1
|
Elsharkawy A, Jahantigh HR, Guglani A, Stone S, Arora K, Kumar M. Virus-specific host responses and gene signatures following infection with major SARS-CoV-2 variants of concern: role of ZBP1 in viral clearance and lung inflammation. Front Immunol 2025; 16:1557535. [PMID: 40416961 PMCID: PMC12098559 DOI: 10.3389/fimmu.2025.1557535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
SARS-CoV-2 can cause severe lung damage due to uncontrolled viral replication or/and excessive inflammation. New variants of concern (VOCs) have raised additional concerns due to disparate pathogenicity and possible enhanced virulence. Herein, using RNA sequencing, we performed a comparative transcriptomic analysis following infection with major VOCs. We evaluated the transcriptional changes induced in the lungs of K18-hACE2 mice following infection with the ancestral B.1 lineage (Wuhan), B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), B.1.1.529 (Omicron) variants or mouse-adapted SARS-CoV-2 (MA10). Our work reveals the molecular basis of pathological hallmarks in the lungs associated with SARS-CoV-2 infection. We report that infection with B.1, pre-Omicron VOCs, and MA10 induce similar molecular fingerprints of excessive lung inflammation and immune activation in K18-hACE2 mice. Analysis of differentially expressed genes revealed both shared and variant-specific responses, with key immune markers such as Cxcl10, Zbp1, Ifit3, Isg15, Rsad2, and Irf7 consistently upregulated across variants. Clustering of highly variable genes across samples revealed two variant groups distinguished by upregulation of antigen presentation and immune-related genes (e.g. Retnla, Saa3, Plac8, Ly6c2, H2-D1, and H2-K1). Delta, Beta, Alpha, and MA10 showed elevated expression, whereas Wuhan and Omicron exhibited attenuated responses. In addition, we show that Z-DNA-binding protein 1 (ZBP1) plays a role in viral clearance in the lungs after SARS-CoV-2 infection. ZBP1 deficiency resulted in reduced expression of cell death-associated markers and virus-induced cell death in the lungs following MA10 infection. Furthermore, the knockout of ZBP1 resulted in an attenuated inflammatory response with reduced production of proinflammatory cytokines and chemokines and decreased macrophage infiltration in the lungs. These results suggest that ZBP1 plays a role in viral clearance and in enhancing the inflammatory response and virus-induced cell death during SARS-CoV-2 infection. Altogether, our study provides insights into the pathogenesis of SARS-CoV-2 infection in mice, facilitating the identification of biomarkers and the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Hamid Reza Jahantigh
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Anchala Guglani
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Shannon Stone
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
2
|
Buddle S, Torres O, Morfopoulou S, Breuer J, Brown JR. The use of metagenomics to enhance diagnosis of encephalitis. Expert Rev Mol Diagn 2025:1-18. [PMID: 40329854 DOI: 10.1080/14737159.2025.2500655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Encephalitis has a broad etiology, including infectious and auto-immune causes. In infectious encephalitis, the breadth of causative organisms results in incomplete testing and low diagnostic yields.Metagenomics sequences all DNA and RNA allowing untargeted detection of all organisms in a single specimen; this is of particular use in diagnosis of encephalitis with a broad etiology. AREAS COVERED We review the literature and discuss metagenomics workflows, host depletion and pathogen enrichment methods, bioinformatics analysis and potential analysis of the host transcriptome to aid diagnosis. We discuss the clinical use of metagenomics for diagnosis of neurological infection including time to result, cost, quality assurance, patient cohorts in whom metagenomics adds the most value, recommended specimen types, limitations and review published cases in which metagenomics has been used to diagnose encephalitis. EXPERT OPINION There is good evidence for the utility of metagenomics to diagnose infection in encephalitis. Due to infections with rare, unexpected or novel pathogens, metagenomics adds most value to diagnosis in immunocompromised patients and the greatest diagnostic yield is in brain biopsies. Technical advances are needed to reduce the complexity, cost and time to result which will enable wider adoption in clinical laboratories and use as a first-line test.
Collapse
Affiliation(s)
- Sarah Buddle
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Oscar Torres
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sofia Morfopoulou
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Jahantigh HR, Elsharkawy A, Guglani A, Arora K, Patterson LD, Kumar M. Neurobiological Alterations Induced by SARS-CoV-2: Insights from Variant-Specific Host Gene Expression Patterns in hACE2-Expressing Mice. Viruses 2025; 17:329. [PMID: 40143258 PMCID: PMC11946589 DOI: 10.3390/v17030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Since the onset of the COVID-19 pandemic, various severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants have emerged. Although the primary site of SARS-CoV-2 infection is the lungs, it can also affect the brain and induce neurological symptoms. However, the specific effects of different variants on the brain remain unclear. In this study, a whole-transcriptome analysis was conducted using the brain tissues of K18-hACE2 mice infected with the ancestral B.1 (Wuhan) variant and with major SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.529 (Omicron). After sequencing, differential gene expression, gene ontology (GO) and genome pathway enrichment analyses were performed. An Immune Cell Abundance Identifier (ImmuCellAI) was used to identify the abundance of different cell populations. Additionally, RT-qPCR was used to validate the RNA-seq data. The viral load and hierarchical clustering analyses divided the samples into two different clusters with notable differences in gene expression at day 6 post-infection for all variants compared to the control group. GO and the Kyoto Encyclopedia of genes and genomes enrichment analyses revealed similar patterns of pathway enrichment for different variants. ImmuCellAI revealed the changes in immune cell populations, including the decrease in CD4+ T and B cell proportions and the increase in CD8+ T and dendritic cell proportions. A co-expression network analysis revealed that some genes, such as STAT1, interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), were dysregulated in all variants. A RT-qPCR analysis for IL-6, CXCL10 and IRF7 further validated the RNA-seq analysis. In conclusion, this study provides, for the first time, an extensive transcriptome analysis of a K18-hACE2 mouse brain after infection with major SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Anchala Guglani
