1
|
Nadhan R, Patra D, Krishnan N, Rajan A, Gopala S, Ravi D, Srinivas P. Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur J Pharmacol 2021; 890:173621. [PMID: 33068588 PMCID: PMC7554476 DOI: 10.1016/j.ejphar.2020.173621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
In this perspective, we propose to leverage reactive oxygen species (ROS) induction as a potential therapeutic measure against viral infections. Our rationale for targeting RNA viral infections by pro-oxidants is routed on the mechanistic hypothesis that ROS based treatment paradigm could impair RNA integrity faster than the other macromolecules. Though antiviral drugs with antioxidant properties confer potential abilities for preventing viral entry, those with pro-oxidant properties could induce the degradation of nascent viral RNA within the host cells, as RNAs are highly prone to ROS mediated degradation than DNA/proteins. We have previously established that Plumbagin is a highly potent ROS inducer, which acts through shifting of the host redox potential. Besides, it has been reported that Plumbagin treatment has the potential for interrupting viral RNA replication within the host cells. Since the on-going Corona Virus Disease - 2019 (COVID-19) global pandemic mediated by Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) exhibits high infectivity, the development of appropriate antiviral therapeutic strategies remains to be an urgent unmet race against time. Therefore, additional experimental validation is warranted to determine the appropriateness of repurposable drug candidates, possibly ROS inducers, for fighting the pandemic which could lead to saving many lives from being lost to COVID-19.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Dipyaman Patra
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Neethu Krishnan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Arathi Rajan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
2
|
Yin Z, Zhang J, Chen L, Guo Q, Yang B, Zhang W, Kang W. Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6940953. [PMID: 33344645 PMCID: PMC7725562 DOI: 10.1155/2020/6940953] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Plumbagin (PLB), a natural naphthoquinone constituent isolated from the roots of the medicinal plant Plumbago zeylanica L., exhibited anticancer activity against a variety of cancer cell lines including breast cancer, hepatoma, leukemia, melanoma, prostate cancer, brain tumor, tongue squamous cell carcinoma, esophageal cancer, oral squamous cell carcinoma, lung cancer, kidney adenocarcinoma, cholangiocarcinoma, gastric cancer, lymphocyte carcinoma, osteosarcoma, and canine cancer. PLB played anticancer activity via many molecular mechanisms, such as targeting apoptosis, autophagy pathway, cell cycle arrest, antiangiogenesis pathway, anti-invasion, and antimetastasis pathway. Among these signaling pathways, the key regulatory genes regulated by PLB were NF-kβ, STAT3, and AKT. PLB also acted as a potent inducer of reactive oxygen species (ROS), suppressor of cellular glutathione, and novel proteasome inhibitor, causing DNA double-strand break by oxidative DNA base damage. This review comprehensively summarizes the anticancer activity and mechanism of PLB.
Collapse
Affiliation(s)
- Zhenhua Yin
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Juanjuan Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Lin Chen
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Qingfeng Guo
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Baocheng Yang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Wei Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Wenyi Kang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Nadhan R, Vaman JV, Sengodan SK, Hemalatha SK, Chellappan N, Sadasivan S, Pasuthottiyil Varkey A, Yesodharan S, Raji Sathyanpillai K, Bhuvaneswari Venugopal AK, Prameelakumari Sreenivasan S, Rajan A, Latha NR, Varghese GR, Thankappan R, Achyutuni S, Sreekumar Usha JD, Vijayamma Anilkumar T, Srinivas P. BRCA1 promoter hypermethylation in human placenta: a hidden link with β-hCG expression. Carcinogenesis 2020; 41:611-624. [PMID: 31219560 DOI: 10.1093/carcin/bgz117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 01/26/2023] Open
Abstract
