1
|
Adil O, Shamsi MH. Transformative biomedical devices to overcome biomatrix effects. Biosens Bioelectron 2025; 279:117373. [PMID: 40120290 PMCID: PMC11975494 DOI: 10.1016/j.bios.2025.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The emergence of high-performance biomedical devices and sensing technologies highlights the technological advancements in the field. Recently during COVID-19 pandemic, biosensors played an important role in medical diagnostics and disease monitoring. In the past few decades, biosensors have made impressive advances in terms of sensing capability, methodology, and applications, and modern biosensors show higher performance and functionality compared to traditional biosensing platforms. Currently, various biomedical devices are already in the market or on the verge of commercialization, such as disposable paper-based devices, lab-on-a-chip devices, wearable sensors, and artificial intelligence-assisted systems, all contributing to the evolution of digital health. Despite the promising features of detection methods for developing practical biosensors, there are substantial barriers to the commercialization of biomedical devices. An important challenge is the matrix effect in the detection of clinical samples. Although achieving low limit of detection values under controlled laboratory conditions is feasible, maintaining performance in real clinical samples is difficult. Matrix molecules present in these samples can interact with analytes, potentially affecting sensitivity, specificity, and sensor response. Approaches to reduce nonspecific adsorption and cross-reactivity are imperative for improving sensor performance. The detection of diagnostic biomarkers in complex biological matrices often requires laborious sample preparation, which may affect accuracy and precision. In this review, we highlight the recent efforts to detect analytes in real samples, both invasively and noninvasively, and underline technological advancements that mitigate the biomatrix effects. We also discuss commercially available biosensors and technologies promising commercial success, highlighting their potential effect on healthcare and diagnostics.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA; Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA.
| |
Collapse
|
2
|
Kilianova Z, Cizmarova I, Spaglova M, Piestansky J. Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics. J Sep Sci 2024; 47:e202400583. [PMID: 39400453 DOI: 10.1002/jssc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice. Therapeutic drug monitoring, as a measurement of drug concentration in the body fluids or tissues, results in the optimization of the patient´s medication and therapy outcome. This strategy is beneficial and could result in tailored therapy for different types of infection and the prolongation of the use and efficacy of ATBs in hospitals. This review paper provides an actual overview of approved antimicrobial peptides used in clinical practice and covers current trends in their analysis by convenient and advanced methodologies used for their identification and/or quantitation in biological matrices for therapeutic drug monitoring purposes. Special emphasis is given to the methods with perspective clinical outcomes.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Miroslava Spaglova
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Ravindra Babu M, Vishwas S, Gulati M, Dua K, Kumar Singh S. Harnessing the role of microneedles as sensors: current status and future perspectives. Drug Discov Today 2024; 29:104030. [PMID: 38762087 DOI: 10.1016/j.drudis.2024.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In recent years, microneedles (MNs) have been transformed to serve a wide range of applications in the biomedical field. Their role as sensors in wearable devices has provided an alternative to blood-based monitoring of health and diagnostic methods. Hence, they have become a topic of research interest for several scientists working in the biomedical field. These MNs as sensors offer the continuous monitoring of biomarkers like glucose, nucleic acids, proteins, polysaccharides and electrolyte ions, which can therefore screen for and diagnose disease conditions in humans. The present review focuses on types of MN sensors and their applications. Various clinical trials and bottlenecks of MN R&D are also discussed.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia.
| |
Collapse
|
4
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Bisgaard SI, Nguyen LQ, Bøgh KL, Keller SS. Dermal tissue penetration of in-plane silicon microneedles evaluated in skin-simulating hydrogel, rat skin and porcine skin. BIOMATERIALS ADVANCES 2023; 155:213659. [PMID: 37939443 DOI: 10.1016/j.bioadv.2023.213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Recently, microneedle-based sensors have been introduced as novel strategy for in situ monitoring of biomarkers in the skin. Here, in-plane silicon microneedles with different dimensions and shapes are fabricated and their ability to penetrate skin is evaluated. Arrays with flat, triangular, hypodermic, lancet and pencil-shaped microneedles, with lengths of 500-1000 μm, widths of 200-400 μm and thickness of 180-500 μm are considered. Fracture force is higher than 20 N for all microneedle arrays (MNA) confirming a high mechanical stability of the microneedles. Penetration force in skin-simulating hydrogels, excised rat abdominal skin and porcine ear skin is at least five times lower than the fracture force for all MNA designs. The lowest force for skin penetration is required for triangular microneedles with a low width and thickness. Skin tissue staining and histological analysis of rat abdominal skin and porcine ear skin confirm successful penetration of the epidermis for all MNA designs. However, the penetration depth is between 100 and 300 μm, which is considerably lower than the microneedle length. Tissue damage estimated by visual analysis of the penetration hole is smallest for triangular microneedles. Penetration ability and tissue damage are compared to the skin prick test (SPT) needle applied in allergy testing.
Collapse
Affiliation(s)
- Stephanie Ingemann Bisgaard
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kgs. Lyngby, Denmark; National Food Institute, DTU Food, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Long Quang Nguyen
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kgs. Lyngby, Denmark
| | - Katrine Lindholm Bøgh
- National Food Institute, DTU Food, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Sun H, Zheng Y, Shi G, Haick H, Zhang M. Wearable Clinic: From Microneedle-Based Sensors to Next-Generation Healthcare Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207539. [PMID: 36950771 DOI: 10.1002/smll.202207539] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of wearable biosensing calls for next-generation devices that allow continuous, real-time, and painless monitoring of health status along with responsive medical treatment. Microneedles have exhibited great potential for the direct access of dermal interstitial fluid (ISF) in a minimally invasive manner. Recent studies of microneedle-based devices have evolved from conventional off-line detection to multiplexed, wireless, and integrated sensing. In this review, the classification and fabrication techniques of microneedles are first introduced, and then the representative examples of microneedles for transdermal monitoring with different sensing modalities are summarized. State-of-the-art advances in therapeutic and closed-loop systems are presented to formulate guidelines for the development of next-generation microneedle-based healthcare platforms. The potential challenges and prospects are discussed to pave a new avenue toward pragmatic applications in the real world.