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Lila D. Patterson
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Oh SJ, Kumari P, Auroni TT, Stone S, Pathak H, Elsharkawy A, Natekar JP, Shin OS, Kumar M. Upregulation of Neuroinflammation-Associated Genes in the Brain of SARS-CoV-2-Infected Mice. Pathogens 2024; 13:528. [PMID: 39057755 PMCID: PMC11280415 DOI: 10.3390/pathogens13070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Neurological manifestations are a significant complication of coronavirus disease 2019 (COVID-19), but the underlying mechanisms are yet to be understood. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced neuroinvasion and encephalitis were observed in K18-hACE2 mice, leading to mortality. Our goal in this study was to gain insights into the molecular pathogenesis of neurological manifestations in this mouse model. To analyze differentially expressed genes (DEGs) in the brains of mice following SARS-CoV-2 infection, we performed NanoString gene expression analysis using three individual animal samples at 1, 3, and 6 days post-infection. We identified the DEGs by comparing them to animals that were not infected with the virus. We found that genes upregulated at day 6 post-infection were mainly associated with Toll-like receptor (TLR) signaling, RIG-I-like receptor (RLR) signaling, and cell death pathways. However, downregulated genes were associated with neurodegeneration and synaptic signaling pathways. In correlation with gene expression profiles, a multiplexed immunoassay showed the upregulation of multiple cytokines and chemokines involved in inflammation and cell death in SARS-CoV-2-infected brains. Furthermore, the pathway analysis of DEGs indicated a possible link between TLR2-mediated signaling pathways and neuroinflammation, as well as pyroptosis and necroptosis in the brain. In conclusion, our work demonstrates neuroinflammation-associated gene expression profiles, which can provide key insight into the severe disease observed in COVID-19 patients.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Pratima Kumari
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Tabassum Tasnim Auroni
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Shannon Stone
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Heather Pathak
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Janhavi Prasad Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| |
Collapse
|
5
|
Song Q, Fan Y, Zhang H, Wang N. Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death. Cytokine Growth Factor Rev 2024; 77:15-29. [PMID: 38548490 DOI: 10.1016/j.cytogfr.2024.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024]
Abstract
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Yuhang Fan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
6
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
7
|
Chen J, Song HX, Hu JH, Bai JS, Li XH, Sun RC, Zhao BQ, Li MZ, Zhou B. Classical swine fever virus non-structural protein 5B hijacks host METTL14-mediated m6A modification to counteract host antiviral immune response. PLoS Pathog 2024; 20:e1012130. [PMID: 38551978 PMCID: PMC11006178 DOI: 10.1371/journal.ppat.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024] Open
Abstract
Classical Swine Fever (CSF), caused by the Classical Swine Fever Virus (CSFV), inflicts significant economic losses on the global pig industry. A key factor in the challenge of eradicating this virus is its ability to evade the host's innate immune response, leading to persistent infections. In our study, we elucidate the molecular mechanism through which CSFV exploits m6A modifications to circumvent host immune surveillance, thus facilitating its proliferation. We initially discovered that m6A modifications were elevated both in vivo and in vitro upon CSFV infection, particularly noting an increase in the expression of the methyltransferase METTL14. CSFV non-structural protein 5B was found to hijack HRD1, the E3 ubiquitin ligase for METTL14, preventing METTL14 degradation. MeRIP-seq analysis further revealed that METTL14 specifically targeted and methylated TLRs, notably TLR4. METTL14-mediated regulation of TLR4 degradation, facilitated by YTHDF2, led to the accelerated mRNA decay of TLR4. Consequently, TLR4-mediated NF-κB signaling, a crucial component of the innate immune response, is suppressed by CSFV. Collectively, these data effectively highlight the viral evasion tactics, shedding light on potential antiviral strategies targeting METTL14 to curb CSFV infection.
Collapse
Affiliation(s)
- Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui-xin Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-huan Hu
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Ji-shan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bing-qian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mei-zhen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Pavesi A, Tiecco G, Rossi L, Sforza A, Ciccarone A, Compostella F, Lovatti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Inflammatory Response Associated with West Nile Neuroinvasive Disease: A Systematic Review. Viruses 2024; 16:383. [PMID: 38543749 PMCID: PMC10976239 DOI: 10.3390/v16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) infection is a seasonal arbovirosis with the potential to cause severe neurological disease. Outcomes of the infection from WNV depend on viral factors (e.g., lineage) and host-intrinsic factors (e.g., age, sex, immunocompromising conditions). Immunity is essential to control the infection but may also prove detrimental to the host. Indeed, the persistence of high levels of pro-inflammatory cytokines and chemokines is associated with the development of blood-brain barrier (BBB) damage. Due to the importance of the inflammatory processes in the development of West Nile neuroinvasive disease (WNND), we reviewed the available literature on the subject. METHODS According to the 2020 updated PRISMA guidelines, all peer-reviewed articles regarding the inflammatory response associated with WNND were included. RESULTS One hundred and thirty-six articles were included in the data analysis and sorted into three groups (in vitro on-cell cultures, in vivo in animals, and in humans). The main cytokines found to be increased during WNND were IL-6 and TNF-α. We highlighted the generally small quantity and heterogeneity of information about the inflammatory patterns associated with WNND. CONCLUSIONS Further studies are needed to understand the pathogenesis of WNND and to investigate the extent and the way the host inflammatory response either helps in controlling the infection or in worsening the outcomes. This might prove useful both for the development of target therapies and for the development of molecular markers allowing early identification of patients displaying an inflammatory response that puts them at a higher risk of developing neuroinvasive disease and who might thus benefit from early antiviral therapies.
