1
|
Moussa HI, Logan M, Eskandari A, Glerum DM, Aucoin MG, Tsui TY. Critical Design Parameters of Tantalum-Based Comb Structures to Manipulate Mammalian Cell Morphology. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2099. [PMID: 40363602 PMCID: PMC12072305 DOI: 10.3390/ma18092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Mammalian tissues and cells often orient naturally in specific patterns to function effectively. This cellular alignment is influenced by the chemical nature and topographic features of the extracellular matrix. In implants, a range of different materials have been used in vivo. Of those, tantalum and its alloys are promising materials, especially in orthopedic implant applications. Previous studies have demonstrated that nano- and micro-scale surface features, such as symmetric comb structures, can significantly affect cell behavior and alignment. However, patterning need not be restricted to symmetric geometries, and there remains a gap in knowledge regarding how cells respond to asymmetric comb structures, where the widths of the trenches and lines in the comb differ. This study aims to address this gap by examining how Vero cells (cells derived from an African green monkey) respond when applied to tantalum and tantalum/silicon oxide asymmetric comb structures having fixed trench widths of 1 μm and line widths ranging from 3 μm to 50 μm. We also look at the cell responses on inverted patterns, where the line widths were fixed at 1 μm while trench widths varied. The orientation and morphology of the adherent cells were analyzed using fluorescence confocal microscopy and scanning electron microscopy. Our results indicate that the widths of the trenches and lines are important design parameters influencing cell behavior on asymmetric comb structures. Furthermore, the ability to manipulate cell morphology using these structures decreased when parts of the tantalum lines were replaced with silicon oxide.
Collapse
Affiliation(s)
- Hassan I. Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.I.M.); (M.L.); (A.E.); (M.G.A.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.I.M.); (M.L.); (A.E.); (M.G.A.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ali Eskandari
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.I.M.); (M.L.); (A.E.); (M.G.A.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - D. Moira Glerum
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Marc G. Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.I.M.); (M.L.); (A.E.); (M.G.A.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ting Y. Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.I.M.); (M.L.); (A.E.); (M.G.A.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Ao Y, Jiang D. Polydopamine-Induced BMP7-Poly (Lactic-Co-Glycolic Acid)-Nanoparticle Coating Facilitates Osteogenesis in Porous Tantalum Scaffolds. J Biomed Mater Res A 2025; 113:e37835. [PMID: 39835772 DOI: 10.1002/jbm.a.37835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects. Porous tantalum (PT) scaffolds have shown beneficial clinical effects in the repair of bone defects, surface modification of PT to induce osteogenic differentiation of mesenchymal stem cells (MSC) is the key to optimizing this material. Poly (lactic-co-glycolic acid) nanoparticle (PLGA NPs) encapsulating bone morphogenetic protein 7 (BMP7) (BPNPs) was prepared by a double emulsion (water/oil/water [W/O/W]) method and adhered on polydopamine (PDA)-coated PT (PPT) that was prepared by biomimetic method to prepare BPNPs-coated PPT (BPPT). The successful preparation of BPPT was monitored by scanning electron microscopy (SEM) and energy spectrum. Murine calvarial preosteoblasts (MC3T3-E1) cells were co-cultured with BPPT, vitro experiments showed that BPPT promoted cell proliferation and osteogenic differentiation. BPPT was further implanted into the bone defect of the distal femoral epiphysis of the rabbit. At 4 weeks postoperatively, in the BPPT group, high-resolution CT reconstruction indicated that bone volume/total volume (BV/TV) was near 50%, and the hard tissue section indicated that the depth of new bone ingrowth into the scaffolds was nearly 2 mm. The immunofluorescence staining of bone tissue around the bone defects indicated that the expression of osteogenic-related proteins was higher in the BPPT group than the other groups. Taken together, our results suggest that BPPT promoted early osteointegration, which may provide a novel approach for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Yu Ao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Kiselev R, Zheravin A. Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review. J Pers Med 2024; 14:1024. [PMID: 39452532 PMCID: PMC11508315 DOI: 10.3390/jpm14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: The choice of prosthesis for vertebral body reconstruction (VBR) remains a controversial issue due to the lack of a reliable solution. The subsidence rate of the most commonly used titanium mesh cages (TMC) ranges from 42.5% to 79.7%. This problem is primarily caused by the differences in the elastic modulus between the TMC and bone. This review aims to summarize the clinical and radiological outcomes of new 3D-printed artificial vertebral bodies (3DP AVB). Methods: A literature search of PubMed, Scopus and Google Scholar was conducted to extract relevant studies. After screening the titles and abstracts, a total of 50 articles were selected for full-text analysis. Results: Preliminary data suggest fewer implant-related complications with 3DP AVB. Most comparative studies indicate significantly lower subsidence rates, reduced operation times and decreased intraoperative blood loss. However, the scarcity of randomized clinical trials and the high variability of the results warrant caution. Conclusion: Most literature data show an advantage of 3DP AVB in terms of the operation time, intraoperative blood loss and subsidence rate. However, long manufacturing times, high costs and regulatory issues are this technology's main drawbacks.
Collapse
Affiliation(s)
- Roman Kiselev
- Meshalkin National Medical Research Centre, Novosibirsk 630055, Russia;
| | | |
Collapse
|
4
|
Yu H, Xu M, Duan Q, Li Y, Liu Y, Song L, Cheng L, Ying J, Zhao D. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater 2024; 19:042002. [PMID: 38697199 DOI: 10.1088/1748-605x/ad46d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Porous tantalum scaffolds offer a high degree of biocompatibility and have a low friction coefficient. In addition, their biomimetic porous structure and mechanical properties, which closely resemble human bone tissue, make them a popular area of research in the field of bone defect repair. With the rapid advancement of additive manufacturing, 3D-printed porous tantalum scaffolds have increasingly emerged in recent years, offering exceptional design flexibility, as well as facilitating the fabrication of intricate geometries and complex pore structures that similar to human anatomy. This review provides a comprehensive description of the techniques, procedures, and specific parameters involved in the 3D printing of porous tantalum scaffolds. Concurrently, the review provides a summary of the mechanical properties, osteogenesis and antibacterial properties of porous tantalum scaffolds. The use of surface modification techniques and the drug carriers can enhance the characteristics of porous tantalum scaffolds. Accordingly, the review discusses the application of these porous tantalum materials in clinical settings. Multiple studies have demonstrated that 3D-printed porous tantalum scaffolds exhibit exceptional corrosion resistance, biocompatibility, and osteogenic properties. As a result, they are considered highly suitable biomaterials for repairing bone defects. Despite the rapid development of 3D-printed porous tantalum scaffolds, they still encounter challenges and issues when used as bone defect implants in clinical applications. Ultimately, a concise overview of the primary challenges faced by 3D-printed porous tantalum scaffolds is offered, and corresponding insights to promote further exploration and advancement in this domain are presented.
Collapse
Affiliation(s)
- Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Minghao Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Qida Duan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yada Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yuchen Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| |
Collapse
|
5
|
Cai A, Yin H, Wang C, Chen Q, Song Y, Yin R, Yuan X, Kang H, Guo H. Bioactivity and antibacterial properties of zinc-doped Ta 2O 5nanorods on porous tantalum surface. Biomed Mater 2023; 18:065011. [PMID: 37729922 DOI: 10.1088/1748-605x/acfbd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
This paper focuses on the preparation of Zn2+-doped Ta2O5nanorods on porous tantalum using the hydrothermal method. Porous tantalum is widely used in biomedical materials due to its excellent elastic modulus and biological activity. Porous tantalum has an elastic modulus close to that of human bone, and its large specific surface area is conducive to promoting cell adhesion. Zinc is an important component of human bone, which not only has spectral bactericidal properties, but also has no cytotoxicity. The purpose of this study is to provide a theoretical basis for the surface modification of porous tantalum and to determine the best surface modification method. The surface structure of the sample was characterized by x-ray diffractometer, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and the Zn-doped Ta2O5nanorods are characterized by antibacterial test, MTT test, ICP and other methods. The sample has good antibacterial properties and no cytotoxicity. The results of this study have potential implications for the development of new and improved biomedical materials.
