1
|
Bedell VM, Dubey P, Lee HB, Bailey DS, Anderson JL, Jamieson-Lucy A, Xiao R, Leonard EV, Falk MJ, Pack MA, Mullins M, Farber SA, Eckenhoff RG, Ekker SC. Zebrafishology, study design guidelines for rigorous and reproducible data using zebrafish. Commun Biol 2025; 8:739. [PMID: 40360750 PMCID: PMC12075475 DOI: 10.1038/s42003-025-07496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/08/2025] [Indexed: 05/15/2025] Open
Abstract
The zebrafish (Danio rerio) is one of the most widely used research model organisms funded by the United States' National Institutes of Health, second only to the mouse. Here, we discuss the advantages and unique qualities of this model organism. Additionally, we discuss key aspects of experimental design and statistical approaches that apply to studies using the zebrafish model organism. Finally, we list critical details that should be considered in the design of zebrafish experiments to enhance rigor and data reproducibility. These guidelines are designed to aid new researchers, journal editors, and manuscript reviewers in supporting the publication of the highest-quality zebrafish research.
Collapse
Affiliation(s)
- Victoria M Bedell
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Priya Dubey
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Han B Lee
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dondra S Bailey
- Department of Natural Sciences, Coppin State University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elvin V Leonard
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A Pack
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C Ekker
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Biosciences and Dell Medical School Department of Pediatrics, University of Texas, Austin, TX, USA
| |
Collapse
|
2
|
Zvonareva T, Courson DS, Purcell EB. Clostridioides difficile infection study models and prospectives for probing the microbe-host interface. J Bacteriol 2025; 207:e0040724. [PMID: 39912651 PMCID: PMC11925243 DOI: 10.1128/jb.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Clostridioides difficile infection (CDI) is an urgent public health threat with a high rate of recurrence and limited treatment options. In vivo models have been indispensable in understanding CDI pathophysiology and establishing treatment protocols and continue to be essential in pre-clinal testing. More importantly, in vivo models offer the opportunity to probe the complex systemic host response to the microbe, which is impossible to recapitulate in vitro. Nonetheless, constraints related to the availability of animal models, cost, ethical considerations, and regulatory control limit their accessibility for basic research. Furthermore, physiological and habitual divergences between animal models and humans often result in poor translatability to human patients. In addition to being more accessible, in vitro CDI models offer more control over experimental parameters and allow dynamic analysis of early infection. In vitro fermentation offers models for probing microbe-microbe and microbe-microbiome interactions, while continuous multi-stage platforms allow opportunities to study C. difficile pathophysiology and treatment in context with human-derived microbiota. However, these platforms are not suitable for probing the host-pathogen interface, leaving the challenge of modeling early CDI unanswered. As a result, alternative in vitro co-culture platforms are being developed. This review evaluates the strengths and weaknesses of each approach, as well as future directions for C. difficile research.
Collapse
Affiliation(s)
- Tatiana Zvonareva
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - David S. Courson
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - Erin B. Purcell
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
3
|
Zheng T, Zhao J, Sun C, Zhu C, Li C, Zhou J, Yang J, Zhang Y. Phenylthiourea synergistically enhances the hepatotoxicity of bavachalcone by interfering with metabolism in zebrafish: A factor to consider when evaluating toxicity of environmental pollutants using zebrafish models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:118016. [PMID: 40056746 DOI: 10.1016/j.ecoenv.2025.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Phenylthiourea (PTU) is a well-known inhibitor of melanin synthesis that has been extensively utilized in ecotoxicological studies involving zebrafish. Although there are reports suggesting that PTU may influence the toxicity of various compounds, the underlying mechanisms of its action remain unclear. Bavachalcone (BavaC) has a wide range of applications in agriculture and medicine, and it can enter groundwater through a variety of pathways that may pose a risk to aquatic ecosystems. We found that PTU enhanced the hepatotoxicity of BavaC in zebrafish, but the mechanism was unclear. In this study, the interactive effects of 200 μM PTU and 2.5 μM BavaC on the toxicity of zebrafish larvae were evaluated after 72 h of exposure. PTU significantly increased BavaC-induced hepatotoxicity, which was characterized by liver hypoplasia, hepatocyte vacuolation, and lipid accumulation. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) revealed that the contents of fatty acids, phosphatidylcholine and glutathione significantly increased. The results of RNA sequencing (RNA-seq) and Real-time PCR (RT-qPCR) analyses indicated that several metabolic pathways, including xenobiotic biodegradation and metabolism, amino acid metabolism, lipid metabolism and carbohydrate metabolism, were differentially regulated in the PTU+BavaC group compared to the BavaC group. Our findings indicate that PTU-induced metabolic disorders exacerbate BavaC hepatotoxicity and highlight the need to reconsider the use of PTU in zebrafish-based toxicity assessments of environmental pollutants.