Collapse
Affiliation(s)
- Alessandro Pavesi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Anita Sforza
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Federico Compostella
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Sofia Lovatti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| |
Collapse
|
9
|
Mundhra S, Bondre VP. Higher replication potential of West Nile virus governs apoptosis induction in human neuroblastoma cells. Apoptosis 2023:10.1007/s10495-023-01844-2. [PMID: 37186273 DOI: 10.1007/s10495-023-01844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 05/17/2023]
Abstract
The extent of neuronal cell damage caused by West Nile virus (WNV) infection governs the disease severity ranging from mild, febrile illness to fatal encephalitis. Availability of naturally occurring genetic variants is helpful to study viral factors governing differential pathogenesis. During WNV infection, apoptosis serves as a virulence determinant positively contributing to viral pathogenesis. We investigated the levels of apoptosis induced by a low neurovirulent WNV lineage 5 strain 804994 and a high neurovirulent lineage 1 strain 68856 in human neuroblastoma cells, IMR-32. Our investigations clearly show the correlation between higher multiplication capacities of 68856 with higher levels of cytopathology induced by apoptosis. We observed activation of both the extrinsic and intrinsic apoptotic pathways during WNV infection. Infection with higher neurovirulent strain resulted in higher upregulation of pro-apoptotic proteins including death receptors (DR), adaptor protein, BH3-only regulatory proteins and higher cleavage of initiator caspases of both pathways. These results suggest that the virulence of a WNV strain may correlate with its higher replication fitness and ability to cause more cellular damage.
Collapse
Affiliation(s)
- Sonal Mundhra
- Encephalitis Group, ICMR-National Institute of Virology, Pashan - Sus Road, Pune, Maharashtra, 411021, India
| | - Vijay P Bondre
- Encephalitis Group, ICMR-National Institute of Virology, Pashan - Sus Road, Pune, Maharashtra, 411021, India.
| |
Collapse
|
10
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Hao Y, Yang B, Yang J, Shi X, Yang X, Zhang D, Zhao D, Yan W, Chen L, Zheng H, Zhang K, Liu X. ZBP1: A Powerful Innate Immune Sensor and Double-Edged Sword in Host Immunity. Int J Mol Sci 2022; 23:ijms231810224. [PMID: 36142136 PMCID: PMC9499459 DOI: 10.3390/ijms231810224] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haixue Zheng
- Correspondence: (H.Z.); (K.Z.); Tel.: +86-15214078335 (K.Z.)
| | - Keshan Zhang
- Correspondence: (H.Z.); (K.Z.); Tel.: +86-15214078335 (K.Z.)
| | | |
Collapse
|
12
|
Cheng Y, Medina A, Yao Z, Basu M, Natekar JP, Lang J, Sanchez E, Nkembo MB, Xu C, Qian X, Nguyen PTT, Wen Z, Song H, Ming GL, Kumar M, Brinton MA, Li MMH, Tang H. Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. Cell Rep 2022; 39:110885. [PMID: 35649379 PMCID: PMC9230077 DOI: 10.1016/j.celrep.2022.110885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Physiological blood-tissue barriers play a critical role in separating the circulation from immune-privileged sites and denying access to blood-borne viruses. The mechanism of virus restriction by these barriers is poorly understood. We utilize induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (iBMECs) to study virus-blood-brain barrier (BBB) interactions. These iPSC-derived cells faithfully recapitulate a striking difference in in vivo neuroinvasion by two alphavirus isolates and are selectively permissive to neurotropic flaviviruses. A model of cocultured iBMECs and astrocytes exhibits high transendothelial electrical resistance and blocks non-neurotropic flaviviruses from getting across the barrier. We find that iBMECs constitutively express an interferon-induced gene, IFITM1, which preferentially restricts the replication of non-neurotropic flaviviruses. Barrier cells from blood-testis and blood-retinal barriers also constitutively express IFITMs that contribute to the viral resistance. Our application of a renewable human iPSC-based model for studying virus-BBB interactions reveals that intrinsic immunity at the barriers contributes to virus exclusion.
Collapse
Affiliation(s)
- Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Zhenlan Yao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Jianshe Lang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Egan Sanchez
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mezindia B Nkembo
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuyu Qian
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phuong T T Nguyen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
13
|
West Nile Virus Neuroinfection in Humans: Peripheral Biomarkers of Neuroinflammation and Neuronal Damage. Viruses 2022; 14:v14040756. [PMID: 35458486 PMCID: PMC9027124 DOI: 10.3390/v14040756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
Among emerging arthropod-borne viruses (arbovirus), West Nile virus (WNV) is a flavivirus that can be associated with severe neuroinvasive infections in humans. In 2018, the European WNV epidemic resulted in over 2000 cases, representing the most important arboviral epidemic in the European continent. Characterization of inflammation and neuronal biomarkers released during WNV infection, especially in the context of neuronal impairments, could provide insight into the development of predictive tools that could be beneficial for patient outcomes. We first analyzed the inflammatory signature in the serum of WNV-infected mice and found increased concentrations of several inflammatory cytokines. We next analyzed serum and cerebrospinal-fluid (CSF) samples from a cohort of patients infected by WNV between 2018 and 2019 in Hungary to quantify a large panel of inflammatory cytokines and neurological factors. We found higher levels of inflammatory cytokines (e.g., IL4, IL6, and IL10) and neuronal factors (e.g., BDNF, GFAP, MIF, TDP-43) in the sera of WNV-infected patients with neuroinvasive disease. Furthermore, the serum inflammatory profile of these patients persisted for several weeks after initial infection, potentially leading to long-term sequelae and having a deleterious effect on brain neurovasculature. This work suggests that early signs of increased serum concentrations of inflammatory cytokines and neuronal factors could be a signature underlying the development of severe neurological impairments. Biomarkers could play an important role in patient monitoring to improve care and prevent undesirable outcomes.
