1
|
Zhou L, Yang Y, Qiao Q, Mi Y, Gan Y, Zheng Y, Wang Y, Liu M, Zhou Y. AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer progression via targeted regulation of IRS-1 transcription. J Cancer Res Clin Oncol 2024; 151:15. [PMID: 39724412 PMCID: PMC11671552 DOI: 10.1007/s00432-024-06039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE This study aimed to investigate that AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer (GC) progression via targeted regulation of IRS-1 transcription. METHODS The study utilized databases such as PhosphositePlus, TRANSFAC, CHEA, GPS 5.0, and TCGA, along with experimental techniques including Western Blot, co-IP, in vitro kinase assay, construction of lentiviral overexpression and silencing vectors, immunoprecipitation, modified proteomics, immunofluorescence, ChIP-PCR, EdU assay, Transwell assay, and scratch assay to investigate the effects of AKT1-induced Notch1 phosphorylation on cell proliferation, invasion and migration in vitro, as well as growth and epithelial-mesenchymal transition (EMT) in vivo. RESULTS AKT1 was found to induce phosphorylation of Notch1 at the S2183 site in GC, subsequently altering the subcellular localization of Notch1-IC and promoting its nuclear translocation. The transcription factor RBPJ that binds to Notch1 transcriptionally regulated IRS-1, CDH5, TNL1, ASCL2, and LRP6. Experimental validation revealed that Notch1-IC can regulate the expression of IRS-1. Overexpression of Notch1-IC was shown to promote the proliferation, invasion, and metastasis of GC cells, while knockdown of IRS-1 partially inhibited the aforementioned effects induced by Notch1-IC overexpression. Further experiments in vitro and vivo confirmed that AKT1-induced Notch1 phosphorylation can regulate the expression of IRS-1 and promote the malignant behavior of GC, including proliferation, invasion, metastasis, and EMT, with knockdown of IRS-1 partially reversing these effects. CONCLUSION AKT1 induces the Notch1 phosphorylation and promotes the activation and nuclear translocation of Notch1-IC by targeting the regulation of IRS-1, thereby advancing the progression of GC.
Collapse
Affiliation(s)
- Lingshan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Department of Geriatrics Ward 2, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qian Qiao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yingying Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuling Gan
- The 1nd Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, 730000, China
| | - Ya Zheng
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuping Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Min Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yongning Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhou L, Yang Y, Ye Y, Qiao Q, Mi Y, Liu H, Zheng Y, Wang Y, Liu M, Zhou Y. Notch1 signaling pathway promotes growth and metastasis of gastric cancer via modulating CDH5. Aging (Albany NY) 2024; 16:11893-11903. [PMID: 39172098 PMCID: PMC11386911 DOI: 10.18632/aging.206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To explore the underlying molecular mechanism of Notch1/cadherin 5 (CDH5) pathway in modulating in cell malignant behaviors of gastric cancer (GC). METHODS We performed bioinformatic analyses to screen the potential target genes of Notch1 from cadherins in GC. Western blot and RT-PCR were conducted to detect CDH5 expression in GC tissues and cells. We utilized chromatin immunoprecipitation (CHIP) assays to assess the interaction of Notch1 with CDH5 gene. The effects of Notch1/CDH5 axis on the proliferation, invasion, migration and vasculogenic mimicry in GC cells were evaluated by EdU, wound healing, transwell, and tubule formation assays. RESULTS Significantly increased CDH5 expression was found in GC tissues compared with paracancerous tissues and associated to clinical stage and poor overall survival (OS) in patients with GC. Notch1 positively regulate the expression of CDH5 in GC cells. CHIP assays validated that CDH5 was a direct target of Notch1. In addition, Notch1 upregulation enhanced the proliferation, migration, invasion and vasculogenic mimicry capacity of GC cells, which could be attenuated by CDH5 silencing. CONCLUSIONS These results indicated Notch1 upregulation enhanced GC malignant behaviors by triggering CDH5, suggesting that targeting Notch1/CDH5 axis could be a potential therapeutic strategy for GC progression.
Collapse
Affiliation(s)
- Lingshan Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Geriatrics Ward 2, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yuwei Ye
- Department of Gastroenterology Ward 2, Shanxi Provincial People’s Hospital, Xian 710000, China
| | - Qian Qiao
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yingying Mi
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Li M, He W, Wang F, Zhang P, Zhang X, Li Q, Liu T, Li Y. High expression of NOTCH2 in gastric adenocarcinoma: A novel early diagnostic target. J Gastroenterol Hepatol 2024; 39:1115-1122. [PMID: 38577711 DOI: 10.1111/jgh.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND AIM NOTCH2 is overexpressed in gastric cancer (GC), and its enhanced activity is significantly correlated with worse tumor characteristics. We aim to analyze the clinicopathologic correlation between NOTCH2 and the molecular typing of GC by immunohistochemistry and by transcriptional sequencing. METHODS In this immunohistochemical study, we detected NOTCH2, EBER, P53, HER2, MLH1, MSH2, PMS2, and MSH6 and evaluated the association of NOTCH2 with clinical and histopathological features in a large single-institutional series of gastric adenocarcinomas (n = 488). The correlation was also investigated between immunohistochemical results and survival outcomes. RESULTS High NOTCH2 expression (2+/3+) was found in 139/488 (27.5%) samples analyzed. NOTCH2 expression was correlated with early stage T1 (P < 0.0001), GC in the fundus (P = 0.0364), and positive P53 status (P = 0.0019). We did not find an association between NOTCH2 and HER2, microsatellite instability, EBER, and overall survival. Through RNA sequencing, it was revealed that NOTCH2 plays an important biological function in the pathogenesis and development of GC. CONCLUSIONS Our findings suggested that NOTCH2 may be a potential diagnostic target for GC due to the fact that its high expression is closely associated with the early stages of cancer.
