1
|
Oehm AW, Esteves BIO, Hetzel U, Alves MP, Schnyder M. Establishment and validation of red fox (vulpes vulpes) airway epithelial cell cultures at the air-liquid-interface. Sci Rep 2025; 15:9883. [PMID: 40121325 PMCID: PMC11929873 DOI: 10.1038/s41598-025-94033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
The airway epithelium represents a central barrier against pathogens and toxins while playing a crucial role in modulating the immune response within the upper respiratory tract. Understanding these mechanisms is particularly relevant for red foxes (Vulpes vulpes), which serve as reservoirs for various zoonotic pathogens like rabies or the fox tapeworm (Echinococcus multilocularis). The study aimed to develop, establish, and validate an air-liquid interface (ALI) organoid model of the fox respiratory tract using primary airway epithelial cells isolated from the tracheas and main bronchi of hunted red foxes. The resulting ALI cultures exhibited a structurally differentiated, pseudostratified epithelium, characterised by ciliated cells, mucus secretion, and tight junctions, as confirmed through histological and immunohistochemical analysis. Functional assessments using a paracellular permeability assay and measurement of transepithelial electrical resistance, demonstrated a tight epithelial barrier. The potential of model's utility for studying innate immune responses to respiratory infections was validated by exposing the cultures to lipopolysaccharide, phorbol-12-myristate-13-acetate and ionomycin, and nematode somatic antigens. Quantitative PCR revealed notable changes in the expression of pro-inflammatory cytokines TNF and IL-33. This in vitro model represents a significant advancement in respiratory research for non-classical species that may act as important wildlife reservoirs for a range of zoonotic pathogens.
Collapse
Affiliation(s)
- Andreas W Oehm
- Institute of Parasitology, University of Zurich, Zurich, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland.
| | - Blandina I Oliveira Esteves
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Vetsuisse Faculty, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco P Alves
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Vetsuisse Faculty, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Manuela Schnyder
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Boueroy P, Brizuela J, Roodsant TJ, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Phetburom N, Chareonsudjai S, Boonmars T, Schultsz C, Kerdsin A. Genomic analysis and virulence of human Streptococcus suis serotype 14. Eur J Clin Microbiol Infect Dis 2025; 44:639-651. [PMID: 39731619 DOI: 10.1007/s10096-024-05029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14. METHODS Genomes of 11 S. suis serotype 14 were sequenced by short- and long-read sequencing platforms. The genomes were analyzed for genetic relationship, virulence-associated genes, and antimicrobial-resistant genes. Antimicrobial susceptibility was conducted and the virulence was tested based on cell assay. RESULTS All isolates belonged to clonal complex (CC) 1, with nine sequence type (ST) 105 isolates and each isolate of ST1 and ST237. They were susceptible to penicillin, whereas tetracycline and macrolide were resistance due to tetO and ermB. Genomic analysis revealed that the serotype 14-ST105 isolates were closely related to zoonotic serotype 14-ST105 isolates from Vietnam and the serotype 1-ST105 Thai strain. The serotype 14-ST1 isolate was closely related to pig-diseased serotype 1-ST1 isolates from UK and USA, whereas the serotype 14-ST237 isolate was related to serotype 1-ST237 strains recovered from healthy pig from Thailand. Of 150 virulence-associated genes, 13 were absent from the serotype 14 isolates, including atl1, atlAss, hhly3, nisK, nisR, pnuC, salK, salR, sp1, srtG, virB4, virD4, and zmp. The virulence of strain 32481, a representative S. suis serotype 14-ST105 isolate showed reduced adhesion and invasion of two epithelial cell lines (A549 and HeLa) when compared to the serotype 2-ST1 strain P1/7, whereas apoptosis was similar. CONCLUSION This study highlighted the pathogenic potential of virulent serotype 14-ST105 strains and the need for increased monitoring of S. suis serotypes other than for serotype 2.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Jaime Brizuela
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thomas J Roodsant
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Constance Schultsz
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
3
|
Barros BCSC, Barros DTL, Brock M, Toledo MS, Serrano SMT, Suzuki E, Ghaemmaghami AM. Secreted factors of Aspergillus fumigatus cause lung epithelial barrier disruption: A study using an air-liquid interface cell culture model. Med Mycol 2025; 63:myaf018. [PMID: 40036366 DOI: 10.1093/mmy/myaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/19/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
The effects of Aspergillus fumigatus-conditioned medium (AFCM) on the integrity of the Calu-3 cell lung epithelial barrier were investigated. AFCM led to a decrease in transepithelial electrical resistance and the disruption of the occludin network in the epithelial barrier. Preincubation with protease inhibitors reduced the effect of AFCM by ~ 90%, demonstrating the role of fungal proteases in epithelial barrier disruption. By mass spectrometry, we identified 494 unique proteins in AFCM, including 14 peptidases of different families. Together, these findings suggest that proteases secreted by A. fumigatus were able to modulate host epithelial barrier disruption in this fungal infection process.
Collapse
Affiliation(s)
- Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Debora Tereza Lucas Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Matthias Brock
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marcos Sergio Toledo
- Departament of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Solange Maria Toledo Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo SP 05503-900, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Amir M Ghaemmaghami
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
4
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
5
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
6
|
Jiang C, Zhou P, Zhang X, Ma N, Hu Y, Zhang M, Ghonaim AH, Li H, Dong L, Zeng W, Li C, Lang Y, Sun Y, He Q, Li W. ARF6 promotes Streptococcus suis suilysin induced apoptosis in HBMECs. Int J Biol Macromol 2024; 268:131839. [PMID: 38663699 DOI: 10.1016/j.ijbiomac.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.
Collapse
Affiliation(s)
- Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaoqian Zhang
- China Institute of Veterinary Drug Control, Beijing 102629, China
| | - NingNing Ma
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yaofang Hu
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Huimin Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Dong
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Zeng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Sun
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
7
|
Fu Y, Wedde M, Smola S, Oh DY, Pfuhl T, Rissland J, Zemlin M, Flockerzi FA, Bohle RM, Thürmer A, Duwe S, Biere B, Reiche J, Schweiger B, Mache C, Wolff T, Herrler G, Dürrwald R. Different populations of A(H1N1)pdm09 viruses in a patient with hemolytic-uremic syndrome. Int J Med Microbiol 2024; 314:151598. [PMID: 38237287 DOI: 10.1016/j.ijmm.2024.151598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.