Collapse
Affiliation(s)
- Anqi Cai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hairong Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Qian Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yingxuan Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ruixue Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xin Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Haoran Kang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hongwei Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
6
|
Ying J, Yu H, Cheng L, Li J, Wu B, Song L, Yi P, Wang H, Liu L, Zhao D. Research progress and clinical translation of three-dimensional printed porous tantalum in orthopaedics. BIOMATERIALS TRANSLATIONAL 2023; 4:166-179. [PMID: 38283089 PMCID: PMC10817782 DOI: 10.12336/biomatertransl.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/03/2022] [Accepted: 08/30/2023] [Indexed: 01/30/2024]
Abstract
With continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three-dimensional printing. Based on extensive research in recent years, the design, processing and performance aspects of this new orthopaedic implant material have been greatly improved. Besides the bionic porous structure and mechanical characteristics that are similar to human bone tissue, porous tantalum is considered to be a viable bone repair material due to its outstanding corrosion resistance, biocompatibility, bone integration and bone conductivity. Numerous in vitro, in vivo, and clinical studies have been carried out in order to analyse the safety and efficacy of these implants in orthopaedic applications. This study reviews the most recent advances in manufacturing, characteristics and clinical application of porous tantalum materials.
Collapse
Affiliation(s)
- Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Bin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Pinqiao Yi
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Haiyao Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Lingpeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Han X, Ma J, Tian A, Wang Y, Li Y, Dong B, Tong X, Ma X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces 2023; 227:113339. [PMID: 37182380 DOI: 10.1016/j.colsurfb.2023.113339] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Biomedical alloys have an important share in orthopedic applications. Among them, titanium and its titanium alloys are widely used as implant materials because of their excellent mechanical properties and non-cytotoxicity. However, its disadvantages such as its biological inertness and poor antibacterial properties inhibit its further development. Therefore, the surface properties of titanium are crucial in the implantation process and determine the success of the implant. The main purpose of this review is to provide a comprehensive and detailed description of the modification techniques used for the surface modification of titanium implants. In this paper, the corresponding technical methods are introduced systematically from four aspects: mechanical method, physical surface modification, chemical surface modification and electrochemical technique to understand the experimental mechanism of each modification technique, and the above methods can indeed improve the various properties of titanium and its alloys. With the increasing demand for implants in the future, the requirements for surface properties will also increase. Therefore, the development of new coating materials with higher performance by combining various advantages of existing modification technologies is the main trend of future research on surface modification of titanium alloys.
Collapse
Affiliation(s)
- Xiao Han
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Aixian Tian
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Benchao Dong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Xue Tong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| |
Collapse
|
8
|
Wang X, Zhou K, Li Y, Xie H, Wang B. Preparation, modification, and clinical application of porous tantalum scaffolds. Front Bioeng Biotechnol 2023; 11:1127939. [PMID: 37082213 PMCID: PMC10110962 DOI: 10.3389/fbioe.2023.1127939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Porous tantalum (Ta) implants have been developed and clinically applied as high-quality implant biomaterials in the orthopedics field because of their excellent corrosion resistance, biocompatibility, osteointegration, and bone conductivity. Porous Ta allows fine bone ingrowth and new bone formation through the inner space because of its high porosity and interconnected pore structure. It contributes to rapid bone integration and long-term stability of osseointegrated implants. Porous Ta has excellent wetting properties and high surface energy, which facilitate the adhesion, proliferation, and mineralization of osteoblasts. Moreover, porous Ta is superior to classical metallic materials in avoiding the stress shielding effect, minimizing the loss of marginal bone, and improving primary stability because of its low elastic modulus and high friction coefficient. Accordingly, the excellent biological and mechanical properties of porous Ta are primarily responsible for its rising clinical translation trend. Over the past 2 decades, advanced fabrication strategies such as emerging manufacturing technologies, surface modification techniques, and patient-oriented designs have remarkably influenced the microstructural characteristic, bioactive performance, and clinical indications of porous Ta scaffolds. The present review offers an overview of the fabrication methods, modification techniques, and orthopedic applications of porous Ta implants.
Collapse
Affiliation(s)
| | | | | | - Hui Xie
- *Correspondence: Hui Xie, ; Benjie Wang,
| | | |
Collapse
|
9
|
Tantalum as Trabecular Metal for Endosseous Implantable Applications. Biomimetics (Basel) 2023; 8:biomimetics8010049. [PMID: 36810380 PMCID: PMC9944482 DOI: 10.3390/biomimetics8010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
During the last 20 years, tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable fixation. Tantalum's mechanical features can be mainly adjusted by controlling its porosity thanks to a number of versatile fabrication techniques, which allow obtaining an elastic modulus similar to that of bone tissue, thus limiting the stress-shielding effect. The present paper aims at reviewing the characteristics of tantalum as a solid and porous (trabecular) metal, with specific regard to biocompatibility and bioactivity. Principal fabrication methods and major applications are described. Moreover, the osteogenic features of porous tantalum are presented to testify its regenerative potential. It can be concluded that tantalum, especially as a porous metal, clearly possesses many advantageous characteristics for endosseous applications but it presently lacks the consolidated clinical experience of other metals such as titanium.
Collapse
|
10
|
Ge X, Li T, Yu M, Zhu H, Wang Q, Bi X, Xi T, Wu X, Gao Y. A review: strategies to reduce infection in tantalum and its derivative applied to implants. BIOMED ENG-BIOMED TE 2023:bmt-2022-0211. [PMID: 36587948 DOI: 10.1515/bmt-2022-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Implant-associated infection is the main reasons for implant failure. Titanium and titanium alloy are currently the most widely used implant materials. However, they have limited antibacterial performance. Therefore, enhancing the antibacterial ability of implants by surface modification technology has become a trend of research. Tantalum is a potential implant coating material with good biological properties. With the development of surface modification technology, tantalum coating becomes more functional through improvement. In addition to improving osseointegration, its antibacterial performance has also become the focus of attention. In this review, we provide an overview of the latest strategies to improve tantalum antibacterial properties. We demonstrate the potential of the clinical application of tantalum in reducing implant infections by stressing its advantageous properties.
Collapse
Affiliation(s)
- Xiao Ge
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ti Li
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Miao Yu
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Hongguang Zhu
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Qing Wang
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Xiuting Bi
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Tiantian Xi
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Xiaoyan Wu
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yubin Gao
- School of Stomatology, Weifang Medical University, Weifang, China
| |
Collapse
|
11
|
Wang X, Liu W, Yu X, Wang B, Xu Y, Yan X, Zhang X. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Front Bioeng Biotechnol 2022; 10:983695. [PMID: 36177183 PMCID: PMC9513364 DOI: 10.3389/fbioe.2022.983695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
After bone defects reach a certain size, the body can no longer repair them. Tantalum, including its porous form, has attracted increasing attention due to good bioactivity, biocompatibility, and biomechanical properties. After a metal material is implanted into the body as a medical intervention, a series of interactions occurs between the material’s surface and the microenvironment. The interaction between cells and the surface of the implant mainly depends on the surface morphology and chemical composition of the implant’s surface. In this context, appropriate modification of the surface of tantalum can guide the biological behavior of cells, promote the potential of materials, and facilitate bone integration. Substantial progress has been made in tantalum surface modification technologies, especially nano-modification technology. This paper systematically reviews the progress in research on tantalum surface modification for the first time, including physicochemical properties, biological performance, and surface modification technologies of tantalum and porous tantalum.