Gestational trophoblastic diseases (GTD) are group of pregnancy-related tumors characterized by abnormal levels of 'β-hCG' with higher incidence in South-East Asia, especially India. Our laboratory has reported that wild-type BRCA1 transcriptionally regulates β-hCG in triple negative breast cancers (TNBCs). These factors culminated into analysis of BRCA1 status in GTD, which would emanate into elucidation of BRCA1- β-hCG relationship and unraveling etio-pathology of GTD. BRCA1 level in GTD is down-regulated due to the over-expression of DNMT3b and subsequent promoter hypermethylation, when compared to the normal placentae accompanied with its shift in localization. There is an inverse correlation of serum β-hCG levels with BRCA1 mRNA expression. The effects of methotrexate (MTX), which is the first-line chemotherapeutic used for GTD treatment, when analyzed in comparison with plumbagin (PB) revealed that PB alone is efficient than MTX alone or MTX-PB in combination, in showing selective cytotoxicity against GTD. Interestingly, PB increases BRCA1 levels post-treatment, altering DNMT3b levels and resultant BRCA1 promoter methylation. Also, cohort study analyzed the incidence of GTD at Sree Avittom Thirunal (SAT) Hospital, Thiruvananthapuram, which points out that 11.5% of gestational trophoblastic neoplasia (GTN) cases were referred to Regional Cancer Centre, Thiruvananthapuram, for examination of breast lumps. This has lend clues to supervene the risk of GTD patients towards BRCA1-associated diseases and unveil novel therapeutic for GTD, a plant-derived naphthoquinone, PB, already reported as selectively cytotoxic against BRCA1 defective tumors.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Jayashree Vijaya Vaman
- Department of Obstetrics and Gynecology, SAT Hospital, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Satheesh Kumar Sengodan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, USA
| | - Sreelatha Krishnakumar Hemalatha
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Nirmala Chellappan
- Department of Obstetrics and Gynecology, SAT Hospital, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Santha Sadasivan
- Department of Pathology, Government Medical College, Thiruvananthapuram, Kerala, India
| | | | - Sreelekha Yesodharan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | - Arathi Rajan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neetha Rajan Latha
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Geetu Rose Varghese
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ratheeshkumar Thankappan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Research and Development Wing, Life Cell International Pvt Ltd, Chennai, Tamil Nadu, India
| | - Sarada Achyutuni
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | - Thapasimuthu Vijayamma Anilkumar
- Department of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Sengodan SK, Hemalatha SK, Nadhan R, Somanathan T, Mathew AP, Chil A, Kopczynski J, Nair RS, Kumar JM, Srinivas P. β-hCG-induced mutant BRCA1 ignites drug resistance in susceptible breast tissue. Carcinogenesis 2020; 40:1415-1426. [PMID: 30963174 DOI: 10.1093/carcin/bgz070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/05/2019] [Indexed: 11/14/2022] Open
Abstract
β-hCG expression in breast cancer is highly controversial with reports supporting both protective and tumorigenic effects. It has also been reported that risk of breast cancer at an early age is increased with full-term pregnancies if a woman is a BRCA1 mutation carrier. We have already demonstrated that BRCA1-defective cells express high levels of β-hCG and that when BRCA1 is restored, β-hCG level is reduced. Also, BRCA1 can bind to the promoter and reduce the levels of β-hCG. β-hCG induces tumorigenicity in BRCA1-defective cells by directly binding to TGFBRII and induces TGFBRII-mediated cell proliferation. In this study, we analyzed the mechanism of action of β-hCG on BRCA1 expression and its influence on drug sensitivity in breast cancer cells. We demonstrate that β-hCG induces mutant BRCA1 protein expression in BRCA1 mutant cells; however, in BRCA1 wild-type cells, β-hCG reduced wild-type BRCA1 protein expression. Transcriptionally, β-hCG could induce Slug/LSD1-mediated repression of wild-type and mutant BRCA1 messenger RNA levels. However, β-hCG induces HSP90-mediated stabilization of mutant BRCA1 and hence the overexpression of mutant BRCA1 protein, resulting in partial restoration of homologous recombination repair of damaged DNA. This contributes to drug resistance to HSP90 inhibitor 17AAG in BRCA1-defective cancer cells. A combination of HSP90 inhibitor and TGFBRII inhibitor has shown to sensitize β-hCG expressing BRCA1-defective breast cancers to cell death. Targeting the β-hCG-HSP90-TGFBRII axis could prove an effective treatment strategy for BRCA1-mutated breast tumors.
