1
|
Pemberton JG, Roy K, Kim YJ, Fischer TD, Joshi V, Ferrer E, Youle RJ, Pucadyil TJ, Balla T. Acute diacylglycerol production activates critical membrane-shaping proteins leading to mitochondrial tubulation and fission. Nat Commun 2025; 16:2685. [PMID: 40102394 PMCID: PMC11920102 DOI: 10.1038/s41467-025-57439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial dynamics are orchestrated by protein assemblies that directly remodel membrane structure, however the influence of specific lipids on these processes remains poorly understood. Here, using an inducible heterodimerization system to selectively modulate the lipid composition of the outer mitochondrial membrane (OMM), we show that local production of diacylglycerol (DAG) directly leads to transient tubulation and rapid fragmentation of the mitochondrial network, which are mediated by isoforms of endophilin B (EndoB) and dynamin-related protein 1 (Drp1), respectively. Reconstitution experiments on cardiolipin-containing membrane templates mimicking the planar and constricted OMM topologies reveal that DAG facilitates the membrane binding and remodeling activities of both EndoB and Drp1, thereby independently potentiating membrane tubulation and fission events. EndoB and Drp1 do not directly interact with each other, suggesting that DAG production activates multiple pathways for membrane remodeling in parallel. Together, our data emphasizes the importance of OMM lipid composition in regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Biology, Western University, London, ON, Canada.
- Division of Development & Genetics, Children's Health Research Institute, London Health Sciences Centre Research Institute, London, ON, Canada.
| | - Krishnendu Roy
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vijay Joshi
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Ferrer
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Thorlacius A, Rulev M, Sundberg O, Sundborger-Lunna A. Peripheral membrane protein endophilin B1 probes, perturbs and permeabilizes lipid bilayers. Commun Biol 2025; 8:182. [PMID: 39910321 PMCID: PMC11799418 DOI: 10.1038/s42003-025-07610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Bin/Amphiphysin/Rvs167 (BAR) domain containing proteins are peripheral membrane proteins that regulate intracellular membrane curvature. BAR protein endophilin B1 plays a key role in multiple cellular processes critical for oncogenesis, including autophagy and apoptosis. Amphipathic regions in endophilin B1 drive membrane association and tubulation through membrane scaffolding. Our understanding of exactly how BAR proteins like endophilin B1 promote highly diverse intracellular membrane remodeling events in the cell is severely limited due to lack of high-resolution structural information. Here we present the highest resolution cryo-EM structure of a BAR protein to date and the first structures of a BAR protein bound to a lipid bicelle. Using neural networks, we can effectively sort particle species of different stoichiometries, revealing the tremendous flexibility of post-membrane binding, pre-polymer BAR dimer organization and membrane deformation. We also show that endophilin B1 efficiently permeabilizes negatively charged liposomes that contain mitochondria-specific lipid cardiolipin and propose a new model for Bax-mediated cell death.
Collapse
Affiliation(s)
- Arni Thorlacius
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Maksim Rulev
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Oscar Sundberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
3
|
Yang LQ, Huang AF, Xu WD. Biology of endophilin and it's role in disease. Front Immunol 2023; 14:1297506. [PMID: 38116012 PMCID: PMC10728279 DOI: 10.3389/fimmu.2023.1297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Endophilin is an evolutionarily conserved family of protein that involves in a range of intracellular membrane dynamics. This family consists of five isoforms, which are distributed in various tissues. Recent studies have shown that Endophilin regulates diseases pathogenesis, including neurodegenerative diseases, tumors, cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different biological functions such as vesicle endocytosis, mitochondrial morphological changes, apoptosis and autophagosome formation. Functional studies confirmed the role of Endophilin in development and progression of these diseases. In this study, we have comprehensively discussed the complex function of Endophilin and how the family contributes to diseases development. It is hoped that this study will provide new ideas for targeting Endophilin in diseases.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Abdelhamid SS, Scioscia J, Vodovotz Y, Wu J, Rosengart A, Sung E, Rahman S, Voinchet R, Bonaroti J, Li S, Darby JL, Kar UK, Neal MD, Sperry J, Das J, Billiar TR. Multi-Omic Admission-Based Prognostic Biomarkers Identified by Machine Learning Algorithms Predict Patient Recovery and 30-Day Survival in Trauma Patients. Metabolites 2022; 12:774. [PMID: 36144179 PMCID: PMC9500723 DOI: 10.3390/metabo12090774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Admission-based circulating biomarkers for the prediction of outcomes in trauma patients could be useful for clinical decision support. It is unknown which molecular classes of biomolecules can contribute biomarkers to predictive modeling. Here, we analyzed a large multi-omic database of over 8500 markers (proteomics, metabolomics, and lipidomics) to identify prognostic biomarkers in the circulating compartment for adverse outcomes, including mortality and slow recovery, in severely injured trauma patients. Admission plasma samples from patients (n = 129) enrolled in the Prehospital Air Medical Plasma (PAMPer) trial were analyzed using mass spectrometry (metabolomics and lipidomics) and aptamer-based (proteomics) assays. Biomarkers were selected via Least Absolute Shrinkage and Selection Operator (LASSO) regression modeling and machine learning analysis. A combination of five proteins from the proteomic layer was best at discriminating resolvers from non-resolvers from critical illness with an Area Under the Receiver Operating Characteristic curve (AUC) of 0.74, while 26 multi-omic features predicted 30-day survival with an AUC of 0.77. Patients with traumatic brain injury as part of their injury complex had a unique subset of features that predicted 30-day survival. Our findings indicate that multi-omic analyses can identify novel admission-based prognostic biomarkers for outcomes in trauma patients. Unique biomarker discovery also has the potential to provide biologic insights.