Collapse
Affiliation(s)
- Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Xu
- The Comprehensive Department of Shenyang Stomatological Hospital, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| |
Collapse
|
12
|
Liu T, Li B, Chen G, Ye X, Zhang Y. Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration. Int J Biol Macromol 2022; 221:371-380. [PMID: 36067849 DOI: 10.1016/j.ijbiomac.2022.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
Bone defects caused by tumors section, traffic accidents, and surgery remain a challenge in clinical. The drawbacks of traditional autografts and allografts limit their clinical application. 3D printed porous scaffolds have monumental potential to repair bone defects but still cannot effectively promote bone formation. Nano tantalum (Ta) has been reported with effective osteogenesis capability. Herein, we fabricated 3D printed PLA/β-TCP scaffold by using the fused deposition modeling (FDM) technique. Ta was doped on the surface of scaffolds utilizing the surface adhesion ability of polydopamine to improve its properties. The constructed PLA/β-TCP/PDA/Ta had good physical properties. In vitro studies demonstrated that the PLA/β-TCP/PDA/Ta scaffolds considerably promote cell proliferation and migration, and it additionally has osteogenic properties. Therefore, Ta doped 3D printed PLA/β-TCP/PDA/Ta scaffold could incontestably improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy to develop bioactive bespoke implants in orthopedic applications.
Collapse
Affiliation(s)
- Tao Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China; Department of Trauma Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China.
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China; Department of Trauma Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China
| | - Gang Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi, PR China
| | - Xiangling Ye
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi, PR China.
| | - Ying Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China; Department of Trauma Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China.
| |
Collapse
|
13
|
Kim JY, Park JB. Various Coated Barrier Membranes for Better Guided Bone Regeneration: A Review. COATINGS 2022; 12:1059. [DOI: 10.3390/coatings12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A good barrier membrane is one of the important factors for effective guided bone/tissue regeneration (GBR/GTR) in the case of periodontal bone defects. Several methods are being discussed to overcome and improve the shortcomings of commercially available membranes. One of the methods is to coat the membrane with bioactive materials. In this study, 41 studies related to coated membranes for GBR/GTR published in the last 5 years were reviewed. These studies reported coating the membrane with various bioactive materials through different techniques to improve osteogenesis, antimicrobial properties, and physical/mechanical properties. The reported studies have been classified and discussed based on the purpose of coating. The goal of the most actively studied research on coating or surface modification of membranes is to improve new bone formation. For this purpose, calcium phosphate, bioactive glass, polydopamine, osteoinduced drugs, chitosan, platelet-rich fibrin, enamel matrix derivatives, amelotin, hyaluronic acid, tantalum, and copper were used as membrane coating materials. The paradigm of barrier membranes is changing from only inert (or biocompatible) physical barriers to bioactive osteo-immunomodulatory for effective guided bone and tissue regeneration. However, there is a limitation that there exists only a few clinical studies on humans to date. Efforts are needed to implement the use of coated membranes from the laboratory bench to the dental chair unit. Further clinical studies are needed in the patients’ group for long-term follow-up to confirm the effect of various coating materials.
Collapse
Affiliation(s)
- Ji-Youn Kim
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
14
|
Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration. Colloids Surf B Biointerfaces 2022; 215:112491. [PMID: 35405535 DOI: 10.1016/j.colsurfb.2022.112491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 12/17/2022]
Abstract
Porous tantalum-based biomaterial is a novel tissue engineering material widely used in repairing bone defects due to its corrosion resistance, low elastic modulus, high friction coefficient, and excellent biocompatibility. Bone marrow-derived mesenchymal stem cells (BMSCs), a type of pluripotent stem cell, can travel from their original ecological niche to bone injury sites, where they differentiate into osteoblasts and osteocytes. Multiple factors regulate the proliferation, migration, and differentiation of BMSCs. In recent years, the regulatory effects of porous tantalum on BMSCs have been widely studied. Hence, in this study, we reviewed the characteristics of porous tantalum-based biomaterials and the mechanism of action of their regulatory effects on BMSCs. Further, we discuss the feasibility of seeding BMSCs in porous tantalum-based biomaterials for use in tissue repair.
Collapse
|
15
|
Liu B, Wang H, Zhang N, Zhang M, Cheng CK. Femoral Stems With Porous Lattice Structures: A Review. Front Bioeng Biotechnol 2021; 9:772539. [PMID: 34869289 PMCID: PMC8637819 DOI: 10.3389/fbioe.2021.772539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Cementless femoral stems are prone to stress shielding of the femoral bone, which is caused by a mismatch in stiffness between the femoral stem and femur. This can cause bone resorption and resultant loosening of the implant. It is possible to reduce the stress shielding by using a femoral stem with porous structures and lower stiffness. A porous structure also provides a secondary function of allowing bone ingrowth, thus improving the long-term stability of the prosthesis. Furthermore, due to the advent of additive manufacturing (AM) technology, it is possible to fabricate femoral stems with internal porous lattices. Several review articles have discussed porous structures, mainly focusing on the geometric design, mechanical properties and influence on bone ingrowth. However, the safety and effectiveness of porous femoral stems depend not only on the characteristic of porous structure but also on the macro design of the femoral stem; for example, the distribution of the porous structure, the stem geometric shape, the material, and the manufacturing process. This review focuses on porous femoral stems, including the porous structure, macro geometric design of the stem, performance evaluation, research methods used for designing and evaluating the femoral stems, materials and manufacturing techniques. In addition, this review will evaluate whether porous femoral stems can reduce stress shielding and increase bone ingrowth, in addition to analyzing their shortcomings and related risks and providing ideas for potential design improvements.
Collapse
Affiliation(s)
- Bolun Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Huizhi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ningze Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Min Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Cheng-Kung Cheng
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Kang C, Wang Y, Li L, Li Z, Zhou Q, Pan X. Assessment of tantalum nanoparticle-induced MC3T3-E1 proliferation and underlying mechanisms. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:133. [PMID: 34689241 PMCID: PMC8542006 DOI: 10.1007/s10856-021-06606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In our previous study, tantalum nanoparticle (Ta-NPs) was demonstrated to promote osteoblast proliferation via autophagy induction, but the specific mechanism remains unclear. In the present study, we will explore the potential mechanism. METHODS Ta-NPs was characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, and BET specific surface area test. MC3T3-E1 were treated with 0 or 20 μg/mL Ta-NPs with or without pretreatment with 10 μM LY294002, Triciribine, Rapamycin (PI3K/Akt/mTOR pathway inhibitors) for 1 h respectively. Western blotting was used to detect the expressions of pathway proteins and LC3B. CCK-8 assay was used to assess cell viability. Flow cytometry was used to detect apoptosis and cell cycle. RESULTS After pretreatment with LY294002, Triciribine and Rapamycin, the p-Akt/Akt ratio of pathway protein in Triciribine and Rapamycin groups decreased (P < 0.05), while the autophagy protein LC3-II/LC3-I in the Rapamycin group was upregulated obviously (P < 0.001). In all pretreated groups, apoptosis was increased (LY294002 group was the most obvious), G1 phase cell cycle was arrested (Triciribine and Rapamycin groups were more obvious), and MC3T3-E1 cells were proliferated much more (P < 0.01, P < 0.001, P < 0.05). CONCLUSION Pretreatment with Triciribine or Rapamycin has a greater effect on pathway protein Akt, cell cycle arrest, autophagy protein, and cell proliferation but with inconsistent magnitude, which may be inferred that the Akt/mTOR pathway, as well as its feedback loop, were more likely involved in these processes.
