1
|
Heyman B. Antibody feedback regulation. Immunol Rev 2024; 328:126-142. [PMID: 39180190 PMCID: PMC11659925 DOI: 10.1111/imr.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies are able to up- or downregulate antibody responses to the antigen they bind. Two major mechanisms can be distinguished. Suppression is most likely caused by epitope masking and can be induced by all isotypes tested (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgE). Enhancement is often caused by the redistribution of antigen in a favorable way, either for presentation to B cells via follicular dendritic cells (IgM and IgG3) or to CD4+ T cells via dendritic cells (IgE, IgG1, IgG2a, and IgG2b). IgM and IgG3 complexes activate complement and are transported from the marginal zone to follicles by marginal zone B cells expressing complement receptors. IgE-antigen complexes are captured by CD23+ B cells in the blood and transported to follicles, delivered to CD8α+ conventional dendritic cells, and presented to CD4+ T cells. Enhancement of antibody responses by IgG1, IgG2a, and IgG2b in complex with proteins requires activating FcγRs. These immune complexes are captured by dendritic cells and presented to CD4+ T cells, subsequently helping cognate B cells. Endogenous feedback regulation influences the response to booster doses of vaccines and passive administration of anti-RhD antibodies is used to prevent alloimmunization of RhD-negative women carrying RhD-positive fetuses.
Collapse
Affiliation(s)
- Birgitta Heyman
- Department of Medical Biochemistry and MicrobiologyUppsala University, (BMC)UppsalaSweden
| |
Collapse
|
2
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024; 328:387-411. [PMID: 39158477 PMCID: PMC11659931 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
| | | | - Theodore S. Jardetzky
- Department of Structural BiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
3
|
Vogel M, Engeroff P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies (Basel) 2024; 13:58. [PMID: 39051334 PMCID: PMC11270207 DOI: 10.3390/antib13030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Monique Vogel
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Paul Engeroff
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Plattner K, Bachmann MF, Vogel M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. FRONTIERS IN ALLERGY 2023; 4:1117611. [PMID: 37056355 PMCID: PMC10089267 DOI: 10.3389/falgy.2023.1117611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Correspondence: Monique Vogel
| |
Collapse
|
5
|
Kawakami T, Kasakura K, Kawakami Y, Ando T. Immunoglobulin E-Dependent Activation of Immune Cells in Rhinovirus-Induced Asthma Exacerbation. FRONTIERS IN ALLERGY 2022; 3:835748. [PMID: 35386658 PMCID: PMC8974681 DOI: 10.3389/falgy.2022.835748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Acute exacerbation is the major cause of asthma morbidity, mortality, and health-care costs. Respiratory viral infections, particularly rhinovirus (RV) infections, are associated with the majority of asthma exacerbations. The risk for bronchoconstriction with RV is associated with allergic sensitization and type 2 airway inflammation. The efficacy of the humanized anti-IgE monoclonal antibody omalizumab in treating asthma and reducing the frequency and severity of RV-induced asthma exacerbation is well-known. Despite these clinical data, mechanistic details of omalizumab's effects on RV-induced asthma exacerbation have not been well-defined for years due to the lack of appropriate animal models. In this Perspective, we discuss potential IgE-dependent roles of mast cells and dendritic cells in asthma exacerbations.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Toshiaki Kawakami
| | - Kazumi Kasakura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76:1981-1989. [PMID: 33378583 PMCID: PMC8359454 DOI: 10.1111/all.14724] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
IgE, the key molecule in atopy has been shown to bind two receptors, FcεRI, the high‐affinity receptor, and FcεRII (CD23), binding IgE with lower affinity. Whereas cross‐linking of IgE on FcεRI expressed by mast cells and basophils triggers the allergic reaction, binding of IgE to CD23 on B cells plays an important role in both IgE regulation and presentation. Furthermore, IgE‐immune complexes (IgE‐ICs) bound by B cells enhance antibody and T cell responses in mice and humans. However, the mechanisms that regulate the targeting of the two receptors and the respective function of the two pathways in inflammation or homeostasis are still a matter of debate. Here, we focus on CD23 and discuss several mechanisms related to IgE binding, as well as the impact of the IgE/antigen‐binding on different immune cells expressing CD23. One recent paper has shown that free IgE preferentially binds to FcεRI whereas IgE‐ICs are preferentially captured by CD23. Binding of IgE‐ICs to CD23 on B cells can, on one hand, regulate serum IgE and prevent effector cell activation and on the other hand facilitate antigen presentation by delivering the antigen to dendritic cells. These data argue for a multifunctional role of CD23 for modulating IgE serum levels and immune responses.