Collapse
Affiliation(s)
- Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Marianne Wedde
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Djin-Ye Oh
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Thorsten Pfuhl
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Jürgen Rissland
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Michael Zemlin
- Department for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Fidelis A Flockerzi
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Andrea Thürmer
- Department Methods Development and Research Infrastructure, Robert Koch Institute, Berlin 13353, Germany
| | - Susanne Duwe
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Barbara Biere
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Janine Reiche
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Christin Mache
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Thorsten Wolff
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Ralf Dürrwald
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany.
| |
Collapse
|
8
|
Qin L, Meng F, He H, Li S, Zhang H, Sun Y, Zhang W, An T, Cai X, Wang S. Inflammation plays a critical role in damage to the bronchiolar epithelium induced by Trueperella pyogenes in vitro and in vivo. Infect Immun 2023; 91:e0027323. [PMID: 37929972 PMCID: PMC10714949 DOI: 10.1128/iai.00273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Trueperella pyogenes can cause severe pulmonary disease in swine, but the mechanism of pathogenesis is not well defined. T. pyogenes-induced damage to porcine bronchial epithelial cells (PBECs), porcine precision-cut lung slices (PCLS), and respiratory epithelium of mice remains unknown. In this study, we used T. pyogenes 20121 to infect PBECs in air-liquid interface conditions and porcine PCLS. T. pyogenes could adhere to, colonize, and induce cytotoxic effect on PBECs and the luminal surface of bronchi in PCLS, which damaged the bronchiolar epithelium. Moreover, bronchiolar epithelial cells showed extensive degeneration in the lungs of infected mice. Furthermore, western blot showed that the NOD-like receptor (NLR)/C-terminal caspase recruitment domain (ASC)/caspase-1 axis and nuclear factor-kappa B pathway were involved in inflammation in PCLS and lungs of mice, which also confirms that porcine PCLS provide a platform to analyze the pulmonary immune response. Meanwhile, the levels of p-c-Jun N-terminal kinase, p-extracellular signal-regulated kinase, and p-protein kinase B (AKT) were increased significantly, which indicated the mitogen-activated protein kinase and Akt pathways were also involved in inflammation in T. pyogenes-infected mice. In addition, we used T. pyogenes 20121 to infect tumor necrosis factor-alpha (tnf-α-/-) mice, and the results indicated that apoptosis and injury in respiratory epithelium of infected tnf-α-/- mice were alleviated. Thus, the pro-inflammatory cytokine TNF-α played a role in apoptosis and the respiratory epithelium injury in mouse lungs. Collectively, our study provides insight into the inflammatory injury induced by T. pyogenes and suggests that blocking NLR may be a potential therapeutic strategy against T. pyogenes infection.
Collapse
Affiliation(s)
- Lei Qin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Laboratory Animal Centre, Qiqihar Medical University, Qiqihar, China
| | - Fandan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Haijuan He
- Institute of Animal Husbandry, Heilongjiang Academy of Agriculture Sciences, Harbin, Heilongjiang, China
| | - Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
9
|
Dresen M, Valentin-Weigand P, Berhanu Weldearegay Y. Role of Metabolic Adaptation of Streptococcus suis to Host Niches in Bacterial Fitness and Virulence. Pathogens 2023; 12:pathogens12040541. [PMID: 37111427 PMCID: PMC10144218 DOI: 10.3390/pathogens12040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Streptococcus suis, both a common colonizer of the porcine upper respiratory tract and an invasive pig pathogen, successfully adapts to different host environments encountered during infection. Whereas the initial infection mainly occurs via the respiratory tract, in a second step, the pathogen can breach the epithelial barrier and disseminate within the whole body. Thereby, the pathogen reaches other organs such as the heart, the joints, or the brain. In this review, we focus on the role of S. suis metabolism for adaptation to these different in vivo host niches to encounter changes in nutrient availability, host defense mechanisms and competing microbiota. Furthermore, we highlight the close link between S. suis metabolism and virulence. Mutants deficient in metabolic regulators often show an attenuation in infection experiments possibly due to downregulation of virulence factors, reduced resistance to nutritive or oxidative stress and to phagocytic activity. Finally, metabolic pathways as potential targets for new therapeutic strategies are discussed. As antimicrobial resistance in S. suis isolates has increased over the last years, the development of new antibiotics is of utmost importance to successfully fight infections in the future.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | | |
Collapse
|
10
|
Su A, Yan M, Pavasutthipaisit S, Wicke KD, Grassl GA, Beineke A, Felmy F, Schmidt S, Esser KH, Becher P, Herrler G. Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses. Microbiol Spectr 2023; 11:e0309822. [PMID: 36916937 PMCID: PMC10100918 DOI: 10.1128/spectrum.03098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).
Collapse
Affiliation(s)
- Ang Su
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Miaomiao Yan
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Suvarin Pavasutthipaisit
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Kathrin D. Wicke
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sabine Schmidt
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Herrler
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
11
|
In Vitro Characteristics of Canine Primary Tracheal Epithelial Cells Maintained at an Air-Liquid Interface Compared to In Vivo Morphology. Int J Mol Sci 2023; 24:ijms24054987. [PMID: 36902418 PMCID: PMC10003254 DOI: 10.3390/ijms24054987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Culturing respiratory epithelial cells at an air-liquid interface (ALI) represents an established method for studies on infection or toxicology by the generation of an in vivo-like respiratory tract epithelial cellular layer. Although primary respiratory cells from a variety of animals have been cultured, an in-depth characterization of canine tracheal ALI cultures is lacking despite the fact that canines are a highly relevant animal species susceptible to various respiratory agents, including zoonotic pathogens such as severe acute respiratory coronavirus 2 (SARS-CoV-2). In this study, canine primary tracheal epithelial cells were cultured under ALI conditions for four weeks, and their development was characterized during the entire culture period. Light and electron microscopy were performed to evaluate cell morphology in correlation with the immunohistological expression profile. The formation of tight junctions was confirmed using transepithelial electrical resistance (TEER) measurements and immunofluorescence staining for the junctional protein ZO-1. After 21 days of culture at the ALI, a columnar epithelium containing basal, ciliated and goblet cells was seen, resembling native canine tracheal samples. However, cilia formation, goblet cell distribution and epithelial thickness differed significantly from the native tissue. Despite this limitation, tracheal ALI cultures could be used to investigate the pathomorphological interactions of canine respiratory diseases and zoonotic agents.