Collapse
Affiliation(s)
- Mei Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Center of Lanzhou University Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, China
| | - Wenting He
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
- Center of Lanzhou University Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, China
| | - Furong Wang
- Department of Pathology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Peng Zhang
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
- Center of Lanzhou University Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, China
- Department of Pathology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoxia Zhang
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
- Center of Lanzhou University Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, China
| | - Qinan Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Tao Liu
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
- Center of Lanzhou University Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, China
| | - Yumin Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Center of Lanzhou University Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Gupta SRR, Mittal P, Kundu B, Singh A, Singh IK. Silibinin: an inhibitor for a high-expressed BCL-2A1/BFL1 protein, linked with poor prognosis in breast cancer. J Biomol Struct Dyn 2023; 42:12122-12132. [PMID: 37837418 DOI: 10.1080/07391102.2023.2268176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shradheya R R Gupta
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
| | - Bishwajit Kundu
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi (South Campus), New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
- Institute of Eminence, Delhi School of Public Health, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Wei JH, Qiao YL, Xu S, Zou Y, Ni HF, Wu LZ, Tao ZZ, Jiao WE, Chen SM. Specific knockout of Notch2 in Treg cells significantly inhibits the growth and proliferation of head and neck squamous cell carcinoma in mice. Int Immunopharmacol 2023; 123:110705. [PMID: 37523971 DOI: 10.1016/j.intimp.2023.110705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE To investigate the effect of Notch2 gene knockout in Treg cells on head and neck squamous cell carcinoma (HNSCC) in mice. METHODS A mouse model of HNSCC was constructed. Flow cytometry and immunofluorescence were used to examine the numbers of related immune cells and programmed cell death in tumor cells in the spleen and tumor microenvironment of mice. Western blotting was used to measure the expression of related proteins in tumor tissues. RESULTS The tumor volume of regulatory T (Treg) cell-specific Notch2-knockout mice (experimental group) was significantly smaller than that of control mice (control group) (P < 0.05). Compared with those in the control group, the number of Treg cells and the expression of Ki67 in Treg cells in the spleen and tumor tissue were significantly decreased in the experimental group, while the numbers of CD45+ hematopoietic cells, CD4+ T cells, CD8+ T cells, T helper 1 (Th1) cells, CD11b+ cells (macrophages), and CD11b+CD11c+ cells (dendritic cells) and the expression of Ki67 in CD4+ T cells and CD8+ T cells were significantly increased (P < 0.05). There was no significant difference in the number of Th2 cells between the two groups (P > 0.05). Immunofluorescence analysis showed that the numbers of CD4+ T cells and CD8+ T cells in the tumor tissue in the experimental group were significantly higher than those in the control group (P < 0.05). Compared with that in the control group, programmed cell death in the experimental group was significantly increased (P < 0.05). Moreover, the expression levels of NLRP3, Caspase-1 and GSDMD in the tumor tissues of the experimental group were higher than those in the control group (P < 0.01), while the expression levels of BCL2, Bax, ATG5, LC3 and p62 were not significantly different (P > 0.05). CONCLUSIONS Specific knockout of the Notch2 gene in Treg cells significantly decreases the function of Treg cells, inhibits the growth of HNSCC and improves the immune microenvironment in mice, thus effectively treating HNSCC.
Collapse
Affiliation(s)
- Jun-Hua Wei
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Hai-Feng Ni
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
6
|
He Y, He P, Lu S, Dong W. KIFC3 Regulates the progression and metastasis of gastric cancer via Notch1 pathway. Dig Liver Dis 2023; 55:1270-1279. [PMID: 36890049 DOI: 10.1016/j.dld.2023.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION KIFC3 is a member of the kinesin family which has shown great promise in cancer therapy recently. In this study, we sought to elucidate the role of KIFC3 in the development of GC and its possible mechanisms. METHODS Two databases and a tissue microarray were used to explore the expression of KIFC3 and its correlation with patients' clinicopathological characteristics. Cell proliferation was examined by cell counting kit-8 assay and colony formation assay. Wound healing assay and transwell assay were performed to examine cell metastasis ability. EMT and Notch signaling related proteins were detected by western blot. Additionally, a xenograft tumor model was established to investigate the function of KIFC3 in vivo. RESULTS The expression of KIFC3 was upregulated in GC, and was associated with higher T stage and poor prognosis in GC patients. The proliferation and metastasis ability of GC cells were promoted by KIFC3 overexpression while inhibited by KIFC3 knockdown in vitro and in vivo. Furthermore, KIFC3 might activate the Notch1 pathway to facilitate the progression of GC, and DAPT, an inhibitor of Notch signaling, could reverse this effect. CONCLUSION Together, our data revealed that KIFC3 could enhance the progression and metastasis of GC by activating the Notch1 pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Shimin Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China.
| |
Collapse
|
7
|
Hsu HT, Kuo TM, Wei CY, Huang JY, Liu TW, Hsing MT, Lai MT, Chen CT. Investigation of the impact of Globo-H expression on the progression of gastric cancer. Am J Cancer Res 2023; 13:2969-2983. [PMID: 37560002 PMCID: PMC10408484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/28/2023] [Indexed: 08/11/2023] Open
Abstract
Globo-H (GH), a globo-series glycosphingolipid antigen that is synthesized by key enzymes β1,3-galactosyltransferase V (β3GalT5), fucosyltransferase (FUT) 1 and 2, is highly expressed on a variety of epithelial cancers rendering it a promising target for cancer immunotherapy. GH-targeting antibody-drug conjugate has been demonstrated an excellent tumor growth inhibition potency in animal models across multiple cancer types including Gastric cancer (GC). This study aims to further investigate the GH roles in GC. Significant correlations were observed between high mRNA expression of GH-synthetic key enzymes and worse overall survival (OS)/post-progression survival for GC patients based on the data from "Kaplan-Meier plotter" database (n=498). The level of GH expression was evaluated in clinical adenocarcinoma samples from 105 patients with GC by immunohistochemistry based on H-score. GH expression (H score ≥ 20; 33.3%) was significantly associated with a poor disease specific survival (DSS) and invasiveness in all samples with P=0.029 and P=0.013, respectively. In addition, it is also associated with shorter DSS and OS in poorly differentiated tumors with P=0.033 and P=0.045, respectively. Particularly, with patients ≥ 65 years of age, GH expression is also significantly associated with the stages (P=0.023), differentiation grade (P=0.038), and invasiveness (P=0.026) of the cancer. Sorted GC NCI-N87 cells with high level of endogenous GH showed higher proliferative activity compared with low-GH-expressing cells based on PCNA expression. Micro-western array analysis on high-GH-expressing GC cells indicated an upregulation in HER2-related signaling proteins including phospho-AKT/P38/JNK and Cyclin D1/Cyclin E1 proteins. Moreover, GH level was shown to be correlated with expression of total HER2 and caveolin-1 in GC cells. Immunoprecipitation study suggested that there are potential interactions among GH, caveolin-1, and HER2. In conclusions, GH level was significantly associated with the worse survival and disease progression in GC patients, especially in older patients. Enhanced cell proliferation activity through interactions among GH, HER2, and caveolin-1 interactions may contribute to GH induced tumor promotion signaling in GC. GH-targeting therapy may be a viable option for the treatment of GC patients.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Department of Pathology, Changhua Christian HospitalChanghua, Taiwan
- Institute of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- School of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Pathology, China Medical University HospitalTaichung, Taiwan
| | | | | | | | | | - Ming-Tai Hsing
- Department of Neurosurgery, Changhua Christian HospitalChanghua, Taiwan
| | | | | |
Collapse
|
8
|