Collapse
Affiliation(s)
- Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Chenqinyao Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Jiashuo Zhou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Jing Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Martínez-López MF, López-Gil JF. Small Fish, Big Answers: Zebrafish and the Molecular Drivers of Metastasis. Int J Mol Sci 2025; 26:871. [PMID: 39940643 PMCID: PMC11817282 DOI: 10.3390/ijms26030871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer metastasis is a leading cause of cancer-related deaths and represents one of the most challenging processes to study due to its complexity and dynamic nature. Zebrafish (Danio rerio) have become an invaluable model in metastasis research, offering unique advantages such as optical transparency, rapid development, and the ability to visualize tumor interactions with the microenvironment in real time. This review explores how zebrafish models have elucidated the critical steps of metastasis, including tumor invasion, vascular remodeling, and immune evasion, while also serving as platforms for drug testing and personalized medicine. Advances such as patient-derived xenografts and innovative genetic tools have further established zebrafish as a cornerstone in cancer research, particularly in understanding the molecular drivers of metastasis and identifying therapeutic targets. By bridging the experimental findings with clinical relevance, zebrafish continue transforming our understanding of cancer biology and therapy.
Collapse
|
5
|
McGraw CM, Baker CM, Poduri A. Enhanced proconvulsant sensitivity, not spontaneous rapid swimming activity, is a robust correlate of scn1lab loss-of-function in stable mutant and F0 crispant hypopigmented zebrafish expressing GCaMP6s. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633275. [PMID: 39868154 PMCID: PMC11760263 DOI: 10.1101/2025.01.15.633275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC). In the present study, we applied a method for combined movement and calcium fluorescence profiling to the study of a zebrafish model of SCN1A, the main gene associated with Dravet syndrome, which encodes the voltage-gated sodium channel alpha1 subunit (Nav1.1). We evaluated for spontaneous and proconvulsant-induced seizure-like activity associated with scn1lab LoF mutations in larval zebrafish expressing a neuronally-driven GECI (elavl3:GCaMP6s) and a nacre mutation causing a common pigmentation defect. In parallel studies of stable scn1lab s552 mutants and F0 crispant larvae generated using a CRISPR/Cas9 multi-sgRNA approach, we find that neither stable nor acute F0 larvae recapitulate the previously reported seizure-like rapid swimming phenotype nor does either group show spontaneous calcium events meeting criteria for seizure-like activity based on a logistic classifier trained on movement and fluorescence features of proconvulsant-induced seizures. This constitutes two independent lines of evidence for a suppressive effect against the scn1lab phenotype, possibly due to the GCaMP6s-derived genetic background (AB) or nacre hypopigmentation. In response to the proconvulsant pentylenetetrazole (PTZ), we see evidence of a separate suppressive effect affecting all conspecific larvae derived from the stable scn1lab s552 line, independent of genotype, possibly related to a maternal effect of scn1lab LoF in mutant parents or the residual TL background. Nonetheless, both stable and F0 crispant fish show enhanced sensitivity to PTZ relative to conspecific larvae, suggesting that proconvulsant sensitivity provides a more robust readout of scn1lab LoF under our experimental conditions. Our study underscores the unexpected challenges associated with the combination of common zebrafish tools with disease alleles in the phenotyping of zebrafish models of genetic epilepsy. Our work further highlights the advantages of using F0 crispants and the evaluation of proconvulsant sensitivity as complementary approaches that faithfully reflect the shared gene-specific pathophysiology underlying spontaneous seizures in stable mutant lines. Future work to understand the molecular mechanisms by which scn1lab-related seizures and PTZ-related hyperexcitability are suppressed under these conditions may shed light on factors contributing to variability in preclinical models of epilepsy more generally and may identify genetic modifiers relevant to Dravet syndrome.