Collapse
Affiliation(s)
- Sultan S. Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jacob Scioscia
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Eight-Year Program of Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Anna Rosengart
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eunseo Sung
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Syed Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert Voinchet
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shimena Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L. Darby
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Upendra K. Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
MiR-526b-3p Inhibits the Resistance of Glioma Cells to Adriamycin by Targeting MAPRE1. JOURNAL OF ONCOLOGY 2022; 2022:2402212. [PMID: 35198024 PMCID: PMC8860534 DOI: 10.1155/2022/2402212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
Background Cell resistance is the main reason for the high mortality in glioma. Adriamycin (ADR) is a treatment drug for glioma and often leads to chemoresistance. Previous studies have confirmed that the abnormal expression of microRNA (miRNA) affects the resistance of glioma cells. Methods RT-qPCR and western blot were conducted for detecting miR-526b-3p levels and related protein expressions. CCK8 assay, colony formation, flow cytometry, and Transwell were adopted to assess cell viability, proliferation, apoptosis, and metastasis. Moreover, downstream targets of miR-526b-3p were identified through a dual-luciferase reporter and RNA pull-down analysis. Results Nevertheless, miR-526b-3p functions on glioma cell resistance to ADR are not well characterized. This study demonstrated that miR-526b-3p levels were decreased within glioma cells and further decreased within ADR-resistant glioma cells. Then, miR-526b-3p overexpression repressed glioma cell proliferation and invasion while inducing cell apoptosis. Overexpression of miR-526b-3p within ADR-resistant glioma cells obtained similar results, which suggested miR-526b-3p suppressed glioma cell resistance to ADR. Mechanistically, miR-526b-3p targeted MAPKE1 and negatively regulated MAPKE1 expressions. Restoration of MAPKE1 levels reversed miR-526b-3p effects on the glioma process and resistance to ADR. Conclusion These results suggest that miR-526b-3p acts as a diagnostic marker in glioma development and therapeutic target of the glioma resistance to ADR.
Collapse
|
6
|
Gavini CK, White CR, Mansuy-Aubert V, Aubert G. Loss of C2 Domain Protein (C2CD5) Alters Hypothalamic Mitochondrial Trafficking, Structure, and Function. Neuroendocrinology 2022; 112:324-337. [PMID: 34034255 DOI: 10.1159/000517273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Mitochondria are essential organelles required for several cellular processes ranging from ATP production to cell maintenance. To provide energy, mitochondria are transported to specific cellular areas in need. Mitochondria also need to be recycled. These mechanisms rely heavily on trafficking events. While mechanisms are still unclear, hypothalamic mitochondria are linked to obesity. METHODS We used C2 domain protein 5 (C2CD5, also called C2 domain-containing phosphoprotein [CDP138]) whole-body KO mice primary neuronal cultures and cell lines to perform electron microscopy, live cellular imaging, and oxygen consumption assay to better characterize mitochondrial alteration linked to C2CD5. RESULTS This study identified that C2CD5 is necessary for proper mitochondrial trafficking, structure, and function in the hypothalamic neurons. We previously reported that mice lacking C2CD5 were obese and displayed reduced functional G-coupled receptor, melanocortin receptor 4 (MC4R) at the surface of hypothalamic neurons. Our data suggest that in neurons, normal MC4R endocytosis/trafficking necessities functional mitochondria. DISCUSSION Our data show that C2CD5 is a new protein necessary for normal mitochondrial function in the hypothalamus. Its loss alters mitochondrial ultrastructure, localization, and activity within the hypothalamic neurons. C2CD5 may represent a new protein linking hypothalamic dysfunction, mitochondria, and obesity.