Collapse
Affiliation(s)
- Hongyi Sun
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
7
|
Ma X, Zhou Q, Gao B. Recent advances of biosensors on microneedles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5711-5730. [PMID: 37873722 DOI: 10.1039/d3ay01745a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biosensors have attracted a considerable attention in recent years due to their enormous potential to provide insights into the physical condition of individuals. However, the widespread use of biosensors has experienced difficulties regarding the stability of the biological response and the poor miniaturization and portability of biosensors. Hence, there is an urgent need for more reliable biosensor devices. Microneedle (MN) technology has become a revolutionary approach to biosensing strategies, setting new horizons for improving existing biosensors. MN-based biosensors allow for painless injection, and in situ extraction or monitoring. However, the accuracy and practicality of detection need to be improved. This review begins by discussing the classification of MNs, manufacturing methods and other design parameters to develop a more accurate MN-based detection sensing system. Herein, we categorize and analyze the energy supply of wearable biosensors. Specifically, we describe the detection methods of MN biosensors, such as electrochemical, optical, nucleic acid recognition and immunoassays, and how MNs can be combined with these methods to detect biomarkers. Furthermore, we provide a detailed overview of the latest applications (drug release, drug detection, etc.). The MN-based biosensors are followed by a summary of key challenges and opportunities in the field.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu Province, People's Republic of China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
8
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Mishi RD, Stokes MA, Campbell CA, Plaxco KW, Stocker SL. Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics (Basel) 2023; 12:1478. [PMID: 37887179 PMCID: PMC10603738 DOI: 10.3390/antibiotics12101478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
By ensuring optimal dosing, therapeutic drug monitoring (TDM) improves outcomes in critically ill patients by maximizing effectiveness while minimizing toxicity. Current methods for measuring plasma drug concentrations, however, can be challenging, time-consuming, and slow to return an answer, limiting the extent to which TDM is used to optimize drug exposure. A potentially promising solution to this dilemma is provided by biosensors, molecular sensing devices that employ biorecognition elements to recognize and quantify their target molecules rapidly and in a single step. This paper reviews the current state of the art for biosensors regarding their application to TDM of antibiotics in the critically ill, both as ex vivo point-of-care devices supporting single timepoint measurements and in vivo devices supporting continuous real-time monitoring in situ in the body. This paper also discusses the clinical development of biosensors for TDM, including regulatory challenges and the need for standardized performance evaluation. We conclude by arguing that, through precise and real-time monitoring of antibiotics, the application of biosensors in TDM holds great promise for enhancing the optimization of drug exposure in critically ill patients, offering the potential for improved outcomes.
Collapse
Affiliation(s)
- Ruvimbo Dephine Mishi
- Department of Human Biology, Division of Cell Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Michael Andrew Stokes
- Paediatric Critical Care Unit, Department of Pharmacy, The Children’s Hospital at Westmead, Sydney, NSW 2031, Australia
| | - Craig Anthony Campbell
- NSW Health Pathology, Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kevin William Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular Sciences and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Sophie Lena Stocker
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent’s Hospital, Sydney, NSW 2010, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Garg M, Jain N, Kaul S, Rai VK, Nagaich U. Recent advancements in the expedition of microneedles: from lab worktops to diagnostic care centers. Mikrochim Acta 2023; 190:301. [PMID: 37464230 DOI: 10.1007/s00604-023-05859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Microneedle (MN) technology plays a significant role in bioengineering as it allows for minimally invasive exposure to the skin via the non-invasive procedure, increased drug permeability, and improved biological molecule detectability in the epidermal layers, all while improving therapeutic safety and effectiveness. However, MNs have several significant drawbacks, including difficulty scaling up, variability in drug delivery pattern regarding the skin's external environment, blockage of dermal tissues, induction of inflammatory response at the administration site, and limitation of dosing based on the molecular weight of drug and size. Despite these drawbacks, MNs have emerged as a special transdermal theranostics instrument in clinical research to assess physiological parameters. Bioimaging technology relies on microneedles that can measure particular analytes in the extracellular fluid effectively by crossing the stratum corneum, making them "a unique tool in diagnostics detection and therapeutic application inside the body." This review article discusses the recent advances in the applications especially related to the diagnostics and toxicity challenges of microneedles. In addition, this review article discusses the clinical state and commercial accessibility of microneedle technology-based devices in order to provide new information to scientists and researchers.
Collapse
Affiliation(s)
- Megha Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India.
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'o' Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India.
| |
Collapse
|
12
|
Lin PH, Nien HH, Li BR. Wearable Microfluidics for Continuous Assay. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:181-203. [PMID: 36888989 DOI: 10.1146/annurev-anchem-091322-082930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of wearable devices provides approaches for the realization of self-health care. Easily carried wearable devices allow individual health monitoring at any place whenever necessary. There are various interesting monitoring targets, including body motion, organ pressure, and biomarkers. An efficient use of space in one small device is a promising resolution to increase the functions of wearable devices. Through integration of a microfluidic system into wearable devices, embedding complicated structures in one design becomes possible and can enable multifunction analyses within a limited device volume. This article reviews the reported microfluidic wearable devices, introduces applications to different biofluids, discusses characteristics of the design strategies and sensing principles, and highlights the attractive configurations of each device. This review seeks to provide a detailed summary of recent advanced microfluidic wearable devices. The overview of advanced key components is the basis for the development of future microfluidic wearable devices.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Hua Nien
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter of Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Zeng Q, Xu M, Hu W, Cao W, Zhan Y, Zhang Y, Wang Q, Ma T. Porous Colorimetric Microneedles for Minimally Invasive Rapid Glucose Sampling and Sensing in Skin Interstitial Fluid. BIOSENSORS 2023; 13:bios13050537. [PMID: 37232898 DOI: 10.3390/bios13050537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Though monitoring blood glucose (BG) is indispensable for regulating diabetes, the frequent pricking of the finger by the commonly used fingertip blood collection causes discomfort and poses an infection risk. Since glucose levels in skin interstitial fluid (ISF) correlate with blood glucose levels, monitoring glucose in the skin ISF can be a viable alternative. With this rationale, the present study developed a biocompatible porous microneedle capable of rapid sampling, sensing, and glucose analysis in ISF in a minimally invasive manner, which can improve patient compliance and detection efficiency. The microneedles contain glucose oxidase (GOx) and horseradish peroxidase (HRP), and a colorimetric sensing layer containing 3,3',5,5'-tetramethylbenzidine (TMB) is on the back of the microneedles. After penetrating rat skin, porous microneedles harvest ISF rapidly and smoothly via capillary action, triggering the production of hydrogen peroxide (H2O2) from glucose. In the presence of H2O2, HRP reacts with TMB contained in the filter paper on the back of microneedles, causing an easily visible color shift. Further, a smartphone analysis of the images quickly quantifies glucose levels in the 50-400 mg/dL range using the correlation between color intensity and glucose concentration. The developed microneedle-based sensing technique with minimally invasive sampling will have great implications for point-of-care clinical diagnosis and diabetic health management.