Collapse
|
14
|
Rothan HA, Kumari P, Stone S, Natekar JP, Arora K, Auroni TT, Kumar M. SARS-CoV-2 Infects Primary Neurons from Human ACE2 Expressing Mice and Upregulates Genes Involved in the Inflammatory and Necroptotic Pathways. Pathogens 2022; 11:pathogens11020257. [PMID: 35215199 PMCID: PMC8876293 DOI: 10.3390/pathogens11020257] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) have been extensively used to investigate the pathogenesis and tissue tropism of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Neuroinvasion and the replication of SARS-CoV-2 within the central nervous system (CNS) of K18-hACE2 mice is associated with increased mortality; although, the mechanisms by which this occurs remain unclear. In this study, we generated primary neuronal cultures from K18-hACE2 mice to investigate the effects of a SARS-CoV-2 infection. We also evaluated the immunological response to SARS-CoV-2 infection in the CNS of K18-hACE2 mice and mouse neuronal cultures. Our data show that neuronal cultures obtained from K18-hACE2 mice are permissive to SARS-CoV-2 infection and support productive virus replication. Furthermore, SARS-CoV-2 infection upregulated the expression of genes involved in innate immunity and inflammation, including IFN-α, ISG-15, CXCL10, CCL2, IL-6 and TNF-α, in the neurons and mouse brains. In addition, we found that SARS-CoV-2 infection of neurons and mouse brains activates the ZBP1/pMLKL-regulated necroptosis pathway. Together, our data provide insights into the neuropathogenesis of SARS-CoV-2 infection in K18-hACE2 mice.
Collapse
|
15
|
Zhang L, Jiao C, Liu L, Wang A, Tang L, Ren Y, Huang P, Xu J, Mao D, Liu L. NLRC5: A Potential Target for Central Nervous System Disorders. Front Immunol 2021; 12:704989. [PMID: 34220868 PMCID: PMC8250149 DOI: 10.3389/fimmu.2021.704989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotide oligomerization domain-like receptors (NLRs), a class of pattern recognition receptors, participate in the host’s first line of defense against invading pathogenic microorganisms. NLR family caspase recruitment domain containing 5 (NLRC5) is the largest member of the NLR family and has been shown to play an important role in inflammatory processes, angiogenesis, immunity, and apoptosis by regulating the nuclear factor-κB, type I interferon, and inflammasome signaling pathways, as well as the expression of major histocompatibility complex I genes. Recent studies have found that NLRC5 is also associated with neuronal development and central nervous system (CNS) diseases, such as CNS infection, cerebral ischemia/reperfusion injury, glioma, multiple sclerosis, and epilepsy. This review summarizes the research progress in the structure, expression, and biological characteristics of NLRC5 and its relationship with the CNS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cui Jiao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiping Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
17
|
Nuclear localisation of West Nile virus NS5 protein modulates host gene expression. Virology 2021; 559:131-144. [PMID: 33866234 DOI: 10.1016/j.virol.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The involvement of the nucleus during flavivirus infection has been observed in only a small number of cases and can be limited to primarily two viral proteins; the structural protein C and the RNA polymerase NS5. Previously we observed that by blocking nuclear transport, WNV strain Kunjin (WNVKUN) replication is severely affected and through mutation of the identified NLS in WNVKUN NS5 protein. In this study, we interrogated the potential nuclear functions of WNVKUN NS5 has on the host transcriptome, by means of RNA sequencing (RNAseq). In a direct comparison between wild type and mutant NS5, it can also be determined that the nuclear translocation of NS5 results in a significant down-regulation of host genes involved in the innate immune response. When compared to published RNAseq data from WNV infection, many of these genes were overlapping indicting the role of NS5 induced transcription during infection.
Collapse
|
18
|
Maximova OA, Sturdevant DE, Kash JC, Kanakabandi K, Xiao Y, Minai M, Moore IN, Taubenberger J, Martens C, Cohen JI, Pletnev AG. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 2021; 10:e62273. [PMID: 33599611 PMCID: PMC7891934 DOI: 10.7554/elife.62273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.
Collapse
Affiliation(s)
- Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel E Sturdevant
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - John C Kash
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Kishore Kanakabandi
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jeff Taubenberger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Craig Martens
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
19
|
Melamed S, Avraham R, Rothbard DE, Erez N, Israely T, Klausner Z, Futerman AH, Paran N, Vitner EB. Innate immune response in neuronopathic forms of Gaucher disease confers resistance against viral-induced encephalitis. Acta Neuropathol Commun 2020; 8:144. [PMID: 32831144 PMCID: PMC7443817 DOI: 10.1186/s40478-020-01020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Both monogenic diseases and viral infections can manifest in a broad spectrum of clinical phenotypes that range from asymptomatic to lethal, suggesting that other factors modulate disease severity. Here, we examine the interplay between the genetic neuronopathic Gaucher’s disease (nGD), and neuroinvasive Sindbis virus (SVNI) infection. Infection of nGD mice with SVNI had no influence on nGD severity. However, nGD mice were more resistant to SVNI infection. Significantly different inflammatory responses were seen in nGD brains when compared with SVNI brains: the inflammatory response in the nGD brains consisted of reactive astrocytes and microglia with no infiltrating macrophages, but the inflammatory response in the brains of SVNI-infected mice was characterized by infiltration of macrophages and altered activation of microglia and astrocytes. We suggest that the innate immune response activated in nGD confers resistance against viral infection of the CNS.
Collapse
|
20
|
Effect of bovine leukemia virus (BLV) infection on bovine mammary epithelial cells RNA-seq transcriptome profile. PLoS One 2020; 15:e0234939. [PMID: 32579585 PMCID: PMC7313955 DOI: 10.1371/journal.pone.0234939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023] Open
Abstract
Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.