Li Y, Xie F, Zhang H, Wu X, Ji G, Li J, Hong L. Effects of mRNA expression of five Notch ligands on prognosis of gastric carcinoma. Sci Rep 2022; 12:15141. [PMID: 36071128 PMCID: PMC9452498 DOI: 10.1038/s41598-022-19291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Notch ligands are expression changes in a great many malignancies including gastric cancer (GC) frequently. The prognostic value of each Notch ligands in GC patients remains lack of large sample data results. In present research, we researched the prognostic value of Notch ligands in GC patients in order to fill the shortage areas. We used an online database ( http://kmplot.com/analysis/index.php?p=service&cancer=gastric ) to identify the relationship between mRNA expression of each Notch ligand and overall survival (OS) in GC. We analyze the relevance of overall survival and clinical data which includes gender, Lauren's classification, differentiation, clinical stage and treatment. The study found that high DLL1, DLL3, DLL4 and JAG2 mRNA expression were tied to worse OS in all GC patients followed up for 10 years. There is no significant relevance to the expression of JAG1 mRNA and OS in patients with GC. We also did a survey of each Notch ligands in different clinical and pathological features present different prognosis. The information will help to better understand the biology of gastric cancer heterogeneity, provide more accurate prognostic evaluation tools and provide new targets for targeted drug development besides.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Fengni Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Huimin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Gang Ji
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jipeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Liu Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Oliveira ID, Nicolau-Neto P, Fernandes P, Lavigne T, Neves P, Tobar J, Soares-Lima S, Simão T, Pinto LR. The potential of mRNA expression evaluation in predicting HER2 positivity in gastroesophageal cancer. Braz J Med Biol Res 2022; 55:e12428. [DOI: 10.1590/1414-431x2022e12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - T.A. Simão
- Universidade do Estado do Rio de Janeiro, Brasil
| | - L.F. Ribeiro Pinto
- Instituto Nacional de Câncer, Brasil; Universidade do Estado do Rio de Janeiro, Brasil
| |
Collapse
|
10
|
A Comprehensive Bioinformatic Analysis of NOTCH Pathway Involvement in Stomach Adenocarcinoma. DISEASE MARKERS 2021; 2021:4739868. [PMID: 34925644 PMCID: PMC8674080 DOI: 10.1155/2021/4739868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Background Activation of NOTCH signaling pathways, which are key regulators of multiple cellular functions, has been frequently implicated in cancer pathogenesis, and NOTCH inhibitors have received much recent focus in the context of cancer therapeutics. However, the role and possible involvement of NOTCH pathways in stomach adenocarcinoma (STAD) are unclear. Here, putative regulatory mechanisms and functions of NOTCH pathways in STAD were investigated. Methods Publicly available data from the TCGA-STAD database were utilized to explore the involvement of canonical NOTCH pathways in STAD by analyzing RNA expression levels of NOTCH receptors, ligands, and downstream genes. Statistical analysis of the data pertaining to cancer and noncancerous samples was performed using R software packages and public databases/webservers. Results Significant differential gene expression between control and STAD samples was noted for all NOTCH receptors (NOTCH1, 2, 3, and 4), the delta-like NOTCH ligands (DLL-3 and 4), and typical downstream genes (HES1 and HEY1). Four genes (NOTCH1, NOTCH2, NOTCH3, and HEY1) presented prognostic values for the STAD outcome in terms of overall survival. Functional enrichment analysis indicated that NOTCH family genes-strongly correlated genes were mainly enriched in several KEGG signaling pathways such as the PI3K-Akt signaling pathway, human papillomavirus infection, focal adhesion, Rap1 signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis (GSEA) results showed that NOTCH family genes-significantly correlated genes were mainly enriched in four signaling pathways, ECM (extracellular matrix), tumor angiogenesis, inflammatory response, and immune regulation. Conclusions NOTCH family genes may play an essential role in the progression of STAD by modulating immune cells and mediating ECM synthesis, angiogenesis, focal adhesion, and PI3K-Akt signaling. Multiple NOTCH family genes are valuable candidate biomarkers or therapeutic targets for the management of STAD.
Collapse
|
11
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Nema R, Patel P, Kumar A. Prognostic Role of Receptor Tyrosine Kinase-Like Orphan Receptors in Intestinal-Type Gastric Cancer. Asian Pac J Cancer Prev 2021; 22:2125-2134. [PMID: 34319035 PMCID: PMC8607102 DOI: 10.31557/apjcp.2021.22.7.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is diagnosed at advanced stages and has high mortality rates. Surgical resection and adjuvant chemotherapy are the main therapeutic approaches for GC. Despite curative resection, recurrence and metastasis contribute to a high mortality rate in patients with GC. The receptor-tyrosine-kinase-like orphan receptors 1/2 (ROR1/2) are transmembrane proteins belonging to the receptor tyrosine kinase (RTK) family. ROR1 and ROR2 are known to overexpress in the tumor tissues from several types of cancer patients. However, the role of RORs in the prognosis has not been understood. METHODS This study aimed to determine the association of mRNA expression of ROR1, ROR2, and their signaling components WNT5A, NKX2-1, and FOXF1, with the survival outcome of GC patients. We performed Kaplan-Meir survival analysis on publicly available 'The Cancer Genome Atlas (TCGA)' data sets using 'Kaplan-Meir Plotter.' RESULTS High mRNA expression of ROR1, ROR2, NKX2-1, and FOXF1 was significantly correlated with worse overall survival (OS) of GC patients. Interestingly ROR1 and ROR showed a prognostic role in the intestinal subtype, but not in the diffuse subtype of GC. Furthermore, ROR1 was positively correlated with regulatory T cells and M2-type macrophages and negatively correlated with Th17 and natural killer T cells in the tumor stroma of patients with GC. CONCLUSION We conclude that the expression of ROR1, ROR2, and their associated genes correlate with worst prognosis of GC patients, particularly in the intestinal type. .
Collapse
Affiliation(s)
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, India.
| |
Collapse
|
13
|
Evaluation of Important Molecular Pathways and Candidate Diagnostic Biomarkers of Noninvasive to Invasive Stages in Gastric Cancer by In Silico Analysis. JOURNAL OF ONCOLOGY 2021; 2021:5571413. [PMID: 34054953 PMCID: PMC8131151 DOI: 10.1155/2021/5571413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer affects millions of people each year; it is the fifth deadliest cancer globally. Due to failure to perform routine tests such as endoscopy, it is usually diagnosed in the invasive stages. Therefore, finding diagnostic biomarkers in blood can help to speed up the initial diagnosis of cancer. This study aimed to find appropriate diagnostic biomarkers in the extracellular matrix of noninvasive to invasive stages of gastric cancer patients, using bioinformatics analysis. First, we selected the appropriate datasets from the GEO database. We evaluated the genes' signaling pathways, biological processes, and molecular functions. More accurately, we assessed the genes, in which their protein products are released into the extracellular matrix; we evaluated their protein network. Then, we validated the candidate proteins in the GEPIA and TCGA databases. The extracellular matrix, tyrosine kinase receptors, and immune response pathways are effective factors, which are related to the highly expressed genes and metabolism; cell cycle pathways are also impressive on low-expression genes. 69 highly expressed proteins are released into the extracellular matrix. After drawing the protein network, 5 proteins were selected as more suitable candidates for further studies. These proteins' expression significantly increases in the human samples, and the survival chart showed up to about 80% mortality in the individuals over time. With integrated bioinformatics analysis, BGN, LOX, MMP-9, SERPINE1, and TGFB1 proteins have been selected as suitable diagnostic biomarkers for noninvasive to invasive stages of gastric cancer. Further studies are needed to evaluate more precise mechanisms between these proteins.
Collapse
|
14
|
Hang Q, Lu J, Zuo L, Liu M. Linc00641 promotes the progression of gastric carcinoma by modulating the miR-429/Notch-1 axis. Aging (Albany NY) 2021; 13:8497-8509. [PMID: 33714199 PMCID: PMC8034904 DOI: 10.18632/aging.202661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Linc00641 plays different roles in various types of human cancers. However, the function of linc00641 and its underlying mechanism of action in gastric cancer have not been fully elucidated. Therefore, the aim of our current study was to explore the molecular mechanism of linc00641 in gastric cancer. MTT assays, flow cytometry, wound healing assays, and Transwell invasion assays were utilized to measure cell viability, apoptosis, migration and invasion, respectively. Western blotting and RT-PCR assays were carried out to explore the mechanism of linc00641 in gastric cancer cells. We found that silencing linc00641 suppressed the viability and stimulated the apoptosis of gastric cancer cells, while linc00641 overexpression had the opposite effects. Moreover, linc00641 sponged the expression of miR-429 and subsequently upregulated Notch-1 expression in gastric cancer cells. We concluded that linc00641 promoted the malignant progression of gastric cancer by modulating the miR-429/Notch-1 axis.