Collapse
Affiliation(s)
- Qingya Zeng
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Mengxin Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Weilun Hu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wenyu Cao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yujie Zhan
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yuxin Zhang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
14
|
Wang J, Lu Z, Cai R, Zheng H, Yu J, Zhang Y, Gu Z. Microneedle-based transdermal detection and sensing devices. LAB ON A CHIP 2023; 23:869-887. [PMID: 36629050 DOI: 10.1039/d2lc00790h] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microneedles have been expected for the construction of next-generation biosensors towards personalization, digitization, and intellectualization due to their metrics of minimal invasiveness, high integration, and favorable biocompatibility. Herein, an overview of state-of-the-art microneedle-based detection and sensing systems is presented. First, the designs of microneedle devices based on extraction mechanisms are concluded, corresponding to different geometries and materials of microneedles. Second, the targets of equipment-assisted microneedle detections are summarized, as well as the objective significance, revealing the current performance and potential scenarios of these microneedles. Third, the trend towards highly integrated sensors is elaborated by emphasizing the sensing principles (colorimetric, fluorometric and electronic manner). Finally, the key challenges to be tackled and the perspectives on future development are discussed.
Collapse
Affiliation(s)
- Junxia Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ziyi Lu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Ruisi Cai
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Hanqi Zheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
15
|
Sheikh M, Qassem M, Kyriacou PA. Optical determination of lithium therapeutic levels in micro-volumes of interstitial fluid. Bipolar Disord 2023; 25:136-147. [PMID: 36591648 DOI: 10.1111/bdi.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Long-term management of bipolar disorder (BD), characterized by mood fluctuating between episodes of mania and depression, involves the regular taking of lithium preparations as the most reliable mood stabilizer for bipolar patients. However, despite its effectiveness in preventing and reducing mood swings and suicidality, lithium has a very narrow therapeutic index and it is crucial to carefully monitor lithium plasma levels as concentrations >1.2 mmol/L are potentially toxic and can be fatal. Current methods of lithium therapeutic monitoring involve frequent blood tests, which have several drawbacks related to the invasiveness of the technique, comfort, cost and reliability. Dermal interstitial fluid (ISF) is an accessible and information-rich biofluid, and correlations have been found between blood and ISF levels of lithium medication. METHODS In the current study, we sought to investigate the optical determination of lithium therapeutic concentrations in samples of ISF extracted from porcine skin utilizing a microneedle-based approach. Monitoring of lithium levels in porcine ISF was achieved by employing a spectrophotometric method based on the reaction between the chromogenic agent Quinizarin and lithium. RESULTS The resulting spectra show spectral variations which relate to lithium concentrations of lithium in samples of porcine ISF with a coefficient of determination (R2 ) of 0.9. This study has demonstrated successfully that therapeutic levels of lithium in micro-volumes of porcine ISF can be measured with a high level of accuracy utilizing spectroscopic techniques. CONCLUSIONS The results support the future development of a miniaturized and minimally-invasive device for lithium monitoring in bipolar patients.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Research Centre for Biomedical Engineering, City University of London, London, UK
| | - Meha Qassem
- Research Centre for Biomedical Engineering, City University of London, London, UK
| | | |
Collapse
|
16
|
Toma K, Satomura Y, Iitani K, Arakawa T, Mitsubayashi K. Long-range surface plasmon aptasensor for label-free monitoring of vancomycin. Biosens Bioelectron 2023; 222:114959. [PMID: 36502716 DOI: 10.1016/j.bios.2022.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Vancomycin (VCM) causes poisoning symptoms at high concentrations; thus, therapeutic drug monitoring is recommended to measure and control blood levels regularly. However, blood analysis at regular intervals does not allow knowing the detailed temporal change in concentration. To address this challenge, we developed a long-range surface plasmon (LRSP) aptasensor for measuring VCM label-free and real-time by combining a sensitive LRSP sensor and a peptide aptamer with a VCM recognition site. First, three different biosensors for VCM were compared. One was prepared by immobilizing the peptide aptamer directly on (Direct-Apt) or via a self-assembled monolayer (SAM) on a gold surface (SAM-Apt). The other used anti-VCM antibodies immobilized on a gold surface via the SAM (SAM-Ab). The Direct-Apt showed larger sensor output to VCM than the other biosensors. The dynamic range for VCM was 0.78-100 μM, including the therapeutic range (6.9-13.8 μM). The Direct-Apt also showed the sensor output only from VCM among four different antibiotics, demonstrating the high selectivity for VCM. The VCM captured by the aptamer could be removed by rinsing with phosphate-buffered saline. The measurement was rapid, with 72- and 77-sec response and recovery times, allowing not only repeated but also real-time measurements. Finally, the Direct-Apt in 20% serum solutions showed comparable sensitivity to VCM in the buffer solution, indicating high capability for real-sample.
Collapse
Affiliation(s)
- Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan; Department of Electronic Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| | - Yui Satomura
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takahiro Arakawa
- Department of Electric and Electronic Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji City, Tokyo, 192-0982, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
17
|
Himawan A, Vora LK, Permana AD, Sudir S, Nurdin AR, Nislawati R, Hasyim R, Scott CJ, Donnelly RF. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv Healthc Mater 2023; 12:e2202066. [PMID: 36414019 PMCID: PMC11468661 DOI: 10.1002/adhm.202202066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Indexed: 11/24/2022]
Abstract
Extracellular tissue fluids are interesting biomatrices that have recently attracted scientists' interest. Many significant biomarkers for localized external organ diseases have been isolated from this biofluid. In the diagnostic and disease monitoring context, measuring biochemical entities from the fluids surrounding the diseased tissues may give more important clinical value than measuring them at a systemic level. Despite all these facts, pushing tissue fluid-based diagnosis and monitoring forward to clinical settings faces one major problem: its accessibility. Most extracellular tissue fluid, such as interstitial fluid (ISF), is abundant but hard to collect, and the currently available technologies are invasive and expensive. This is where novel microneedle technology can help tackle this significant obstacle. The ability of microneedle technology to minimally invasively access tissue fluid-containing biomarkers will enable ISF and other tissue fluid utilization in the clinical diagnosis and monitoring of localized diseases. This review attempts to present the current pursuit of the application of microneedle systems as a diagnostic and monitoring platform, along with the recent progress of biomarker detection in diagnosing and monitoring localized external organ diseases. Then, the potential use of various microneedles in future clinical diagnostics and monitoring of localized diseases is discussed by presenting the currently studied cases.