Collapse
|
21
|
François B, Wittebole X, Ferrer R, Mira JP, Dugernier T, Gibot S, Derive M, Olivier A, Cuvier V, Witte S, Pickkers P, Vandenhende F, Garaud JJ, Sánchez M, Salcedo-Magguilli M, Laterre PF. Nangibotide in patients with septic shock: a Phase 2a randomized controlled clinical trial. Intensive Care Med 2020; 46:1425-1437. [PMID: 32468087 DOI: 10.1007/s00134-020-06109-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Nangibotide is a specific TREM-1 inhibitor that tempered deleterious host-pathogens interactions, restored vascular function, and improved survival, in animal septic shock models. This study evaluated the safety and pharmacokinetics of nangibotide and its effects on clinical and pharmacodynamic parameters in septic shock patients. METHODS This was a multicenter randomized, double-blind, two-stage study. Patients received either continuous infusion of nangibotide (0.3, 1.0, or 3.0 mg/kg/h) or placebo. Treatment began < 24 h after shock onset and continued for up to 5 days. Safety primary outcomes were adverse events (AEs), whether serious or not, and death. Exploratory endpoints evaluated nangibotide effects on pharmacodynamics, organ function, and mortality, and were analyzed according to baseline sTREM-1 concentrations. RESULTS Forty-nine patients were randomized. All treatment emergent AEs (TEAEs) were collected until Day 28. No significant differences were observed in TEAEs between treatment groups. No drug withdrawal linked to TEAE nor appearance of anti-drug antibodies were reported. Nangibotide pharmacokinetics appeared to be dose-proportional and clearance was dose-independent. Nangibotide did not significantly affect pharmacodynamic markers. Decrease in SOFA score LS mean change (± SE) from baseline to Day 5 in pooled nangibotide groups versus placebo was - 0.7 (± 0.85) in the randomized population and - 1.5 (± 1.12) in patients with high baseline plasma sTREM-1 concentrations (non-significant). This pattern was similar to organ support end points. CONCLUSION No significant increases in TEAEs were detected in nangibotide-treated patients versus placebo. These results encourage further evaluation of nangibotide and further exploration of plasma sTREM-1 concentrations as a predictive efficacy biomarker.
Collapse
Affiliation(s)
- Bruno François
- Medical-Surgical ICU Department and Inserm CIC1435 & UMR1092, CRICS-TRIGGERSEP Network, CHU Limoges, Limoges, France.
| | - Xavier Wittebole
- Department of Critical Care Medicine, St Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Ricard Ferrer
- ICU Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Sébastien Gibot
- Medical ICU Department, Hospital Central, CHU Nancy, Nancy, France.,Inserm U1116, Nancy Medical Faculty, Lorraine University, Nancy , France
| | | | | | | | | | - Peter Pickkers
- ICU Department, Radboudumc Hospital, Nijmegen, The Netherlands
| | | | | | - Miguel Sánchez
- ICU Department, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Pierre-François Laterre
- Department of Critical Care Medicine, St Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
22
|
de Oliveira Matos A, Dos Santos Dantas PH, Figueira Marques Silva-Sales M, Sales-Campos H. The role of the triggering receptor expressed on myeloid cells-1 (TREM-1) in non-bacterial infections. Crit Rev Microbiol 2020; 46:237-252. [PMID: 32326783 DOI: 10.1080/1040841x.2020.1751060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is a receptor of the innate immune system, expressed mostly by myeloid cells and primarily associated with pro- inflammatory responses. Although the exact nature of its ligands has not yet been fully elucidated, many microorganisms or danger signals have been proposed as inducers of its activation or the secretion of sTREM-1, the soluble form with putative anti-inflammatory effects. In the course of the 20 years since its first description, several studies have investigated the involvement of TREM-1 in bacterial infections. However, the number of studies describing the role of TREM-1 in fungal, viral and parasite-associated infections has only increased in the last few years, showing a diverse contribution of the receptor in these scenarios, with beneficial or detrimental activities depending on the context. Therefore, this review aims to discuss how TREM-1 may influence viral, fungal and parasitic infection outcomes, highlighting its potential as a therapeutic target and biomarker for diagnosis and prognosis of non-bacterial infectious diseases.
Collapse
|
23
|
Gokhale NS, McIntyre ABR, Mattocks MD, Holley CL, Lazear HM, Mason CE, Horner SM. Altered m 6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Mol Cell 2020; 77:542-555.e8. [PMID: 31810760 PMCID: PMC7007864 DOI: 10.1016/j.molcel.2019.11.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Melissa D Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher L Holley
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
24
|
Káňová E, Tkáčová Z, Bhide K, Kulkarni A, Jiménez-Munguía I, Mertinková P, Drážovská M, Tyagi P, Bhide M. Transcriptome analysis of human brain microvascular endothelial cells response to Neisseria meningitidis and its antigen MafA using RNA-seq. Sci Rep 2019; 9:18763. [PMID: 31822804 PMCID: PMC6904618 DOI: 10.1038/s41598-019-55409-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023] Open
Abstract
Interaction of Neisseria meningitidis (NM) with human brain microvascular endothelial cells (hBMECs) initiates of multiple cellular processes, which allow bacterial translocation across the blood-brain barrier (BBB). NM is equipped with several antigens, which interacts with the host cell receptors. Recently we have shown that adhesin MafA (UniProtKB-X5EG71), relatively less studied protein, is one of those surface exposed antigens that adhere to hBMECs. The present study was designed to comprehensively map the undergoing biological processes in hBMECs challenged with NM or MafA using RNA sequencing. 708 and 726 differentially expressed genes (DEGs) were identified in hBMECs exposed to NM and MafA, respectively. Gene ontology analysis of the DEGs revealed that several biological processes, which may alter the permeability of BBB, were activated. Comparative analysis of DEGs revealed that MafA, alike NM, might provoke TLR-dependent pathway and augment cytokine response. Moreover, both MafA and NM were able to induce genes involved in cell surface modifications, endocytosis, extracellular matrix remodulation and anoikis/apoptosis. In conclusion, this study for the first time describes effect of NM on the global gene expression in hBMECs using high-throughput RNA-seq. It also presents ability of MafA to induce gene expression, which might aid NM in breaching the BBB.