Collapse
Affiliation(s)
- Christopher Michael McGraw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (current affiliation)
| | - Cristina M. Baker
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Norwegian University of Science and Technology, Trondheim, Norway (current affiliation)
| | - Annapurna Poduri
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD (current affiliation)
| |
Collapse
|
6
|
Baek HW, Han E, Oh KH. Exploring the Role of the KCNK1 Potassium Channel and Its Inhibition Using Quinidine in Treating Head and Neck Squamous Cell Carcinoma. Clin Exp Otorhinolaryngol 2024; 17:326-335. [PMID: 39639713 PMCID: PMC11626098 DOI: 10.21053/ceo.2024.00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES Our study aimed to explore the role of the potassium channel KCNK1 in head and neck squamous cell carcinoma, focusing on its impact on tumor growth, invasion, and metastasis. We also investigated the therapeutic potential of quinidine, a known KCNK1 inhibitor, in both in vitro cell lines and a zebrafish patient-derived xenograft (PDX) model. METHODS We established primary cell cultures from head and neck cancer tissues and employed the FaDu cell line for in vitro studies, modulating KCNK1 expression through overexpression and knockdown techniques. We evaluated cell migration, invasion, and proliferation. Additionally, we developed a zebrafish PDX model to assess the impact of quinidine on tumor growth and metastasis in vivo. RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to elucidate the molecular mechanisms underlying the role of KCNK1 in cancer progression. RESULTS Overexpression of KCNK1 in FaDu cells resulted in enhanced cell migration and invasion, whereas its knockdown diminished these processes. In the zebrafish PDX model, quinidine markedly inhibited tumor growth and metastasis, demonstrating a significant reduction in tumor volume and micrometastasis rates compared to the control groups. The molecular analyses indicated that KCNK1 plays a role in critical signaling pathways associated with tumor growth, such as the Ras and MAPK pathways. CONCLUSION Our findings highlight the critical role of KCNK1 in promoting tumor growth and metastasis in head and neck cancer. The inhibitory effect of quinidine on tumor progression in the zebrafish PDX model highlights the therapeutic potential of targeting KCNK1. These results suggest that KCNK1 could serve as a valuable therapeutic target for head and neck cancer, warranting further investigation into treatments that target KCNK1.
