1
|
Bi S, Peng H, Wei X, Wang C, Zhao X. Characterization and genome analysis of Klebsiella phages with lytic activity against Klebsiella pneumoniae. Virus Genes 2025; 61:121-131. [PMID: 39548021 DOI: 10.1007/s11262-024-02123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
Klebsiella pneumoniae is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases. As K. pneumoniae are becoming increasingly resistant to antibiotics, the use of bacteriophages may offer a non-antibiotic-based approach to treat these infections. In the present study, five lytic bacteriophages, 2044307w, k2044hw, k2044ew, k2044302 and 2146hw specific to K. pneumoniae were isolated from hospital sewage and characterized. They belong to group A of the KP32viruses based on transmission electron microscopy (TEM) and genome analysis. These bacteriophages have an extremely narrow host spectrum. The phenotypic characteristics of the phages were determined using lysis assay, pH, and temperature stability tests. This contributes to expanding our understanding of K. pneumoniae phages.
Collapse
Affiliation(s)
- Shanzheng Bi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Center for Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Hong Peng
- Center for Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Xiao Wei
- Center for Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Changjun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Center for Disease Control and Prevention, Chinese PLA, Beijing, China.
| | - Xiangna Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Center for Disease Control and Prevention, Chinese PLA, Beijing, China.
| |
Collapse
|
2
|
Sithu Shein AM, Hongsing P, Khatib A, Phattharapornjaroen P, Miyanaga K, Cui L, Shibuya K, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Higgins PG, Abe S, Wannigama DL. Phage therapy could be key to conquering persistent bacterial lung infections in children. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:31. [PMID: 39843534 PMCID: PMC11721074 DOI: 10.1038/s44259-024-00045-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/29/2024] [Indexed: 01/24/2025]
Abstract
Persistent bacterial lung infections in children lead to significant morbidity and mortality due to antibiotic resistance. In this paper, we describe how phage therapy has shown remarkable efficacy in preclinical and clinical studies, demonstrating significant therapeutic benefits through various administration routes. Ongoing trials are evaluating its safety and effectiveness against different pathogens. Advancing phage therapy through systematic studies and international collaboration could provide a viable alternative to traditional antibiotics for persistent infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Phatthranit Phattharapornjaroen
- Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand
- HRH Princess Chulabhorn Disaster and Emergency Medicine Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, WA, Australia.
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, WA, Australia.
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, WA, Australia.
- School of Population Health, Curtin University, Bentley, 6102, WA, Australia.
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany.
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedland, WA, Australia.
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| |
Collapse
|
3
|
Liu Y, Zhu C, Liang Y, McMinn A, Zheng K, Wang Z, Wang H, Ren L, Shao H, Sung YY, Mok WJ, Wong LL, Wang M. Genome analysis of vB_SupP_AX, a novel N4-like phage infecting Sulfitobacter. Int Microbiol 2024; 27:1297-1306. [PMID: 38190086 DOI: 10.1007/s10123-023-00476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.
Collapse
Affiliation(s)
- Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- Haide College, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Usman SS, Christina E. Characterization and genome-informatic analysis of a novel lytic mendocina phage vB_PmeS_STP12 suitable for phage therapy pseudomonas or biocontrol. Mol Biol Rep 2024; 51:419. [PMID: 38483683 DOI: 10.1007/s11033-024-09362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel lytic bacteriophage (phage) was isolated with Pseudomonas mendocina strain STP12 (P. mendocina) from the untreated site of Sewage Treatment Plant of Lovely Professional University, India. P. mendocina is a Gram-negative, rod-shaped, aerobic bacterium belonging to the family Pseudomonadaceae and has been reported in fifteen (15) cases of economically important diseases worldwide. METHODS AND RESULTS Here, a novel phage specifically infecting and killing P. mendocina strain STP12 was isolated from sewage sample using enrichment, spot test and double agar overlay (DAOL) method and was designated as vB_PmeS_STP12. The phage vB-PmeS-STP12 was viable at wide range of pH and temperature ranging from 4 to10 and - 20 to 70 °C respectively. Host range and efficiency of plating (EOP) analysis indicated that phage vB-PmeS-STP12 was capable of infecting and killing P. mendocina strain STP6 with EOP of 0.34. Phage vB_PmeS_STP12 was found to have a significant bacterial reduction (p < 0.005) at all the doses administered, particularly at optimal MOI of 1 PFU/CFU, compared to the control. Morphological analysis using high resolution transmission electron microscopy (HR-TEM) revealed an icosahedral capsid of ~ 55 nm in diameter on average with a short, non-contractile tail. The genome of vB_PmeS_STP12 is a linear, dsDNA containing 36,212 bp in size with a GC content of 58.87% harbouring 46 open reading frames (ORFs). The 46 predicted ORFs encode proteins with functional information categorized as lysis, replication, packaging, regulation, assembly, infection, immune, and hypothetical. However, the genome of vB_PmeS_STP12 appeared to be devoid of tRNAs, integrase gene, toxins genes, virulence factors, antimicrobial resistance genes (ARGs) and CRISPR arrays. The blast analysis with phylogeny revealed that vB_PmeS_STP12 is genetically similar to Pseudomonas phage PMBT14, Pseudomonas phage Almagne and Serratia phage Serbin with a highest identity of 74.00%, 74.93% and 59.48% respectively. CONCLUSIONS Taken together, characterization, morphological analysis and genome-informatics indicated that vB_PmeS_STP12 is podovirus morphotype belonging to the class Caudoviticetes, family Zobellviridae which appeared to be devoid of integrase gene, ARGs, CRISPR arrays, virulence factors and toxins genes, exhibiting stability and infectivity at wide range of pH (4 to10) and temperature (-20 to 70 °C), thereby making vB_PmeS_STP12 suitable for phage therapy or biocontrol. Based on the bibliometric analysis and data availability with respect to sequences deposited in GenBank, this is the first report of a phage infecting Pseudomonas mendocina.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144401, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144401, India.