Collapse
Affiliation(s)
- Chengrong Kang
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yudong Wang
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Liang Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhangwei Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Qianbing Zhou
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xuan Pan
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Luo C, Wang C, Wu X, Xie X, Wang C, Zhao C, Zou C, Lv F, Huang W, Liao J. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112382. [PMID: 34579901 DOI: 10.1016/j.msec.2021.112382] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 02/05/2023]
Abstract
The emerging role of porous tantalum (Ta) scaffold for bone tissue engineering is noticed due to its outstanding biological properties. However, it is controversial which pore size and porosity are more conducive for bone defect repair. In the present work, porous tantalum scaffolds with pore sizes of 100-200, 200-400, 400-600 and 600-800 μm and corresponding porosities of 25%, 55%, 75%, and 85% were constructed, using computer aided design and 3D printing technologies, then comprehensively studied by in vitro and in vivo studies. We found that Ta scaffold with pore size of 400-600 μm showed stronger ability in facilitating cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo tests identified that porous tantalum scaffolds with pore size of 400-600 μm showed better performance of bone ingrowth and integration. In mechanism, computational fluid dynamics analysis proved porous tantalum scaffolds with pore size of 400-600 μm hold appropriate permeability and surface area, which facilitated cell adhesion and proliferation. Our results strongly indicate that pore size and porosity are essential for further applications of porous tantalum scaffolds, and porous tantalum scaffolds with pore size 400-600 μm are conducive to osteogenesis and osseointegration. These findings provide new evidence for further application of porous tantalum scaffolds for bone defect repair.
Collapse
Affiliation(s)
- Changqi Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopaedic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, China
| | - Claire Wang
- Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xie
- Department of Orthopaedic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, China
| | - Chao Wang
- Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chang Zou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
19
|
Piglionico S, Bousquet J, Fatima N, Renaud M, Collart-Dutilleul PY, Bousquet P. Porous Tantalum VS. Titanium Implants: Enhanced Mineralized Matrix Formation after Stem Cells Proliferation and Differentiation. J Clin Med 2020; 9:3657. [PMID: 33203015 PMCID: PMC7697356 DOI: 10.3390/jcm9113657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium dental implants are used routinely, with surgical procedure, to replace missing teeth. Even though they lead to satisfactory results, novel developments with implant materials can still improve implant treatment outcomes. The aim of this study was to investigate the efficiency of porous tantalum (Ta) dental implants for osseointegration, in comparison to classical titanium (Ti). Mesenchymal stem cells from the dental pulp (DPSC) were incubated on Ta, smooth titanium (STi), and rough titanium (RTi) to assess their adhesion, proliferation, osteodifferentiation, and mineralized matrix production. Cell proliferation was measured at 4 h, 24 h, 48 h with MTT test. Early osteogenic differentiation was followed after 4, 8, 12 days by alkaline phosphatase (ALP) quantification. Cells organization and matrix microstructure were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Collagen production and matrix mineralization were evaluated by immunostaining and histological staining. MTT test showed significantly higher proliferation of DPSC on Ta at 24 h and 48 h. However, APL quantification after 8 and 12 days was significantly lower for Ta, revealing a delayed differentiation, where cells were proliferating the more. After 3 weeks, collagen immunostaining showed an efficient production of collagen on all samples. However, Red Alizarin staining clearly revealed a higher calcification on Ta. The overall results tend to demonstrate that DPSC differentiation is delayed on Ta surface, due to a longer proliferation period until cells cover the 3D porous Ta structure. However, after 3 weeks, a more abundant mineralized matrix is produced on and inside Ta implants. Cell populations on porous Ta proliferate greater and faster, leading to the production of more calcium phosphate deposits than cells on roughened and smooth titanium surfaces, revealing a potential enhanced capacity for osseointegration.
Collapse
Affiliation(s)
- Sofia Piglionico
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
- Faculty of Dentistry, National University of Cuyo, Mendoza M5500, Argentina
| | - Julie Bousquet
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
| | - Naveen Fatima
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
| | - Matthieu Renaud
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
| | - Pierre-Yves Collart-Dutilleul
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
- CSERD, CHU de Montpellier, 34193 Montpellier, France
| | - Philippe Bousquet
- Laboratory Bioengineering Nanosciences LBN, University of Montpellier, 34193 Montpellier, France; (S.P.); (J.B.); (N.F.); (M.R.); (P.B.)
- CSERD, CHU de Montpellier, 34193 Montpellier, France
| |
Collapse
|
20
|
Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front Bioeng Biotechnol 2020; 8:603072. [PMID: 33262980 PMCID: PMC7686851 DOI: 10.3389/fbioe.2020.603072] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022] Open
Abstract
Depending on the requirements of specific applications, implanted materials including metals, ceramics, and polymers have been used in various disciplines of medicine. Titanium and its alloys as implant materials play a critical role in the orthopedic and dental procedures. However, they still require the utilization of surface modification technologies to not only achieve the robust osteointegration but also to increase the antibacterial properties, which can avoid the implant-related infections. This article aims to provide a summary of the latest advances in surface modification techniques, of titanium and its alloys, specifically in biomedical applications. These surface techniques include plasma spray, physical vapor deposition, sol-gel, micro-arc oxidation, etc. Moreover, the microstructure evolution is comprehensively discussed, which is followed by enhanced mechanical properties, osseointegration, antibacterial properties, and clinical outcomes. Future researches should focus on the combination of multiple methods or improving the structure and composition of the composite coating to further enhance the coating performance.
Collapse
Affiliation(s)
- Tong Xue
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Song
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Lanjie Li
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Beibei Zhao
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
21
|
Wang X, Zhu Z, Xiao H, Luo C, Luo X, Lv F, Liao J, Huang W. Three-Dimensional, MultiScale, and Interconnected Trabecular Bone Mimic Porous Tantalum Scaffold for Bone Tissue Engineering. ACS OMEGA 2020; 5:22520-22528. [PMID: 32923811 PMCID: PMC7482253 DOI: 10.1021/acsomega.0c03127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 05/03/2023]
Abstract
To investigate the biocompatibility and bone ingrowth properties of a novel trabecular bone mimic porous tantalum scaffold which holds potential for bone tissue engineering, a novel three-dimensional, multiscale interconnected porous tantalum scaffold was designed and manufactured. The morphology of the novel scaffold was observed with the use of scanning electron microscopy (SEM) and industrial computerized tomography. Mesenchymal stem cells (MSCs) were cultured with novel porous tantalum powder, SEM was carried out for the observation of cell morphology and adhesion, and cytotoxicity was evaluated by the MTT assay. Canine femoral shaft bone defect models were established, and novel porous tantalum rods were used to repair the bone defect. Repair effects and bone integration were evaluated by hard tissue slice examination and push-out tests at the indicated time. We found that the novel porous tantalum scaffold is a trabecular bone mimic, having the characteristics of being three-dimensional, multiscaled, and interconnected. The MSCs adhered to the surface of tantalum and proliferated with time, the tantalum extract did not have a cytotoxic effect on MSCs. In the bone defect model, porous tantalum rods integrated tightly with the host bone, and new bone formation was found on the scaffold-host bone interface both 3 and 6 months after the implantation. Favorable bone ingrowth was observed in the center of the tantalum rod. The push-out test showed that the strength needed to push out the tantalum rod is comparable for both 3 and 6 months when compared with the normal femoral shaft bone tissue. These findings suggested that the novel trabecular bone mimic porous tantalum scaffold is biocompatible and osteoinductive, which holds potential for bone tissue engineering application.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haozuo Xiao
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Changqi Luo
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Furong Lv
- Department
of Radiology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
- . Phone: 86-23
89011222. Fax: 86-23 89011211
| | - Wei Huang
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
- . Phone: 86-23 89011222. Fax: 86-23 89011211
| |
Collapse
|
22
|
Fabrication of a Novel Ta(Zn)O Thin Film on Titanium by Magnetron Sputtering and Plasma Electrolytic Oxidation for Cell Biocompatibilities and Antibacterial Applications. METALS 2020. [DOI: 10.3390/met10050649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pure titanium (Ti) and titanium alloys are widely used as artificial implant materials for biomedical applications. The excellent biocompatibility of Ti has been attributed to the presence of a natural or artificial surface layer of titanium dioxide. Zinc oxide and tantalum oxide thin films are recognized due to their outstanding antibacterial properties. In this study, high power impulse magnetron sputtering (HiPIMS) was used for the deposition of tantalum oxide and zinc-doped Ta(Zn)O thin films on Ti with rough and porous surface, which was pretreated by plasma electrolytic oxidation (PEO). Surface morphology, antibacterial property as well as cell biocompatibility were analyzed. The antibacterial effect was studied individually for the Gram-positive and Gram-negative bacteria Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans). The deposited Ta (Zn)O coating was composed of amorphous tantalum oxide and crystalline ZnO. The antibacterial results on the tantalum oxide and Ta(Zn)O coated Ti indicated a significant inhibition of both S. aureus and A. actinomycetemcomitans bacteria when compared with the uncoated Ti samples. The deposited Ta(Zn)O showed the best antibacterial performance. The Ta(Zn)O coated Ti showed lower level of the cell viability in MG-63 cells compared to other groups, indicating that Zn-doped Ta(Zn)O coatings may restrict the cell viability of hard tissue-derived MG-63 cells. However, the biocompatibility tests demonstrated that the tantalum oxide and Ta(Zn)O coatings improved cell attachment and cell growth in human skin fibroblasts. The cytotoxicity was found similar between the Ta2O5 and Ta(Zn)O coated Ti. By adopting a first PEO surface modification and a subsequent HiPIMS coating deposition, we synthetized amorphous tantalum oxide and Ta(Zn)O coatings that improved titanium surface properties and morphologies, making them a good surface treatment for titanium-based implants.