Collapse
Affiliation(s)
- Hyun Woo Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
7
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K, Rydén-Markinhutha K, Patel V, Raman R, Trivedi H, Vazquez Roman K, Williams S, Wang QD. A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 2024; 13:bio060230. [PMID: 39263862 PMCID: PMC11413934 DOI: 10.1242/bio.060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 09/13/2024] Open
Abstract
Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Abramova
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Naim M. Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Fritsche Danielson
- SVP and head of Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Ben Dubansky
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Avi Gupta
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Kenny Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Neha Iyer
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Pudur Jagadeeswaran
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Katarina Rydén-Markinhutha
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Vishal Patel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Revathi Raman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Hersh Trivedi
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karem Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Steven Williams
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| |
Collapse
|
9
|
Lai Y, Ay M, Hospital CD, Miller GW, Sarkar S. Seminar: Functional Exposomics and Mechanisms of Toxicity-Insights from Model Systems and NAMs. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:94201. [PMID: 39230330 PMCID: PMC11373422 DOI: 10.1289/ehp13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Significant progress has been made over the past decade in measuring the chemical components of the exposome, providing transformative population-scale frameworks in probing the etiologic link between environmental factors and disease phenotypes. While the analytical technologies continue to evolve with reams of data being generated, there is an opportunity to complement exposome-wide association studies (ExWAS) with functional analyses to advance etiologic search at organismal, cellular, and molecular levels. OBJECTIVES Exposomics is a transdisciplinary field aimed at enabling discovery-based analysis of the nongenetic factors that contribute to disease, including numerous environmental chemical stressors. While advances in exposure assessment are enhancing population-based discovery of exposome-wide effects and chemical exposure agents, functional screening and elucidation of biological effects of exposures represent the next logical step toward precision environmental health and medicine. In this work, we focus on the use, strategies, and prospects of alternative approaches and model systems to enhance the current human exposomics framework in biomarker search and causal understanding, spanning from bench-based nonmammalian organisms and cell culture to computational new approach methods (NAMs). DISCUSSION We visit the definition of the functional exposome and exposomics and discuss a need to leverage alternative models as opposed to mammalian animals for delineating exposome-wide health effects. Under the "three Rs" principle of reduction, replacement, and refinement, model systems such as roundworms, fruit flies, zebrafish, and induced pluripotent stem cells (iPSCs) are advantageous over mammals (e.g., rodents or higher vertebrates). These models are cost-effective, and cell-specific genetic manipulations in these models are easier and faster, compared to mammalian models. Meanwhile, in silico NAMs enhance hazard identification and risk assessment in humans by bridging the translational gaps between toxicology data and etiologic inference, as represented by in vitro to in vivo extrapolation (IVIVE) and integrated approaches to testing and assessment (IATA) under the adverse outcome pathway (AOP) framework. Together, these alternatives offer a strong toolbox to support functional exposomics to study toxicity and causal mediators underpinning exposure-disease links. https://doi.org/10.1289/EHP13120.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Muhammet Ay
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Souvarish Sarkar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
10
|
Yao JY, Li L, Xu JX, Liu YH, Shi J, Yu XQ, Kong QQ, Li K. Real-Time Monitoring of Tyrosine Hydroxylase Activity with a Ratiometric Fluorescent Probe. Anal Chem 2024; 96:7082-7090. [PMID: 38652135 DOI: 10.1021/acs.analchem.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) represents the second most widespread neurodegenerative disease, and early monitoring and diagnosis are urgent at present. Tyrosine hydroxylase (TH) is a key enzyme for producing dopamine, the levels of which can serve as an indicator for assessing the severity and progression of PD. This renders the specific detection and visualization of TH a strategically vital way to meet the above demands. However, a fluorescent probe for TH monitoring is still missing. Herein, three rationally designed wash-free ratiometric fluorescent probes were proposed. Among them, TH-1 exhibited ideal photophysical properties and specific dual-channel bioimaging of TH activity in SH-SY5Y nerve cells. Moreover, the probe allowed for in vivo imaging of TH activity in zebrafish brain and living striatal slices of mice. Overall, the ratiometric fluorescent probe TH-1 could serve as a potential tool for real-time monitoring of PD in complex biosystems.