| |
Collapse
|
5
|
Sada TS, Tessema TS. Isolation and characterization of lytic bacteriophages from various sources in Addis Ababa against antimicrobial-resistant diarrheagenic Escherichia coli strains and evaluation of their therapeutic potential. BMC Infect Dis 2024; 24:310. [PMID: 38486152 PMCID: PMC10938718 DOI: 10.1186/s12879-024-09152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Escherichia coli is a common fecal coliform, facultative aerobic, gram-negative bacterium. Pathogenic strains of such microbes have evolved to cause diarrhea, urinary tract infections, and septicemias. The emergence of antibiotic resistance urged the identification of an alternative strategy. The use of lytic bacteriophages against the control of pathogenic E. coli in clinics and different environmental setups (waste and drink water management) has become an alternative therapy to antibiotic therapy. Thus, this study aimed to isolate and characterize lytic bacteriophage from various sources in Addis Ababa, tested them against antimicrobial-resistant diarrheagenic E. coli strains and evaluated their therapeutic potential under in vitro conditions. METHODS A total of 14 samples were processed against six different diarrheagenic E. coli strains. The conventional culture and plaque analysis agar overlay method was used to recover lytic bacteriophage isolates. The phage isolates were characterized to determine their lytic effect, growth characteristics, host range activity, and stability under different temperature and pH conditions. Phage isolates were identified by scanning electron microscope (SEM), and molecular techniques (PCR). RESULTS In total, 17 phages were recovered from 84 tested plates. Of the 17 phage isolates, 11 (65%) were Myoviridae-like phages, and 6 (35%) phage isolates were Podoviridae and Siphoviridae by morphology and PCR identification. Based on the host range test, growth characteristics, and stability test 7 potent phages were selected. These phages demonstrated better growth characteristics, including short latent periods, highest burst sizes, and wider host ranges, as well as thermal stability and the ability to survive in a wide range of pH levels. CONCLUSIONS The promising effect of the phages isolated in this study against AMR pathogenic E. coli has raised the possibility of their use in the future treatment of E. coli infections.
Collapse
Affiliation(s)
- Tamirat Salile Sada
- Institute of Biotechnology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia.
- Department of Biotechnology, Woldia University, P.O. Box 400, Woldia, Ethiopia.
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Tian J, Chen F, Jiao N, Suttle CA, He J, McMinn A, Wang M. Identification of hidden N4-like viruses and their interactions with hosts. mSystems 2023; 8:e0019723. [PMID: 37702511 PMCID: PMC10654107 DOI: 10.1128/msystems.00197-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
Collapse
Affiliation(s)
- Kaiyang Zheng
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Mammoth Biosciences Inc., South San Francisco, California, USA
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Chen Gao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hongbing Shao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Andrew McMinn
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Cobián Güemes AG, Le T, Rojas MI, Jacobson NE, Villela H, McNair K, Hung SH, Han L, Boling L, Octavio JC, Dominguez L, Cantú VA, Archdeacon S, Vega AA, An MA, Hajama H, Burkeen G, Edwards RA, Conrad DJ, Rohwer F, Segall AM. Compounding Achromobacter Phages for Therapeutic Applications. Viruses 2023; 15:1665. [PMID: 37632008 PMCID: PMC10457797 DOI: 10.3390/v15081665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable as therapeutics for the control of Achromobacter. In this study, thirteen lytic phages were isolated and characterized at the morphological and genomic levels for potential future use in phage therapy. They are presented here as the Achromobacter Kumeyaay phage collection. Six distinct Achromobacter phage genome clusters were identified based on a comprehensive phylogenetic analysis of the Kumeyaay collection as well as the publicly available Achromobacter phages. The infectivity of all phages in the Kumeyaay collection was tested in 23 Achromobacter clinical isolates; 78% of these isolates were lysed by at least one phage. A cryptic prophage was induced in Achromobacter xylosoxidans CF418 when infected with some of the lytic phages. This prophage genome was characterized and is presented as Achromobacter phage CF418-P1. Prophage induction during lytic phage preparation for therapy interventions require further exploration. Large-scale production of phages and removal of endotoxins using an octanol-based procedure resulted in a phage concentrate of 1 × 109 plaque-forming units per milliliter with an endotoxin concentration of 65 endotoxin units per milliliter, which is below the Food and Drugs Administration recommended maximum threshold for human administration. This study provides a comprehensive framework for the isolation, bioinformatic characterization, and safe production of phages to kill Achromobacter spp. in order to potentially manage Cystic Fibrosis (CF) pulmonary infections.