Collapse
Affiliation(s)
- Paul Engeroff
- INSERM UMR_S 959 Immunology‐Immunopathology‐Immunotherapy (i3) Sorbonne Université Paris France
| | - Monique Vogel
- Center for Clinical Research Region Västmanland/Uppsala University, Västmanland hospital Västerås Sweden
- Department of BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
7
|
Autoimmunity, IgE and FcεRI-bearing cells. Curr Opin Immunol 2021; 72:43-50. [PMID: 33819742 DOI: 10.1016/j.coi.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Antibody-mediated autoimmune diseases (AAID) involve several isotypes of autoreactive antibodies. In a growing number of AAID, autoreactive IgE are present with a significant prevalence and are often associated with the presence of IgG anti-IgE and/or anti-FcεRIα (high affinity IgE receptor α chain). FcεRI-bearing cells, such as basophils or mast cells, are key players in some of these AAID. Recent advances in the pathophysiology of these diseases led to the passed or current development of anti-IgE strategies that showed very potent effects in some of them. The present review centralizes the information on the relevance of autoreactive IgE and FcεRI-bearing cells in the pathophysiology of different AAID and the ones where the anti-IgE therapeutic strategy shows or may show some benefits for the patients.
Collapse
|
8
|
Engeroff P, Plattner K, Storni F, Thoms F, Frias Boligan K, Muerner L, Eggel A, von Gunten S, Bachmann MF, Vogel M. Glycan-specific IgG anti-IgE autoantibodies are protective against allergic anaphylaxis in a murine model. J Allergy Clin Immunol 2021; 147:1430-1441. [PMID: 33309740 DOI: 10.1016/j.jaci.2020.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND IgE causes anaphylaxis in type I hypersensitivity diseases by activating degranulation of effector cells such as mast cells and basophils. The mechanisms that control IgE activity and prevent anaphylaxis under normal conditions are still enigmatic. OBJECTIVE We aimed to unravel how anti-IgE autoantibodies are induced and we aimed to understand their role in regulating serum IgE level and allergic anaphylaxis. METHODS We immunized mice with different forms of IgE and tested anti-IgE autoantibody responses and their specificities. We then analyzed the effect of those antibodies on serum kinetics and their in vitro and in vivo impact on anaphylaxis. Finally, we investigated anti-IgE autoantibodies in human sera. RESULTS Immunization of mice with IgE-immune complexes induced glycan-specific anti-IgE autoantibodies. The anti-IgE autoantibodies prevented effector cell sensitization, reduced total IgE serum levels, protected mice from passive and active IgE sensitization, and resulted in cross-protection against different allergens. Furthermore, glycan-specific anti-IgE autoantibodies were present in sera from subjects with allergy and subjects without allergy. CONCLUSION In conclusion, this study provided the first evidence that in the murine model, the serum level and anaphylactic activity of IgE may be downregulated by glycan-specific IgG anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Paul Engeroff
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kevin Plattner
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Federico Storni
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland
| | | | - Lukas Muerner
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Alexander Eggel
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Martin F Bachmann