Collapse
|
12
|
Kopenhagen A, Ramming I, Camp B, Hammerschmidt S, Fulde M, Müsken M, Steinert M, Bergmann S. Streptococcus pneumoniae Affects Endothelial Cell Migration in Microfluidic Circulation. Front Microbiol 2022; 13:852036. [PMID: 35401456 PMCID: PMC8990767 DOI: 10.3389/fmicb.2022.852036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 01/12/2023] Open
Abstract
Bloodstream infections caused by Streptococcus pneumoniae induce strong inflammatory and procoagulant cellular responses and affect the endothelial barrier of the vascular system. Bacterial virulence determinants, such as the cytotoxic pore-forming pneumolysin, increase the endothelial barrier permeability by inducing cell apoptosis and cell damage. As life-threatening consequences, disseminated intravascular coagulation followed by consumption coagulopathy and low blood pressure is described. With the aim to decipher the role of pneumolysin in endothelial damage and leakage of the vascular barrier in more detail, we established a chamber-separation cell migration assay (CSMA) used to illustrate endothelial wound healing upon bacterial infections. We used chambered inlets for cell cultivation, which, after removal, provide a cell-free area of 500 μm in diameter as a defined gap in primary endothelial cell layers. During the process of wound healing, the size of the cell-free area is decreasing due to cell migration and proliferation, which we quantitatively determined by microscopic live cell monitoring. In addition, differential immunofluorescence staining combined with confocal microscopy was used to morphologically characterize the effect of bacterial attachment on cell migration and the velocity of gap closure. In all assays, the presence of wild-type pneumococci significantly inhibited endothelial gap closure. Remarkably, even in the presence of pneumolysin-deficient pneumococci, cell migration was significantly retarded. Moreover, the inhibitory effect of pneumococci on the proportion of cell proliferation versus cell migration within the process of endothelial gap closure was assessed by implementation of a fluorescence-conjugated nucleoside analogon. We further combined the endothelial CSMA with a microfluidic pump system, which for the first time enabled the microscopic visualization and monitoring of endothelial gap closure in the presence of circulating bacteria at defined vascular shear stress values for up to 48 h. In accordance with our CSMA results under static conditions, the gap remained cell free in the presence of circulating pneumococci in flow. Hence, our combined endothelial cultivation technique represents a complex in vitro system, which mimics the vascular physiology as close as possible by providing essential parameters of the blood flow to gain new insights into the effect of pneumococcal infection on endothelial barrier integrity in flow.
Collapse
Affiliation(s)
- Anna Kopenhagen
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Isabell Ramming
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Belinda Camp
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Pneumology, University Hospital Magdeburg, Magdeburg, Germany
| | - Sven Hammerschmidt
- Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Universität Greifswald, Greifswald, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simone Bergmann
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Liang H, Wang B, Wang J, Ma B, Zhang W. Pyolysin of Trueperella pyogenes Induces Pyroptosis and IL-1β Release in Murine Macrophages Through Potassium/NLRP3/Caspase-1/Gasdermin D Pathway. Front Immunol 2022; 13:832458. [PMID: 35371034 PMCID: PMC8965163 DOI: 10.3389/fimmu.2022.832458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is a commensal and an opportunistic pathogen of animals. This organism can cause inflammatory diseases, such as pneumonia, mastitis and endometritis in hosts. However, the molecular basis for the pro-inflammatory properties of this organism is still largely unknown. In the current study, using murine macrophages as model, the ability of T. pyogenes to induce pyroptosis was first determined. Then, pyolysin (PLO), a cholesterol-dependent cytolysin secreted by T. pyogenes, was found to be closely related to T. pyogenes-induced pyroptosis. Next, our work showed that PLO can form pores in the cell membrane, leading to the efflux of potassium (K+), NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated caspase-1 activation, and gasdermin D (GSDMD) cleavage. Inhibition of the K+/NLRP3/caspase-1/GSDMD pathway abolished T. pyogenes and PLO-induced IL-1β release. Taken together, these results indicate T. pyogenes-induced inflammation is related to PLO-induced pyroptosis and IL-1β release. Our work shed light on the pathogenesis of T. pyogenes and the interaction between T. pyogenes and hosts' immune system.
Collapse
Affiliation(s)
- Hongmin Liang
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Bing Wang
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Junwei Wang
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Bo Ma
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Wenlong Zhang
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| |
Collapse
|
14
|
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen and is known to enter the host via the respiratory tract and disseminate to various organs. Current hypotheses speculate that CDV uses the homologous cellular receptors of measles virus (MeV), SLAM and nectin-4, to initiate the infection process. For validation, here, we established the well-differentiated air-liquid interface (ALI) culture model from primary canine tracheal airway epithelial cells. By applying the green fluorescent protein (GFP)-expressing CDV vaccine strain and recombinant wild-type viruses, we show that cell-free virus infects the airway epithelium mainly via the paracellular route and only after prior disruption of tight junctions by pretreatment with EGTA; this infection was related to nectin-4 but not to SLAM. Remarkably, when CDV-preinfected DH82 cells were cocultured on the basolateral side of canine ALI cultures grown on filter supports with a 1.0-μm pore size, cell-associated CDV could be transmitted via cell-to-cell contact from immunocytes to airway epithelial cultures. Finally, we observed that canine ALI cultures formed syncytia and started to release cell-free infectious viral particles from the apical surface following treatment with an inhibitor of the JAK/STAT signaling pathway (ruxolitinib). Our findings show that CDV can overcome the epithelial barrier through different strategies, including infection via immunocyte-mediated transmission and direct infection via the paracellular route when tight junctions are disrupted. Our established model can be adapted to other animals for studying the transmission routes and the pathogenicity of other morbilliviruses. IMPORTANCE Canine distemper virus (CDV) is not only an important pathogen of carnivores, but it also serves as a model virus for analyzing measles virus pathogenesis. To get a better picture of the different stages of infection, we used air-liquid interface cultures to analyze the infection of well-differentiated airway epithelial cells by CDV. Applying a coculture approach with DH82 cells, we demonstrated that cell-mediated infection from the basolateral side of well-differentiated epithelial cells is more efficient than infection via cell-free virus. In fact, free virus was unable to infect intact polarized cells. When tight junctions were interrupted by treatment with EGTA, cells became susceptible to infection, with nectin-4 serving as a receptor. Another interesting feature of CDV infection is that infection of well-differentiated airway epithelial cells does not result in virus egress. Cell-free virions are released from the cells only in the presence of an inhibitor of the JAK/STAT signaling pathway. Our results provide new insights into how CDV can overcome the barrier of the airway epithelium and reveal similarities and some dissimilarities compared to measles virus.