Collapse
|
23
|
Li R, Liu G, Yang L, Qing Y, Tang X, Guo D, Zhang K, Qin Y. Tantalum boride as a biocompatible coating to improve osteogenesis of the bionano interface. J Biomed Mater Res A 2020; 108:1726-1735. [PMID: 32223058 DOI: 10.1002/jbm.a.36940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
A proper biological microenvironment conducive to tissue repair and regeneration, while the bioimplant interface directly affects the local microenvironment. In this study, to improve the biological microenvironment, a nanosized tantalum boride (Ta-B) was coated on a titanium alloy substrate (Ti6Al4V, TC4) using magnetron cosputtering. The sample surface was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). To investigate the effects of tantalum boride coating on the microenvironment, rabbit bone marrow stromal cells (BMSCs), and RAW 264.7 cells were respectively seeded on the sample surface and relevant experiments were conducted in vitro. The pure tantalum coating (Ta) and naked TC4 were prepared as controls. Our results showed that the Ta-B coating enhanced cell proliferation and adhesion and inhibited the inflammatory response. Findings of alkaline phosphatase (ALP) staining, alizarin red staining and real-time PCR for osteoblastic gene expression indicated that Ta-B and Ta coating improve the osteogenesis, in which Ta-B coating showed higher osteogenesis than Ta coating. Thus, this study suggests that Ta-B coating with excellent biocompatibility could have new applications for wound healing in bone tissue engineering.
Collapse
Affiliation(s)
- Ruiyan Li
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Guancong Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China.,Department of Orthopedics, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Lina Yang
- State Key Laboratory of Superhard Materials, Department of Materials Science, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, PR China
| | - Yun'an Qing
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Xiongfeng Tang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Deming Guo
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Kan Zhang
- State Key Laboratory of Superhard Materials, Department of Materials Science, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, PR China
| | - Yanguo Qin
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| |
Collapse
|
24
|
Ding D, Zhang D, He F, Xie G, Chen Z. Gamma-ray irradiation effects on tantalum thin film for improved mechanical compatibility and cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110700. [PMID: 32204014 DOI: 10.1016/j.msec.2020.110700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
In this work, tantalum thin films were prepared on titanium substrates by an ion beam sputtering method. Tantalum thin films were irradiated by gamma-ray with different total dose levels. The effect of irradiation on the phase composition, microstructure, surface morphology, and chemical resistance were analyzed. Besides, in vitro cytocompatibility of tantalum films treated with different radiation doses were evaluated via 3T3-E1 cells. Experimental results showed that higher radiation dose resulted in reductions in crystalline nature, denser morphology, lower elastic modulus, less oxygen vacancies and better corrosion resistance. Additionally, 3T3-E1 cells adhered and spread well on the surface of tantalum film with irradiation exposure to 10 kGy. The dense surface morphology, less density of chemical defects and amorphous phase produced by the gamma-ray irradiation played a major role in the improvement of mechanical compatibility, electrochemical stability property along with the cytocompatibility of the tantalum films.
Collapse
Affiliation(s)
- Ding Ding
- Key Laboratory of Thin Film Sensing Technology for National Defense of Hunan Province, China Electronics Technology Group Corporation 48th Research Institute, Changsha 410111, China; School of Physic and Microelectronics, Hunan University, Changsha 410082, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Feng He
- Key Laboratory of Thin Film Sensing Technology for National Defense of Hunan Province, China Electronics Technology Group Corporation 48th Research Institute, Changsha 410111, China
| | - Guijiu Xie
- Key Laboratory of Thin Film Sensing Technology for National Defense of Hunan Province, China Electronics Technology Group Corporation 48th Research Institute, Changsha 410111, China
| | - Zhuojun Chen
- School of Physic and Microelectronics, Hunan University, Changsha 410082, China.
| |
Collapse
|
25
|
Trincă LC, Mareci D, Solcan C, Fantanariu M, Burtan L, Vulpe V, Hriţcu LD, Souto RM. RETRACTED: In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110485. [PMID: 31924054 DOI: 10.1016/j.msec.2019.110485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/26/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of authors. Due to communication issues between Professor dr. Lucia Carmen Trincă and Professor dr. Vizureanu Petrica and Assist. dr. Bălţatu Simona, the first author was not aware that the specimens processed by corrosion by Assoc. Professor dr. Daniel Mareci and evaluated in the aforementioned article would be included by Assistant dr. Bălţatu Simona in her PhD thesis that was defended in June 2017 and then in an international patent application (Indonesia) No: PI 2019006569, in November 2019. The authors understand and respect the intellectual property rights of the international (Indonesia) patent application holders no: PI 2019006569/2019 and thus request the retraction of the article.
Collapse
Affiliation(s)
- Lucia Carmen Trincă
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Exact Sciences Department, 700490, Iasi, Romania.
| | - Daniel Mareci
- "Gheorghe Asachi" Technical University of Iasi, Department of Chemical Engineering, 700050, Iasi, Romania
| | - Carmen Solcan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Preclinics Department, 700489, Iasi, Romania
| | - Mircea Fantanariu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Liviu Burtan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania.
| | - Vasile Vulpe
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Luminiţa-Diana Hriţcu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Ricardo Manuel Souto
- Department of Chemistry, Universidad de La Laguna, Avda. Astrofisico Sanchez s/n, 38205 La Laguna, Tenerife (Canary Islands), Spain; Instituto Universitario de Materiales y Nanotecnologias, Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Tenerife (Canary Islands), Spain.
| |
Collapse
|
26
|
Bakri MM, Lee SH, Lee JH. Improvement of biohistological response of facial implant materials by tantalum surface treatment. Maxillofac Plast Reconstr Surg 2019; 41:52. [PMID: 31824890 PMCID: PMC6879676 DOI: 10.1186/s40902-019-0231-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023] Open
Abstract
Background A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications. Methods Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured. Results The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity. Conclusion Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.