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Xu H, Heyman B. IgG-mediated suppression of antibody responses: Hiding or snatching epitopes? Scand J Immunol 2020; 92:e12921. [PMID: 32594540 DOI: 10.1111/sji.12921] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/03/2023]
Abstract
Antibodies forming a complex with antigen in vivo can dramatically change the antibody response to this antigen. In some situations, the response will be a 100-fold stronger than in animals immunized with antigen alone, and in other situations, the response will be completely suppressed. IgG is known to suppress the antibody response, for example to erythrocytes, and this is used clinically in Rhesus prophylaxis. The mechanism behind IgG-mediated immune suppression is still not understood. Here, we will review studies performed in experimental animal models and discuss the various hypotheses put forward to explain the profound suppressive effect of IgG. We conclude that an exclusive role for negative regulation of B cells through FcγRIIB, increased clearance of erythrocytes from the circulation or complement-mediated lysis is unlikely. Epitope masking, where IgG hides the epitope from B cells, or trogocytosis, where IgG removes the epitope from the erythrocyte, is compatible with many observations. These two mechanisms are not mutually exclusive. Moreover, it cannot be ruled out that clearance, in combination with other mechanisms, plays a role.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Bi CS, Li X, Qu HL, Sun LJ, An Y, Hong YL, Tian BM, Chen FM. Calcitriol inhibits osteoclastogenesis in an inflammatory environment by changing the proportion and function of T helper cell subsets (Th2/Th17). Cell Prolif 2020; 53:e12827. [PMID: 32406154 PMCID: PMC7309596 DOI: 10.1111/cpr.12827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Previously, we found that by regulating T helper (Th) cell polarization, calcitriol intervention inhibited lipopolysaccharide (LPS)‐induced alveolar bone loss in an animal periodontitis model, but the underlying cellular events remain unknown. Materials and methods In this study, mouse Th cells were incubated in an inflammatory environment in the presence of dendritic cells (DCs) and LPS. Then, the potential of the Th cells to undergo Th2/Th17 polarization, the RANKL expression of the polarized Th cells and the subsequent influences of the polarized Th cells on RAW264.7 cell osteoclastogenesis in response to calcitriol administration were assessed. Finally, the effects of calcitriol on antigen presentation by DCs during these cellular events were evaluated. Results In response to calcitriol administration, Th cells in an inflammatory environment exhibited an enhanced potential for Th2 polarization along with a decreased potential for Th17 polarization. In addition, RANKL expression in Th17‐polarized cells was largely inhibited. Furthermore, inflammation‐induced osteoclastogenesis in RAW264.7 cells was suppressed following coculture with calcitriol‐treated Th cells. During these cellular events, increased expression of Th2 promoters (such as OX‐40L and CCL17) and decreased expression of Th17 promoters (such as IL‐23 and IL‐6) were found in DCs. Conclusions Calcitriol can inhibit osteoclastogenesis in an inflammatory environment by changing the proportion and function of Th cell subsets. Our findings suggest that calcitriol may be an effective therapeutic agent for treating periodontitis.