Collapse
|
15
|
Lu Y, Li S, Shen X, Zhao Y, Zhou D, Hu D, Cai X, Lu L, Xiong X, Li M, Cao M. The type II histidine triad protein HtpsC facilitates invasion of epithelial cells by highly virulent Streptococcus suis serotype 2. J Microbiol 2021; 59:949-957. [PMID: 34491523 DOI: 10.1007/s12275-021-1129-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that presents a significant threat both to pigs and to workers in the pork industry. The initial steps of S. suis 2 pathogenesis are unclear. In this study, we found that the type II histidine triad protein HtpsC from the highly virulent Chinese isolate 05ZYH33 is structurally similar to internalin A (InlA) from Listeria monocytogenes, which plays an important role in mediating listerial invasion of epithelial cells. To determine if HtpsC and InlA function similarly, an isogenic htpsC mutant (ΔhtpsC) was generated in S. suis by homologous recombination. The htpsC deletion strain exhibited a diminished ability to adhere to and invade epithelial cells from different sources. Double immunofluorescence microscopy also revealed reduced survival of the ΔhtpsC mutant after co-cultivation with epithelium. Adhesion to epithelium and invasion by the wild type strain was inhibited by a monoclonal antibody against E-cadherin. In contrast, the htpsC-deficient mutant was unaffected by the same treatment, suggesting that E-cadherin is the host-cell receptor that interacts with HtpsC and facilitates bacterial internalization. Based on these results, we propose that HtpsC is involved in the process by which S. suis 2 penetrates host epithelial cells, and that this protein is an important virulence factor associated with cell adhesion and invasion.
Collapse
Affiliation(s)
- Yunjun Lu
- College Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, P. R. China
| | - Xiaodong Shen
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, P. R. China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, P. R. China
| | - Dongming Zhou
- Center for Disease Control and Prevention for the Eastern Theater Command, Nanjing, 210002, Jiangsu, P. R. China
| | - Dan Hu
- Center for Disease Control and Prevention for the Eastern Theater Command, Nanjing, 210002, Jiangsu, P. R. China
| | - Xushen Cai
- College Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Lixia Lu
- College Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Xiaohui Xiong
- College Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, P. R. China.
| | - Min Cao
- College Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China.
| |
Collapse
|
16
|
Mach N, Baranowski E, Nouvel LX, Citti C. The Airway Pathobiome in Complex Respiratory Diseases: A Perspective in Domestic Animals. Front Cell Infect Microbiol 2021; 11:583600. [PMID: 34055660 PMCID: PMC8160460 DOI: 10.3389/fcimb.2021.583600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Respiratory infections in domestic animals are a major issue for veterinary and livestock industry. Pathogens in the respiratory tract share their habitat with a myriad of commensal microorganisms. Increasing evidence points towards a respiratory pathobiome concept, integrating the dysbiotic bacterial communities, the host and the environment in a new understanding of respiratory disease etiology. During the infection, the airway microbiota likely regulates and is regulated by pathogens through diverse mechanisms, thereby acting either as a gatekeeper that provides resistance to pathogen colonization or enhancing their prevalence and bacterial co-infectivity, which often results in disease exacerbation. Insight into the complex interplay taking place in the respiratory tract between the pathogens, microbiota, the host and its environment during infection in domestic animals is a research field in its infancy in which most studies are focused on infections from enteric pathogens and gut microbiota. However, its understanding may improve pathogen control and reduce the severity of microbial-related diseases, including those with zoonotic potential.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Baranowski
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Laurent Xavier Nouvel
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
17
|
Obradovic MR, Segura M, Segalés J, Gottschalk M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet Res 2021; 52:49. [PMID: 33743838 PMCID: PMC7980725 DOI: 10.1186/s13567-021-00918-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis is one of the most important bacterial swine pathogens affecting post-weaned piglets, causing mainly meningitis, arthritis and sudden death. It not only results in severe economic losses but also raises concerns over animal welfare and antimicrobial resistance and remains an important zoonotic agent in some countries. The definition and diagnosis of S. suis-associated diseases can be complex. Should S. suis be considered a primary or secondary pathogen? The situation is further complicated when referring to respiratory disease, since the pathogen has historically been considered as a secondary pathogen within the porcine respiratory disease complex (PRDC). Is S. suis a respiratory or strictly systemic pathogen? S. suis is a normal inhabitant of the upper respiratory tract, and the presence of potentially virulent strains alone does not guarantee the appearance of clinical signs. Within this unclear context, it has been largely proposed that co-infection with some viral and bacterial pathogens can significantly influence the severity of S. suis-associated diseases and may be the key to understanding how the infection behaves in the field. In this review, we critically addressed studies reporting an epidemiological link (mixed infections or presence of more than one pathogen at the same time), as well as in vitro and in vivo studies of co-infection of S. suis with other pathogens and discussed their limitations and possibilities for improvement and proposed recommendations for future studies.