Collapse
Affiliation(s)
- Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT97BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | | | - Andi Dian Permana
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Sumarheni Sudir
- Department of PharmacyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Airin R. Nurdin
- Department of Dermatology and VenereologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
| | - Ririn Nislawati
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
- Department of OphthalmologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
| | - Rafikah Hasyim
- Department of Oral BiologyFaculty of DentistryHasanuddin UniversityMakassar90245Indonesia
| | - Christopher J. Scott
- Patrick G Johnson Centre for Cancer ResearchQueen's University BelfastBelfastBT97BLUK
| | | |
Collapse
|
18
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
19
|
Ates HC, Mohsenin H, Wenzel C, Glatz RT, Wagner HJ, Bruch R, Hoefflin N, Spassov S, Streicher L, Lozano‐Zahonero S, Flamm B, Trittler R, Hug MJ, Köhn M, Schmidt J, Schumann S, Urban GA, Weber W, Dincer C. Biosensor-Enabled Multiplexed On-Site Therapeutic Drug Monitoring of Antibiotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104555. [PMID: 34545651 PMCID: PMC11468941 DOI: 10.1002/adma.202104555] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Indexed: 05/20/2023]
Abstract
Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point-of-care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody-free assay for on-site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood-based POCT is further illustrated by tracking ß-lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low-cost, sample-independent, and multiplexed on-site TDM, this system can shift the paradigm of "one-size-fits-all" strategy.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| | - Hasti Mohsenin
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Christin Wenzel
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Regina T. Glatz
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| | - Hanna J. Wagner
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
| | - Richard Bruch
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| | - Nico Hoefflin
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Sashko Spassov
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Lea Streicher
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Sara Lozano‐Zahonero
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Bernd Flamm
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Rainer Trittler
- Department of PharmacyMedical Center – University of FreiburgHugstetter Straße 5579106FreiburgGermany
| | - Martin J. Hug
- Department of PharmacyMedical Center – University of FreiburgHugstetter Straße 5579106FreiburgGermany
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Johannes Schmidt
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Stefan Schumann
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Gerald A. Urban
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| |
Collapse
|
20
|
Chaudhry M, Lim DK, Kang JW, Yaqoob Z, So P, Bhopal MF, Wang M, Qamar R, Bhatti AS. Electrochemically driven optical and SERS immunosensor for the detection of a therapeutic cardiac drug. RSC Adv 2022; 12:2901-2913. [PMID: 35425323 PMCID: PMC8979105 DOI: 10.1039/d1ra07680a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide. Digoxin is the most commonly prescribed pharmaceutical preparation to cardiovascular patients particularly in developing countries. The effectiveness of the drug critically depends on its presence in the therapeutic range (0.8–2.0 ng mL−1) in the patient's serum. We fabricated immunoassay chips based on QD photoluminescence (QDs-ELISA) and AuNP Surface Enhanced Raman Scattering (SERS-ELISA) phenomena to detect digoxin in the therapeutic range. Digoxin levels were monitored using digoxin antibodies conjugated to QDs and AuNPs employing the sandwich immunoassay format in both the chips. The limit of detection (LOD) achieved through QDs-ELISA and SERS-ELISA was 0.5 ng mL−1 and 0.4 ng mL−1, respectively. It is demonstrated that the sensitivity of QDs-ELISA was dependent on the charge transfer mechanism from the QDs to the antibody through ionic media, which was further explored using electrochemical impedance spectroscopy. We demonstrate that QDs-ELISA was relatively easy to fabricate compared to SERS-ELISA. The current study envisages replacement of conventional methodologies with small immunoassay chips using QDs and/or SERS-based tags with fast turnaround detection time as compared to conventional ELISA. Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide.![]()
Collapse
Affiliation(s)
- Madeeha Chaudhry
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Department of Biosciences, International Islamic University, H-10, Islamabad Capital Territory, 44000 Islamabad, Pakistan
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Muhammad Fahad Bhopal
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Raheel Qamar
- Science &Technology Sector, ICESCO, Rabat, Morocco
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Virtual University of Pakistan, M.A Jinnah Campus, Lahore, Pakistan
| |
Collapse
|
21
|
Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res 2021; 12:1556-1568. [PMID: 34564827 DOI: 10.1007/s13346-021-01056-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Transdermal drug delivery is a viable and clinically proven route of administration. This route specifically requires overcoming the mechanical barrier provided by the Stratum Corneum of epidermis and vascular and nervous networks within the dermis. First-generation Transdermal patches and second-generation iontophoretic patches have been translated into commercial clinical products successfully. The current review reports different studies that aim to enhance the transdermal delivery of biopharmaceutical using microneedles and their effect on drug delivery. Microneedles (MN) are the micron-scale hybrid between transdermal patches and hypodermic syringes. Microneedles are tested and proven to show better delivery of the drugs, overcoming the drawbacks of hypodermic syringes. Multiple microneedles designs have been fabricated i.e. solid, coated, hollow, and polymer microneedles. Hollow microneedles are shorter in length but similar to hypodermic needles and have pore for infusion of liquid formulation of the drug. Solid microneedles a patch is applied after creating a hole in the skin; Drugs are coated on the surface of Coated microneedles; Polymer microneedles can be of different types like dissolving, non-dissolving or hydrogel-forming made up of polymers. Various advantages and limitations associated with the use of these techniques are discussed. Delivery of peptide and protein molecules with microneedles represents a significant opportunity for a better clinical outcome and hence value creation compared to standard injectable routes of administration. The advancement in various formulation and microfabrication techniques are currently being focused to aid the delivery of protein drugs via microneedles. The most recent advances and limitations in Microneedles -mediated protein and peptide delivery were discussed.
Collapse
Affiliation(s)
- Krishanu Aich
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Tanya Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
22
|
Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. BIOSENSORS 2021; 11:296. [PMID: 34562886 PMCID: PMC8470661 DOI: 10.3390/bios11090296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Garbis Atam Akceoglu
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
23
|
Abstract
Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.
Collapse
|
24
|
Zhang BL, Zhang XP, Chen BZ, Fei WM, Cui Y, Guo XD. Microneedle-assisted technology for minimally invasive medical sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers (Basel) 2021; 13:polym13040520. [PMID: 33572383 PMCID: PMC7916173 DOI: 10.3390/polym13040520] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Microneedles (MNs) are an emerging technology in pharmaceutics and biomedicine, and are ready to be commercialized in the world market. However, solid microneedles only allow small doses and time-limited administration rates. Moreover, some well-known and already approved drugs need to be re-formulated when supplied by MNs. Instead, hollow microneedles (HMNs) allow for rapid, painless self-administrable microinjection of drugs in their standard formulation. Furthermore, body fluids can be easily extracted for analysis by a reverse use of HMNs, thus making them perfect for sensing issues and theranostics applications. The fabrication of HMNs usually requires several many-step processes, increasing the costs and consequently decreasing the commercial interest. Photolithography is a well-known fabrication technique in microelectronics and microfluidics that fabricates MNs. In this paper, authors show a proof of concept of a patented, easy and one-shot fabrication of two kinds of HMNs: (1) Symmetric HMNs with a “volcano” shape, made by using a photolithographic mask with an array of transparent symmetric rings; and (2) asymmetric HMNs with an oblique aperture, like standard hypodermic steel needles, made by using an array of transparent asymmetric rings, defined by two circles, which centers are slightly mismatched. Simulation of light propagation, fabrication process, and preliminary results on ink microinjection are presented.