Collapse
Affiliation(s)
- Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Chelsea R White
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Gregory Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
7
|
Molecular mechanisms of mammalian autophagy. Biochem J 2021; 478:3395-3421. [PMID: 34554214 DOI: 10.1042/bcj20210314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) and autophagy play integral roles in cellular homeostasis. As part of their normal life cycle, most proteins undergo ubiquitination for some form of redistribution, localization and/or functional modulation. However, ubiquitination is also important to the UPP and several autophagic processes. The UPP is initiated after specific lysine residues of short-lived, damaged or misfolded proteins are conjugated to ubiquitin, which targets these proteins to proteasomes. Autophagy is the endosomal/lysosomal-dependent degradation of organelles, invading microbes, zymogen granules and macromolecules such as protein, carbohydrates and lipids. Autophagy can be broadly separated into three distinct subtypes termed microautophagy, chaperone-mediated autophagy and macroautophagy. Although autophagy was once thought of as non-selective bulk degradation, advancements in the field have led to the discovery of several selective forms of autophagy. Here, we focus on the mechanisms of primary and selective mammalian autophagy pathways and highlight the current knowledge gaps in these molecular pathways.
Collapse
|
8
|
Robustelli J, Baumgart T. Membrane partitioning and lipid selectivity of the N-terminal amphipathic H0 helices of endophilin isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183660. [PMID: 34090873 DOI: 10.1016/j.bbamem.2021.183660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Endophilin is an N-BAR protein, which is characterized by a crescent-shaped BAR domain and an amphipathic helix that contributes to the membrane binding of these proteins. The exact function of that H0 helix has been a topic of debate. In mammals, there are five different endophilin isoforms, grouped into A (three members) and B (two members) subclasses, which have been described to differ in their subcellular localization and function. We asked to what extent molecular properties of the H0 helices of these members affect their membrane targeting behavior. We found that all H0 helices of the endophilin isoforms display a two-state equilibrium between disordered and α-helical states in which the helical secondary structure can be stabilized through trifluoroethanol. The helicities in high TFE were strikingly different among the H0 peptides. We investigated H0-membrane partitioning by the monitoring of secondary structure changes via CD spectroscopy. We found that the presence of anionic phospholipids is critical for all H0 helices partitioning into membranes. Membrane partitioning is found to be sensitive to variations in membrane complexity. Overall, the H0 B subfamily displays stronger membrane partitioning than the H0 A subfamily. The H0 A peptide-membrane binding occurs predominantly through electrostatic interactions. Variation among the H0 A subfamily may be attributed to slight alterations in the amino acid sequence. Meanwhile, the H0 B subfamily displays greater specificity for certain membrane compositions, and this may link H0 B peptide binding to endophilin B's cellular function.
Collapse
Affiliation(s)
- Jaclyn Robustelli
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Patra S, Behera BP, Mishra SR, Bhutia SK. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol 2019; 66:45-58. [PMID: 31351198 DOI: 10.1016/j.semcancer.2019.07.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
Abstract
Mitophagy is an evolutionarily conserved cellular process which selectively eliminates dysfunctional mitochondria by targeting them to the autophagosome for degradation. Dysregulated mitophagy results in the accumulation of damaged mitochondria, which plays an important role in carcinogenesis and tumor progression. The role of mitophagy receptors and adaptors including PINK1, Parkin, BNIP3, BNIP3L/NIX, and p62/SQSTM1, and the signaling pathways that govern mitophagy are impaired in cancer. Furthermore, the contribution of mitophagy in regulating the metabolic switch may establish a balance between aerobic glycolysis and oxidative phosphorylation for cancer cell survival. Moreover, ROS-driven mitophagy achieves different goals depending on the stage of tumorigenesis. Mitophagy promotes plasticity in the cancer stem cell through the metabolic reconfiguration for better adaption to the tumor microenvironment. In addition, the present review sheds some light on the role of mitophagy in stemness and differentiation during the transition of cell's fate, which could have a crucial role in cancer progression and metastasis. In conclusion, this review deals with the detailed molecular mechanisms underlying mitophagy, along with highlighting the dual role of mitophagy in different aspects of cancer, suggesting it as a possible target in the mitophagy-modulated cancer therapy.