Collapse
Affiliation(s)
- Evelína Káňová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Monika Drážovská
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Punit Tyagi
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia. .,Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
25
|
Vidaña B, Johnson N, Fooks AR, Sánchez‐Cordón PJ, Hicks DJ, Nuñez A. West Nile Virus spread and differential chemokine response in the central nervous system of mice: Role in pathogenic mechanisms of encephalitis. Transbound Emerg Dis 2019; 67:799-810. [DOI: 10.1111/tbed.13401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Beatriz Vidaña
- Pathology Department, Animal and Plant Health Agency APHA‐Weybridge AddlestoneKT15 3NBUK
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency APHA,‐Weybridge AddlestoneKT15 3NBUK
| | - Anthony R. Fooks
- Virology Department, Animal and Plant Health Agency APHA,‐Weybridge AddlestoneKT15 3NBUK
| | | | - Daniel J. Hicks
- Pathology Department, Animal and Plant Health Agency APHA‐Weybridge AddlestoneKT15 3NBUK
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency APHA‐Weybridge AddlestoneKT15 3NBUK
| |
Collapse
|
26
|
Huang B, West N, Vider J, Zhang P, Griffiths RE, Wolvetang E, Burtonclay P, Warrilow D. Inflammatory responses to a pathogenic West Nile virus strain. BMC Infect Dis 2019; 19:912. [PMID: 31664929 PMCID: PMC6819652 DOI: 10.1186/s12879-019-4471-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022] Open
Abstract
Background West Nile virus (WNV) circulates across Australia and was referred to historically as Kunjin virus (WNVKUN). WNVKUN has been considered more benign than other WNV strains circulating globally. In 2011, a more virulent form of the virus emerged during an outbreak of equine arboviral disease in Australia. Methods To better understand the emergence of this virulent phenotype and the mechanism by which pathogenicity is manifested in its host, cells were infected with either the virulent strain (NSW2012), or less pathogenic historical isolates, and their innate immune responses compared by digital immune gene expression profiling. Two different cell systems were used: a neuroblastoma cell line (SK-N-SH cells) and neuronal cells derived from induced pluripotent stem cells (iPSCs). Results Significant innate immune gene induction was observed in both systems. The NSW2012 isolate induced higher gene expression of two genes (IL-8 and CCL2) when compared with cells infected with less pathogenic isolates. Pathway analysis of induced inflammation-associated genes also indicated generally higher activation in infected NSW2012 cells. However, this differential response was not paralleled in the neuronal cultures. Conclusion NSW2012 may have unique genetic characteristics which contributed to the outbreak. The data herein is consistent with the possibility that the virulence of NSW2012 is underpinned by increased induction of inflammatory genes.
Collapse
Affiliation(s)
- Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia
| | - Nic West
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Ping Zhang
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Rebecca E Griffiths
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Peter Burtonclay
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia.
| |
Collapse
|
27
|
Rothan HA, Arora K, Natekar JP, Strate PG, Brinton MA, Kumar M. Z-DNA-Binding Protein 1 Is Critical for Controlling Virus Replication and Survival in West Nile Virus Encephalitis. Front Microbiol 2019; 10:2089. [PMID: 31572318 PMCID: PMC6749019 DOI: 10.3389/fmicb.2019.02089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 01/31/2023] Open
Abstract
West Nile virus (WNV), a neurotropic flavivirus, is the leading cause of viral encephalitis in the United States. Recently, Zika virus (ZIKV) infections have caused serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome and microcephaly. Z-DNA binding protein 1 (ZBP1) is a cytoplasmic sensor that that has been shown to play a significant role in initiating a robust immune response. We previously reported that WNV and ZIKV infections induce dramatic up-regulation of ZBP1 in mouse brains as well as in infected primary mouse cells. Herein, we show the critical role of ZBP1 in restricting the pathogenesis of WNV and ZIKV infections. Deletion of ZBP1 resulted in significantly higher morbidity and mortality after infection with a pathogenic WNV NY99 strain in mice. No mortality was observed in wild-type (WT) mice infected with the non-pathogenic WNV strain, Eg101. Interestingly, infection of ZBP1-/- mice with WNV Eg101 was lethal resulting in 100% mortality, suggesting that ZBP1 is required for survival after WNV infection. Viremia and brain viral load were significantly higher in ZBP1-/- mice compared to WT mice. In addition, protein levels of interferon (IFN)-α, and inflammatory cytokines and chemokines were significantly higher in the serum and brains of infected ZBP1-/- mice compared to the WT mice. Primary mouse cortical neurons and mouse embryonic fibroblasts (MEFs) derived from ZBP1-/- mice produced higher virus titers compared to WT cells after infection with WNV NY99 and WNV Eg101. Similarly, neurons and MEFs lacking ZBP1 exhibited significantly enhanced replication of PRVABC59 (Asian) and MR766 (African) ZIKV compared to WT cells. The knockout of ZBP1 function in MEFs inhibited ZBP1-dependent virus-induced cell death. In conclusion, these data reveal that ZBP1 restricts WNV and ZIKV production in mouse cells and is required for survival of a peripheral WNV infection in mice.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Janhavi P Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Philip G Strate
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Margo A Brinton
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
28
|
HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog 2019; 15:e1007883. [PMID: 31260499 PMCID: PMC6625740 DOI: 10.1371/journal.ppat.1007883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/12/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) affects an estimated 35 million and 75 million individuals worldwide, respectively. These viruses induce persistent inflammation which often drives the development or progression of organ-specific diseases and even cancer including Hepatocellular Carcinoma (HCC). In this study, we sought to examine inflammatory responses following HIV or HCV stimulation of macrophages or Kupffer cells (KCs), that may contribute to virus mediated inflammation and subsequent liver disease. KCs are liver-resident macrophages and reports have provided evidence that HIV can stimulate and infect them. In order to characterize HIV-intrinsic innate immune responses that may occur in the liver, we performed microarray analyses on KCs following HIV stimulation. Our data demonstrate that KCs upregulate several innate immune signaling pathways involved in inflammation, myeloid cell maturation, stellate cell activation, and Triggering Receptor Expressed on Myeloid cells 1 (TREM1) signaling. TREM1 is a member of the immunoglobulin superfamily of receptors and it is reported to be involved in systemic inflammatory responses due to its ability to amplify activation of host defense signaling pathways. Our data demonstrate that stimulation of KCs with HIV or HCV induces the upregulation of TREM1. Additionally, HIV viral proteins can upregulate expression of TREM1 mRNA through NF-кB signaling. Furthermore, activation of the TREM1 signaling pathway, with a targeted agonist, increased HIV or HCV-mediated inflammatory responses in macrophages due to enhanced activation of the ERK1/2 signaling cascade. Silencing TREM1 dampened inflammatory immune responses elicited by HIV or HCV stimulation. Finally, HIV and HCV infected patients exhibit higher expression and frequency of TREM1 and CD68 positive cells. Taken together, TREM1 induction by HIV contributes to chronic inflammation in the liver and targeting TREM1 signaling may be a therapeutic option to minimize HIV induced chronic inflammation. Although HIV antiviral therapy has limited the progression to AIDS in infected patients, there is still significant morbidity and mortality from HIV-driven diseases due to sustained inflammation. In this study, we sought to elucidate how HIV and HCV could impact inflammation in the liver and cause progressive liver disease that can eventually lead to cirrhosis and liver cancer. We found that HIV upregulates the inflammatory response amplifier, TREM1, in primary Kupffer Cells (KCs) that are liver-resident macrophages. Enhanced TREM1 expression subsequently is involved in augmented immune responses triggered by HIV or HCV. Additionally, our data demonstrates that blocking TREM1 expression reduces inflammatory responses mediated by HIV or HCV stimulation. Ultimately, our understanding of this mechanism may yield additional therapeutic strategies to help infected patients and give insight into inflammation driven liver cancer.