Collapse
Affiliation(s)
- Chun-Sheng Bi
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Periodontics, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hong-Lei Qu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Li-Juan Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ying An
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yong-Long Hong
- Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Veen W, Krätz CE, McKenzie CI, Aui PM, Neumann J, Noesel CJM, Wirz OF, Hagl B, Kröner C, Spielberger BD, Akdis CA, Zelm MC, Akdis M, Renner ED. Impaired memory B-cell development and antibody maturation with a skewing toward IgE in patients with STAT3 hyper-IgE syndrome. Allergy 2019; 74:2394-2405. [PMID: 31269238 DOI: 10.1111/all.13969] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 hyper-IgE syndrome (STAT3-HIES) is caused by heterozygous mutations in the STAT3 gene and is associated with eczema, elevated serum IgE, and recurrent infections resembling severe atopic dermatitis, while clinically relevant specific IgE is almost absent. METHODS To investigate the impact of STAT3 signaling on B-cell responses, we assessed lymph node and bone marrow, blood B and plasma cell subsets, somatic hypermutations in Ig genes, and in vitro proliferation and antibody production in STAT3-HIES patients and healthy controls. RESULTS Lymph nodes of STAT3-HIES patients showed normal germinal center architecture and CD138+ plasma cells residing in the paracortex, which expressed IgE, IgG, and IgM but not IgA. IgE+ plasma cells were abundantly present in STAT3-HIES bone marrow. Proliferation of naive B cells upon stimulation with CD40L and IL-4 was similar in patients and controls, while patient cells showed reduced responses to IL-21. IgE, IgG1, IgG3 and IgA1 transcripts showed reduced somatic hypermutations. Peripheral blood IgE+ memory B-cell frequencies were increased in STAT3-HIES, while other memory B-cell frequencies except for IgG4+ cells were decreased. CONCLUSIONS Despite impaired STAT3 signaling, STAT3-HIES patients can mount in vivo T-cell-dependent B-cell responses, while circulating memory B cells, except for those expressing IgG4 and IgE, were reduced. Reduced molecular maturation demonstrated the critical need of STAT3 signaling for optimal affinity maturation and B-cell differentiation, supporting the need for immunoglobulin substitution therapy and explaining the high IgE serum level in the majority with absent allergic symptoms.
Collapse
Affiliation(s)
- Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Carolin E. Krätz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- University Children's Hospital at Dr. von Haunersches Kinderspital Ludwig Maximilian University Munich Germany
| | - Craig I. McKenzie
- Department of Immunology and Pathology Monash University Melbourne Victoria Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne Melbourne Victoria Australia
| | - Pei M. Aui
- Department of Immunology and Pathology Monash University Melbourne Victoria Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne Melbourne Victoria Australia
| | - Jens Neumann
- Pathology Department Ludwig Maximilian University Munich Germany
| | - Carel J. M. Noesel
- Department of Pathology Academic Medical Center Amsterdam The Netherlands
| | - Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Beate Hagl
- University Children's Hospital at Dr. von Haunersches Kinderspital Ludwig Maximilian University Munich Germany
- Environmental Medicine, UNIKA‐T Augsburg Technische Universität München and Helmholtz Zentrum München Germany
| | - Carolin Kröner
- University Children's Hospital at Dr. von Haunersches Kinderspital Ludwig Maximilian University Munich Germany
| | - Benedikt D. Spielberger
- University Children's Hospital at Dr. von Haunersches Kinderspital Ludwig Maximilian University Munich Germany
- Environmental Medicine, UNIKA‐T Augsburg Technische Universität München and Helmholtz Zentrum München Germany
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Menno C. Zelm
- Department of Immunology and Pathology Monash University Melbourne Victoria Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne Melbourne Victoria Australia
- Department of Allergy, Immunology and Respiratory Medicine Alfred Hospital Melbourne Victoria Australia
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Ellen D. Renner
- Christine Kühne Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Environmental Medicine, UNIKA‐T Augsburg Technische Universität München and Helmholtz Zentrum München Germany
- Hochgebirgsklinik Davos Davos Switzerland
| |
Collapse
|
13
|
Abstract
Glycosylation of IgG Fc domains is a central mechanism in the diversification of antibody function. Modifications to the core Fc glycan impact antibody function by shifting the balance of Type I and Type II Fc gamma receptors (FcγR) that will be engaged by immune complexes. This, in turn, modulates the effector cells and functions that can be recruited during immune activation. Critically, humans have evolved to regulate Fc glycan modifications for immune homeostasis. Dysregulation in Fc glycan modifications can lead to loss of immune tolerance, symptomatic autoimmunity, and susceptibility to infectious diseases. Here, we discuss IgG Fc glycosylation and its role in human health and disease.