Collapse
|
26
|
Ye S, Feng S, Huang L, Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. BIOSENSORS 2020; 10:E205. [PMID: 33333888 PMCID: PMC7765261 DOI: 10.3390/bios10120205] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in lab-on-a-chip technology establish solid foundations for wearable biosensors. These newly emerging wearable biosensors are capable of non-invasive, continuous monitoring by miniaturization of electronics and integration with microfluidics. The advent of flexible electronics, biochemical sensors, soft microfluidics, and pain-free microneedles have created new generations of wearable biosensors that explore brand-new avenues to interface with the human epidermis for monitoring physiological status. However, these devices are relatively underexplored for sports monitoring and analytics, which may be largely facilitated by the recent emergence of wearable biosensors characterized by real-time, non-invasive, and non-irritating sensing capacities. Here, we present a systematic review of wearable biosensing technologies with a focus on materials and fabrication strategies, sampling modalities, sensing modalities, as well as key analytes and wearable biosensing platforms for healthcare and sports monitoring with an emphasis on sweat and interstitial fluid biosensing. This review concludes with a summary of unresolved challenges and opportunities for future researchers interested in these technologies. With an in-depth understanding of the state-of-the-art wearable biosensing technologies, wearable biosensors for sports analytics would have a significant impact on the rapidly growing field-microfluidics for biosensing.
Collapse
Affiliation(s)
- Shun Ye
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
- Biomedical Engineering Department, College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Huang
- School of Instrument Science and Opto–Electronics Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Shengtai Bian
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
27
|
Samant PP, Niedzwiecki MM, Raviele N, Tran V, Mena-Lapaix J, Walker DI, Felner EI, Jones DP, Miller GW, Prausnitz MR. Sampling interstitial fluid from human skin using a microneedle patch. Sci Transl Med 2020; 12:eaaw0285. [PMID: 33239384 PMCID: PMC7871333 DOI: 10.1126/scitranslmed.aaw0285] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Tissue interstitial fluid (ISF) surrounds cells and is an underutilized source of biomarkers that complements conventional sources such as blood and urine. However, ISF has received limited attention due largely to lack of simple collection methods. Here, we developed a minimally invasive, microneedle-based method to sample ISF from human skin that was well tolerated by participants. Using a microneedle patch to create an array of micropores in skin coupled with mild suction, we sampled ISF from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in ISF when compared to companion plasma samples based on mass spectrometry analysis. Many biomarkers used in research and current clinical practice were common to ISF and plasma. Because ISF does not clot, these biomarkers could be continuously monitored in ISF similar to current continuous glucose monitors but without requiring an indwelling subcutaneous sensor. Biomarkers distinct to ISF included molecules associated with systemic and dermatological physiology, as well as exogenous compounds from environmental exposures. We also determined that pharmacokinetics of caffeine in healthy adults and pharmacodynamics of glucose in children and young adults with diabetes were similar in ISF and plasma. Overall, these studies provide a minimally invasive method to sample dermal ISF using microneedles and demonstrate human ISF as a source of biomarkers that may enable research and translation for future clinical applications.
Collapse
Affiliation(s)
- Pradnya P Samant
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Megan M Niedzwiecki
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Raviele
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vilinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Juan Mena-Lapaix
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas I Walker
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eric I Felner
- Department of Pediatrics, Division of Endocrinology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health Science, Columbia University, New York, NY 10032, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
28
|
Dervisevic E, Voelcker NH, Risbridger G, Tuck KL, Cadarso VJ. High-Aspect-Ratio SU-8-Based Optofluidic Device for Ammonia Detection in Cell Culture Media. ACS Sens 2020; 5:2523-2529. [PMID: 32666799 DOI: 10.1021/acssensors.0c00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Miniaturization of sensing technology has led to the development of multifunctional micro total analysis systems (μTAS) that benefit from microfluidic technology. Optical sensing is one of the most commonly used sensing approaches integrated into μTAS devices and features high sensitivity and low detection limits. Different materials have been used for the fabrication of μTAS devices, each having their advantages and disadvantages. Herein, a high-aspect-ratio optofluidic waveguide fabricated from SU-8 is presented for the first time. The suitable optical properties and chemical inertness of SU-8 provide a durable device made by a flexible and cost-efficient fabrication process. The optofluidic device was used for colorimetric ammonia (NH3) sensing with a dynamic range of 3-70 μM, a detection limit of 2.5 μM, a response time of 8 min, and close to 10 times better analytical performance compared to using a standard microplate reader. The μTAS device was capable of monitoring NH3 accumulating in the cell culture media of prostatic epithelial cell (BPH-1) culture.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- , The Melbourne Centre for Nanofabrication, Victorian Node—Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Gail Risbridger
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- , The Melbourne Centre for Nanofabrication, Victorian Node—Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Madden J, O'Mahony C, Thompson M, O'Riordan A, Galvin P. Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, Gu Z, Tay FR, Makvandi P. Advances in Antimicrobial Microneedle Patches for Combating Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002129. [PMID: 32602146 DOI: 10.1002/adma.202002129] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/16/2020] [Indexed: 05/22/2023]
Abstract
Skin infections caused by bacteria, viruses and fungi are difficult to treat by conventional topical administration because of poor drug penetration across the stratum corneum. This results in low bioavailability of drugs to the infection site, as well as the lack of prolonged release. Emerging antimicrobial transdermal and ocular microneedle patches have become promising medical devices for the delivery of various antibacterial, antifungal, and antiviral therapeutics. In the present review, skin anatomy and its barriers along with skin infection are discussed. Potential strategies for designing antimicrobial microneedles and their targeted therapy are outlined. Finally, biosensing microneedle patches associated with personalized drug therapy and selective toxicity toward specific microbial species are discussed.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, P. R. China
| | - Ehsan N Zare
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Pooyan Makvandi
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples, 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran
| |
Collapse
|
31
|
Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS NANO 2020; 14:7783-7807. [PMID: 32551559 PMCID: PMC7319134 DOI: 10.1021/acsnano.0c04421] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Biosensors and nanoscale analytical tools have shown huge growth in literature in the past 20 years, with a large number of reports on the topic of 'ultrasensitive', 'cost-effective', and 'early detection' tools with a potential of 'mass-production' cited on the web of science. Yet none of these tools are commercially available in the market or practically viable for mass production and use in pandemic diseases such as coronavirus disease 2019 (COVID-19). In this context, we review the technological challenges and opportunities of current bio/chemical sensors and analytical tools by critically analyzing the bottlenecks which have hindered the implementation of advanced sensing technologies in pandemic diseases. We also describe in brief COVID-19 by comparing it with other pandemic strains such as that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) for the identification of features that enable biosensing. Moreover, we discuss visualization and characterization tools that can potentially be used not only for sensing applications but also to assist in speeding up the drug discovery and vaccine development process. Furthermore, we discuss the emerging monitoring mechanism, namely wastewater-based epidemiology, for early warning of the outbreak, focusing on sensors for rapid and on-site analysis of SARS-CoV2 in sewage. To conclude, we provide holistic insights into challenges associated with the quick translation of sensing technologies, policies, ethical issues, technology adoption, and an overall outlook of the role of the sensing technologies in pandemics.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37