Collapse
Affiliation(s)
- Milan R Obradovic
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
18
|
Wang G, Gao Y, Xu X, Zhang P, Wang J, Li G, Lv Q, Niu X, Liu H. Mode of action and structural modelling of the interaction of formononetin with suilysin. J Appl Microbiol 2021; 131:2010-2018. [PMID: 33639036 DOI: 10.1111/jam.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Suilysin is a critical pore-forming virulence factor of Streptococcus suis that has been demonstrated to substantially contribute to its pathogenicity. We have demonstrated that formononetin alleviates S. suis infection both in vivo and in vitro by targeting suilysin. However, the molecular mechanism of the effect is unclear. Our aim was to determine the molecular mechanism of the effect of formononetin on suilysin. METHODS AND RESULTS The mechanism of interaction between formononetin and suilysin was investigated by molecular modelling. The results indicated that formononetin was bound at the junction of domain two and domain four of suilysin. The binding free energy values indicated that the A415, Y412, E414, N413, T61, T62 and G416 residues are critical for this binding, this observation was confirmed by the changes in the flexibility of these residues and the distances between these residues and formononetin. The inhibitory effect of formononetin on the pore-forming activity of suilysin, binding constant and binding free energy were significantly decreased by site-specific mutagenesis of Y412 and N413. Finally, we analysed the spatial configuration of suilysin before and after formononetin binding, the results indicated that the binding changed the conformation of suilysin, especially the angle between domain two and domain four, resulting in the disruption of cholesterol binding to suilysin and in the loss of pore-forming activity. CONCLUSIONS Formononetin is located at the junction of domain two and domain four of suilysin, and Y412 and N413 play critical roles in the binding. Formononetin binding changes the angle between domain two and domain four of suilysin, resulting in the loss of the pore-inducing activity of suilysin. SIGNIFICANCE AND IMPACT OF THE STUDY This work will promote the application of formononetin to combat S. suis infections and may contribute to the development of new inhibitors or modification of existing inhibitors.
Collapse
Affiliation(s)
- G Wang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Food Engineering, Jilin Engineering Normal University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Y Gao
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - P Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - J Wang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - G Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Q Lv
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Niu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - H Liu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
19
|
Stoica C, Cox G. Old problems and new solutions: antibiotic alternatives in food animal production. Can J Microbiol 2021; 67:427-444. [PMID: 33606564 DOI: 10.1139/cjm-2020-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antimicrobial resistance crisis is a Global Health challenge that impacts humans, animals, and the environment alike. In response to increased demands for animal protein and by-products, there has been a substantial increase in the use of antimicrobial agents in the animal industry. Indeed, they are extensively used to prevent, control, and (or) treat disease in animals. In addition to infection control, in-feed supplementation with antimicrobials became common practice for growth promotion of livestock. Unfortunately, the global overuse of antimicrobials has contributed to the emergence and spread of resistance. As such, many countries have implemented policies and approaches to eliminate the use of antimicrobials as growth promoters in food animals, which necessitates the need for alternate and One Health strategies to maintain animal health and welfare. This review summarizes the antimicrobial resistance crisis from Global Health and One Health perspectives. In addition, we outline examples of potential alternate strategies to circumvent antimicrobial use in animal husbandry practices, including antivirulence agents, bacteriophages, and nutritional measures to control bacterial pathogens. Overall, these alternate strategies require further research and development efforts, including assessment of efficacy and the associated development, manufacturing, and labor costs.
Collapse
Affiliation(s)
- Celine Stoica
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Dresen M, Schenk J, Berhanu Weldearegay Y, Vötsch D, Baumgärtner W, Valentin-Weigand P, Nerlich A. Streptococcus suis Induces Expression of Cyclooxygenase-2 in Porcine Lung Tissue. Microorganisms 2021; 9:microorganisms9020366. [PMID: 33673302 PMCID: PMC7917613 DOI: 10.3390/microorganisms9020366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
Streptococcus suis is a common pathogen colonising the respiratory tract of pigs. It can cause meningitis, sepsis and pneumonia leading to economic losses in the pig industry worldwide. Cyclooxygenase-2 (COX-2) and its metabolites play an important regulatory role in different biological processes like inflammation modulation and immune activation. In this report we analysed the induction of COX-2 and the production of its metabolite prostaglandin E2 (PGE2) in a porcine precision-cut lung slice (PCLS) model. Using Western blot analysis, we found a time-dependent induction of COX-2 in the infected tissue resulting in increased PGE2 levels. Immunohistological analysis revealed a strong COX-2 expression in the proximity of the bronchioles between the ciliated epithelial cells and the adjacent alveolar tissue. The morphology, location and vimentin staining suggested that these cells are subepithelial bronchial fibroblasts. Furthermore, we showed that COX-2 expression as well as PGE2 production was detected following infection with two prevalent S. suis serotypes and that the pore-forming toxin suilysin played an important role in this process. Therefore, this study provides new insights in the response of porcine lung cells to S. suis infections and serves as a basis for further studies to define the role of COX-2 and its metabolites in the inflammatory response in porcine lung tissue during infections with S. suis.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Josephine Schenk
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Yenehiwot Berhanu Weldearegay
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Désirée Vötsch
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Wolfgang Baumgärtner
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
- Correspondence: (P.V.-W.); (A.N.); Tel.: +49-511-856-7362 (P.V.-W.); +49-30-838-58508 (A.N.)
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
- Veterinary Centre for Resistance Research, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: (P.V.-W.); (A.N.); Tel.: +49-511-856-7362 (P.V.-W.); +49-30-838-58508 (A.N.)