Collapse
Affiliation(s)
- Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
15
|
Engeroff P, Caviezel F, Mueller D, Thoms F, Bachmann MF, Vogel M. CD23 provides a noninflammatory pathway for IgE-allergen complexes. J Allergy Clin Immunol 2019; 145:301-311.e4. [PMID: 31437490 DOI: 10.1016/j.jaci.2019.07.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/21/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Type I hypersensitivity is mediated by allergen-specific IgE, which sensitizes the high-affinity IgE receptor FcεRI on mast cells and basophils and drives allergic inflammation upon secondary allergen contact. CD23/FcεRII, the low-affinity receptor for IgE, is constitutively expressed on B cells and has been shown to regulate immune responses. Simultaneous binding of IgE to FcεRI and CD23 is blocked by reciprocal allosteric inhibition, suggesting that the 2 receptors exert distinct roles in IgE handling. OBJECTIVE We aimed to study how free IgE versus precomplexed IgE-allergen immune complexes (IgE-ICs) target the 2 IgE receptors FcεRI and CD23, and we investigated the functional implications of the 2 pathways. METHODS We performed binding and activation assays with human cells in vitro and IgE pharmacokinetics and anaphylaxis experiments in vivo. RESULTS We demonstrate that FcεRI preferentially binds free IgE and CD23 preferentially binds IgE-ICs. We further show that those different binding properties directly translate to distinct biological functions: free IgE initiated allergic inflammation through FcεRI on allergic effector cells, while IgE-ICs were noninflammatory because of reduced FcεRI binding and enhanced CD23-dependent serum clearance. CONCLUSION We propose that IgE-ICs are noninflammatory through reduced engagement by FcεRI but increased targeting of the CD23 pathway.
Collapse
Affiliation(s)
- Paul Engeroff
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Flurin Caviezel
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - David Mueller
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, Zurich University Hospital, Schlieren, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
The Role of Fc Gamma Receptors in Broad Protection against Influenza Viruses. Vaccines (Basel) 2018; 6:vaccines6030036. [PMID: 29966222 PMCID: PMC6160953 DOI: 10.3390/vaccines6030036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have revealed multiple roles for Fc gamma receptors (FcγRs) in broad immunity against influenza viruses. Activating FcγR pathways can be harnessed to confer protection mediated by non-neutralizing anti-HA IgGs and to increase the potency of broadly neutralizing anti-HA IgGs and of anti-NA IgGs. Separate FcγR pathways can be targeted to enhance the breadth of antibody responses elicited by seasonal influenza virus vaccines. Here, we review the current understanding of FcγR pathways in broad influenza immunity and suggest mechanisms to bypass FcγR signaling heterogeneity among people that arises from distinctions in structural repertoires of IgG Fc domains.
Collapse
|
17
|
Wang TT, Bournazos S, Ravetch JV. Immunological responses to influenza vaccination: lessons for improving vaccine efficacy. Curr Opin Immunol 2018; 53:124-129. [PMID: 29753885 DOI: 10.1016/j.coi.2018.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
A critical factor in the maturation of influenza vaccine responses is the nearly inevitable binding of vaccine antigens by exiting anti-influenza IgGs. These antigen-IgG immune complexes direct the response to immunization by modulating cellular processes that determine antibody and T-cell repertoires: maturation of dendritic cells, processing and presentation of antigens to T cells, trafficking of antigens to the germinal center, and selection of B cells for antibody production. By focusing on the recent advances in the study of the immunomodulatory processes mediated by IgG immune complexes upon influenza vaccination, we discuss a pathway that is critical for modulating the breadth and potency of anti-HA antibody responses and has previously led to the development of strategies to improve influenza vaccine efficacy.