0QB Jordanstown, Northern Ireland, United Kingdom
- Healthcare
Technology Hub, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern
Ireland, United Kingdom
| | - Yuwei Pan
- Cranfield
Water Science Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Zhugen Yang
- Cranfield
Water Science Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Amir Farokh Payam
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37
0QB Jordanstown, Northern Ireland, United Kingdom
- Healthcare
Technology Hub, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern
Ireland, United Kingdom
| |
Collapse
|
32
|
Yadav PR, Han T, Olatunji O, Pattanayek SK, Das DB. Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug Delivery: Trends and Progress. Pharmaceutics 2020; 12:E693. [PMID: 32707878 PMCID: PMC7464833 DOI: 10.3390/pharmaceutics12080693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
In the last two decades, microneedles (MNs) have received significant interest due to their potential for painless transdermal drug delivery (TDD) and minimal skin damage. MNs have found applications in a range of research and development areas in drug delivery. They have been prepared using a variety of materials and fabrication techniques resulting in MN arrays with different dimensions, shapes, and geometries for delivery of a variety of drug molecules. These parameters play crucial roles in determining the drug release profiles from the MNs. Developing mathematical modelling, simulation, and optimisation techniques is vital to achieving the desired MN performances. These will then be helpful for pharmaceutical and biotechnological industries as well as professionals working in the field of regulatory affairs focusing on MN based TDD systems. This is because modelling has a great potential to reduce the financial and time cost of both the MNs' studies and manufacturing. For example, a number of robust mathematical models for predicting the performance of the MNs in vivo have emerged recently which incorporate the roles of the structural and mechanical properties of the skin. In addressing these points, this review paper aims to highlight the current status of the MN modelling research, in particular, the modelling, simulation and optimisation of the systems for drug delivery. The theoretical basis for the simulation of MN enhanced diffusion is discussed within this paper. Thus, this review paper provides a better understanding of the modelling of the MN mediated drug delivery process.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Tao Han
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| | - Ololade Olatunji
- Department of Chemical and Petroleum Engineering, University of Lagos, Lagos 100213, Nigeria
| | - Sudip K Pattanayek
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| |
Collapse
|
33
|
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Ping Zan
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| |
Collapse
|
34
|
Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020; 38:1262-1277. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advances have stimulated efforts to bring personalized medicine into practice. Yet, traditional application fields like therapeutic drug monitoring (TDM) have remained rather under-appreciated. Owing to clear dose-response relationships, TDM could improve patient outcomes and reduce healthcare costs. While chromatography-based routine practices are restricted due to high costs and turnaround times, biosensors overcome these limitations by offering on-site analysis. Nevertheless, sensor-based approaches have yet to break through for clinical TDM applications, due to the gap between scientific and clinical communities. We provide a critical overview of current TDM practices, followed by a TDM guideline to establish a common ground across disciplines. Finally, we discuss how the translation of sensor systems for TDM can be facilitated, by highlighting the challenges and opportunities.
Collapse
Affiliation(s)
- H Ceren Ates
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany
| | - Jason A Roberts
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, 4102, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Jeffrey Lipman
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Anthony E G Cass
- Department of Chemistry and Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Gerald A Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Centre - FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Can Dincer
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany. @imtek.de
| |
Collapse
|
35
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
36
|
Liu GS, Kong Y, Wang Y, Luo Y, Fan X, Xie X, Yang BR, Wu MX. Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials 2020; 232:119740. [PMID: 31918227 PMCID: PMC7432994 DOI: 10.1016/j.biomaterials.2019.119740] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
Point-of-care testing (POCT), defined as the test performed at or near a patient, has been evolving into a complement to conventional laboratory diagnosis by continually providing portable, cost-effective, and easy-to-use measurement tools. Among them, microneedle-based POCT devices have gained increasing attention from researchers due to the glorious potential for detecting various analytes in a minimally invasive manner. More recently, a novel synergism between microneedle and wearable technologies is expanding their detection capabilities. Herein, we provide an overview on the progress in microneedle-based transdermal biosensors. It covers all the main aspects of the field, including design philosophy, material selection, and working mechanisms as well as the utility of the devices. We also discuss lessons from the past, challenges of the present, and visions for the future on translation of these state-of-the-art technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Yifei Kong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yensheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
37
|
Zhang XW, Li QH, Xu ZD, Dou JJ. Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Adv 2020; 10:3092-3104. [PMID: 35497733 PMCID: PMC9048967 DOI: 10.1039/c9ra08985c] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 01/15/2023] Open
Abstract
Metabolomics is the study of the investigation of small molecules derived from cellular and organism metabolism, which reflects the outcomes of the complex network of biochemical reactions in living systems. As the most recent member of the omics family, there has been notable progress in metabolomics in the last decade, mainly driven by the improvement in mass spectrometry (MS). MS-based metabolomic strategies in modern health and medical science studies provide innovative tools for novel diagnostic and prognostic approaches, as well as an augmented role in drug development, nutrition science, toxicology, and forensic science. In the present review, we not only introduce the application of MS-based metabolomics in the above fields, but also discuss the MS analysis technologies commonly used in metabolomics and the application of metabolomics in precision medicine, and further explore the challenges and perspectives of metabolomics in the field of health and medical science, which are expected to make a little contribution to the better development of metabolomics.
Collapse
Affiliation(s)
- Xi-Wu Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| | - Qiu-Han Li
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| | - Zuo-di Xu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| | - Jin-Jin Dou
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| |
Collapse
|
38
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
39
|
Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. MICROSYSTEMS & NANOENGINEERING 2019; 5:41. [PMID: 31636931 PMCID: PMC6799813 DOI: 10.1038/s41378-019-0077-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 05/22/2023]
Abstract
Microneedle technologies have the potential for expanding the capabilities of wearable health monitoring from physiology to biochemistry. This paper presents the fabrication of silicon hollow microneedles by a deep-reactive ion etching (DRIE) process, with the aim of exploring the feasibility of microneedle-based in-vivo monitoring of biomarkers in skin fluid. Such devices shall have the ability to allow the sensing elements to be integrated either within the needle borehole or on the backside of the device, relying on capillary filling of the borehole with dermal interstitial fluid (ISF) for transporting clinically relevant biomarkers to the sensor sites. The modified DRIE process was utilized for the anisotropic etching of circular holes with diameters as small as 30 μm to a depth of >300 μm by enhancing ion bombardment to efficiently remove the fluorocarbon passivation polymer. Afterward, isotropic wet and/or dry etching was utilized to sharpen the needle due to faster etching at the pillar top, achieving tip radii as small as 5 μm. Such sharp microneedles have been demonstrated to be sufficiently robust to penetrate porcine skin without needing any aids such as an impact-insertion applicator, with the needles remaining mechanically intact after repetitive penetrations. The capillary filling of DRIE-etched through-wafer holes with water has also been demonstrated, showing the feasibility of use to transport the analyte to the target sites.