Collapse
|
29
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
30
|
Integrated MicroRNA and mRNA Profiling in Zika Virus-Infected Neurons. Viruses 2019; 11:v11020162. [PMID: 30781519 PMCID: PMC6410042 DOI: 10.3390/v11020162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a group of small RNAs involved in the regulation of a wide variety of cellular and physiological processes. In this study, we analyzed digital miRNA and mRNA profiles in ZIKV-infected primary mouse neurons using the nCounter technology. A total of 599 miRNAs and 770 mRNAs were examined. We demonstrate that ZIKV infection causes global downregulation of miRNAs with only few upregulated miRNAs. ZIKV-modulated miRNAs including miR-155, miR-203, miR-29a, and miR-124-3p are known to play critical role in flavivirus infection, anti-viral immunity and brain injury. ZIKV infection also results in downregulation of miRNA processing enzymes. In contrast, ZIKV infection induces dramatic upregulation of anti-viral, inflammatory and apoptotic genes. Furthermore, our data demonstrate an inverse correlation between ZIKV-modulated miRNAs and target host mRNAs induced by ZIKV. Biofunctional analysis revealed that ZIKV-modulated miRNAs and mRNAs regulate the pathways related to neurological development and neuroinflammatory responses. Functional studies targeting specific miRNA are warranted to develop therapeutics for the management of ZIKV neurological disease.
Collapse
|
31
|
Krause K, Azouz F, Nakano E, Nerurkar VR, Kumar M. Deletion of Pregnancy Zone Protein and Murinoglobulin-1 Restricts the Pathogenesis of West Nile Virus Infection in Mice. Front Microbiol 2019; 10:259. [PMID: 30814992 PMCID: PMC6381297 DOI: 10.3389/fmicb.2019.00259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/31/2019] [Indexed: 01/02/2023] Open
Abstract
West Nile virus (WNV) is an enveloped positive-stranded RNA virus that causes meningitis, encephalitis, and acute flaccid paralysis in humans. There are no therapeutic agents available for use against WNV infection. Alpha-2 macroglobulin (A2M) is a major plasma proteinase inhibitor that also has important role in immune modulation. In mice, pregnancy zone protein (PZP) and murinoglobulin-1 (MUG-1) are two close homologous of human A2M. In this study, we investigated the role of PZP and MUG-1 proteins in the pathogenesis of WNV infection in mice. Adult C57BL/6J wild-type and PZP/MUG-1 double knockout (DKO) mice were inoculated subcutaneously with WNV and mortality, virus burden, and immune responses were analyzed. Infection of wild-type (WT) mice with WNV resulted in significantly high morbidity and mortality. In comparison, no mortality was observed in DKO mice, suggesting that PZP and MUG-1 play a deleterious role in WNV infection. Increased survival in WNV-infected DKO mice was associated with significantly low viral burden in serum, spleen, kidney, and brain compared to WT mice. In addition, significantly reduced levels of type 1 interferon and WNV-specific antibodies were observed in the DKO mice compared to WT mice. We further demonstrated that protein levels of inflammatory cytokines and chemokines in the serum, spleen, and brain were significantly reduced in DKO mice compared to WT mice. Collectively our data demonstrate that lack of PZP and MUG-1 restricts the pathogenesis of WNV infection in mice.
Collapse
Affiliation(s)
- Keeton Krause
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Francine Azouz
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Eileen Nakano
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
32
|
Differential Response Following Infection of Mouse CNS with Virulent and Attenuated Vaccinia Virus Strains. Vaccines (Basel) 2019; 7:vaccines7010019. [PMID: 30759813 PMCID: PMC6466266 DOI: 10.3390/vaccines7010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Viral infections of the central nervous system (CNS) lead to a broad range of pathologies. CNS infections with Orthopox viruses have been mainly documented as an adverse reaction to smallpox vaccination with vaccinia virus. To date, there is insufficient data regarding the mechanisms underlying pathological viral replication or viral clearance. Therefore, informed risk assessment of vaccine adverse reactions or outcome prediction is limited. This work applied a model of viral infection of the CNS, comparing neurovirulent with attenuated strains. We followed various parameters along the disease and correlated viral load, morbidity, and mortality with tissue integrity, innate and adaptive immune response and functionality of the blood–brain barrier. Combining these data with whole brain RNA-seq analysis performed at different time points indicated that neurovirulence is associated with host immune silencing followed by induction of tissue damage-specific pathways. In contrast, brain infection with attenuated strains resulted in rapid and robust induction of innate and adaptive protective immunity, followed by viral clearance and recovery. This study significantly improves our understanding of the mechanisms and processes determining the consequence of viral CNS infection and highlights potential biomarkers associated with such outcomes.