Collapse
Affiliation(s)
- Taia T Wang
- Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
18
|
Engeroff P, Fellmann M, Yerly D, Bachmann MF, Vogel M. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation. J Allergy Clin Immunol 2017; 142:557-568.e6. [PMID: 29074459 DOI: 10.1016/j.jaci.2017.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND IgE-immune complexes (IgE-ICs) have been shown to enhance antibody and T-cell responses in mice by targeting CD23 (FcεRII), the low-affinity receptor for IgE on B cells. In humans, the mechanism by which CD23-expressing cells take up IgE-ICs and process them is not well understood. OBJECTIVE To investigate this question, we compared the fate of IgE-ICs in human B cells and in CD23-expressing monocyte-derived dendritic cells (moDCs) that represent classical antigen-presenting cells and we aimed at studying IgE-dependent antigen presentation in both cell types. METHODS B cells and monocytes were isolated from peripheral blood, and monocytes were differentiated into moDCs. Both cell types were stimulated with IgE-ICs consisting of 4-hydroxy-3-iodo-5-nitrophenylacetyl (NIP)-specific IgE JW8 and NIP-BSA to assess binding, uptake, and degradation dynamics. To assess CD23-dependent T-cell proliferation, B cells and moDCs were pulsed with IgE-NIP-tetanus toxoid complexes and cocultured with autologous T cells. RESULTS IgE-IC binding was CD23-dependent in B cells, and moDCs and CD23 aggregation, as well as IgE-IC internalization, occurred in both cell types. Although IgE-ICs were degraded in moDCs, B cells did not degrade the complexes but recycled them in native form to the cell surface, enabling IgE-IC uptake by moDCs in cocultures. The resulting proliferation of specific T cells was dependent on cell-cell contact between B cells and moDCs, which was explained by increased upregulation of costimulatory molecules CD86 and MHC class II on moDCs induced by B cells. CONCLUSIONS Our findings argue for a novel model in which human B cells promote specific T-cell proliferation on IgE-IC encounter. On one hand, B cells act as carriers transferring antigen to more efficient antigen-presenting cells such as DCs. On the other hand, B cells can directly promote DC maturation and thereby enhance T-cell stimulation.
Collapse
Affiliation(s)
- Paul Engeroff
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Marc Fellmann
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Daniel Yerly
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland; Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Zhang L, Ding Z, Heyman B. IgG3-antigen complexes are deposited on follicular dendritic cells in the presence of C1q and C3. Sci Rep 2017; 7:5400. [PMID: 28710441 PMCID: PMC5511153 DOI: 10.1038/s41598-017-05704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
IgG3, passively administered together with small proteins, induces enhanced primary humoral responses against these proteins. We previously found that, within 2 h of immunization, marginal zone (MZ) B cells capture IgG3-antigen complexes and transport them into splenic follicles and that this requires the presence of complement receptors 1 and 2. We have here investigated the localization of IgG3 anti-2, 4, 6-trinitrophenyl (TNP)/biotin-ovalbumin-TNP immune complexes in the follicles and the involvement of classical versus total complement activation in this process. The majority (50-90%) of antigen inside the follicles of mice immunized with IgG3-antigen complexes co-localized with the follicular dendritic cell (FDC) network. Capture of antigen by MZ B cells as well as antigen deposition on FDC was severely impaired in mice lacking C1q or C3, and lack of either C1q or C3 also impaired the ability of IgG3 to enhance antibody responses. Finally, IgG3 efficiently primed for a memory response against small proteins as well as against the large protein keyhole limpet hemocyanine.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antigens/chemistry
- Antigens/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Biotin/chemistry
- Biotin/immunology
- Complement Activation
- Complement C1q/deficiency
- Complement C1q/genetics
- Complement C3/deficiency
- Complement C3/genetics
- Dendritic Cells, Follicular/cytology
- Dendritic Cells, Follicular/immunology
- Hemocyanins/chemistry
- Hemocyanins/immunology
- Hybridomas/immunology
- Immunization, Passive
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Ovalbumin/chemistry
- Ovalbumin/immunology
- Picrates/chemistry
- Picrates/immunology
- Receptors, Complement/genetics
- Receptors, Complement/immunology
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/immunology
- Spleen/cytology
- Spleen/immunology
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23, Uppsala, Sweden
| | - Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23, Uppsala, Sweden.
| |
Collapse
|