| |
Collapse
|
21
|
Vötsch D, Willenborg M, Baumgärtner W, Rohde M, Valentin-Weigand P. Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence 2020; 12:84-95. [PMID: 33372837 PMCID: PMC7781633 DOI: 10.1080/21505594.2020.1858604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bordetella (B.) bronchiseptica and Streptococcus (S.) suis are major pathogens in pigs, which are frequently isolated from co-infections in the respiratory tract and contribute to the porcine respiratory disease complex (PRDC). Despite the high impact of co-infections on respiratory diseases of swine (and other hosts), very little is known about pathogen-pathogen-host interactions and the mechanisms of pathogenesis. In the present study, we established a porcine precision-cut lung slice (PCLS) model to analyze the effects of B. bronchiseptica infection on adherence, colonization, and cytotoxic effects of S. suis. We hypothesized that induction of ciliostasis by a clinical isolate of B. bronchiseptica may promote subsequent infection with a virulent S. suis serotype 2 strain. To investigate this theory, we monitored the ciliary activity by light microscopy, measured the release of lactate dehydrogenase, and calculated the number of PCLS-associated bacteria. To study the role of the pore-forming toxin suilysin (SLY) in S. suis-induced cytotoxicity, we included a SLY-negative isogenic mutant and the complemented mutant strain. Furthermore, we analyzed infected PCLS by histopathology, immunofluorescence microscopy, and field emission scanning electron microscopy. Our results showed that pre-infection with B. bronchiseptica promoted adherence, colonization, and, as a consequence of the increased colonization, the cytotoxic effects of S. suis, probably by reduction of the ciliary activity. Moreover, cytotoxicity induced by S. suis is strictly dependent on the presence of SLY. Though the underlying molecular mechanisms remain to be fully clarified, our results clearly support the hypothesis that B. bronchiseptica paves the way for S. suis infection.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Wolfgang Baumgärtner
- Institute for Pathology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research , Braunschweig, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| |
Collapse
|
22
|
Su A, Tong J, Fu Y, Müller S, Weldearegay YB, Becher P, Valentin-Weigand P, Meens J, Herrler G. Infection of bovine well-differentiated airway epithelial cells by Pasteurella multocida: actions and counteractions in the bacteria-host interactions. Vet Res 2020; 51:140. [PMID: 33225994 PMCID: PMC7681981 DOI: 10.1186/s13567-020-00861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Pasteurella (P.) multocida is a zoonotic pathogen, which is able to cause respiratory disorder in different hosts. In cattle, P. multocida is an important microorganism involved in the bovine respiratory disease complex (BRDC) with a huge economic impact. We applied air–liquid interface (ALI) cultures of well-differentiated bovine airway epithelial cells to analyze the interaction of P. multocida with its host target cells. The bacterial pathogen grew readily on the ALI cultures. Infection resulted in a substantial loss of ciliated cells. Nevertheless, the epithelial cell layer maintained its barrier function as indicated by the transepithelial electrical resistance and the inability of dextran to get from the apical to the basolateral compartment via the paracellular route. Analysis by confocal immunofluorescence microscopy confirmed the intactness of the epithelial cell layer though it was not as thick as the uninfected control cells. Finally, we chose the bacterial neuraminidase to show that our infection model is a sustainable tool to analyze virulence factors of P. multocida. Furthermore, we provide an explanation, why this microorganism usually is a commensal and becomes pathogenic only in combination with other factors such as co-infecting microorganisms.
Collapse
Affiliation(s)
- Ang Su
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Jie Tong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Sandy Müller
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | | | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Jochen Meens
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany.
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany.
| |
Collapse
|
23
|
Paracellular Pathway-Mediated Mycoplasma hyopneumoniae Migration across Porcine Airway Epithelial Barrier under Air-Liquid Interface Conditions. Infect Immun 2020; 88:IAI.00470-20. [PMID: 32747599 DOI: 10.1128/iai.00470-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniae in vitro Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.
Collapse
|
24
|
Segura M, Aragon V, Brockmeier SL, Gebhart C, de Greeff A, Kerdsin A, O’Dea MA, Okura M, Saléry M, Schultsz C, Valentin-Weigand P, Weinert LA, Wells JM, Gottschalk M. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:pathogens9050374. [PMID: 32422856 PMCID: PMC7281350 DOI: 10.3390/pathogens9050374] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.
Collapse
Affiliation(s)
- Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Mark A O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia;
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan;
| | - Mariette Saléry
- French Agency for Veterinary Medicinal Products-French Agency for food, Environmental and Occupational Health Safety (Anses-ANMV), 35302 Fougères, France;
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development and Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 BP Amsterdam, The Netherlands;
| | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Department Animal Sciences, Wageningen University and Research, 6709 PG Wageningen, The Netherlands;
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| |
Collapse
|
25
|
Fu Y, Dürrwald R, Meng F, Tong J, Wu NH, Su A, Yin X, Haas L, Schmidtke M, Zell R, Krumbholz A, Herrler G. Infection Studies in Pigs and Porcine Airway Epithelial Cells Reveal an Evolution of A(H1N1)pdm09 Influenza A Viruses Toward Lower Virulence. J Infect Dis 2020; 219:1596-1604. [PMID: 30776304 PMCID: PMC7107423 DOI: 10.1093/infdis/jiy719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
We analyzed the virulence of pandemic H1N1 2009 influenza A viruses in vivo and in vitro. Selected viruses isolated in 2009, 2010, 2014, and 2015 were assessed using an aerosol-mediated high-dose infection model for pigs as well as air-liquid interface cultures of differentiated airway epithelial cells. Using a dyspnea score, rectal temperature, lung lesions, and viral load in the lung as parameters, the strains from 2014–2015 were significantly less virulent than the strains isolated in 2009–2010. In vitro, the viruses from 2009–2010 also differed from the 2014–2015 viruses by increased release of infectious virus, a more pronounced loss of ciliated cells, and a reduced thickness of the epithelial cell layer. Our in vivo and in vitro results reveal an evolution of A(H1N1)pdm09 viruses toward lower virulence. Our in vitro culture system can be used to predict the virulence of influenza viruses.