Collapse
Affiliation(s)
- Ana Georgina Cobián Güemes
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tram Le
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Maria Isabel Rojas
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Helena Villela
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Marine Microbiomes Lab, Red Sea Research Center, King Abdullah University of Science and Technology, Building 2, Level 3, Room 3216 WS03, Thuwal 23955-6900, Saudi Arabia
| | - Katelyn McNair
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Shr-Hau Hung
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lili Han
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lance Boling
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jessica Claire Octavio
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lorena Dominguez
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Vito Adrian Cantú
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Sinéad Archdeacon
- College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Hamza Hajama
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Gregory Burkeen
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Robert A. Edwards
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
- Flinders Accelerator for Microbiome Exploration, Flinders University, Sturt Road, Bedford Park 5042, Australia
| | - Douglas J. Conrad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 9500, USA
| | - Forest Rohwer
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
8
|
Ding Y, Huang C, Zhu W, Li Z, Zhang Y, Wang J, Pan H, Li H, Wang X. Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella. Virus Res 2023; 326:199054. [PMID: 36717022 DOI: 10.1016/j.virusres.2023.199054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Biofilm, as a complex microbial community, is a serious and major safety concern in the food industry. Interestingly, some phages could effectively disrupt biofilms. This study characterized a novel isolated Salmonella bacteriophage T102, and its ability to control and remove biofilm produced by multidrug-resistant Salmonella. Phage T102 exhibited a broad host range within the Salmonella genus, especially drug-resistant Salmonella. The genome of phage T102 was comprised of 41,941 bp with 49.7% G + C composition, and with no genes associated with antibiotic resistance or virulence factors. The structural protein profile of phage T102 was subjected to SDS-PAGE and UPLC-MS/MS analysis, among them, 34 peptides were consistent with the hypothetical protein sequences annotated in the genome of T102. The biofilm inhibition assay revealed that phage T102 inhibited the formation of 6 h biofilms by two multidrug-resistant S. Typhimurium strains by 43.17 and 32.42%, respectively. 24 h biofilms formed by S. Typhimurium decreased by 54.94 and 53.67%, respectively, after 2 h of exposure to phage T102. Microscopic observation confirmed the inhibition effect of phage T102 on biofilm formation on spiked lettuce. Overall, our results support new research into the application of bacteriophage for biofilm reduction.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhiwei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China.
| | - Huihui Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Baqer AA, Fang K, Mohd-Assaad N, Adnan SNA, Md Nor NS. In Vitro Activity, Stability and Molecular Characterization of Eight Potent Bacteriophages Infecting Carbapenem-Resistant Klebsiella pneumoniae. Viruses 2022; 15:117. [PMID: 36680156 PMCID: PMC9860934 DOI: 10.3390/v15010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment, including bacteriophage therapy. Bacteriophages are considered very safe and effective in treating bacterial infections. In this study, we characterize eight lytic bacteriophages that were previously isolated by our team against carbapenem-resistant Klebsiella pneumoniae. METHODS The one-step-growth curves, stability and lytic ability of eight bacteriophages were characterized. Restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD) typing analysis and protein profiling were used to characterize the microbes at the molecular level. Phylogenetic trees of four important proteins were constructed for the two selected bacteriophages. RESULTS AND CONCLUSIONS All eight bacteriophages showed high efficiency for reducing bacterial concentration with high stability under different physical and chemical conditions. We found four major protein bands out of at least ten 15-190 KDa bands that were clearly separated by SDS-PAGE, which were assumed to be the major head and tail proteins. The genomes were found to be dsDNA, with sizes of approximately 36-87 Kb. All bacteriophages reduced the optical density of the planktonic K. pneumoniae abruptly, indicating great potential to reduce K. pneumoniae infection. In this study, we have found that tail fiber protein can further distinguished closely related bacteriophages. The characterised bacteriophages showed promising potential as candidates against carbapenem-resistant Klebsiella pneumoniae via bacteriophage therapy.
Collapse
Affiliation(s)
- Abeer Ameen Baqer
- Medical Laboratory Techniques Department, Dijlah University College, Baghdad 10021, Iraq;
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
| | - Kokxin Fang
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
| | - Norfarhan Mohd-Assaad
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
- Institute for Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia
| | - Siti Noor Adnalizawati Adnan
- Faculty of Dentistry, Universiti Sains Islam Malaysia, Level 15, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Kuala Lumpur 55100, SGR, Malaysia;
| | - Norefrina Shafinaz Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
| |
Collapse
|
10
|
Qi Z, Meng B, Wei X, Li X, Peng H, Li Y, Feng Q, Huang Y, Zhang Q, Xu X, Zhao H, Yang X, Wang C, Zhao X. Identification and characterization of P2-like bacteriophages of Yersinia pestis. Virus Res 2022; 322:198934. [PMID: 36169047 DOI: 10.1016/j.virusres.2022.198934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
Yersinia pestis is the cause of plague, historically known as the "Black Death". Marmota himalayana in the Qinghai-Tibet Plateau (QTP) natural plague focus is the primary host in China. Although several phages originating from Y. pestis have been characterized. This is the first report of isolation of P2-like phages of Y. pestis from M. himalayana. In this study, the isolation and characterization of three P2-like phages of Y. pestis were reported, which were named as vB_YpM_22, vB_YpM_46 and vB_YpM_50. Comparative genome analysis revealed that vB_YpM_22, vB_YpM_46 and vB_YpM_50 are members of the nonlambdoid P2 family, and are highly similar and collinear with enterobacteriophage P2, plague diagnostic phage L-413C and enterobacteriophage fiAA91-ss. The role of LPS core structure of Y. pestis in the phages' receptor was pinpointed. The findings of this study contribute an advance in our current knowledge of Y. pestis phages and will also play a key role in understanding the evolution of Y. pestis phages.