Collapse
Affiliation(s)
- Mohammed Mousa Bakri
- 1Oral and Maxillofacial Surgery Department, Seoul National University Dental Hospital, Seoul, South Korea.,2Oral and Maxillofacial Surgery Department, School of Dentistry, Jazan University , Jazan City, Saudi Arabia
| | - Sung Ho Lee
- 3Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University Dental Hospital, Daehakro 101, Jongro-Gu, Seoul, 03080 South Korea
| | - Jong Ho Lee
- 4Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.,5Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, 275-1 Yeongeon-dong, Jongno-gu, Seoul, 110-749 South Korea
| |
Collapse
|
27
|
Buck E, Li H, Cerruti M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol Biosci 2019; 20:e1900271. [DOI: 10.1002/mabi.201900271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Buck
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Hao Li
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| |
Collapse
|
28
|
Han Q, Wang C, Chen H, Zhao X, Wang J. Porous Tantalum and Titanium in Orthopedics: A Review. ACS Biomater Sci Eng 2019; 5:5798-5824. [PMID: 33405672 DOI: 10.1021/acsbiomaterials.9b00493] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Porous metal is metal with special porous structures, which can offer high biocompatibility and low Young's modulus to satisfy the need for orthopedic applications. Titanium and tantalum are the most widely used porous metals in orthopedics due to their excellent biomechanical properties and biocompatibility. Porous titanium and tantalum have been studied and applied for a long history until now. Here in this review, various manufacturing methods of titanium and tantalum porous metals are introduced. Application of these porous metals in different parts of the body are summarized, and strengths and weaknesses of these porous metal implants in clinical practice are discussed frankly for future improvement from the viewpoint of orthopedic surgeons. Then according to the requirements from clinics, progress in research for clinical use is illustrated in four aspects. Various creative designs of microporous and functionally gradient structure, surface modification, and functional compound systems of porous metal are exhibited as reference for future research. Finally, the directions of orthopedic porous metal development were proposed from the clinical view based on the rapid progress of additive manufacturing. Controllable design of both macroscopic anatomical bionic shape and microscopic functional bionic gradient porous metal, which could meet the rigorous mechanical demand of bone reconstruction, should be developed as the focus. The modification of a porous metal surface and construction of a functional porous metal compound system, empowering stronger cell proliferation and antimicrobial and antineoplastic property to the porous metal implant, also should be taken into consideration.
Collapse
Affiliation(s)
- Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Chenyu Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Xue Zhao
- Department of Endocrine and Metabolism, The First Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| |
Collapse
|
29
|
Park C, Seong YJ, Kang IG, Song EH, Lee H, Kim J, Jung HD, Kim HE, Jang TS. Enhanced Osseointegration Ability of Poly(lactic acid) via Tantalum Sputtering-Based Plasma Immersion Ion Implantation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10492-10504. [PMID: 30802030 DOI: 10.1021/acsami.8b21363] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(lactic acid) (PLA) is the most utilized biodegradable polymer in orthopedic implant applications because of its ability to replace regenerated bone tissue via continuous degradation over time. However, the poor osteoblast affinity for PLA results in a high risk of early implant failure, and this issue remains one of the most difficult challenges with this technology. In this study, we demonstrate the use of a new technique in which plasma immersion ion implantation (PIII) is combined with a conventional DC magnetron sputtering. This technique, referred to as sputtering-based PIII (S-PIII), makes it possible to produce a tantalum (Ta)-implanted PLA surface within 30 s without any tangible degradation or deformation of the PLA substrate. Compared to a Ta-coated PLA surface, the Ta-implanted PLA showed twice the surface roughness and substantially enhanced adhesion stability in dry and wet conditions. The strong hydrophobic surface properties and biologically relatively inert chemical structure of PLA were ameliorated by Ta S-PIII treatment, which produced a moderate hydrophilic surface and enhanced cell-material interactions. Furthermore, in an in vivo evaluation in a rabbit distal femur implantation model, Ta-implanted PLA demonstrated significantly enhanced osseointegration and osteogenesis compared with bare PLA. These results indicate that the Ta-implanted PLA has great potential for orthopedic implant applications.
Collapse
Affiliation(s)
- Cheonil Park
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - In-Gu Kang
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Eun-Ho Song
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Hyun Lee
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Jinyoung Kim
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Hyun-Do Jung
- Liquid Processing & Casting Technology R&D Group , Korea Institute of Industrial Technology , Incheon 21999 , Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Tae-Sik Jang
- Liquid Processing & Casting Technology R&D Group , Korea Institute of Industrial Technology , Incheon 21999 , Korea
| |
Collapse
|
30
|
Microstructure and Corrosion Resistance of WC-Based Cermet/Fe-Based Amorphous Alloy Composite Coatings. COATINGS 2018. [DOI: 10.3390/coatings8110393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an urgent need to improve the corrosion resistance of WC-based cermet coatings in different corrosive environments. The main objective of this work was to investigate the microstructure and evaluate the corrosion resistance in neutral, acidic, and alkaline electrolytes of the WC-based cermet/Fe-based amorphous alloy composite coating. Thus, a composite coating of WC–CoCr/Fe-based amorphous alloy and a single WC–CoCr coating were fabricated using the high-velocity oxygen fuel (HVOF) process. The phase composition, microstructure of the original powders, and as-sprayed coatings were studied. The detailed interface information between different compositions of the composite coating was observed by high-resolution transmission electron microscopy (HRTEM). The corrosion resistance of the coatings was studied comparatively by electrochemical tests in 3.5 wt % NaCl, 1 M HCl and 1 M NaOH solutions, respectively. Results showed that the composited coating had a dense layered structure with a composition of WC, Fe-based amorphous alloy, and small amount of W2C. It was revealed that obvious inter-diffusion exists between the interfaces of tungsten carbide/Co, Cr binder and WC–CoCr/Fe-based amorphous alloy. The electrochemical test results showed that the composite coating displayed better corrosion resistance than single WC–CoCr coating both in 3.5 wt % NaCl solution and in 1 M NaOH solution.
Collapse
|
31
|
Moussa HI, Logan M, Wong K, Rao Z, Aucoin MG, Tsui TY. Nanoscale-Textured Tantalum Surfaces for Mammalian Cell Alignment. MICROMACHINES 2018; 9:E464. [PMID: 30424397 PMCID: PMC6187670 DOI: 10.3390/mi9090464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Tantalum is one of the most important biomaterials used for surgical implant devices. However, little knowledge exists about how nanoscale-textured tantalum surfaces affect cell morphology. Mammalian (Vero) cell morphology on tantalum-coated comb structures was studied using high-resolution scanning electron microscopy and fluorescence microscopy. These structures contained parallel lines and trenches with equal widths in the range of 0.18 to 100 μm. Results showed that as much as 77% of adherent cell nuclei oriented within 10° of the line axes when deposited on comb structures with widths smaller than 10 μm. However, less than 20% of cells exhibited the same alignment performance on blanket tantalum films or structures with line widths larger than 50 μm. Two types of line-width-dependent cell morphology were observed. When line widths were smaller than 0.5 μm, nanometer-scale pseudopodia bridged across trench gaps without contacting the bottom surfaces. In contrast, pseudopodia structures covered the entire trench sidewalls and the trench bottom surfaces of comb structures with line-widths larger than 0.5 μm. Furthermore, results showed that when a single cell simultaneously adhered to multiple surface structures, the portion of the cell contacting each surface reflected the type of morphology observed for cells individually contacting the surfaces.
Collapse
Affiliation(s)
- Hassan I Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Kingsley Wong
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Zheng Rao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
32
|
Zhou R, Han Y, Cao J, Li M, Jin G, Du Y, Luo H, Yang Y, Zhang L, Su B. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO 2-TiO 2 Bilayered Surface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30191-30200. [PMID: 30130089 DOI: 10.1021/acsami.8b10928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The poor osseointegration of Ti implant significantly compromise its application in load-bearing bone repair and replacement. Electrically bioactive coating inspirited from heterojunction on Ti implant can benefit osseointegration but cannot avoid the stress shielding effect between bone and implant. To resolve this conflict, hierarchically structured Ti implant with electrically bioactive SnO2-TiO2 bilayered surface has been developed to enhance osseointegration. Benefiting from the electric cue offered by the built-in electrical field of SnO2-TiO2 heterojunction and the topographic cue provided by the hierarchical surface structure to bone regeneration, the osteoblastic function of basic multicellular units around the implant is significantly improved. Because the individual TiO2 or SnO2 coating with uniform surface exhibits no electrical bioactivity, the effects of electric and topographic cues to osseointegration have been decoupled via the analysis of in vivo performance for the placed Ti implant with different surfaces. The developed Ti implant shows significantly improved osseointegration with excellent bone-implant contact, improved mineralization of extracellular matrix, and increased push-out force. These results suggest that the synergistic strategy of combing electrical bioactivity with hierarchical surface structure provides a new platform for developing advanced endosseous implants.