Collapse
Affiliation(s)
- Satheesh Kumar Sengodan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sreelatha K Hemalatha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Thara Somanathan
- Department of Pathology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Arun Peter Mathew
- Department of Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Arkadiusz Chil
- Department of Gynecologic Oncology, Kielce Cancer Center, Kielce, Poland
| | | | - Rakesh Sathish Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Oncology Research, Division of Clinical Oncology, Department of Surgery, University of Illinois at Chicago, IL, USA
| | | | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Tu Z, Mu X, Chen X, Geng Y, Zhang Y, Li Q, Gao R, Liu T, Wang Y, He J. Dibutyl phthalate exposure disrupts the progression of meiotic prophase I by interfering with homologous recombination in fetal mouse oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:388-398. [PMID: 31158667 DOI: 10.1016/j.envpol.2019.05.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Dibutyl phthalate (DBP), one of the most widely used plasticizers, is a known environmental endocrine disruptor that impairs male and female fertility. In this study, oral administration of DBP was given to pregnant mice on 14.5 days post coitus (dpc) for 3 days; and additionally, DBP was added into the culture of 14.5 dpc fetal ovaries for 3 days. DBP exposure during gestation disturbed the progression of meiotic prophase I of mouse oocytes, specifically from the zygotene to pachytene stages. Meanwhile, the DBP-exposed pachytene oocytes showed increased homologous recombination sites and unrepaired DNA damage. Furthermore, DBP caused DNA damage by increasing oxidative stress, decreased the expression of multiple critical meiotic regulators, and consequently induced oocyte apoptosis. Moreover, the effect of DBP on meiosis I prophase involved estrogen receptors α and β. Collectively, these results demonstrated a set of meiotic defects in DBP-exposed fetal oocytes. As aberrations in homologous recombination can result in aneuploid gametes and embryos, this study provides new support for the deleterious effects of phthalates.
Collapse
Affiliation(s)
- Zhihan Tu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qingying Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
6
|
Kawiak A, Domachowska A, Lojkowska E. Plumbagin Increases Paclitaxel-Induced Cell Death and Overcomes Paclitaxel Resistance in Breast Cancer Cells through ERK-Mediated Apoptosis Induction. JOURNAL OF NATURAL PRODUCTS 2019; 82:878-885. [PMID: 30810041 DOI: 10.1021/acs.jnatprod.8b00964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ERK is a component of mitogen-activated protein kinases that controls a range of cellular processes including cell proliferation and survival. The upregulation of ERK has been associated with apoptosis inhibition in response to various stimuli including chemotherapeutic agents. Research has suggested that the upregulation of ERK signaling by the anticancer agent paclitaxel leads to acquired resistance of cells to this compound. The presented research focused on determining the role of plumbagin, a naturally derived naphthoquinone, in the sensitization of breast cancer cells to paclitaxel-induced cell death and the involvement of ERK signaling in this process. The results of the study indicated that plumbagin increases the sensitivity of breast cancer cells to paclitaxel. Moreover, a synergistic effect between plumbagin and paclitaxel was observed. Plumbagin was shown to decrease levels of phosphorylated ERK in breast cancer cells and abrogated paclitaxel-induced ERK phosphorylation. The role of ERK in plumbagin-mediated sensitization of breast cancer cells to paclitaxel was shown through the enhancement of the synergistic effect between compounds in cells with decreased ERK expression. Furthermore, plumbagin reduced p-ERK levels in paclitaxel-resistant breast cancer cells and resensitized paclitaxel-resistant cells to this compound. These results imply that plumbagin inhibits ERK activation in breast cancer cells, which plays a role in the sensitization of cells to paclitaxel-induced cell death.