Collapse
Affiliation(s)
- Yuguang Fu
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Ralf Dürrwald
- Division of Experimental Virology, Department for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Jie Tong
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Ang Su
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Ludwig Haas
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Michaela Schmidtke
- Division of Experimental Virology, Department for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Germany
| | - Roland Zell
- Division of Experimental Virology, Department for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Germany
| | - Andi Krumbholz
- Institute of Infection Medicine, Kiel University, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Germany
| |
Collapse
|
26
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
27
|
Bercier P, Gottschalk M, Grenier D. Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model. Microb Pathog 2019; 139:103913. [PMID: 31816403 DOI: 10.1016/j.micpath.2019.103913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Streptococcus suis is a bacterial pathogen that mainly colonizes the upper respiratory tract of pigs. It is known to cause severe infections such as septicemia, meningitis, arthritis, and endocarditis in pigs and to be responsible for major economic losses in the swine industry worldwide. To better understand the interactions between S. suis and the porcine respiratory epithelium, we investigated the ability of this pathogen to cause damage to the tracheal epithelial barrier. We showed that S. suis compromises the integrity of a tracheal epithelial barrier model as determined by measuring transepithelial electrical resistance and paracellular flux of FITC-dextran. As a consequence of this breakdown, S. suis translocates across the epithelial cell monolayer. On the other hand, a S. suis mutant deficient in the production of suilysin, a cholesterol-dependent cytolysin, was significantly impaired in its ability to cause damage to the epithelial barrier. In addition, a recombinant suilysin disrupted the integrity of the tracheal epithelial barrier. Immunofluorescence staining suggested that suilysin affects two major tight junction proteins (occludin and zonula occludens-1). In summary, S. suis is able to compromise the function of the porcine respiratory epithelial barrier through the action of suilysin. This better knowledge of the interactions between S. suis and tracheal epithelial cells may help in the development of novel strategies to prevent the invasion of the epithelium by this and other swine respiratory pathogens.
Collapse
Affiliation(s)
- Philippe Bercier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FRQNT), Saint-Hyacinthe, QC, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FRQNT), Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
28
|
Viral Coinfection Replaces Effects of Suilysin on Streptococcus suis Adherence to and Invasion of Respiratory Epithelial Cells Grown under Air-Liquid Interface Conditions. Infect Immun 2019; 87:IAI.00350-19. [PMID: 31138613 DOI: 10.1128/iai.00350-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen which can infect humans and pigs worldwide, posing a potential risk to global public health. Suilysin, a pore-forming cholesterol-dependent cytolysin, is considered to play an important role in the pathogenesis of S. suis infections. It is known that infection with influenza A viruses may favor susceptibility to secondary bacterial infection, resulting in more severe disease and increased mortality. However, the molecular mechanisms underlying these coinfections are incompletely understood. Applying highly differentiated primary porcine respiratory epithelial cells grown under air-liquid interface (ALI) conditions, we analyzed the contribution of swine influenza viruses (SIV) to the virulence of S. suis, with a special focus on its cytolytic toxin, suilysin. We found that during secondary bacterial infection, suilysin of S. suis contributed to the damage of well-differentiated respiratory epithelial cells in the early stage of infection, whereas the cytotoxic effects induced by SIV became prominent at later stages of infection. Prior infection by SIV enhanced the adherence to and colonization of porcine airway epithelial cells by a wild-type (wt) S. suis strain and a suilysin-negative S. suis mutant in a sialic acid-dependent manner. A striking difference was observed with respect to bacterial invasion. After bacterial monoinfection, only the wt S. suis strain showed an invasive phenotype, whereas the mutant remained adherent. When the epithelial cells were preinfected with SIV, the suilysin-negative mutant also showed an invasion capacity. Therefore, we propose that coinfection with SIV may compensate for the lack of suilysin in the adherence and invasion process of suilysin-negative S. suis.
Collapse
|
29
|
Lin L, Xu L, Lv W, Han L, Xiang Y, Fu L, Jin M, Zhou R, Chen H, Zhang A. An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog 2019; 15:e1007795. [PMID: 31170267 PMCID: PMC6553798 DOI: 10.1371/journal.ppat.1007795] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/28/2019] [Indexed: 02/01/2023] Open
Abstract
Infection with the Streptococcus suis (S. suis) epidemic strain can cause Streptococcal toxic shock-like syndrome (STSLS), which is characterized by a cytokine storm, dysfunction of multiple organs and a high incidence of mortality despite adequate treatment. Despite some progress concerning the contribution of the inflammatory response to STSLS, the precise mechanism underlying STSLS development remains elusive. Here, we use a murine model to demonstrate that caspase-1 activity is critical for STSLS development. Furthermore, we show that inflammasome activation by S. suis is mainly dependent on NLRP3 but not on NLRP1, AIM2 or NLRC4. The important role of NLRP3 activation in STSLS is further confirmed in vivo with the NLRP3 inhibitor MCC950 and nlrp3-knockout mice. By comparison of WT strain with isogenic strains with mutation of various virulence genes for inflammasome activation, Suilysin is essential for inflammasome activation, which is dependent on the membrane perforation activity to cause cytosolic K+ efflux. Moreover, the mutant strain msly (P353L) expressing mutagenic SLY without hemolytic activity was unable to activate the inflammasome and does not cause STSLS. In summary, we demonstrate that the high membrane perforation activity of the epidemic strain induces a high level of NLRP3 inflammasome activation, which is essential for the development of the cytokine storm and multi-organ dysfunction in STSLS and suggests NLRP3 inflammasome as an attractive target for the treatment of STSLS.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Weihua Lv
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| |
Collapse
|
30
|
Liu G, Wu J, Qiao M, Zhou J, Wu H, Peng X, Mekchay S, Mei S. Transcription elements AREB6 and miR-34a affect apoptosis of PAMs by regulating the expression of SS2-related gene PPP1R11. Cell Cycle 2019; 18:1033-1044. [PMID: 31014175 DOI: 10.1080/15384101.2019.1610241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In our previous work, gene PPP1R11 (protein phosphatase 1 regulatory subunit 11) was significantly expressed in pigs after Streptococcus suis 2 (SS2) challenged. This study firstly confirmed that SS2 induced significant expression of PPP1R11 gene in porcine alveolar macrophage (PAM) cells, and apoptosis of PAM cells were observed. After that, the core promoter of porcine PPP1R11 was identified and its transcription factor AREB6 which significantly regulated PPP1R11. We also characterized that the PPP1R11 gene is a target of miR-34a. Further, we found that PPP1R11 helped to inhibit apoptosis of PAM cells under SS2 infecting, through transcription factor AREB6 was negatively correlated with apoptosis whereas miR-34a was positively correlated. Those findings provide a functional connection among the transcription factor AREB6, miR-34a, PPP1R11 gene and apoptosis of PAM cells in the pathogenesis of the SS2 infection.