Collapse
Affiliation(s)
- Qun Hang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Jie Lu
- Department of Operating Theatre, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| |
Collapse
|
15
|
Comprehensive Analysis of the Expression of Key Genes Related to Hippo Signaling and Their Prognosis Impact in Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020344. [PMID: 33669647 PMCID: PMC7922135 DOI: 10.3390/diagnostics11020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The Hippo signaling pathway, one of the most conserved in humans, controlling dimensions of organs and tumor growth, is frequently deregulated in several human malignancies, including ovarian cancer (OC). The alteration of Hippo signaling has been reported to contribute to ovarian carcinogenesis and progression. However, the prognostic roles of individual Hippo genes in OC patients remain elusive. Herein we investigated the expression level and prognostic value of key Hippo genes in OC using online databases, followed by a qRT-PCR validation step in an additional patient cohort. Using the GEPIA database, we observed an increased level for TP53 and reduced expression level for LATS1, LATS2, MST1, TAZ, and TEF in tumor tissue versus normal adjacent tissue. Moreover, LATS1, LATS2, TP53, TAZ, and TEF expression levels have prognostic significance correlated with progression-free survival. The qRT-PCR validation step was conducted in an OC patient cohort comprising 29 tumor tissues and 20 normal adjacent tissues, endorsing the expression level for LATS1, LATS2, and TP53, as well as for two of the miRNAs targeting the TP53 gene, revealing miR-25-3p upregulation and miR-181c-5p downregulation. These results display that there are critical prognostic value dysregulations of the Hippo genes in OC. Our data demonstrate the major role the conserved Hippo pathway presents in tumor control, underlying potential therapeutic strategies and controlling several steps modulated by miRNAs and their target genes that could limit ovarian cancer progression.
Collapse
|
16
|
Nema R, Shrivastava A, Kumar A. Prognostic role of lipid phosphate phosphatases in non-smoker, lung adenocarcinoma patients. Comput Biol Med 2020; 129:104141. [PMID: 33260104 DOI: 10.1016/j.compbiomed.2020.104141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, plays a crucial role in tumorigenesis. It mediates its function through S1P receptors. A few components of the S1P signaling pathway, such as sphingosine kinase 1 (SphK1) and S1P receptor 1 (S1PR1), have been shown to contribute to lung carcinogenesis. In the present study, using web-based computational tools, we assessed the prognostic roles of eight S1P metabolizing enzymes and five S1P receptors in non-small-cell lung cancer (NSCLC) patients. Except for SPHK1, low expression of S1P metabolizing enzymes was correlated with worse overall survival (OS) in NSCLC patients. Moreover, lower expression of lipid phosphate phosphatase-1 and - 3 (PLPP1 and PLPP3) was significantly associated with worse OS in lung adenocarcinoma (LUAD) and non-smoker NSCLC patients. Furthermore, the UALCAN database analysis showed that mRNA and protein expression of PLPP3 and S1PR1 are significantly down regulated in primary tumors due to hypermethylation of their respective promoters. Expression of PLPP3, S1PR1, and S1PR4 was positively correlated with tumor-infiltrating immune cells in NSCLC patients. These results indicate that S1P signaling genes play a critical prognostic role in LUAD patients. Therefore, this gene signature could be used to predict their prognosis more accurately.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, India
| | - Ashutosh Shrivastava
- Centre for Advance Research, King George's Medical University, Lucknow, 226003, India.
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, India.
| |
Collapse
|
17
|
Liu F, Wang H, Zhang M. Distinct prognostic values and antitumor effects of tumor growth factor β1 and its receptors in gastric cancer. Oncol Lett 2020; 20:2621-2632. [PMID: 32782580 PMCID: PMC7400994 DOI: 10.3892/ol.2020.11849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and is the second leading cause of cancer-associated mortality world-wide. In the present study, the prognostic value and antitumor effects of transforming growth factor β1 (TGFβ1) and its receptors in GC were explored. The online Kaplan-Meier plotter database was used to investigate the prognostic values of TGFβ1 and its receptors. The present study demonstrated that low mRNA expression levels of TGFβ1 and its 3 receptors, transforming growth factor β1 (TGFβR1), TGFβR2 and TGFβR3, was associated with improved overall survival time in patients with GC. Cell Counting Kit-8 and Transwell assays were used to confirm the effects of TGFβ1, TGFβR1, TGFβR2 and TGFβR3 on the proliferation, migration and invasiveness of the AGS and MKN45 GC cell lines. It was found that the knockdown of these genes blocked cell proliferation, migration and invasion in GC cells. To the best of our knowledge, the present study is the first to determine the role of TGFβR1 and TGFβR3 in GC cells. The results indicate that in addition to TGFβ1 and TGFβR2, TGFβR1 also plays a specific role in the occurrence and development of tumors. Thus, these markers may be considered as potential prognostic indicators in human GC. The findings of the present study indicate that not only TGFβ1 and TGFβR2, but also TGFβR1 is involved in the progression of GC. The findings of the present study provide new ideas and approaches for the treatment of patients with GC.
Collapse
Affiliation(s)
- Fengping Liu
- Operation Room, Linyi Lanshan Cancer Hospital, Linyi, Shandong 276002, P.R. China
| | - Hongwei Wang
- Operation Room, Linyi Lanshan Cancer Hospital, Linyi, Shandong 276002, P.R. China
| | - Mei Zhang
- Department of Radiotherapy Technology, Linyi Lanshan Cancer Hospital, Linyi, Shandong 276002, P.R. China
| |
Collapse
|
18
|
Gu F, Liu Y, Liu Y, Cheng S, Yang J, Kang M, Duan W, Liu Y. Distinct functions and prognostic values of RORs in gastric cancer. Open Med (Wars) 2020; 15:424-434. [PMID: 33336001 PMCID: PMC7711859 DOI: 10.1515/med-2020-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/06/2020] [Accepted: 02/22/2020] [Indexed: 11/15/2022] Open
Abstract
Retinoic acid receptor-related orphan receptors (RORs) are frequently abnormally expressed in several human malignancies, including gastric cancer (GC). RORs are involved in the development and progression of GC through Wnt signaling pathway receptors and other common receptors. However, the prognostic roles of individual RORs in patients with GC remain elusive. We accessed the prognostic roles of three RORs (RORα, RORβ, and RORγ) through "The Kaplan-Meier plotter" (KM plotter) database in patients with GC. For all patients with GC who were followed for 20 years, the low mRNA expression of all three RORs showed a significant correlation with better outcomes. We further accessed the prognostic value of individual RORs in different clinical pathological features including Lauren classification, clinical stages, pathological grades, HER2 status, and different treatments methods. The RORs demonstrated critical prognostic roles in GC. Expressions of RORs were higher in GC tissues when compared with normal gastric tissues. Moreover, knockdown of RORs significantly inhibited cell proliferation and migration, suggesting an oncogenic role of RORs in human GC. These findings suggest potential roles of RORs as biomarkers for GC prognosis and as oncogenes in GC.