Collapse
Affiliation(s)
- Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| | - Anna Domachowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| |
Collapse
|
7
|
Wang T, Qiao H, Zhai Z, Zhang J, Tu J, Zheng X, Qian N, Zhou H, Lu E, Tang T. Plumbagin Ameliorates Collagen-Induced Arthritis by Regulating Treg/Th17 Cell Imbalances and Suppressing Osteoclastogenesis. Front Immunol 2019; 9:3102. [PMID: 30671063 PMCID: PMC6333053 DOI: 10.3389/fimmu.2018.03102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Objective: Plumbago zeylanica L. (with plumbagin as its active ingredients) has been used for centuries to treat conditions such as joint swelling, fractures, and bacterial infections, suggesting that it possesses anti-inflammatory and immunosuppressive properties. In the present study, we evaluated the potential anti-arthritic activity and related mechanisms of plumbagin. Methods: Collagen-induced arthritis (CIA) was initiated in Wistar rats with collagen type II. Plumbagin (2 and 6 mg/kg) was orally administered to rats with CIA from day 12 to day 32 post immunization. The effects of plumbagin on arthritis progression were assessed by paw swelling, clinical scoring, and histologic analysis. The percentage of Treg and Th17 were defined by flow cytometry or immunofluorescence (IF) staining. Bone erosion and resorption were assessed by micro-CT and histomorphometric analysis. Osteoclast differentiation was further determined by in vitro osteoclastogenesis assay. The molecular docking assay was used to determine the potential binding site of plumbagin. Results: Treatment with plumbagin significantly inhibited arthritis development, as well as suppressed the local and systemic inflammation. Plumbagin reciprocally regulated pro-inflammatory Th17 cell and immunosuppressive Treg cell populations. In addition, plumbagin protected inflammation-induced bone loss by inhibiting osteoclast formation and activity. Plumbagin markedly suppressed RANKL-stimulated osteoclast-specific gene expression by repressing NF-κB signaling activation and MAP kinase phosphorylation. Further study via molecular docking assay demonstrated that plumbagin bound to MET169 of JNK kinase and LYS138 and SER183 of p38 kinase. Conclusion: Plumbagin not only attenuates the immune-induced arthritis by inhibiting inflammation, but also protects bone erosion by directly inhibiting osteoclast formation and activity. These data suggest plumbagin is a promising new candidate drug for treating inflammatory joint diseases.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jinwen Tu
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Xinyi Zheng
- Department of Stomatology, Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Department of Orthopaedic Surgery, Shanghai Institute of Traumatology and Orthopaedics, Shanghai, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Eryi Lu
- Department of Stomatology, Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
De U, Son JY, Jeon Y, Ha SY, Park YJ, Yoon S, Ha KT, Choi WS, Lee BM, Kim IS, Kwak JH, Kim HS. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food Chem Toxicol 2019; 123:492-500. [PMID: 30458268 DOI: 10.1016/j.fct.2018.11.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthaquinone) has displayed antitumor activity in vitro and in animal models; however, the underlying molecular mechanisms have not been fully explored. The aim of this study was to investigate the anticancer effects of plumbagin isolated from Nepenthes alata against MCF-7 breast cancer cells. We examined the cytotoxicity, cell cycle regulation, apoptotic cell death, and generation of intracellular reactive oxygen species (ROS) in MCF-7 cells. Plumbagin exhibited potent cytotoxicity in MCF-7 cells (wild-type p53) compared to that in SK-OV-3 (null-type) human epithelial ovarian cancer cells. Specifically, plumbagin upregulated the expression of p21CIP1/WAF1 in MCF-7 cells, causing cell cycle arrest in the G2/M phase through inhibition of cyclin B1 levels. Plumbagin also significantly increased the ratio of Bax/Bcl-2 and release of cytochrome c, resulting in apoptotic cell death in MCF-7 cells. Furthermore, plumbagin dramatically increased the intracellular ROS level, whereas pretreatment with the ROS scavenger N-acetyl cysteine protected against plumbagin-induced cytotoxicity, suggesting that ROS formation plays a pivotal role in antitumor activity in MCF-7 cells. In mice bearing MCF-7 cell xenografts, plumbagin significantly reduced tumor growth and weight without apparent side effects. We therefore concluded that plumbagin exerts anticancer activity against MCF-7 cells through the generation of intracellular ROS, resulting in the induction of apoptosis via a p53-dependent pathway. This study thus identifies a new anticancer mechanism of plumbagin against p53-dependent breast cancer cells and suggests a novel strategy for overcoming of breast cancer therapy.