Collapse
Affiliation(s)
- Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Biao Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Institute of Disease Control and Prevention, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiang Li
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Hong Peng
- Institute of Disease Control and Prevention, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yan Li
- Institute of Disease Control and Prevention, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Qunling Feng
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China
| | - Yanan Huang
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Xiaoqing Xu
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Haihong Zhao
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Xiaoyan Yang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Changjun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Institute of Disease Control and Prevention, Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| | - Xiangna Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Institute of Disease Control and Prevention, Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
11
|
Gan L, Fu H, Tian Z, Cui J, Yan C, Xue G, Fan Z, Du B, Feng J, Zhao H, Feng Y, Xu Z, Fu T, Cui X, Zhang R, Du S, Liu S, Zhou Y, Zhang Q, Cao L, Yuan J. Bacteriophage Effectively Rescues Pneumonia Caused by Prevalent Multidrug-Resistant Klebsiella pneumoniae in the Early Stage. Microbiol Spectr 2022; 10:e0235822. [PMID: 36165773 PMCID: PMC9602770 DOI: 10.1128/spectrum.02358-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023] Open
Abstract
Pneumonia caused by multidrug-resistant (MDR) Klebsiella pneumoniae of sequence types ST11 and ST383 have highlighted the necessity for new therapies against these prevalent pathogens. Bacteriophages (phages) may be used as alternatives or complements to antibiotics for treating MDR bacteria because they show potential efficacy in mouse models and even individual clinical cases, and they also cause fewer side effects, such as microbiota-imbalance-induced diseases. In the present study, we screened two phages, pKp11 and pKp383, that targeted ST11 and ST383 MDR K. pneumoniae isolates collected from patients with pneumonia, and they exhibited a broad host range, high lytic activity, and high environmental adaptability. Both phages pKp11 and pKp383 provided an effective treatment for the early stage of pneumonia in a murine infection model without promoting obvious side effects, and cocktails consisting of the two phages were more effective for reducing bacterial loads, inflammation, and pathogenic injuries. Our findings support the application of phages as new medications for refractory ST11 and ST383 K. pneumoniae infections and emphasize the potential of enhancing phage therapy modalities through phage screening. These data provided important resources for assessing and optimizing phage therapies for MDR ST11 and ST383 infection treatment. However, substantial amounts of further work are needed before phage therapy can be translated to human therapeutics. IMPORTANCE K. pneumoniae is recognized as the most common pathogen of hospital- and community-acquired pneumonia across the world. The strains of ST11 and ST383 are frequently reported in patients with pneumonia. However, the efficacy of antibiotics toward K. pneumoniae is decreasing dramatically. As a new approach to combat MDR bacteria, phages have exhibited positive clinical effects and efficacy as synergetic or alternative strategies to antibiotics. Thus, we screened two phages that targeted ST11 and ST383 MDR K. pneumoniae, and they exhibited a broad host range, high lytic activity, and high environmental adaptability. Both phages provided an effective treatment for the early stage of pneumonia in mice, and cocktails consisting of the two phages were more effective in reducing bacterial loads, inflammation, and pathogenic injuries. Although these data suggest that phages are effective alternatives or complements to antibiotics, more research is needed before they can be translated into therapeutics for humans.
Collapse
Affiliation(s)
- Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanyu Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Department of Pulmonology, The Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuheng Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shiyu Liu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yao Zhou
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ling Cao
- Department of Pulmonology, The Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
12
|
Inbaraj S, Angappan M, Thomas P, Kumar M, Irungbam K, Verma MR, Viswas KN, Abhishek, Rawat M, Chaudhuri P. Isolation and characterization of bacteriophage Ib_pec2 against shigatoxigenic Escherichia coli. J Basic Microbiol 2022; 63:472-480. [PMID: 36270976 DOI: 10.1002/jobm.202200398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/07/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022]
Abstract
This study was aimed to isolate and characterize bacteriophage against drug-resistant, shigatoxigenic Escherichia coli (STEC), one of the zoonotic, food-borne organisms associated with ruminants, mainly cattle. STEC were isolated (n = 35) from neonatal calves, dairy workers, and the surrounding environment and their antimicrobial resistance pattern was studied. Out of the 35 isolates tested, 17 isolates were found to be multidrug resistant to important antibiotics like ampicillin, amoxicillin-clavulanate, ciprofloxacin, streptomycin, and tetracycline. Bacteriophage namely Ib_pec2 was isolated against one of the STEC isolates and its morphology, genetic and proteomic characterization was done. Morphological analysis by TEM revealed bacteriophages belonging to myoviridae family. The genetic characterization of g23 gene revealed that the bacteriophage belonged to Tequatrovirus of myoviridae family. Proteomic analysis was able to identify five proteins identical to Tequatrovirus of myoviridae family. One-step growth curve experiment revealed a latency period of 40 min and a burst size of 893 pfu/bacteria. Temperature and pH ranging from 40°C to 50°C, pH 6-8, respectively. Phage could able to lyse majority of the STEC isolates. STEC are commensal organisms in the gastrointestinal tract of ruminants but are pathogenic in humans. Bacteriophages can be used as alternatives to antibiotics to control bacterial growth in ruminants and prevent its further spillage in the environment.