Collapse
Affiliation(s)
- Rui Zhou
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| | | | - Jianyun Cao
- School of Materials , University of Manchester , Manchester M13 9PL , U.K
| | - Ming Li
- Honghui Hospital , Xi'an Jiaotong University College of Medicine , Xi'an 710054 , P. R. China
| | | | - Yuzhou Du
- School of Materials Science and Engineering , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | | | | | | | - Bo Su
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| |
Collapse
|
33
|
Jiang N, Guo Z, Sun D, Li Y, Yang Y, Chen C, Zhang L, Zhu S. Promoting Osseointegration of Ti Implants through Micro/Nanoscaled Hierarchical Ti Phosphate/Ti Oxide Hybrid Coating. ACS NANO 2018; 12:7883-7891. [PMID: 29979574 DOI: 10.1021/acsnano.8b02227] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, micro/nanoscaled hierarchical hybrid coatings containing titanium (Ti) phosphate and Ti oxide have been fabricated with the aim of promoting osseointegration of Ti-based implants. Three representative surface coatings, namely, micro/nanograss Ti (P-G-Ti), micro/nanoclump Ti, (P-C-Ti), and micro/nanorod Ti (P-R-Ti), have been produced. In-depth investigations into the coating surface morphology, topography, chemical composition, and the surface/cell interaction have been carried out using scanning electron microscopy, transmission electron microscope, X-ray photoelectron spectroscopy, X-ray diffraction, contact-angle measurement, and protein adsorption assay. In addition, in vitro performance of the coating (cell proliferation, adhesion, and differentiation) has been evaluated using rat bone marrow stromal cells (BMSCs), and in vivo assessments have been carried out based on a rat tibia implantation model. All the hybrid coating modified implants demonstrated enhanced protein adsorption and BMSC viability, adhesion and differentiation, with P-G-Ti showing the best bioactivity among all samples. Subsequent i n vivo osseointegration tests confirmed that P-G-Ti has induced a much stronger interfacial bonding with the host tissue, indicated by the 2-fold increase in the ultimate shear strength and over 6-fold increase in the maximum push-out force compared to unmodified Ti implants. The state-of-the-art coating technology proposed for Ti-based implants in this study holds great potential in advancing medical devices for next-generation healthcare technology.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Zhijun Guo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, U.K
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, U.K
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Chen Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Matharu GS, Judge A, Murray DW, Pandit HG. Trabecular Metal Versus Non-Trabecular Metal Acetabular Components and the Risk of Re-Revision Following Revision Total Hip Arthroplasty: A Propensity Score-Matched Study from the National Joint Registry for England and Wales. J Bone Joint Surg Am 2018; 100:1132-1140. [PMID: 29975265 DOI: 10.2106/jbjs.17.00718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Studies have suggested that Trabecular Metal (TM)-coated acetabular components may reduce implant failure following revision total hip arthroplasty. However, these studies have predominantly been limited to small, single-center cohorts, with many lacking a comparator group. Using National Joint Registry data from England and Wales, we compared re-revision rates following revision total hip arthroplasty between TM and non-TM-coated acetabular components from 1 manufacturer. METHODS This retrospective observational study included all revision total hip arthroplasties performed with use of 1 of 4 cementless acetabular components produced by the same manufacturer (Zimmer Biomet). The acetabular components either had a TM surface coating (TM Modular and Continuum designs) or a non-TM surface coating (Trilogy and Trilogy IT designs). Revision total hip arthroplasties with TM and non-TM implants were matched for multiple potential patient and surgical confounding factors using propensity scores. Outcomes following revision total hip arthroplasty (re-revision for all acetabular indications, aseptic acetabular loosening, or infection) were compared between matched groups using competing risk regression analysis. Analyses were repeated in a subgroup initially revised for infection. RESULTS Of 3,862 matched revision total hip arthroplasties (1,931 in the TM group and 1,931 in the non-TM group), the overall prevalence of acetabular re-revision (2.7%; 95% confidence interval [CI] = 2.1% to 3.2%), re-revision for aseptic acetabular loosening (0.96%; 95% CI = 0.68% to 1.3%), and re-revision for infection (1.4%; 95% CI = 1.0% to 1.8%) were low. Six-year rates of re-revision for all causes (subhazard ratio [SHR] = 0.91; 95% CI = 0.61 to 1.35; p = 0.636), aseptic acetabular loosening (SHR = 1.32; 95% CI = 0.68 to 2.53; p = 0.410), and infection (SHR = 0.68; 95% CI = 0.39 to 1.20; p = 0.165) were similar between revision total hip arthroplasties with TM and non-TM coatings. Of 247 total hip arthroplasties initially revised for infection (116 TM and 131 non-TM), the rates of re-revision for all causes (SHR = 0.48; 95% CI = 0.15 to 1.56; p = 0.225), aseptic acetabular loosening (SHR = 0.54; 95% CI = 0.05 to 5.74; p = 0.608), and infection (SHR = 0.82; 95% CI = 0.28 to 2.36; p = 0.706) were similar between the TM and non-TM groups. CONCLUSIONS Following revision total hip arthroplasty, TM-coated acetabular components had a low risk of both aseptic and septic re-revision, with rates that were comparable with those of non-TM components. Extended follow-up of large revision total hip arthroplasty cohorts will establish whether TM components have any clinical benefit over non-TM designs when used in patients with similar acetabular bone stock. LEVEL OF EVIDENCE Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Gulraj S Matharu
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew Judge
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom
| | - David W Murray
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom
| | - Hemant G Pandit
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
35
|
Huo WT, Zhao LZ, Zhang W, Lu JW, Zhao YQ, Zhang YS. In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:268-279. [PMID: 30184751 DOI: 10.1016/j.msec.2018.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Ti6Al4V (TC4) alloy has long been used as a bone interfacing implant material in dentistry and orthopedics due to its excellent biocompatibility and mechanical properties. The performance of TC4 can be further tailored by altering its grain structures. In this study, by means of sliding friction treatment (SFT), a nano-grained (NG) surface layer with an average grain size of ≤100 nm on the topmost surface was successfully generated on coarse-grained (CG) TC4 alloy sheet. It was shown that the NG surface possessed notably enhanced corrosion resistance in physiological solution compared to the CG surface, due to the formation of thicker and denser passive film facilitated by surface nanocrystallization. Additionally, the NG surface with stronger hydrophilicity favorably altered the absorption of anchoring proteins such as fibronectin (Fn) and vitronectin (Vn) that can mediate subsequent osteoblast functions. The in vitro results indicated that the NG surface exhibited remarkable enhancement in osteoblast adherence, spreading and proliferation, and obviously accelerated the osteoblast differentiation as compared to CG surface. Moreover, the NG surface also demonstrated good hemocompatibility. These findings suggest that SFT can endure bio-metals with advanced multifunctional properties for biomedical applications.
Collapse
Affiliation(s)
- W T Huo
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - L Z Zhao
- State key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - W Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - J W Lu
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y Q Zhao
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y S Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| |
Collapse
|
36
|
Wang F, Wang L, Feng Y, Yang X, Ma Z, Shi L, Ma X, Wang J, Ma T, Yang Z, Wen X, Zhang Y, Lei W. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Sci Rep 2018; 8:8927. [PMID: 29895937 PMCID: PMC5997693 DOI: 10.1038/s41598-018-27182-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 11/09/2022] Open
Abstract
Tantalum (Ta)-coated porous Ti-6A1-4V scaffolds have better bioactivity than Ti-6A1-4V scaffolds; however, their bioperformance as an artificial vertebral body (AVB) is unknown. In the present study, we combined a Ta-coated Ti-6A1-4V scaffold with rabbit bone marrow stromal cells (BMSCs) for tissue-engineered AVB (TEAVB) construction and evaluated the healing and fusion efficacy of this scaffold in lumbar vertebral defects after corpectomy in rabbits. The results showed that BMSCs on the surface of the Ta-coated Ti scaffolds proliferated better than BMSCs on Ti scaffolds. Histomorphometry showed better bone formation when using Ta-coated TEAVBs than that with Ti TEAVBs at both 8 and 12 weeks after implantation. In addition, the vertical and rotational stiffness results showed that, compared with uncoated TEAVBs, Ta-coated TEAVBs enhanced rabbit lumbar vertebral defect repair. Our findings demonstrate that Ta-coated TEAVBs have better healing and fusion efficacy than Ti TEAVBs in rabbit lumbar vertebral defects, which indicates their good prospects for clinical application.