Collapse
Affiliation(s)
- Jia-Yi Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Lu Li
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ji-Xuan Xu
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jing Shi
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Qing-Quan Kong
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
11
|
Sharkova M, Aparicio G, Mouzaaber C, Zolessi FR, Hocking JC. Photoreceptor calyceal processes accompany the developing outer segment, adopting a stable length despite a dynamic core. J Cell Sci 2024; 137:jcs261721. [PMID: 38477343 PMCID: PMC11058337 DOI: 10.1242/jcs.261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Aparicio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Constantin Mouzaaber
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Flavio R. Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Bakis I, Sun Y, Abd Elmagid L, Feng X, Garibyan M, Yip JK, Yu FZ, Chowdhary S, Fernandez GE, Cao J, McCain ML, Lien CL, Harrison MR. Methods for dynamic and whole volume imaging of the zebrafish heart. Dev Biol 2023; 504:75-85. [PMID: 37708968 PMCID: PMC10841891 DOI: 10.1016/j.ydbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Tissue development and regeneration are dynamic processes involving complex cell migration and cell-cell interactions. We have developed a protocol for complementary time-lapse and three-dimensional (3D) imaging of tissue for developmental and regeneration studies which we apply here to the zebrafish cardiac vasculature. 3D imaging of fixed specimens is used to first define the subject at high resolution then live imaging captures how it changes dynamically. Hearts from adult and juvenile zebrafish are extracted and cleaned in preparation for the different imaging modalities. For whole-mount 3D confocal imaging, single or multiple hearts with native fluorescence or immuno-labeling are prepared for stabilization or clearing, and then imaged. For live imaging, hearts are placed in a prefabricated fluidic device and set on a temperature-controlled microscope for culture and imaging over several days. This protocol allows complete visualization of morphogenic processes in a 3D context and provides the ability to follow cell behaviors to complement in vivo and fixed tissue studies. This culture and imaging protocol can be applied to different cell and tissue types. Here, we have used it to observe zebrafish coronary vasculature and the migration of coronary endothelial cells during heart regeneration.
Collapse
Affiliation(s)
- Isaac Bakis
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Yuhan Sun
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Laila Abd Elmagid
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Xidi Feng
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Mher Garibyan
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joycelyn K Yip
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fang Zhou Yu
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Emergency Medicine, Nuvance Health, Poughkeepsie, NY, 12601, USA
| | - Sayali Chowdhary
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Gerardo Esteban Fernandez
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ching-Ling Lien
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Michael Rm Harrison
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA.
| |
Collapse
|
13
|
Kim M, Hong T, An G, Lim W, Song G. Toxic effects of benfluralin on zebrafish embryogenesis via the accumulation of reactive oxygen species and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109722. [PMID: 37597713 DOI: 10.1016/j.cbpc.2023.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The dinitroaniline herbicide benfluralin is used weed control in conventional systems and poses a high risk of accumulation in aquatic systems. Previous studies have shown the toxic effects of benfluralin on non-target organisms; however, its developmental toxicity in vertebrates has not yet been reported. This study demonstrated the developmental toxicity of benfluralin and its mechanism of action, using zebrafish as an aquatic vertebrate model. Benfluralin induces morphological and physiological alterations in body length, yolk sac, and heart edema. We also demonstrated a reactive oxygen species (ROS) increase of approximately 325.53 % compared with the control group after 20 μM benfluralin-treatment. In addition, the malformation of the heart and vascular structures was identified using transgenic flk1:eGFP zebrafish models at 20 μM concentration benfluralin exposure. Moreover, benfluralin induced small livers, approximately 59.81 % of normal liver size, via abnormal development of the liver as observed in the transgenic L-fabp:dsRed zebrafish. Benfluralin also inhibits normal growth via abnormal expression of cell cycle regulatory genes and increases oxidative stress, inflammation, and apoptosis. Collectively, we elucidated the mechanisms associated with benfluralin toxicity, which lead to various abnormalities and developmental toxicities in zebrafish. Therefore, this study provides information on the parameters used to assess developmental toxicity in other aquatic organisms, such as herbicides, pesticides, and environmental contaminants.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Liao Y, Shi H, Han T, Jiang D, Lu B, Shi G, Zhu C, Li G. Pigment Identification and Gene Expression Analysis during Erythrophore Development in Spotted Scat ( Scatophagus argus) Larvae. Int J Mol Sci 2023; 24:15356. [PMID: 37895036 PMCID: PMC10607709 DOI: 10.3390/ijms242015356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and β-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Tong Han
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Gang Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| |