Collapse
Affiliation(s)
- Sophia Inbaraj
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - M Angappan
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Kumar
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Karuna Irungbam
- Animal Biochemistry Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - K Nagaleekar Viswas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Abhishek
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mayank Rawat
- (Retd)Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Lin LC, Tsai YC. Isolation and characterization of a Vibrio owensii phage phi50-12. Sci Rep 2022; 12:16390. [PMID: 36180722 PMCID: PMC9525291 DOI: 10.1038/s41598-022-20831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio owensii is a widely distributed marine vibrio species that causes acute hepatopancreatic necrosis in the larvae of Panulirus ornatus and Penaeus vannamei, and is also associated with Montipora white syndrome in corals. We characterized V. owensii GRA50-12 as a potent pathogen using phenotypic, biochemical, and zebrafish models. A virulent phage, vB_VowP_phi50-12 (phi50-12), belonging to the N4-like Podoviridae, was isolated from the same habitat as that of V. owensii GRA50-12 and characterized. This phage possesses a unique sequence with no similar hits in the public databases and has a short latent time (30 min), a large burst size (106 PFU/infected cell), and a wide range of pH and temperature stabilities. Moreover, phi50-12 also demonstrated a strong lysis ability against V. owensii GRA50-12. SDS-PAGE revealed at least nine structural proteins, four of which were confirmed using LC–MS/MS analysis. The size of the phi50-12 genome was 68,059 bp, with 38.5% G + C content. A total of 101 ORFs were annotated, with 17 ORFs having closely related counterparts in the N4-like vibrio phage. Genomic sequencing confirmed the absence of antibiotic resistance genes or virulence factors. Comparative studies have shown that phi50-12 has a unique genomic arrangement, except for the well-conserved core regions of the N4-like phages. Phylogenetic analysis demonstrated that it belonged to a group of smaller genomes of N4-like vibrio phages. The therapeutic effect in the zebrafish model suggests that phi50-12 could be a potential candidate for application in the treatment of V. owensii infection or as a biocontrol agent. However, further research must be carried out to confirm the efficacy of phage50-12.
Collapse
Affiliation(s)
- Ling-Chun Lin
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| | - Yu-Chuan Tsai
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| |
Collapse
|
14
|
Pectobacterium versatile Bacteriophage Possum: A Complex Polysaccharide-Deacetylating Tail Fiber as a Tool for Host Recognition in Pectobacterial Schitoviridae. Int J Mol Sci 2022; 23:ijms231911043. [PMID: 36232343 PMCID: PMC9569702 DOI: 10.3390/ijms231911043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot.
Collapse
|
15
|
Wang K, Chen D, Liu Q, Zhu P, Sun M, Peng D. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum. Curr Microbiol 2022; 79:245. [PMID: 35834130 DOI: 10.1007/s00284-022-02940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4-50 °C), and strong pH tolerance (pH 5-10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dawei Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Quanrong Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
16
|
Isolation and Characterization of a Novel Autographiviridae Phage and Its Combined Effect with Tigecycline in Controlling Multidrug-Resistant Acinetobacter baumannii-Associated Skin and Soft Tissue Infections. Viruses 2022; 14:v14020194. [PMID: 35215788 PMCID: PMC8878389 DOI: 10.3390/v14020194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is one of the ESKAPE pathogens that restricts available treatment options. MDR A. baumannii is responsible for a dramatic increase in case numbers of a wide variety of infections, including skin and soft tissue infections (SSTIs), resulting in pyoderma, surgical debridement, and necrotizing fasciitis. To investigate an alternative medical treatment for SSTIs, a broad range lytic Acinetobacter phage, vB _AbP_ABWU2101 (phage vABWU2101), for lysing MDR A. baumannii in associated SSTIs was isolated and the biological aspects of this phage were investigated. Morphological characterization and genomic analysis revealed that phage vABWU2101 was a new species in the Friunavirus, Beijerinckvirinae, family Autographiviridae, and order Caudovirales. Antibiofilm activity of phage vABWU2101 demonstrated good activity against both preformed biofilms and biofilm formation. The combination of phage vABWU2101 and tigecycline showed synergistic antimicrobial activities against planktonic and biofilm cells. Scanning electron microscopy confirmed that the antibacterial efficacy of the combination of phage vABWU2101 and tigecycline was more effective than the phage or antibiotic alone. Hence, our findings could potentially be used to develop a therapeutic option for the treatment of SSTIs caused by MDR A. baumannii.
Collapse
|
17
|
Borni M, Znazen M, Borni FC, Boudawara MZ. A case of meningitis due to Achromobacter xylosoxidans in a child with a polymalformative syndrome: a case report. Pan Afr Med J 2021; 39:124. [PMID: 34527140 PMCID: PMC8418177 DOI: 10.11604/pamj.2021.39.124.29794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022] Open
Abstract
Achromobacter xylosoxidans (AX), also called alcaligenes xylosoxidans, is an aerobic, non-fermenting mobile, gram-negative bacillus which was first isolated in an otorrhea samples in 1971. Infections with these species are quite rare and have often been described in immunocompromised and in premature infants. However, very few cases of meningitis related to AX have been reported in the literature. The authors report a new case of meningitis due to AX in a 45-day-old female infant with polymarformative syndrome meningitis was confirmed by a cyto-biochemical analysis and culture of the cerebrospinal fluid and was treated by antibiotherapy. Hydrocephalus was managed initially with external ventricular drainage followed by a ventriculoperitoneal shunt after rigorous cerebrospinal fluid (CSF) sterilization, with good clinical and radiological outcomes. The prompt and adequate antibiotic adjustment following bacterial isolation has been shown to rapidly modify the clinical outcomes.