Collapse
Affiliation(s)
- Umasankar De
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Song-Yi Ha
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yu Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
BRCA1 regulation on β-hCG: a mechanism for tumorigenicity in BRCA1 defective breast cancer. Oncogenesis 2017; 6:e376. [PMID: 28869585 PMCID: PMC5623901 DOI: 10.1038/oncsis.2017.75] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Human chorionic gonadotropin β (β-hCG) has been implicated in breast tumorigenesis. However, the role of this hormone is highly controversial as certain studies suggest it has anti-tumor properties while others have found it to be pro-tumorigenic. To unveil the truth, we have analyzed the expression of β-hCG in breast cancer. We identified for the first time that β-hCG expression is linked to BRCA1 status and its overexpression is seen in BRCA1 mutated breast cancer cells, BRCA1 conditional knockout mouse breast cancer tissues and BRCA1 floxed basal cell carcinoma (BCC) tissues. An analysis of three large, transcriptomic data sets from TCGA (The Cancer Genome Atlas) expression profile confirmed the inverse correlation between BRCA1 and β-hCG in human breast cancer. Using ChIP and luciferase assays, we also demonstrated that the cancer cells with wild-type but not mutant BRCA1 directly repress the expression of β-hCG by binding to its promoter. Further, β-hCG promotes migration and invasion predominantly in BRCA1 mutant breast cancer cells. Interestingly, stable overexpression of β-hCG in BRCA1 mutant but not wild-type breast cancer cells results in the formation of spheres even on monolayer cultures. The cells of these spheres show high expression of both EMT and stem cell markers. Since β-hCG belongs to a cysteine knot family of proteins like TGFβ and TGFβ signaling is deregulated in BRCA1 defective tumors, we checked whether β-hCG can mediate signaling through TGFβRII in BRCA1 mutated cells. We found for the first time that β-hCG can bind and phosphorylate TGFβRII, irrespective of LHCGR status and induce proliferation in BRCA1 defective cells. Our results confirmed that there exists a transcriptional regulation of BRCA1 on β-hCG and BRCA1 mutation promotes β-hCG mediated tumorigenesis through TGFβRII signaling. Thus inhibiting β-hCG-TGFβRII could prove an effective treatment strategy for BRCA1 mutated tumors.
Collapse
|
10
|
Hu A, Huang JJ, Zhang JF, Dai WJ, Li RL, Lu ZY, Duan JL, Li JP, Chen XP, Fan JP, Xu WH, Zheng HL. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway. Oncotarget 2017; 8:50747-50760. [PMID: 28881600 PMCID: PMC5584201 DOI: 10.18632/oncotarget.17096] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Studies have demonstrated that curcumin (CUR) exerts its tumor suppressor function in a variety of human cancers including head and neck squamous cell carcinoma (HNSCC). However, the exact underlying molecular mechanisms remain obscure. Here, we aim to test whether CUR affects ATM/Chk2/p53 signaling pathway, leading to the induction of cell cycle arrest, inhibition of angiogenesis of HNSCC in vitro and in vivo. To this end, we conducted multiple methods such as MTT assay, Invasion assay, Flow cytometry, Western blotting, RT-PCR, and transfection to explore the functions and molecular insights of CUR in HNSCC. We observed that CUR significantly induced apoptosis and cell cycle arrest, inhibited angiogenesis in HNSCC. Mechanistically, we demonstrated that CUR markedly up-regulated ATM expression and subsequently down-regulated HIF-1α expression. Blockage of ATM production totally reversed CUR induced cell cycle arrest as well as anti-angiogenesis in HNSCC. Moreover, our results demonstrated that CUR exerts its antitumor activity through targeting ATM/Chk2/p53 signal pathway. In addition, the results of xenograft experiments in mice were highly consistent with in vitro studies. Collectively, our findings suggest that targeting ATM/Chk2/p53 signal pathway by CUR could be a promising therapeutic approach for HNSCC prevention and therapy.