Collapse
Affiliation(s)
- Feng Gu
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Yuming Liu
- General Hospital of Huabei Petroleum Administration Bureau, Renqiu, China
| | - Yuan Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shujie Cheng
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Jihong Yang
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Ming Kang
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Wendu Duan
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Yan Liu
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| |
Collapse
|
19
|
Wang M, Zhao H, Hu J, Xu Z, Lin Y, Zhou S. Penicilazaphilone C, a New Azaphilone, Induces Apoptosis in Gastric Cancer by Blocking the Notch Signaling Pathway. Front Oncol 2020; 10:116. [PMID: 32117763 PMCID: PMC7026506 DOI: 10.3389/fonc.2020.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Penicilazaphilone C (PAC) is a novel azaphilonidal derivative isolated by our group that demonstrates good anticancer activities. Considering that its molecular mechanisms remain largely unknown, here we explore the molecular mechanisms of the anticancer activities of PAC against gastric cancer. The in vitro effects of PAC on cell growth, proliferation, and apoptosis were evaluated by MTT, BrdU, MTS, colony formation assays, Hoechst 33258 staining, and flow cytometry. Related proteins were examined by western blotting. Notch receptor expression was analyzed by RT-PCR. In vivo antitumor activities of PAC were observed in a nude mouse model. We found that compared to the controls, PAC treatment suppressed cell proliferation and promoted apoptosis in MGC-803 and SGC-7901 cells, and the Notch/PTEN/AKT axis was involved in the activating PAC-induced apoptosis. PAC treatment led to decreased levels of Notch (NTM), NICD, pPTEN, and pAKT compared to controls. PAC-induced inhibition of Notch-related protein expression levels and the resulting apoptosis were reversed by overexpression of Notch1 (NTM) or/and Notch2 (NTM). Moreover, PAC treatment clearly inhibited tumor growth in mice both bearing tumors derived from both MGC-803 and SGC-7901 cells. This work reveals that PAC induces the apoptosis by suppressing activation of Notch receptor proteolytic cleavage and subsequently blocking the PTEN/AKT signaling axis in gastric cancer cells. Thus, PAC is a potential alternative agent for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
- Health and Family Planning Commission of Wanzai County of Jiangxi Province, Yichun, China
| | - Huange Zhao
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Juanjuan Hu
- Department of Medical Insurance Service, Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Xu
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Yingying Lin
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
20
|
Pan X, Wang Y, Li C, Zhou Z, Zhong Y, Feng J, Lu J. Exon Coverage Variations Between Cancer Tissues and Adjacent Non-Cancerous Tissues are Prognostic Factors in Gastric Cancer. Onco Targets Ther 2020; 13:61-70. [PMID: 32021255 PMCID: PMC6956395 DOI: 10.2147/ott.s234351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Gastric cancer is highly heterogeneous both clinically and pathologically and is one of the leading causes of cancer-related deaths worldwide. Genomic coverage variations, also known as copy number variations (CNVs), play a critical role in the carcinogenesis of gastric cancer. Many studies have demonstrated that DNA CNVs are important factors affecting the expression of protein-encoding genes in the gastric cancer genome. Methods Thirty gastric cancer patients from a Chinese population were enrolled. Genomic DNA was extracted from gastric cancer tissue and matched adjacent non-cancerous tissue from each patient. A panel of 1,021 genes including 3300 exons was designed and subjected to next-generation sequencing. Copy numbers of each gene and exon were calculated for each tissue. Coverage variations between gastric cancer tissue and matched adjacent non-cancerous tissue were also calculated, and we examined the correlation between overall survival of patients and coverage variation type for each exon. Results DNA from cancerous tissue and corresponding adjacent non-cancerous tissue were significantly different with respect to the pattern of gene copy number. Exon copy numbers were highly consistent among non-cancerous samples and confirmed that non-cancerous tissue contain diploid genomes. In contrast, the gene coverage pattern among cancerous tissue showed significant differences and confirmed that gastric cancer is a genetically heterogeneous disease. Numerous exon coverage variations were identified in gastric cancer tissue compared with matched, adjacent non-cancerous tissue. Overall survival between patients with and without coverage variations in regions of NOTCH2, NTRK3, ERBB2 and RERE exons exhibited significant differences. This is consistent with previous reports and indicates that these findings may have prognostic value. Conclusion Our results confirm that gastric cancer is a genetically heterogeneous disease. Exon coverage variations between cancer tissue and their adjacent non-cancerous tissue were shown to be associated with prognosis in gastric cancer.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yajing Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| | - Chenchen Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| | - Zhaofei Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuejiao Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jianwei Lu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
21
|
Huang B, Jin G, Qu C, Ma H, Ding C, Zhang Y, Liu W, Li W. Elevated Expression of NOTCH1 Associates with Lymph Node Metastasis of Gastric Cancer and Knock-Down of NOTCH1 Attenuates Tumor Cell Progression. Med Sci Monit 2019; 25:9939-9948. [PMID: 31874951 PMCID: PMC6944039 DOI: 10.12659/msm.918703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Gastric cancer is the third leading cause of cancer-related death, while its molecular mechanism has not been fully clarified. This study aims to explore the role of Notch signaling in the pathogenesis of gastric cancer. MATERIAL AND METHODS A total of 64 patients with gastric cancer were enrolled. The expressions of NOTCH1 in tumor tissues and adjacent non-tumor tissues were detected by immunohistochemistry staining. The correlation between NOTCH1 expression and clinicopathological features of patients was analyzed. NOTCH1 was knocked down in gastric cancer cells. The effects of NOTCH1 blockade on cell proliferation, migration and cell cycle distribution were analyzed. The expressions of ERK1/2 and phospho-ERK1/2 (p-ERK1/2) were detected using western blotting. RESULTS Gastric cancer tissues expressed higher level of NOTCH1 than adjacent non-tumor tissues (P<0.05). The high level of NOTCH1 was found to be correlated with gender (male) and lymph node metastasis. However, the expression level of NOTCH1 did not affect the overall survival of patients with gastric cancer. NOTCH1 knock-down repressed the migration and proliferation of gastric cancer cells. Moreover, the cell cycle was arrested at G0/G1 phase by NOTCH1 blockade. The expressions of ERK1/2 and p-ERK1/2 decreased with NOTCH1 knock-down. Further inhibition of ERK1/2 signaling by a MEK1/2 inhibitor U0126 reduced the proliferation of AGS cells, which aggravated the inhibition effect of NOTCH1 knock-down on cell proliferation. CONCLUSIONS NOTCH1 may play an oncogenic role in gastric cancer. Inhibition of NOTCH1 can efficiently attenuate gastric cancer cell progression, probably in part through cross-talking with ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Bo Huang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Guorong Jin
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Chongxiao Qu
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Haining Ma
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Caiyun Ding
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Yali Zhang
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Weiwei Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Weibing Li
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
22
|
|
23
|
Najberg M, Haji Mansor M, Boury F, Alvarez-Lorenzo C, Garcion E. Reversing the Tumor Target: Establishment of a Tumor Trap. Front Pharmacol 2019; 10:887. [PMID: 31456685 PMCID: PMC6699082 DOI: 10.3389/fphar.2019.00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs). Recent advances pursue the trapping of these cancer cells within a confined area to facilitate their removal for therapeutic and diagnostic purposes. A good understanding of the mechanisms behind tumor cell migration may drive the design of traps that mimic natural tumor niches and guide the movement of the cancer cells. To bring this trapping idea into reality, strong efforts are being made to create structured materials that imitate myelinated fibers, blood vessels, or pre-metastatic niches and incorporate chemical cues such as chemoattractants or adhesive proteins. In this review, the different strategies used (or could be used) to trap tumor cells are described, and relevant examples of their performance are analyzed.