Collapse
Affiliation(s)
- Mehdi Borni
- Department of Neurosurgery, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Mohammed Znazen
- Department of Neurosurgery, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Fatma Chaker Borni
- Department of Obstetrics and Gynecology, University Hospital Center Hedi Chaker, Sfax, Tunisia
| | | |
Collapse
|
18
|
Analysis of a Novel Bacteriophage vB_AchrS_AchV4 Highlights the Diversity of Achromobacter Viruses. Viruses 2021; 13:v13030374. [PMID: 33673419 PMCID: PMC7996906 DOI: 10.3390/v13030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.
Collapse
|
19
|
Characterization of Novel Lytic Bacteriophages of Achromobacter marplantensis Isolated from a Pneumonia Patient. Viruses 2020; 12:v12101138. [PMID: 33049935 PMCID: PMC7600146 DOI: 10.3390/v12101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia–the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.
Collapse
|
20
|
Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM. From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. Antibiotics (Basel) 2020; 9:E663. [PMID: 33008130 PMCID: PMC7650795 DOI: 10.3390/antibiotics9100663] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family "Schitoviridae", including eight subfamilies and numerous new genera.
Collapse
Affiliation(s)
- Johannes Wittmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH UK;
| | | | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
21
|
Olsen NS, Forero-Junco L, Kot W, Hansen LH. Exploring the Remarkable Diversity of Culturable Escherichia coli Phages in the Danish Wastewater Environment. Viruses 2020; 12:E986. [PMID: 32899836 PMCID: PMC7552041 DOI: 10.3390/v12090986] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Phages drive bacterial diversity, profoundly influencing microbial communities, from microbiomes to the drivers of global biogeochemical cycling. Aiming to broaden our understanding of Escherichiacoli (MG1655, K-12) phages, we screened 188 Danish wastewater samples and isolated 136 phages. Ninety-two of these have genomic sequences with less than 95% similarity to known phages, while most map to existing genera several represent novel lineages. The isolated phages are highly diverse, estimated to represent roughly one-third of the true diversity of culturable virulent dsDNA Escherichia phages in Danish wastewater, yet almost half (40%) are not represented in metagenomic databases, emphasising the importance of isolating phages to uncover diversity. Seven viral families, Myoviridae, Siphoviridae, Podoviridae,Drexlerviridae,Chaseviridae,Autographviridae, and Microviridae, are represented in the dataset. Their genomes vary drastically in length from 5.3 kb to 170.8 kb, with a guanine and cytosine (GC) content ranging from 35.3% to 60.0%. Hence, even for a model host bacterium, substantial diversity remains to be uncovered. These results expand and underline the range of coliphage diversity and demonstrate how far we are from fully disclosing phage diversity and ecology.
Collapse
Affiliation(s)
- Nikoline S. Olsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Laura Forero-Junco
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| |
Collapse
|
22
|
Xu J, Li X, Kang G, Bai L, Wang P, Huang H. Isolation and Characterization of AbTJ, an Acinetobacter baumannii Phage, and Functional Identification of Its Receptor-Binding Modules. Viruses 2020; 12:205. [PMID: 32059512 PMCID: PMC7077233 DOI: 10.3390/v12020205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
A. baumannii is an opportunistic pathogen and a major cause of various community-acquired infections. Strains of this species can be resistant to multiple antimicrobial agents, leaving limited therapeutic options, also lacking in methods for accurate and prompt diagnosis. In this context, AbTJ, a novel phage that infects A. baumannii MDR-TJ, was isolated and characterized, together with its two tail fiber proteins. Morphological analysis revealed that it belongs to Podoviridae family. Its host range, growth characteristics, stability under various conditions, and genomic sequence, were systematically investigated. Bioinformatic analysis showed that AbTJ consists of a circular, double-stranded 42670-bp DNA molecule which contains 62 putative open reading frames (ORFs). Genome comparison revealed that the phage AbTJ is related to the Acinetobacter phage Ab105-1phi (No. KT588074). Tail fiber protein (TFPs) gp52 and gp53 were then identified and confirmed as species-specific proteins. By using a combination of bioluminescent methods and magnetic beads, these TFPs exhibit excellent specificity to detect A. baumannii. The findings of this study can be used to help control opportunistic infections and to provide pathogen-binding modules for further construction of engineered bacteria of diagnosis and treatment.
Collapse
Affiliation(s)
- Jingzhi Xu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaobo Li
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin 300392, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Liang Bai
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin 300392, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Essoh C, Vernadet JP, Vergnaud G, Coulibaly A, Kakou-N'Douba A, N'Guetta ASP, Ouassa T, Pourcel C. Characterization of sixteen Achromobacter xylosoxidans phages from Abidjan, Côte d'Ivoire, isolated on a single clinical strain. Arch Virol 2020; 165:725-730. [PMID: 31897726 DOI: 10.1007/s00705-019-04511-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/28/2019] [Indexed: 01/21/2023]
Abstract
Sixteen bacteriophages of Achromobacter xylosoxidans distributed into four genera have been isolated from sewage water in Abidjan, Côte d'Ivoire, using a single clinical strain, and their genomes have been sequenced. Three podoviruses belonged to the genus Phikmvvirus, and these represent the first A. xylosoxidans phages of this genus. Seven podoviruses, distributed into three groups, belonged to the genus Jwalphavirus. Among the siphoviruses, three revealed similarities to Pseudomonas phage 73 and members of the genus Septimatrevirus, and three were YuA-like phages. The virulence of these phages toward a panel of 10 genetically diverse strains was tested, with the phiKMV-like phages showing the broadest host range.