Collapse
Affiliation(s)
- An Hu
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Jing-Juan Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Jing-Fei Zhang
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Wei-Jun Dai
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Rui-Lin Li
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Zhao-Yang Lu
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jun-Li Duan
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Ji-Ping Li
- Department of Otolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Pudong New Area, Shanghai, 200127, China
| | - Xiao-Ping Chen
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Jing-Ping Fan
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China.,Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wei-Hua Xu
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Hong-Liang Zheng
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
11
|
Nair RS, Potti ME, Thankappan R, Chandrika SK, Kurup MRP, Srinivas P. Molecular trail for the anticancer behavior of a novel copper carbohydrazone complex in BRCA1 mutated breast cancer. Mol Carcinog 2017; 56:1501-1514. [PMID: 28052399 DOI: 10.1002/mc.22610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 01/25/2023]
Abstract
Novel chelated metal complexes were synthesized from carbohydrazones to thiocarbohydrazones using metal-based drug designing platforms and their combination effect with Pb, a naphthaquinone were analyzed for anticancer activity in breast cancer cell lines. A panel of BRCA1 wild-type and mutated breast cancer cells: MCF-7 (BRCA1+ /ER+ ), MDA-MB-231 (BRCA1+ /ERα- ), HCC-1937 (BRCA1- /ERα- ), HCC1937/wt BRCA1, MX1 (BRCA1- /ERα- ), and MDA-MB-436 (BRCA1- /ERα- ) were screened for anti-cancer activity. Cu2 (HL)(HSO4 ) · H2 O]SO4 · 6 H2 O (CS2) is the most potent anticancer agent among the copper carbohydrazone and thiocarbohydrazone complexes analyzed in this study. It can be suggested that the presence of sulphate, as pharmacologically active centre, can induce cytotoxicity more effectively when compared to chlorine, bromine, perchlorate, and methanol. This is the first report demonstrating that CS2 can bind to DNA by hindering BamH1 activity and could induce DNA double strand breaks as evidenced by γ-H2AX expression. In addition to this, CS2 could also act as a Topo II inhibitor at a much lower concentration than etoposide and induce apoptosis, making it a potent anticancer agent. In combination with Pb, a potent ROS inducer, CS2 could induce synergistic anti-cancer activity in HR/ BRCA1 defective breast cancer cells. This is the first study reporting the mechanism involved in the induction of apoptosis for a metal chelated copper carbohydrazone complex and its combination effects with Pb in HR defective, BRCA1 mutated breast cancer cells.
Collapse
Affiliation(s)
- Rakesh Sathish Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, India
| | - Manoj Easwaran Potti
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochin, Kerala, India
| | - Ratheeshkumar Thankappan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, India
| | | | | | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, India
| |
Collapse
|
12
|
Yang G, Gao X, Jiang L, Sun X, Liu X, Chen M, Yao X, Sun Q, Wang S. 6-Gingerol prevents MEHP-induced DNA damage in human umbilical vein endothelia cells. Hum Exp Toxicol 2016; 36:1177-1185. [PMID: 28988496 DOI: 10.1177/0960327116681650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP) is the principal metabolite of di (2-etylhexyl) phthalate, which is widely used as a plasticizer, especially in medical devices. MEHP has toxic effects on cardiovascular system. The aim of this study was to investigate the possibility that 6-gingerol may inhibit the oxidative DNA damage of MEHP in human umbilical vein endothelial cells (HUVECs) and the potential mechanism. The comet assay was used to monitor DNA strand breaks. We have shown that 6-gingerol significantly reduced the DNA strand breaks caused by MEHP. MEHP increased the levels of reactive oxygen species and malondialdehyde, decreased the level of glutathione and activity of superoxide dismutase, and altered the mitochondrial membrane potential. In addition, DNA damage-associated proteins (p53 and p-Chk2 (T68)) were significantly increased by the treatment of MEHP. Those effects can all be protected by 6-gingerol. The results firmly indicate that 6-gingerol may have a strong protective ability against the DNA damage caused by MEHP in HUVECs, and the mechanism may relate to the antioxidant activity.
Collapse
Affiliation(s)
- G Yang
- 1 Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - X Gao
- 2 Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - L Jiang
- 3 Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - X Sun
- 3 Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - X Liu
- 1 Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - M Chen
- 1 Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - X Yao
- 3 Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Q Sun
- 4 Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - S Wang
- 2 Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|