Collapse
Affiliation(s)
- Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
10
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
11
|
Fino KK, Yang L, Silveyra P, Hu S, Umstead TM, DiAngelo S, Halstead ES, Cooper TK, Abraham T, Takahashi Y, Zhou Z, Wang HG, Chroneos ZC. SH3GLB2/endophilin B2 regulates lung homeostasis and recovery from severe influenza A virus infection. Sci Rep 2017; 7:7262. [PMID: 28779131 PMCID: PMC5544693 DOI: 10.1038/s41598-017-07724-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
New influenza A viruses that emerge frequently elicit composite inflammatory responses to both infection and structural damage of alveolar-capillary barrier cells that hinders regeneration of respiratory function. The host factors that relinquish restoration of lung health to enduring lung injury are insufficiently understood. Here, we investigated the role of endophilin B2 (B2) in susceptibility to severe influenza infection. WT and B2-deficient mice were infected with H1N1 PR8 by intranasal administration and course of influenza pneumonia, inflammatory, and tissue responses were monitored over time. Disruption of B2 enhanced recovery from severe influenza infection as indicated by swift body weight recovery and significantly better survival of endophilin B2-deficient mice compared to WT mice. Compared to WT mice, the B2-deficient lungs exhibited induction of genes that express surfactant proteins, ABCA3, GM-CSF, podoplanin, and caveolin mRNA after 7 days, temporal induction of CCAAT/enhancer binding protein CEBPα, β, and δ mRNAs 3-14 days after infection, and differences in alveolar extracellular matrix integrity and respiratory mechanics. Flow cytometry and gene expression studies demonstrated robust recovery of alveolar macrophages and recruitment of CD4+ lymphocytes in B2-deficient lungs. Targeting of endophilin B2 alleviates adverse effects of IAV infection on respiratory and immune cells enabling restoration of alveolar homeostasis.
Collapse
Affiliation(s)
- Kristin K Fino
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Linlin Yang
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Patricia Silveyra
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Sanmei Hu
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Todd M Umstead
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Susan DiAngelo
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - E Scott Halstead
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Department of Pediatrics, Critical Care Medicine, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Children's Hospital, Penn State Health Milton S. Hershey Medical Center, Pennsylvania, USA
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Department Pathology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Sciences, and the Microscopy Imaging Facility, Pennsylvania, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Hematology Oncology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Zhixiang Zhou
- The College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Hong Gang Wang
- Department of Pediatrics, Hematology Oncology, Pennsylvania State University College of Medicine, Pennsylvania, USA.
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA.
| | - Zissis C Chroneos
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA.
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Pennsylvania, USA.
| |
Collapse
|
12
|
Serfass JM, Takahashi Y, Zhou Z, Kawasawa YI, Liu Y, Tsotakos N, Young MM, Tang Z, Yang L, Atkinson JM, Chroneos ZC, Wang HG. Endophilin B2 facilitates endosome maturation in response to growth factor stimulation, autophagy induction, and influenza A virus infection. J Biol Chem 2017; 292:10097-10111. [PMID: 28455444 PMCID: PMC5473216 DOI: 10.1074/jbc.m117.792747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Endocytosis, and the subsequent trafficking of endosomes, requires dynamic physical alterations in membrane shape that are mediated in part by endophilin proteins. The endophilin B family of proteins contains an N-terminal Bin/amphiphysin/Rvs (N-BAR) domain that induces membrane curvature to regulate intracellular membrane dynamics. Whereas endophilin B1 (SH3GLB1/Bif-1) is known to be involved in a number of cellular processes, including apoptosis, autophagy, and endocytosis, the cellular function of endophilin B2 (SH3GLB2) is not well understood. In this study, we used genetic approaches that revealed that endophilin B2 is not required for embryonic development in vivo but that endophilin B2 deficiency impairs endosomal trafficking in vitro, as evidenced by suppressed endosome acidification, EGFR degradation, autophagic flux, and influenza A viral RNA nuclear entry and replication. Mechanistically, although the loss of endophilin B2 did not affect endocytic internalization and lysosomal function, endophilin B2 appeared to regulate the trafficking of endocytic vesicles and autophagosomes to late endosomes or lysosomes. Moreover, we also found that despite having an intracellular localization and tissue distribution similar to endophilin B1, endophilin B2 is dispensable for mitochondrial apoptosis. Taken together, our findings suggest that endophilin B2 positively regulates the endocytic pathway in response to growth factor signaling, autophagy induction, and viral entry.
Collapse
Affiliation(s)
| | | | - Zhixiang Zhou
- the Department of Pediatrics
- the College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Yuka Imamura Kawasawa
- From the Department of Pharmacology
- the Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, and
| | - Ying Liu
- From the Department of Pharmacology
| | | | | | | | | | | | - Zissis C Chroneos
- the Department of Pediatrics
- the Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| | - Hong-Gang Wang
- From the Department of Pharmacology,
- the Department of Pediatrics
| |
Collapse
|