Collapse
Affiliation(s)
- Christiane Essoh
- Département de Biochimie-Génétique, UFR des Sciences Biologiques, Université Peleforo Gon- Coulibaly, Korhogo, Côte d'Ivoire
| | - Jean-Philippe Vernadet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Adama Coulibaly
- Département de Biochimie-Génétique, UFR des Sciences Biologiques, Université Peleforo Gon- Coulibaly, Korhogo, Côte d'Ivoire
| | - Adèle Kakou-N'Douba
- Laboratoire de Bactériologie-Virologie, Département de Microbiologie, UFR des Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Assavo S-P N'Guetta
- Laboratoire de Génétique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Thimotée Ouassa
- Laboratoire de Microbiologie, UFR des Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France. .,Université Paris-Sud, I2BC, Bât 400, 91405, Orsay cedex, France.
| |
Collapse
|
24
|
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. ENVIRONMENT INTERNATIONAL 2019; 129:488-496. [PMID: 31158595 DOI: 10.1016/j.envint.2019.05.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The emerging contamination of pathogenic bacteria in the soil has caused a serious threat to public health and environmental security. Therefore, effective methods to inactivate pathogenic bacteria and decrease the environmental risks are urgently required. As a century-old technique, bacteriophage (phage) therapy has a high efficiency in targeting and inactivating pathogenic bacteria in different environmental systems. This review provides an update on the status of bacteriophage therapy for the inactivation of pathogenic bacteria in the soil environment. Specifically, the applications of phage therapy in soil-plant and soil-groundwater systems are summarized. In addition, the impact of phage therapy on soil functioning is described, including soil function gene transmission, soil microbial community stability, and soil nutrient cycling. Soil factors, such as soil temperature, pH, clay mineral, water content, and nutrient components, influence the survival and activity of phages in the soil. Finally, the future research prospects of phage therapy in soil environments are described.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wentao Jiao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
25
|
Costa AR, Monteiro R, Azeredo J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci Rep 2018; 8:15346. [PMID: 30337588 PMCID: PMC6193963 DOI: 10.1038/s41598-018-33800-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
The recent nomination by the World Health Organization of Acinetobacter baumannii as the number one priority pathogen for the development of new antibiotics is a direct consequence of its fast evolution of pathogenicity, and in particular of multidrug resistance. While the development of new antibiotics is critical, understanding the mechanisms behind the crescent bacterial antibiotic resistance is equally relevant. Often, resistance and other bacterial virulence elements are contained on highly mobile pieces of DNA that can easily spread to other bacteria. Prophages are one of the mediators of this form of gene transfer, and have been frequently found in bacterial genomes, often offering advantageous features to the host. Here we assess the contribution of prophages for the evolution of A. baumannii pathogenicity. We found prophages to be notably diverse and widely disseminated in A. baumannii genomes. Also remarkably, A. baumannii prophages encode for multiple putative virulence factors that may be implicated in the bacterium’s capacity to colonize host niches, evade the host immune system, subsist in unfavorable environments, and tolerate antibiotics. Overall our results point towards a significant contribution of prophages for the dissemination and evolution of pathogenicity in A. baumannii, and highlight their clinical relevance.
Collapse
Affiliation(s)
- Ana Rita Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Rodrigo Monteiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
26
|
Zhang Z, Tian C, Zhao J, Chen X, Wei X, Li H, Lin W, Feng R, Jiang A, Yang W, Yuan J, Zhao X. Characterization of Tail Sheath Protein of N4-Like Phage phiAxp-3. Front Microbiol 2018; 9:450. [PMID: 29599760 PMCID: PMC5862860 DOI: 10.3389/fmicb.2018.00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
Achromobacter phage phiAxp-3, an N4-like bacteriophage, specifically recognize Achromobacter xylosoxidans lipopolysaccharide (LPS) as its receptor. PhiAxp-3 tail sheath protein (TSP, ORF69) shares 54% amino acid sequence identity with the TSP of phage N4 (gp65); the latter functions as a receptor binding protein and interacts with the outer membrane receptor NfrA of its host bacterium. Thus, we hypothesized that ORF69 is the receptor-binding protein of phiAxp-3. In the present study, a series of ORF69 truncation variants was constructed to identify the part(s) of this protein essential for binding to A. xylosoxidans LPS. Phage adsorption and enzyme-linked immunosorbent assay showed that amino acids 795-1195 of the TSP, i.e., ORF69(795-1195), are sufficient and essential for receptor and binding. The optimum temperature and pH for the functions of ORF69 and ORF69(795-1195) are 4/25°C and 7, respectively. In vitro cytotoxicity assays showed that ORF69 and ORF69(795-1195) were respectively toxic and non-toxic to a human immortalized normal hepatocyte cell line (LO2; doses: 0.375-12 μg). The potential of this non-toxic truncated version of phiASP-3 TSP for clinical applications is discussed.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Changyu Tian
- Institute of Disease Control and Prevention, China PLA, Beijing, China
| | - Jiangtao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, China PLA, Beijing, China
| | - Huan Li
- Institute of Disease Control and Prevention, China PLA, Beijing, China
| | - Weishi Lin
- Institute of Disease Control and Prevention, China PLA, Beijing, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, China PLA, Beijing, China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, China PLA, Beijing, China