Collapse
Affiliation(s)
- Faqi Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of orthopedic surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yafei Feng
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaojiang Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhensheng Ma
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Shi
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangyu Ma
- The 463 hospital of Chinese Peoples' Liberation Army, Shenyang, China
| | - Jian Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | - Zhao Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinxin Wen
- The 463 hospital of Chinese Peoples' Liberation Army, Shenyang, China
| | - Yang Zhang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Lei
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
37
|
Ahn H, Patel RR, Hoyt AJ, Lin ASP, Torstrick FB, Guldberg RE, Frick CP, Carpenter RD, Yakacki CM, Willett NJ. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants. Acta Biomater 2018; 72:352-361. [PMID: 29563069 DOI: 10.1016/j.actbio.2018.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated. The objective of this study was to evaluate biological and mechanical behavior of PPP, with or without porosity, in comparison to PEEK. We examined four specific constructs: 1) solid PPP, 2) solid PEEK, 3) porous PPP and 4) porous PEEK. Pre-osteoblasts (MC3T3) exhibited similar cell proliferation among the materials. Osteogenic potential was significantly increased in the porous PPP scaffold as assessed by ALP activity and calcium mineralization. In vivo osseointegration was assessed by implanting the cylindrical materials into a defect in the metaphysis region of rat tibiae. Significantly more mineral ingrowth was observed in both porous scaffolds compared to the solid scaffolds, and porous PPP had a further increase compared to porous PEEK. Additionally, porous PPP implants showed bone formation throughout the porous structure when observed via histology. A computational simulation of mechanical push-out strength showed approximately 50% higher interfacial strength in the porous PPP implants compared to the porous PEEK implants and similar stress dissipation. These data demonstrate the potential utility of PPP for orthopaedic applications and show improved osseointegration when compared to the currently available polymeric material. STATEMENT OF SIGNIFICANCE PEEK has been widely used in orthopaedic surgery; however, the ability to utilize PEEK for advanced fabrication methods, such as 3D printing and tailored porosity, remain challenging. We present a promising new orthopaedic biomaterial, Poly(para-phenylene) (PPP), which is a novel class of aromatic polymers with higher strength and stiffness than polyetheretherketone (PEEK). PPP has exceptional mechanical strength and stiffness due to its repeating aromatic rings that provide strong anti-rotational biaryl bonds. Furthermore, PPP has an amorphous structure making it relatively easier to manufacture (via molding or solvent-casting techniques) into different geometries with and without porosity. This ability to manufacture different architectures and use different processes while maintaining mechanical properties makes PPP a very promising potential orthopaedic biomaterial which may allow for closer matching of mechanical properties between the host bone tissue while also allowing for enhanced osseointegration. In this manuscript, we look at the potential of porous and solid PPP in comparison to PEEK. We measured the mechanical properties of PPP and PEEK scaffolds, tested these scaffolds in vitro for osteocompatibility with MC3T3 cells, and then tested the osseointegration and subsequent functional integration in vivo in a metaphyseal drill hole model in rat tibia. We found that PPP permits cell adhesion, growth, and mineralization in vitro. In vivo it was found that porous PPP significantly enhanced mineralization into the construct and increased the mechanical strength required to push out the scaffold in comparison to PEEK. This is the first study to investigate the performance of PPP as an orthopaedic biomaterial in vivo. PPP is an attractive material for orthopaedic implants due to the ease of manufacturing and superior mechanical strength.
Collapse
Affiliation(s)
- Hyunhee Ahn
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA
| | - Ravi R Patel
- Department of Mechanical Engineering, University of Colorado, Denver, CO, USA
| | - Anthony J Hoyt
- Department of Mechanical Engineering, University of Wyoming, Laramie, WY, USA
| | - Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Brennan Torstrick
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carl P Frick
- Department of Mechanical Engineering, University of Wyoming, Laramie, WY, USA
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado, Denver, CO, USA
| | | | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA.
| |
Collapse
|
38
|
Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. MATERIALS 2017; 10:ma10111302. [PMID: 29137166 PMCID: PMC5706249 DOI: 10.3390/ma10111302] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.
Collapse
|
39
|
Chen R, Cai X, Ma K, Zhou Y, Wang Y, Jiang T. The fabrication of double-layered chitosan/gelatin/genipin nanosphere coating for sequential and controlled release of therapeutic proteins. Biofabrication 2017; 9:025028. [DOI: 10.1088/1758-5090/aa70c3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Liao H, Miao X, Ye J, Wu T, Deng Z, Li C, Jia J, Cheng X, Wang X. Falling Leaves Inspired ZnO Nanorods-Nanoslices Hierarchical Structure for Implant Surface Modification with Two Stage Releasing Features. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13009-13015. [PMID: 28371577 DOI: 10.1021/acsami.7b00666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired from falling leaves, ZnO nanorods-nanoslices hierarchical structure (NHS) was constructed to modify the surfaces of two widely used implant materials: titanium (Ti) and tantalum (Ta), respectively. By which means, two-stage release of antibacterial active substances were realized to address the clinical importance of long-term broad-spectrum antibacterial activity. At early stages (within 48 h), the NHS exhibited a rapid releasing to kill the bacteria around the implant immediately. At a second stage (over 2 weeks), the NHS exhibited a slow releasing to realize long-term inhibition. The excellent antibacterial activity of ZnO NHS was confirmed once again by animal test in vivo. According to the subsequent experiments, the ZnO NHS coating exhibited the great advantage of high efficiency, low toxicity, and long-term durability, which could be a feasible manner to prevent the abuse of antibiotics on implant-related surgery.
Collapse
Affiliation(s)
- Hang Liao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Xinxin Miao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Jing Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Tianlong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Zhongbo Deng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Jingyu Jia
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Xigao Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
| | - Xiaolei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi 330006, China
- Institute of Translational Medicine, NanChang University , NanChang, Jiangxi 330031, China
| |
Collapse
|
41
|
Significantly enhanced osteoblast response to nano-grained pure tantalum. Sci Rep 2017; 7:40868. [PMID: 28084454 PMCID: PMC5233963 DOI: 10.1038/srep40868] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
Tantalum (Ta) metal is receiving increasing interest as biomaterial for load-bearing orthopedic applications and the synthetic properties of Ta can be tailored by altering its grain structures. This study evaluates the capability of sliding friction treatment (SFT) technique to modulate the comprehensive performances of pure Ta. Specifically, novel nanocrystalline (NC) surface with extremely small grains (average grain size of ≤20 nm) was fabricated on conventional coarse-grained (CG) Ta by SFT. It shows that NC surface possessed higher surface hydrophilicity and enhanced corrosion resistance than CG surface. Additionally, the NC surface adsorbed a notably higher percentage of protein as compared to CG surface. The in vitro results indicated that in the initial culture stages (up to 24 h), the NC surface exhibited considerably enhanced osteoblast adherence and spreading, consistent with demonstrated superior hydrophilicity on NC surface. Furthermore, within the 14 days culture period, NC Ta surface exhibited a remarkable enhancement in osteoblast cell proliferation, maturation and mineralization as compared to CG surface. Ultimately, the improved osteoblast functions together with the good mechanical and anti-corrosion properties render the SFT-processed Ta a promising alternative for the load-bearing bone implant applications.
Collapse
|