Nissen MD, Sloan EK, Mattarollo SR. β-Adrenergic Signaling Impairs Antitumor CD8+ T-cell Responses to B-cell Lymphoma Immunotherapy. Cancer Immunol Res 2017; 6:98-109. [DOI: 10.1158/2326-6066.cir-17-0401] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
|
39
|
Hervé J, Haurogné K, Bacou E, Pogu S, Allard M, Mignot G, Bach JM, Lieubeau B. β2-adrenergic stimulation of dendritic cells favors IL-10 secretion by CD4+ T cells. Immunol Res 2017; 65:1156-1163. [DOI: 10.1007/s12026-017-8966-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-γ/NF-κB signal pathway. Oncotarget 2017; 8:55384-55393. [PMID: 28903427 PMCID: PMC5589666 DOI: 10.18632/oncotarget.19526] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Ginsenoside Rg1, the main active compound in Panax ginseng, has already been shown to have anti-inflammatory effects. However, the protective effects of Rg1 on rheumatoid arthritis (RA) remain unclear. The aim of the present study was to investigate the effects and mechanisms of Rg1 on adjuvant-induced arthritis (AIA) in rats. AIA rats were given Rg1 at doses of 5, 10, and 20 mg/kg intraperitoneally for 14 days to observe the anti-arthritic effects. The results showed that Rg1 significantly alleviated joint swelling and injuries. Rg1 can also significantly reduce the level of TNF-α and IL-6, increase PPAR-γ protein expression, inhibit IκBα phosphorylation and NF-κB nuclear translocation in the inflammatory joints of AIA rats and RAW264.7 cells stimulated by lipopolysaccharide (LPS). The results indicate that Rg1 has therapeutic effects on AIA rats, and the mechanism might be associated with its anti-inflammatory effects by up-regulating PPAR-γ and subsequent inhibition of NF-κB signal pathway.
Collapse
|
41
|
Zhuang C, Hong X, Liu J, Luo X, Mo H. TRAF6 regulates the effects of polarized maturation of tolerability: Marrow-derived dendritic cells on collagen-induced arthritis in mice. Biomed Rep 2017; 6:206-210. [PMID: 28357074 DOI: 10.3892/br.2017.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/28/2016] [Indexed: 11/05/2022] Open
Abstract
The study aimed to investigate the relationship between tumor necrosis factor receptor-associated factor 6 (TRAF6) and a differentially mature dendritic cell (mDC) in collagen-induced arthritis (CIA) mice and to determine whether or not TRAF6 regulates the activation of an immature dendritic cell (iDC) and inhibits iDC maturation to induce immune tolerance. The mouse bone marrow stem cells were induced with recombinant granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant interleukin-4 (rmIL-4) to differentiate immature dendritic cells (DCs), which were divided into four groups with different maturation states: rmGM-CSF, rmIL-4; TNF-α; LPS; and FK506 group. The levels of the cell surfaces of CD80, CD86, and MHI-II were analyzed by flow cytometry to prove DCs at different levels of maturity. The expression of IL-12 in DCs at different maturation states was detected by enzyme-linked immunosorbent assay (ELISA). The expression of TRAF6 mRNA and protein in each group of DCs was detected by a reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. The results revealed that the differentiation of bone marrow cells into iDCs was significantly induced by cytokines (rmGM-CSF, IL-4). CD80, CD86, MHC-II were expressed in the four groups, and the difference between them was statistically significant (P<0.05). A higher degree of DC differentiation led to a gradual increase of IL-12 secretion in the four groups. The difference was statistically significant (P<0.05) for this secretion (group D, 10,620.73±276.73 pg/ml). The expression levels of TRAF6 mRNA were significantly higher in group D than those in the other three groups (P<0.01). Although there was no significant difference in the expression levels of TRAF6 mRNA between groups B and C, the expression levels of TRAF6 mRNA between groups B and C were higher than those of the control group. The TRAF6 protein expression was higher in group D than that in the other three groups (P<0.01), and the difference was statistically significant. There was a statistically significant difference in the TRAF6 protein expression between group A and groups B and C, but the expression in group C was higher than that in group B (P<0.01). In conclusion, the expression of co-stimulatory molecules gradually increased in the DCs of different maturation states, and the expression of IL-12, TRAF6 mRNA, and TRAF6 protein positively correlated with the degree of DC maturation. TRAF6 is important in iDC polarity and maturation.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Xuezhi Hong
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Jia Liu
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Xiaohong Luo
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Hanyou Mo
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| |
Collapse
|
42
|
Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model. Sci Rep 2017; 7:466. [PMID: 28352114 PMCID: PMC5428509 DOI: 10.1038/s41598-017-00482-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
BTK plays a critical role in the B cell receptor mediated inflammatory signaling in the rheumatoid arthritis (RA). Through a rational design approach we discovered a highly selective and potent BTK kinase inhibitor (CHMFL-BTK-11) which exerted its inhibitory efficacy through a covalent bond with BTK Cys481. CHMFL-BTK-11 potently blocked the anti-IgM stimulated BCR signaling in the Ramos cell lines and isolated human primary B cells. It significantly inhibited the LPS stimulated TNF-α production in the human PBMC cells but only weakly affecting the normal PBMC cell proliferation. In the adjuvant-induced arthritis rat model, CHMFL-BTK-11 ameliorated the inflammatory response through blockage of proliferation of activated B cells, inhibition of the secretion of the inflammatory factors such as IgG1, IgG2, IgM, IL-6 and PMΦ phagocytosis, stimulation of secretion of IL-10. The high specificity of CHMFL-BTK-11 makes it a useful pharmacological tool to further detect BTK mediated signaling in the pathology of RA.
Collapse
|
43
|
Xu ZW, Yan SX, Wu HX, Chen JY, Zhang Y, Li Y, Wei W. The influence of TNF-α and Ang II on the proliferation, migration and invasion of HepG2 cells by regulating the expression of GRK2. Cancer Chemother Pharmacol 2017; 79:747-758. [DOI: 10.1007/s00280-017-3267-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
|
44
|
Takenaka MC, Guereschi MG, Basso AS. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system. Semin Immunopathol 2016; 39:165-176. [PMID: 27800584 DOI: 10.1007/s00281-016-0590-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.
Collapse
Affiliation(s)
- Maisa C Takenaka
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 862, Edifício de Ciências Biomédicas 4° andar, São Paulo, SP, 04023-062, Brazil
| | - Marcia G Guereschi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 862, Edifício de Ciências Biomédicas 4° andar, São Paulo, SP, 04023-062, Brazil
| | - Alexandre S Basso
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 862, Edifício de Ciências Biomédicas 4° andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|