Collapse
|
33
|
Zhang D, Han J, Li Y, Yuan B, Zhou J, Cheong L, Li Y, Lu C, Su X. Tuna Oil Alleviates d-Galactose Induced Aging in Mice Accompanied by Modulating Gut Microbiota and Brain Protein Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5510-5520. [PMID: 29656644 DOI: 10.1021/acs.jafc.8b00446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To discern whether tuna oil modulates the expression of brain proteins and the gut microbiota structure during aging induced by d-galactose, we generated an aging mouse model with d-galactose treatment, and the mice showed aging and memory deterioration symptoms according to physiological and biochemical indices. Treatment with different doses of tuna oil alleviated the symptoms; the high dose showed a better effect. Subsequently, brain proteomic analysis showed the differentially expressed proteins were involved in damaged synaptic system repairment and signal transduction system enhancement. In addition, tuna oil treatment restored the diversity of gut microbiota, 27 key operational taxonomic units, which were identified using a redundancy analysis and were significantly correlated with at least one physiological index and three proteins or genes. These findings suggest that the combination of proteomics and gut microbiota is an effective strategy to gain novel insights regarding the effect of tuna oil treatment on the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Dijun Zhang
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Jiaojiao Han
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Yanyan Li
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| | - Bei Yuan
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Jun Zhou
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Lingzhi Cheong
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Ye Li
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Chenyang Lu
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Xiurong Su
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| |
Collapse
|
34
|
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus. Viruses 2018; 10:v10040193. [PMID: 29652824 PMCID: PMC5923487 DOI: 10.3390/v10040193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Collapse
|
35
|
Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection. J Neurovirol 2017; 24:75-87. [PMID: 29147886 PMCID: PMC5790856 DOI: 10.1007/s13365-017-0596-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.
Collapse
|
36
|
Lim SM, van den Ham HJ, Oduber M, Martina E, Zaaraoui-Boutahar F, Roose JM, van IJcken WFJ, Osterhaus ADME, Andeweg AC, Koraka P, Martina BEE. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus. Front Microbiol 2017; 8:1556. [PMID: 28861067 PMCID: PMC5562671 DOI: 10.3389/fmicb.2017.01556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.
Collapse
Affiliation(s)
| | | | - Minoushka Oduber
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | | | | | - Jeroen M Roose
- Artemis One Health Research FoundationDelft, Netherlands
| | | | - Albert D M E Osterhaus
- Artemis One Health Research FoundationDelft, Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary MedicineHannover, Germany
| | - Arno C Andeweg
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Penelope Koraka
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Byron E E Martina
- Artemis One Health Research FoundationDelft, Netherlands.,Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| |
Collapse
|
37
|
Newhouse DJ, Hofmeister EK, Balakrishnan CN. Transcriptional response to West Nile virus infection in the zebra finch ( Taeniopygia guttata). ROYAL SOCIETY OPEN SCIENCE 2017; 4:170296. [PMID: 28680683 PMCID: PMC5493925 DOI: 10.1098/rsos.170296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/22/2017] [Indexed: 05/04/2023]
Abstract
West Nile virus (WNV) is a widespread arbovirus that imposes a significant cost to both human and wildlife health. WNV exists in a bird-mosquito transmission cycle in which passerine birds act as the primary reservoir host. As a public health concern, the mammalian immune response to WNV has been studied in detail. Little, however, is known about the avian immune response to WNV. Avian taxa show variable susceptibility to WNV and what drives this variation is unknown. Thus, to study the immune response to WNV in birds, we experimentally infected captive zebra finches (Taeniopygia guttata). Zebra finches provide a useful model, as like many natural avian hosts they are moderately susceptible to WNV and thus provide sufficient viremia to infect mosquitoes. We performed RNAseq in spleen tissue during peak viremia to provide an overview of the transcriptional response. In general, we find strong parallels with the mammalian immune response to WNV, including upregulation of five genes in the Rig-I-like receptor signalling pathway, and offer insights into avian-specific responses. Together with complementary immunological assays, we provide a model of the avian immune response to WNV and set the stage for future comparative studies among variably susceptible populations and species.
Collapse
Affiliation(s)
- Daniel J. Newhouse
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Author for correspondence: Daniel J. Newhouse e-mail:
| | - Erik K. Hofmeister
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| | | |
Collapse
|
38
|
Kumar M, Krause KK, Azouz F, Nakano E, Nerurkar VR. A guinea pig model of Zika virus infection. Virol J 2017; 14:75. [PMID: 28399888 PMCID: PMC5387205 DOI: 10.1186/s12985-017-0750-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemic of Zika virus (ZIKV). Here we report that immunocompetent guinea pigs are susceptible to infection by a contemporary American strain of ZIKV. METHODS Dunkin-Hartley guinea pigs were inoculated with 106 plaque-forming units of ZIKV via subcutaneous route and clinical signs were observed. Viremia, viral load in the tissues, anti-ZIKV neutralizing antibody titer, and protein levels of multiple cytokine and chemokines were analyzed using qRT-PCR, plaque assay, plaque reduction neutralization test (PRNT) and multiplex immunoassay. RESULTS Upon subcutaneous inoculation with PRVABC59 strain of ZIKV, guinea pigs demonstrated clinical signs of infection characterized by fever, lethargy, hunched back, ruffled fur, and decrease in mobility. ZIKV was detected in the whole blood and serum using qRT-PCR and plaque assay. Anti-ZIKV neutralizing antibody was detected in the infected animals using PRNT. ZIKV infection resulted in a dramatic increase in protein levels of multiple cytokines, chemokines and growth factors in the serum. ZIKV replication was observed in spleen and brain, with the highest viral load in the brain. This data demonstrate that after subcutaneous inoculation, the contemporary ZIKV strain is neurotropic in guinea pigs. CONCLUSION The guinea pig model described here recapitulates various clinical features and viral kinetics observed in ZIKV-infected patients, and therefore may serve as a model to study ZIKV pathogenesis, including pregnancy outcomes and for evaluation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| | - Keeton K Krause
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| | - Francine Azouz
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| | - Eileen Nakano
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| |
Collapse
|
39
|
Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol 2016; 20:119-128. [PMID: 27792906 DOI: 10.1016/j.coviro.2016.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells.
Collapse
Affiliation(s)
- Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|