Collapse
Affiliation(s)
- Yan Li
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Hang Zhang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Ruifeng Yang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Yohan Laffitte
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Ulises Schmill
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Wenhan Hu
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Moufeed Kaddoura
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | | | - Bo Cui
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
40
|
van der Maaden K, Schipper P, Jiskoot W, Bouwstra JA. Chemical Modifications of Gold Surfaces with Basic Groups and a Fluorescent Nanoparticle Adhesion Assay To Determine Their Surface p K a. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7121-7128. [PMID: 31045370 DOI: 10.1021/acs.langmuir.9b00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For pharmaceutical, biological, and biomedical applications, the functionalization of gold surfaces with pH-sensitive groups has great potential. The aim of this work was to modify gold surfaces with pH-sensitive groups and to determine the p Ka of the modified gold surfaces using a fluorescent nanoparticle adhesion assay. To introduce pH-sensitive groups onto gold surfaces, we modified gold-coated silicon slides with four different bases: 4-mercaptopyridine (4-MP), 4-pyridylethylmercaptan (4-PEM), 4-aminothiophenol (4-ATP), and 2-mercaptoethylamine (2-MEA). To screen whether the modifications were successful, the binding of negatively charged fluorescently labeled nanoparticles to the positively charged surfaces was visualized by fluorescence microscopy and atomic force microscopy. Next, the p Ka of the modified surfaces was determined by quantifying the pH-dependent adhesion of the fluorescently labeled nanoparticles with fluorescence spectroscopy. Fluorescence microscopy showed that the gold surfaces were successfully modified with the four different basic molecules. Moreover, fluorescence spectroscopy revealed that fluorescently labeled negatively charged nanoparticles bound onto gold surfaces that were modified with one of the four bases in a pH-dependent manner. By quantifying the adsorption of negatively charged fluorescently labeled nanoparticles onto the functionalized gold surfaces and using the Henderson-Hasselbalch equation, the p Ka of these surfaces was determined to be 3.7 ± 0.1 (4-MP), 5.0 ± 0.1 (4-PEM), 5.4 ± 0.1 (4-ATP), and 7.4 ± 0.3 (2-MEA). We successfully functionalized gold surfaces with four different basic molecules, yielding modified surfaces with different p Ka values, as determined with a fluorescent nanoparticle adhesion assay.
Collapse
Affiliation(s)
- K van der Maaden
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , 2300 RA Leiden , The Netherlands
| | - P Schipper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , 2300 RA Leiden , The Netherlands
| | - W Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , 2300 RA Leiden , The Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , 2300 RA Leiden , The Netherlands
| |
Collapse
|
41
|
Mayer M, Baeumner AJ. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things. Chem Rev 2019; 119:7996-8027. [DOI: 10.1021/acs.chemrev.8b00719] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
42
|
Gowers SAN, Freeman DME, Rawson TM, Rogers ML, Wilson RC, Holmes AH, Cass AE, O’Hare D. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. ACS Sens 2019; 4:1072-1080. [PMID: 30950598 DOI: 10.1021/acssensors.9b00288] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance poses a global threat to patient health. Improving the use and effectiveness of antimicrobials is critical in addressing this issue. This includes optimizing the dose of antibiotic delivered to each individual. New sensing approaches that track antimicrobial concentration for each patient in real time could allow individualized drug dosing. This work presents a potentiometric microneedle-based biosensor to detect levels of β-lactam antibiotics in vivo in a healthy human volunteer. The biosensor is coated with a pH-sensitive iridium oxide layer, which detects changes in local pH as a result of β-lactam hydrolysis by β-lactamase immobilized on the electrode surface. Development and optimization of the biosensor coatings are presented, giving a limit of detection of 6.8 μM in 10 mM PBS solution. Biosensors were found to be stable for up to 2 weeks at -20 °C and to withstand sterilization. Sensitivity was retained after application for 6 h in vivo. Proof-of-concept results are presented showing that penicillin concentrations measured using the microneedle-based biosensor track those measured using both discrete blood and microdialysis sampling in vivo. These preliminary results show the potential of this microneedle-based biosensor to provide a minimally invasive means to measure real-time β-lactam concentrations in vivo, representing an important first step toward a closed-loop therapeutic drug monitoring system.
Collapse
Affiliation(s)
- Sally A. N. Gowers
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - David M. E. Freeman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Timothy M. Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London W12 0NN, United Kingdom
| | - Michelle L. Rogers
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard C. Wilson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London W12 0NN, United Kingdom
| | - Alison H. Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London W12 0NN, United Kingdom
| | - Anthony E. Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
43
|
Pandey PC, Shukla S, Skoog SA, Boehm RD, Narayan RJ. Current Advancements in Transdermal Biosensing and Targeted Drug Delivery. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1028. [PMID: 30823435 PMCID: PMC6427209 DOI: 10.3390/s19051028] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems.
Collapse
Affiliation(s)
- Prem C Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shubhangi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shelby A Skoog
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Ryan D Boehm
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
44
|
Jin Q, Chen HJ, Li X, Huang X, Wu Q, He G, Hang T, Yang C, Jiang Z, Li E, Zhang A, Lin Z, Liu F, Xie X. Reduced Graphene Oxide Nanohybrid-Assembled Microneedles as Mini-Invasive Electrodes for Real-Time Transdermal Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804298. [PMID: 30605244 DOI: 10.1002/smll.201804298] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Indexed: 06/09/2023]
Abstract
A variety of nanomaterial-based biosensors have been developed to sensitively detect biomolecules in vitro, yet limited success has been achieved in real-time sensing in vivo. The application of microneedles (MN) may offer a solution for painless and minimally-invasive transdermal biosensing. However, integration of nanostructural materials on microneedle surface as transdermal electrodes remains challenging in applications. Here, a transdermal H2 O2 electrochemical biosensor based on MNs integrated with nanohybrid consisting of reduced graphene oxide and Pt nanoparticles (Pt/rGO) is developed. The Pt/rGO significantly improves the detection sensitivity of the MN electrode, while the MNs are utilized as a painless transdermal tool to access the in vivo environment. The Pt/rGO nanostructures are protected by a water-soluble polymer layer to avoid mechanical destruction during the MN skin insertion process. The polymer layer can readily be dissolved by the interstitial fluid and exposes the Pt/rGO on MNs for biosensing in vivo. The applications of the Pt/rGO-integrated MNs for in situ and real-time sensing of H2 O2 in vivo are demonstrated both on pigskin and living mice. This work offers a unique real-time transdermal biosensing system, which is a promising tool for sensing in vivo with high sensitivity but in a minimally-invasive manner.