Collapse
Affiliation(s)
- Mathie Najberg
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Muhammad Haji Mansor
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Center for Education and Research on Macromolecules (CERM), Université de Liège, Liège, Belgium
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| |
Collapse
|
24
|
Notch signaling pathway regulates CD4 +CD25 +CD127 dim/- regulatory T cells and T helper 17 cells function in gastric cancer patients. Biosci Rep 2019; 39:BSR20182044. [PMID: 30988066 PMCID: PMC6522723 DOI: 10.1042/bsr20182044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
Regulatory T cells (Tregs) and T helper 17 (Th17) cells contribute to cancer progression and prognosis. However, regulatory factors associated with Tregs-Th17 balance were not completely understood. We previously demonstrated an immune-modulatory capacity by Notch signaling inactivation to reverse Tregs-Th17 disequilibrium in chronic hepatitis C. Thus, the aim of current study was to assess the role of Notch signaling in modulation Tregs and Th17 cells function in gastric cancer (GC) patients. A total of 51 GC patients and 18 normal controls (NCs) were enrolled. Notch1 and Notch2 mRNA expressions were semiquantified by real-time polymerase chain reaction. Tregs/Th17 percentages, transcriptional factors, and cytokines production were investigated in response to the stimulation of Notch signaling inhibitor DAPT. Both Notch1 and Notch2 mRNA expressions were elevated in GC tissues and peripheral bloods in GC patients. CD4+CD25+CD127dim/- Tregs and Th17 cells percentage was also elevated in GC patients compared with in NCs. DAPT treatment did not affect frequency of either circulating Tregs or Th17 cells, however, reduced FoxP3/RORγt mRNA expression and interleukin (IL)-35/IL-17 production in purified CD4+ T cells from GC patients. Moreover, blockade of Notch signaling also inhibited the suppressive function of purified CD4+CD25+CD127dim/- Tregs from GC patients, which presented as elevation of cellular proliferation and IL-35 secretion. The current data further provided mechanism underlying Tregs-Th17 balance in GC patients. The link between Notch signaling and Th cells might lead to a new therapeutic target for GC patients.
Collapse
|
25
|
Xiu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res 2019; 9:837-854. [PMID: 31218097 PMCID: PMC6556604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023] Open
Abstract
Deregulated Notch signaling is a key factor thought to facilitate the stem-like proliferation of cancer cells, thereby facilitating disease progression. Four subtypes of Notch receptor have been described to date, with each playing a distinct role in cancer development and progression, therefore warranting a careful and comprehensive examination of the targeting of each receptor subtype in the context of oncogenesis. Clinical efforts to translate the DAPT, which blocks Notch signaling, have been unsuccessful due to a combination of serious gastrointestinal side effects and a lack of complete blocking efficacy. There is therefore a clear need to identify better therapeutic strategies for targeting and manipulating Notch signaling. Notch2 is a Notch receptor that is commonly overexpressed in a range of cancers, and which is linked to a unique oncogenic mechanism. Successful efforts to block Notch2 signaling will depend upon doing so both efficiently and specifically in patients. As such, in the present review we will explore the role of Notch2 signaling in the development and progression of cancer, and we will assess agents and strategies with the potential to effectively disrupt Notch2 signaling and thereby yield novel cancer treatment regimens.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| | - Yuan-Meng Liu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Prognostic values of F-box members in breast cancer: an online database analysis and literature review. Biosci Rep 2019; 39:BSR20180949. [PMID: 30341246 PMCID: PMC6328874 DOI: 10.1042/bsr20180949] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction: F-box proteins are the substrate-recognizing subunits of SKP1 (S-phase kinase-associated protein 1)–cullin1–F-box protein (SCF) E3 ligase complexes that play pivotal roles in multiple cellular processes, including cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. Dysregulation of F-box proteins may lead to an unbalanced proteolysis of numerous protein substrates, contributing to progression of human malignancies. However, the prognostic values of F-box members, especially at mRNA levels, in breast cancer (BC) are elusive. Methods: An online database, which is constructed based on the gene expression data and survival information downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/), was used to investigate the prognostic values of 15 members of F-box mRNA expression in BC. Results: We found that higher mRNA expression levels of FBXO1, FBXO31, SKP2, and FBXO5 were significantly associated with worse prognosis for BC patients. While FBXO4 and β-TrCP1 were found to be correlated to better overall survival (OS). Conclusion: The associated results provide new insights into F-box members in the development and progression of BC. Further researches to explore the F-box protein-targetting reagents for treating BC are needed.
Collapse
|
27
|
Zhu X, Chen H, Yang Y, Xu C, Zhou J, Zhou J, Chen Y. Distinct prognosis of mRNA expression of the five RecQ DNA-helicase family members - RECQL, BLM, WRN, RECQL4, and RECQL5 - in patients with breast cancer. Cancer Manag Res 2018; 10:6649-6668. [PMID: 30584360 PMCID: PMC6287649 DOI: 10.2147/cmar.s185769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Five RecQ helicase family members have a role in maintaining genome stability. However, their prognostic roles in breast cancer remain unknown. We aimed to investigate the prognostic values of the RecQ family and clinical outcomes in breast cancer. Methods We used the Kaplan-Meier Plotter database (http://kmplot.com/analysis) to analyze prognostic values of RecQ-family mRNA expression in all breast cancers and in different intrinsic subtypes and clinicopathological characteristics. Protein-expression levels of WRN and RECQL4 were confirmed by immunohistochemistry (IHC) in breast cancer tissues. Results Increased expression of RECQL mRNA was significantly associated with reduced relapse-free survival (RFS) and postprogression survival (PPS) in all breast cancers, and improved overall survival (OS) in patients with basal-like breast cancer and in mutant-p53-type breast cancer patients. Increased expression of BLM mRNA was correlated with reduced distant metastasis-free survival (DMFS) in all patients. Increased expression of WRN mRNA was associated with improved OS and RFS in breast cancer patients. Increased expression of RECQL4 mRNA was associated with reduced OS, DMFS, and RFS in all breast cancers, and with reduced OS in patients with luminal A, HER2-positive, ER-positive, and PR-positive breast cancer. Increased expression of RECQL5 mRNA was associated with improved RFS in all patients, and with improved OS in patients with lymph-node-negative breast cancer, but with reduced OS in patients with HER2-positive breast cancer. IHC staining confirmed that high expression of WRN was correlated with increased OS and high expression of RECQL4 associated with reduced OS at protein levels. Conclusion mRNA-expression levels of RecQ members were significantly correlated with prognosis in breast cancer patients. These preliminary findings require further study to determine whether RecQ-targeting reagents might be developed for clinical application in breast cancer.