Collapse
Affiliation(s)
- Guisheng Liu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Junjing Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Mu Qiao
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Jiawei Zhou
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Huayu Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Xianwen Peng
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Supamit Mekchay
- c Department of Animal and Aquatic Sciences, Faculty of Agriculture , Chiang Mai University , Chiang Mai , Thailand
| | - Shuqi Mei
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| |
Collapse
|
31
|
Dumesnil A, Auger JP, Roy D, Vötsch D, Willenborg M, Valentin-Weigand P, Park PW, Grenier D, Fittipaldi N, Harel J, Gottschalk M. Characterization of the zinc metalloprotease of Streptococcus suis serotype 2. Vet Res 2018; 49:109. [PMID: 30373658 PMCID: PMC6206940 DOI: 10.1186/s13567-018-0606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022] Open
Abstract
Streptococcus suis is a swine pathogen and zoonotic agent responsible for meningitis and septic shock. Although several putative virulence factors have been described, the initial steps of the S. suis pathogenesis remain poorly understood. While controversial results have been reported for a S. suis serotype 2 zinc metalloprotease (Zmp) regarding its IgA protease activity, recent phylogenetic analyses suggested that this protein is homologous to the ZmpC of Streptococcus pneumoniae, which is not an IgA protease. Based on the previously described functions of metalloproteases (including IgA protease and ZmpC), different experiments were carried out to study the activities of that of S. suis serotype 2. First, results showed that S. suis, as well as the recombinant Zmp, were unable to cleave human IgA1, confirming lack of IgA protease activity. Similarly, S. suis was unable to cleave P-selectin glycoprotein ligand-1 and to activate matrix metalloprotease 9, at least under the conditions tested. However, S. suis was able to partially cleave mucin 16 and syndecan-1 ectodomains. Experiments carried out with an isogenic Δzmp mutant showed that the Zmp protein was partially involved in such activities. The absence of a functional Zmp protein did not affect the ability of S. suis to adhere to porcine bronchial epithelial cells in vitro, or to colonize the upper respiratory tract of pigs in vivo. Taken together, our results show that S. suis serotype 2 Zmp is not a critical virulence factor and highlight the importance of independently confirming results on S. suis virulence by different teams.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pyong Woo Park
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Josée Harel
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada. .,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
32
|
Xie X, Gan Y, Pang M, Shao G, Zhang L, Liu B, Xu Q, Wang H, Feng Y, Yu Y, Chen R, Wu M, Zhang Z, Hua L, Xiong Q, Liu M, Feng Z. Establishment and characterization of a telomerase-immortalized porcine bronchial epithelial cell line. J Cell Physiol 2018; 233:9763-9776. [PMID: 30078190 DOI: 10.1002/jcp.26942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/12/2018] [Indexed: 01/03/2023]
Abstract
Primary porcine bronchial epithelial cells (PBECs) are an ideal model to study the molecular and pathogenic mechanisms of various porcine respiratory pathogens. However, the short lifespan of primary PBECs greatly limit their application. Here, we isolated and cultured primary PBECs and established immortalized PBECs by transfecting primary PBECs with the pEGFP-hTERT recombinant plasmid containing human telomerase reverse transcriptase (hTERT). Immortalized PBECs (hTERT-PBECs) retained the morphological and functional features of primary PBECs as indicated by cytokeratin 18 expression, telomerase activity assay, proliferation assays, karyotype analysis, and quantitative reverse-transcriptase polymerase chain reaction. Compared to primary PBECs, hTERT-PBECs had higher telomerase activity, extended replicative lifespan, and displayed enhanced proliferative activity. Moreover, this cell line is not transformed in vitro and does not exhibit a malignant phenotype in vivo, suggesting that it can be safely used in further studies. Besides, hTERT-PBECs were susceptible to swine influenza virus of H3N2 subtype and porcine circovirus type 2. In conclusion, the immortalized hTERT-PBECs represent a valuable in vitro model, which can be widely used in the study of porcine respiratory pathogenic infections.
Collapse
Affiliation(s)
- Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanyan Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meng Wu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
33
|
Vötsch D, Willenborg M, Weldearegay YB, Valentin-Weigand P. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract. Front Microbiol 2018; 9:480. [PMID: 29599763 PMCID: PMC5862822 DOI: 10.3389/fmicb.2018.00480] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yenehiwot B Weldearegay
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
34
|
Tong J, Fu Y, Wu NH, Rohde M, Meng F, Valentin-Weigand P, Herrler G. Sialic acid-dependent interaction of group B streptococci with influenza virus-infected cells reveals a novel adherence and invasion mechanism. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Jie Tong
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| | - Yuguang Fu
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
- Chinese Academy of Agricultural Sciences, Lanzhou Veterinary Research Institute; State Key Laboratory of Veterinary Etiological Biology; Lanzhou Gansu Province China
| | - Nai-Huei Wu
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| | - Manfred Rohde
- Central Facility for Microscopy; Helmholtz Centre for Infection Research, HZI; Braunschweig Germany
| | - Fandan Meng
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| | | | - Georg Herrler
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| |
Collapse
|
35
|
Critical Streptococcus suis Virulence Factors: Are They All Really Critical? Trends Microbiol 2017; 25:585-599. [PMID: 28274524 DOI: 10.1016/j.tim.2017.02.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 01/15/2023]
Abstract
Streptococcus suis is an important swine pathogen that can be transmitted to humans by contact with diseased animals or contaminated raw pork products. This pathogen possesses a coat of capsular polysaccharide (CPS) that confers protection against the immune system. Yet, the CPS is not the only virulence factor enabling this bacterium to successfully colonize, invade, and disseminate in its host leading to severe systemic diseases such as meningitis and toxic shock-like syndrome. Indeed, recent research developments, cautiously inventoried in this review, have revealed over 100 'putative virulence factors or traits' (surface-associated or secreted components, regulatory genes or metabolic pathways), of which at least 37 have been claimed as being 'critical' for virulence. In this review we discuss the current contradictions and controversies raised by this explosion of virulence factors and the future directions that may be conceived to advance and enlighten research on S. suis pathogenesis.
Collapse
|
36
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|