Collapse
Affiliation(s)
- Quanchang Jin
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Hui-Jiuan Chen
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Xiangling Li
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Xinshuo Huang
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Qianni Wu
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Gen He
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Tian Hang
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Chengduan Yang
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Zhen Jiang
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Enlai Li
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Aihua Zhang
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Zhihong Lin
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, 510000, Guangzhou, China
| |
Collapse
|
45
|
Takeuchi K, Kim B. Functionalized microneedles for continuous glucose monitoring. NANO CONVERGENCE 2018; 5:28. [PMID: 30467645 PMCID: PMC6199201 DOI: 10.1186/s40580-018-0161-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/26/2018] [Indexed: 05/23/2023]
Abstract
Microneedles (MNs) have been established as promising medical devices as they are minimally invasive, cause less pain, and can be utilized for self-administration of drugs by patients. There has been rapid development in MNs for transdermal monitoring and diagnostic systems, following the active research on fabrication methods and applications for drug delivery. In this paper, recent investigations on bio-sensing using MNs are reviewed in terms of the applicability to continuous glucose monitoring system (CGMS), which is one of the main research focuses of medical engineering technologies. The trend of the functionalized MNs can be categorized as follows: (i) as a sensing probe, and (ii) as a biological fluid collector. MNs as in vivo sensors are mainly integrated or coated with conductive materials to have the function as electrodes. MNs as fluid collectors are given a certain geometrical design, such as a hollow and porous structure aided by a capillary action or negative pressure, to extract the interstitial fluids or blood for ex vivo analysis. For realization of CGMS with MNs, a long-term accurate measurement by the MN-based sensing probe or a fluidic connection between the MN-based fluid collector and the existing microfluidic measurement systems should be investigated.
Collapse
Affiliation(s)
- Kai Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| |
Collapse
|
46
|
Nicholas D, Logan KA, Sheng Y, Gao J, Farrell S, Dixon D, Callan B, McHale AP, Callan JF. Rapid paper based colorimetric detection of glucose using a hollow microneedle device. Int J Pharm 2018; 547:244-249. [DOI: 10.1016/j.ijpharm.2018.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/15/2018] [Accepted: 06/02/2018] [Indexed: 11/26/2022]
|
47
|
Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, Roberts JA, Gordon AC, Hope W, Georgiou P, Cass AEG, Holmes AH. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother 2018; 73:835-843. [PMID: 29211877 PMCID: PMC5890674 DOI: 10.1093/jac/dkx458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients.
Collapse
Affiliation(s)
- T M Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - D O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | - P Herrero
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - S Sharma
- College of Engineering, Swansea University, Swansea, UK
| | - L S P Moore
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - E de Barra
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - J A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine and Centre for Translational Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - A C Gordon
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - W Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - P Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - A E G Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, Kensington Campus, London, UK
| | - A H Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| |
Collapse
|
48
|
Herrero P, Rawson TM, Philip A, Moore LSP, Holmes AH, Georgiou P. Closed-Loop Control for Precision Antimicrobial Delivery: An In Silico Proof-of-Concept. IEEE Trans Biomed Eng 2017; 65:2231-2236. [PMID: 29989937 DOI: 10.1109/tbme.2017.2787423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Inappropriate dosing of patients with antibiotics is a driver of antimicrobial resistance, toxicity, and poor outcomes of therapy. In this paper, we investigate, in silico, the hypothesis that the use of a closed-loop control system could improve the attainment of pharmacokinetic-pharmacodynamic targets for antimicrobial therapy, where wide variations in target attainment have been reported. This includes patients in critical care, patients with renal disease, and patients with obesity. METHODS The presented in silico study focuses on vancomycin delivery, a first line therapy for Methicillin-resistant Staphylococcus aureus (MRSA) that has serious side effects, including nephrotoxicity. For this purpose, an in silico platform for the simulation of pharmacokinetics of vancomycin agents was developed including 24 virtual noncritically ill-adult subjects obtained from routinely collected data from two prospective audits of vancomycin therapy. Intraday variability on renal clearance, sensor error, and infusion constraints were taken into account. Proportional integral derivative (PID) controller was chosen because of its simplicity of implementation and satisfactory performance. RESULTS Even though significant intraday variability and sensor error were considered in the simulations, by assuming a minimum inhibitory concentration of 1 mg/l for MRSA, the proposed controller was able to reach the well-established therapeutic target of 24-h area under curve to minimum inhibitory concentration ratio equal to 400 $\text{mg} \cdot \text{h}\text{/}\text{l}$ for all the studied subjects, while staying significantly below toxic levels. CONCLUSION A PID controller has the potential to precisely deliver a vancomycin therapy in a noncritically ill-adult population. SIGNIFICANCE Closed-loop control for precision Vancomycin delivery can potentially reduce toxicity and poor therapeutic outcomes, as well as reduce antimicrobial resistance.
Collapse
|
49
|
Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2017; 410:773-790. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient's response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future. Figure Label-free probing of blood properties using photonics.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany
| |
Collapse
|
50
|
Kiang TKL, Ranamukhaarachchi SA, Ensom MHH. Revolutionizing Therapeutic Drug Monitoring with the Use of Interstitial Fluid and Microneedles Technology. Pharmaceutics 2017; 9:E43. [PMID: 29019915 PMCID: PMC5750649 DOI: 10.3390/pharmaceutics9040043] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022] Open
Abstract
While therapeutic drug monitoring (TDM) that uses blood as the biological matrix is the traditional gold standard, this practice may be impossible, impractical, or unethical for some patient populations (e.g., elderly, pediatric, anemic) and those with fragile veins. In the context of finding an alternative biological matrix for TDM, this manuscript will provide a qualitative review on: (1) the principles of TDM; (2) alternative matrices for TDM; (3) current evidence supporting the use of interstitial fluid (ISF) for TDM in clinical models; (4) the use of microneedle technologies, which is potentially minimally invasive and pain-free, for the collection of ISF; and (5) future directions. The current state of knowledge on the use of ISF for TDM in humans is still limited. A thorough literature review indicates that only a few drug classes have been investigated (i.e., anti-infectives, anticonvulsants, and miscellaneous other agents). Studies have successfully demonstrated techniques for ISF extraction from the skin but have failed to demonstrate commercial feasibility of ISF extraction followed by analysis of its content outside the ISF-collecting microneedle device. In contrast, microneedle-integrated biosensors built to extract ISF and perform the biomolecule analysis on-device, with a key feature of not needing to transfer ISF to a separate instrument, have yielded promising results that need to be validated in pre-clinical and clinical studies. The most promising applications for microneedle-integrated biosensors is continuous monitoring of biomolecules from the skin's ISF. Conducting TDM using ISF is at the stage where its clinical utility should be investigated. Based on the advancements described in the current review, the immediate future direction for this area of research is to establish the suitability of using ISF for TDM in human models for drugs that have been found suitable in pre-clinical experiments.
Collapse
Affiliation(s)
- Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Sahan A Ranamukhaarachchi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|