Collapse
Affiliation(s)
- Xuan Zhu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Huihui Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Yi Yang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,Department of Breast Surgery, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, People's Republic of China
| | - Chunjing Xu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Jun Zhou
- Department of Breast Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiaojiao Zhou
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Yiding Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| |
Collapse
|
28
|
Wang Y, Yang R, Wang X, Ci H, Zhou L, Zhu B, Wu S, Wang D. Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine (Baltimore) 2018; 97:e13817. [PMID: 30593175 PMCID: PMC6314709 DOI: 10.1097/md.0000000000013817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a new blood supply style in tumors and has long been treated as a useful factor in malignant tumor metastasis and prognosis. Notch4 (a marker of Notch signaling pathway receptors), DLL4 (a marker of Notch signaling pathway ligands) and KAI1/CD82 (a suppressor gene of tumor metastasis) are all effective predictive factors for tumor metastasis. In this study, we analyzed correlations among VM, Notch4, DLL4, and KAI1/CD82 in non-small cell lung cancer (NSCLC), and their respective associations with patients' clinicopathological parameters and survival rate in NSCLC.Positive rates of VM, Notch4, DLL4, and KAI1/CD82 in 189 whole NSCLC specimens were detected by histochemical and immunohistochemical staining. Moreover, patients' clinicopathological information was also collected.Positive rates of VM, Notch4, and DLL4 were significantly higher, and levels of KAI1/CD82 were significantly lower in NSCLC than in normal lung tissues. Positive rates of VM, Notch4, and DLL4 were positively associated with tumor size, lymph node metastasis (LNM), distant metastasis (DM) and tumor-node-metastasis (TNM) stage, and inversely with patients, overall survival (OS) time and positive rate of DLL4 were positively associated with tumor grade. Levels of KAI1/CD82 were negatively associated with tumor size, LNM, DM, and TNM stage. The KAI1/CD82+ subgroup had significantly longer OS time than did the KAI1/CD82- subgroup. In multivariate analysis, high VM, Notch4, DLL4 levels, tumor size, LNM, DM, TNM stage, and low KAI1/CD82 levels were potential to be independent prognostic factors for overall survival time (OST) in NSCLC patients.VM and the expression of Notch4, DLL4, and KAI1/CD82 represent promising markers for tumor metastasis and prognosis, and maybe potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
29
|
Abouelghar A, Hasnah R, Taouk G, Saad M, Karam M. Prognostic values of the mRNA expression of natural killer receptor ligands and their association with clinicopathological features in breast cancer patients. Oncotarget 2018; 9:27171-27196. [PMID: 29930758 PMCID: PMC6007477 DOI: 10.18632/oncotarget.25506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells are lymphocytes of the innate immune system that have potent cytotoxic activity against tumor cells. NK cell recognition and activity towards cancer cells are regulated by an integrated interplay between numerous inhibitory and activating receptors acting in concert to eliminate tumor cells expressing cognate ligands. Despite strong evidence supporting the role of NK cells in breast cancer (BC) control, BC still develops and progresses to form large tumors and metastases. A major mechanism of BC escape from NK immunity is the alteration of the expression of NK receptor ligands. The aim of this study was to determine whether NK receptor ligands' mRNA expression might influence prognosis in BC patients and whether these effects differ by molecular subtypes and clinicopathological features. METHODS We used the KM plotter platform to analyze the correlation between mRNA expression of 32 NK receptor ligands and relapse-free survival (RFS) and overall survival (OS) in 3951 and 1402 BC patients, respectively. The association with tumor subtypes and clinicopathological features was determined. BC samples were split into high and low expression groups according to the best cutoff value and the two patient cohorts were compared by Kaplan-Meier survival plots. The hazard ratios with 95% confidence intervals and log rank P values were calculated and FDR-adjusted for multiple testing correction. The data was considered to be statistically significant when FDR-adjusted P value < 0.05. RESULTS High mRNA expression of around 80% of ligands for NK activating and inhibitory receptors associated with better RFS, which correlated with longer OS for only about half of the NK-activating ligands but for most NK-inhibitory ligands. Also, five NK-activating ligands correlated with worse prognosis. These prognostic values were differentially associated with the BC clinical criteria. In addition, the favorable prognostic influence of NK-activating ligands' upregulation, as a whole, was mainly significantly associated with HER2-positive and basal-like subtypes, lymph node positive phenotype, and high-grade tumors. CONCLUSIONS NK receptor ligands appear to play an important role in defining BC patient prognosis. Identification of a group of patients with worse prognosis expressing high levels of NK-activating ligands and low levels of NK-inhibitory ligands makes them ideal potential candidates for NK-based immunotherapy to eliminate residual tumor cells, prevent relapse and improve patient survival.
Collapse
Affiliation(s)
- Ali Abouelghar
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Reem Hasnah
- Department of Biological Sciences, Carnegie Mellon University in Qatar, Doha, Qatar
| | - Ghina Taouk
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Manale Karam
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
30
|
Loss of nuclear NOTCH1, but not its negative regulator NUMB, is an independent predictor of cervical malignancy. Oncotarget 2018; 9:18916-18928. [PMID: 29721172 PMCID: PMC5922366 DOI: 10.18632/oncotarget.24828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/24/2018] [Indexed: 12/29/2022] Open
Abstract
The participation of NOTCH signaling in invasive cervical cancer (ICC) remains controversial since both tumor suppressive and oncogenic properties have been described. Additionally, the role of NUMB, a negative regulator of NOTCH, remains unclear in ICC. We aimed to investigate the role of NOTCH1 and NUMB expression and their localization in cervical intraepithelial neoplasia (CIN) and ICC samples. A total of 144 biopsies were obtained from the Instituto Nacional de Cancerología, México from 2004 to 2017, and were subjected to immunohistochemistry for NOTCH1 and NUMB. We found that nuclear NOTCH1 expression was more frequently found in CIN samples compared with ICC (77.55% vs. 15.79%, p = 0.001). NUMB was almost exclusively found in the nucleus of CIN samples (32.65% vs. 6.32%, p = 0.001). Cytoplasmic expression of NOTCH1 (44.21%) and NUMB (35.79%) was the most frequent localization in ICC. Multivariable-adjusted analysis showed that the loss of nuclear NOTCH1 expression was an independent predictor of malignancy (β = -3.428, 95% confidence interval [95% CI] = -5.127, -1.728, p = 0.001). In contrast, the association between cytoplasmic NUMB expression and cervical cancer was lost after adjusting for nuclear NOTCH1 expression (β = 2.074, 95% [CI] = -0.358, 4.506, P = 0.094). Additionally, patients with cytoplasmic NOTCH1 expression showed a borderline association with longer overall survival (OS) than those with nuclear NOTCH1 expression (P = 0.08). Our data suggest that the loss of nuclear NOTCH1 but not NUMB might be an independent predictor of malignancy in cervical cancer.
Collapse
|
31
|
Hu S, Chen Q, Lin T, Hong W, Wu W, Wu M, Du X, Jin R. The function of Notch1 intracellular domain in the differentiation of gastric cancer. Oncol Lett 2018; 15:6171-6178. [PMID: 29616098 PMCID: PMC5876425 DOI: 10.3892/ol.2018.8118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the complex function of the Notch signal pathway in gastric cancer (GC), the association between Notch homolog 1 (Notch1) intracellular domain (NICD) and differentiation of GC remains unknown. The present study aimed to investigate the potential association between NICD and GC differentiation, and demonstrated that poorly differentiated GC expressed increased NICD levels compared with well differentiated GC. A γ-secretase inhibitor inhibited the growth of AGS cells through downregulating NICD level. Additional data suggested that a COX-2 inhibitor caused a marked reduction of NICD level in comparison with a control group treated with dimethyl sulfoxide. Combined administration of γ-secretase and COX-2 inhibitor produced a marked inhibition of growth in AGS cells, which suggests that patients with poorly differentiated GC may benefit from the blockage of NICD, which potentially serves a role in GC differentiation.