| |
Collapse
|
27
|
Hua Y, Luo T, Yang Y, Dong D, Wang R, Wang Y, Xu M, Guo X, Hu F, He P. Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter baumannii in Mice. Front Microbiol 2018; 8:2659. [PMID: 29375524 PMCID: PMC5767256 DOI: 10.3389/fmicb.2017.02659] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) which is noted as a major pathogen associated with healthcare-associated infections has steadily developed beyond antibiotic control. Lytic bacteriophages with the characteristics of infecting and lysing specific bacteria have been used as a potential alternative to traditional antibiotics to solve multidrug-resistant bacterial infections. Here, we isolated A. baumannii-specific lytic phages and evaluated their potential therapeutic effect against lung infection caused by CRAB clinical strains. The combined lysis spectrum of four lytic phages' ranges was 87.5% (42 of 48) against CRAB clinical isolates. Genome sequence and analysis indicated that phage SH-Ab15519 is a novel phage which does not contain the virulence or antibiotic resistance genes. In vivo study indicated that phage SH-Ab15519 administered intranasally can effectively rescue mice from lethal A. baumannii lung infection without deleterious side effects. Our work explores the potential use of phages as an alternative therapeutic agent against the lung infection caused by CRAB strains.
Collapse
Affiliation(s)
- Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Yang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Dong
- Institute of Antibiotics, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjun Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengsha Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaokui Guo
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping He
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS One 2017; 12:e0190083. [PMID: 29284014 PMCID: PMC5746245 DOI: 10.1371/journal.pone.0190083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/07/2017] [Indexed: 12/04/2022] Open
Abstract
A novel virulent bacteriophage, vB_VspP_pVa5, infecting a strain of Vibrio splendidus was isolated from a sea-cage aquaculture farm in Greece, and characterized using microbiological methods and genomic analysis. Bacteriophage vB_VspP_pVa5 is a N4-like podovirus with an icosahedral head measuring 85 nm in length and a short non-contractile tail. The phage had a narrow host range infecting only the bacterial host, a latent period of 30 min and a burst size of 24 virions per infected bacterium. Its genome size was 78,145 bp and genomic analysis identified 107 densely-packed genes, 40 of which could be annotated. In addition to the very large virion encapsulated DNA-dependent RNA polymerase which is the signature of the N4-like genus, an interesting feature of the novel phage is the presence of a self-splicing group I intron in the thymidylate synthase gene. A tRNAStop interrupted by a ~2.5kb open reading frame–containing area was also identified. The absence of genes related to lysogeny along with the high efficacy observed during in vitro cell lysis trials, indicate that the vB_VspP_pVa5 is a potential candidate component in a bacteriophage cocktail suitable for the biological control of V. splendidus in aquaculture.
Collapse
|
29
|
Dreiseikelmann B, Bunk B, Spröer C, Rohde M, Nimtz M, Wittmann J. Characterization and genome comparisons of three Achromobacter phages of the family Siphoviridae. Arch Virol 2017; 162:2191-2201. [PMID: 28357512 DOI: 10.1007/s00705-017-3347-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/17/2017] [Indexed: 11/30/2022]
Abstract
In this study, we present the characterization and genomic data of three Achromobacter phages belonging to the family Siphoviridae. Phages 83-24, JWX and JWF were isolated from sewage samples in Paris and Braunschweig, respectively, and infect Achromobacter xylosoxidans, an emerging nosocomial pathogen in cystic fibrosis patients. Analysis of morphology and growth parameters revealed that phages 83-24 and JWX have similar properties, both have nearly the same head and tail measurements, and both have a burst size between 85 and 100 pfu/cell. In regard to morphological properties, JWF had a much longer and more flexible tail compared to other phages. The linear double-stranded DNAs of all three phages are terminally redundant and not circularly permutated. The complete nucleotide sequences consist of 81,541 bp for JWF, 49,714 bp for JWX and 48,216 bp for 83-24. Analysis of the genome sequences showed again that phages JWX and 83-24 are quite similar. Comparison to the GenBank database via BLASTN revealed partial similarities to Roseobacter phage RDJL phi1 and Burkholderia phage BcepGomr. In contrast, BLASTN analysis of the genome sequence of phage JWF revealed only few similarities to non-annotated prophage regions in different strains of Burkholderia and Mesorhizobium.
Collapse
Affiliation(s)
- Brigitte Dreiseikelmann
- Department of Microbiology/Genetechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Brunswick, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Brunswick, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Manfred Nimtz
- Protein Analytics Platform, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Brunswick, Germany.
| |
Collapse
|
30
|
Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A. Bacteriophage Procurement for Therapeutic Purposes. Front Microbiol 2016; 7:1177. [PMID: 27570518 PMCID: PMC4981656 DOI: 10.3389/fmicb.2016.01177] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023] Open
Abstract
Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented.
Collapse
Affiliation(s)
- Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland; Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life SciencesWarsaw, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| |
Collapse
|