Collapse
Affiliation(s)
- Sunkuan Hu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiuxiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tiesu Lin
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wandong Hong
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzhi Wu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ming Wu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaojing Du
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
32
|
Lu H, Jiang J, Gao Y. The cloning and activity of human Hes1 gene promoter. Mol Med Rep 2017; 17:3164-3169. [PMID: 29257279 DOI: 10.3892/mmr.2017.8240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to obtain and analyze the activity of the human Hes1 gene promoter. The genomic DNA of human HeLa cell was used as template, polymerase chain reaction (PCR) was used to amplify the 5' end sequence of Hes1 gene and then the amplified segment was connected to pMD18‑T vector. Subsequently, double enzyme digestion was used for identification and the sequence was detected; the promoter with the correct sequence was inserted into pGL3‑Basic, and the sequence was identified by double enzyme digestion. The recombinant DNA with correct sequence was transiently transfected into cervical cancer cells, and the dual luciferase reporter gene assay system was used to detect the activity of the promoter. The results demonstrated that the human Hes1 gene promoter amplified by PCR was the same as that of the sequence in the gene bank, and the dual luciferase reporter gene assay system demonstrated that there was promoter activity in cervical cancer cells. In conclusion, the Hes1 luciferase reporter recombinant vector was successfully established and transfected into HeLa cells to verify that it has promoter activity, and the core area of the promoter has several tumor‑promoting and tumor suppressor genes. This provides a basis for understanding the regulatory mechanism of Hes1 transcription and translation.
Collapse
Affiliation(s)
- Hai Lu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jinqun Jiang
- Clinical Laboratory, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
33
|
Xiong J, Zhang X, Chen X, Wei Y, Lu DG, Han YW, Xu J, Yu D. Prognostic roles of mRNA expression of notch receptors in non-small cell lung cancer. Oncotarget 2017; 8:13157-13165. [PMID: 28061457 PMCID: PMC5355084 DOI: 10.18632/oncotarget.14483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Notch signalling is aberrantly activated in human non-small cell lung cancer (NSCLC). Nevertheless, the prognostic roles of mRNA expression of four Notch receptors in NSCLC patients remain elusive. In this report, we reported the prognostic roles of Notch receptors in a total of 1,926 NSCLC patients through “The Kaplan-Meier plotter” (KM plotter) database which is capable to assess the effect of 22,277 genes on survival of NSCLC patients. We found that mRNA high expression level of Notch1 was associated with better overall survival (OS) for all NSCLC patients, hazard ratio (HR) 0.78 (0.69-0.89), p=0.00019, better OS in adenocarcinoma (Ade) patients, HR 0.59 (0.46-0.75), p=1.5e-05, as well as in squamous cell carcinoma (SCC) patients, HR 0.78 (0.62-0.99), p=0.044. mRNA high expression levels of Notch2 and Notch3 were associated with worsen OS for all NSCLC patients, as well as in Ade, but not in SCC patients. mRNA high expression level of Notch4 was not found to be associated with to OS for all NSCLC patients. In addition, mRNA high expression levels of Notch2, Notch3, but Notch4 are significantly associated with the NSCLC patients who have different smoking status. Our results indicate that mRNA expression of Notch receptors may have distinct prognostic values in NSCLC patients. These results will benefit for developing tools to accurately predict the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Jianwen Xiong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Xiaoqiang Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Xianglai Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Yiping Wei
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - De-Guo Lu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| | - Dongliang Yu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P. R. China
| |
Collapse
|
34
|
Zang M, Hu L, Zhang B, Zhu Z, Li J, Zhu Z, Yan M, Liu B. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer. Biochem Biophys Res Commun 2017; 490:913-919. [DOI: 10.1016/j.bbrc.2017.06.140] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
|
35
|
Zhang XS, Hu YH, Gao HY, Lan XW, Xue YW. Downregulation of Notch1 inhibits the invasion and metastasis of human gastric cancer cells SGC7901 and MKN74 in vitro through PTEN activation and dephosphorylation of Akt and FAK. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Mao XM, Fu QR, Li HL, Zheng YH, Chen SM, Hu XY, Chen QX, Chen QH. Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer. Tumour Biol 2017; 39:1010428317694320. [DOI: 10.1177/1010428317694320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.
Collapse
Affiliation(s)
- Xiao-Mei Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qi-Rui Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hua-Liang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ya-Hui Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shu-Ming Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiong-Hua Chen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Demitrack ES, Gifford GB, Keeley TM, Horita N, Todisco A, Turgeon DK, Siebel CW, Samuelson LC. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. Am J Physiol Gastrointest Liver Physiol 2017; 312:G133-G144. [PMID: 27932500 PMCID: PMC5338607 DOI: 10.1152/ajpgi.00325.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 01/31/2023]
Abstract
The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach. NEW & NOTEWORTHY Here we demonstrate that the Notch signaling pathway is essential for proliferation of stem cells in the mouse and human gastric corpus. We identify NOTCH1 and NOTCH2 as the predominant Notch receptors expressed in both mouse and human corpus and show that both receptors are required for corpus stem cell proliferation. We show that chronic Notch activation in corpus stem cells induces hyperproliferation and tissue hypertrophy, suggesting that Notch may drive gastric tumorigenesis.
Collapse
Affiliation(s)
- Elise S Demitrack
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| | - Gail B Gifford
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| | - Nobukatsu Horita
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| | - Andrea Todisco
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan; and
| | - D Kim Turgeon
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan; and
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Incorporated, San Francisco, California
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan;
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
38
|
Zhang S, Wang Z, Liu W, Lei R, Shan J, Li L, Wang X. Distinct prognostic values of S100 mRNA expression in breast cancer. Sci Rep 2017; 7:39786. [PMID: 28051137 PMCID: PMC5209742 DOI: 10.1038/srep39786] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used "The Kaplan-Meier plotter" (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Zhen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Rui Lei
- Department of Plastic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang 310009, China
| | - Jinlan Shan
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Ling Li
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
39
|
Huang T, Zhou Y, Cheng ASL, Yu J, To KF, Kang W. NOTCH receptors in gastric and other gastrointestinal cancers: oncogenes or tumor suppressors? Mol Cancer 2016; 15:80. [PMID: 27938406 PMCID: PMC5148895 DOI: 10.1186/s12943-016-0566-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) ranks the most common cancer types and is one of the leading causes of cancer-related death. Due to delayed diagnosis and high metastatic frequency, 5-year survival rate of GC is rather low. It is a complex disease resulting from the interaction between environmental factors and host genetic alterations that deregulate multiple signaling pathways. The Notch signaling pathway, a highly conserved system in the regulation of the fate in several cell types, plays a pivotal role in cell differentiation, survival and proliferation. Notch is also one of the most commonly activated signaling pathways in tumors and its aberrant activation plays a key role in cancer advancement. Whether Notch cascade exerts oncogenic or tumor suppressive function in different cancer types depends on the cellular context. Mammals have four NOTCH receptors that modulate Notch pathway activity. In this review, we provide a comprehensive summary on the functional role of NOTCH receptors in gastric and other gastrointestinal cancers. Increasing knowledge of NOTCH receptors in gastrointestinal cancers will help us recognize the underlying mechanisms of Notch signaling and develop novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|