Collapse
|
15
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Kim M, An G, Park J, Song G, Lim W. Bensulide-induced oxidative stress causes developmental defects of cardiovascular system and liver in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131577. [PMID: 37156044 DOI: 10.1016/j.jhazmat.2023.131577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bensulide is an organophosphate herbicide commonly used in agricultural crops; however, no studies have reported on its toxic effects in the embryonic development of vertebrates, particularly gene expression level and cellular response. Therefore, to identify developmental toxicity, zebrafish eggs 8 h post-fertilization (hpf) were exposed to bensulide concentrations of up to 3 mg/L. The results indicated that exposure to 3 mg/L bensulide inhibited the hatching of all eggs and decreased the size of the body, eyes, and inner ear. There were demonstrated effects observed in the cardiovascular system and liver caused by bensulide in fli1:eGFP and L-fabp:dsRed transgenic zebrafish models, respectively. Following exposure to 3 mg/L bensulide, normal heart development, including cardiac looping, was disrupted and the heart rate of 96 hpf zebrafish larvae decreased to 16.37%. Development of the liver, the main detoxification organ, was also inhibited by bensulide, and after exposure to 3 mg/L bensulide its size reduced to 41.98%. Additionally, exposure to bensulide resulted in inhibition of antioxidant enzyme expression and an increase in ROS levels by up to 238.29%. Collectively, we identified various biological responses associated with the toxicity of bensulide, which led to various organ malformations and cytotoxic effects in zebrafish.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
17
|
Hasani H, Sun J, Zhu SI, Rong Q, Willomitzer F, Amor R, McConnell G, Cossairt O, Goodhill GJ. Whole-brain imaging of freely-moving zebrafish. Front Neurosci 2023; 17:1127574. [PMID: 37139528 PMCID: PMC10150962 DOI: 10.3389/fnins.2023.1127574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
One of the holy grails of neuroscience is to record the activity of every neuron in the brain while an animal moves freely and performs complex behavioral tasks. While important steps forward have been taken recently in large-scale neural recording in rodent models, single neuron resolution across the entire mammalian brain remains elusive. In contrast the larval zebrafish offers great promise in this regard. Zebrafish are a vertebrate model with substantial homology to the mammalian brain, but their transparency allows whole-brain recordings of genetically-encoded fluorescent indicators at single-neuron resolution using optical microscopy techniques. Furthermore zebrafish begin to show a complex repertoire of natural behavior from an early age, including hunting small, fast-moving prey using visual cues. Until recently work to address the neural bases of these behaviors mostly relied on assays where the fish was immobilized under the microscope objective, and stimuli such as prey were presented virtually. However significant progress has recently been made in developing brain imaging techniques for zebrafish which are not immobilized. Here we discuss recent advances, focusing particularly on techniques based on light-field microscopy. We also draw attention to several important outstanding issues which remain to be addressed to increase the ecological validity of the results obtained.
Collapse
Affiliation(s)
- Hamid Hasani
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Jipeng Sun
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Qiangzhou Rong
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Florian Willomitzer
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gail McConnell
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Oliver Cossairt
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Geoffrey J. Goodhill
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
18
|
Liu Y, Liu B, Green J, Duffy C, Song M, Lauderdale JD, Kner P. Volumetric light sheet imaging with adaptive optics correction. BIOMEDICAL OPTICS EXPRESS 2023; 14:1757-1771. [PMID: 37078033 PMCID: PMC10110302 DOI: 10.1364/boe.473237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Light sheet microscopy has developed quickly over the past decades and become a popular method for imaging live model organisms and other thick biological tissues. For rapid volumetric imaging, an electrically tunable lens can be used to rapidly change the imaging plane in the sample. For larger fields of view and higher NA objectives, the electrically tunable lens introduces aberrations in the system, particularly away from the nominal focus and off-axis. Here, we describe a system that employs an electrically tunable lens and adaptive optics to image over a volume of 499 × 499 × 192 μm3 with close to diffraction-limited resolution. Compared to the system without adaptive optics, the performance shows an increase in signal to background ratio by a factor of 3.5. While the system currently requires 7s/volume, it should be straightforward to increase the imaging speed to under 1s per volume.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Bingxi Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - John Green
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Carly Duffy
- Dept. of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ming Song
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - James D. Lauderdale
- Dept. of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Zhang C, Ren Z, Gong Z. Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:281-290. [PMID: 36917276 DOI: 10.1007/s10126-023-10204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
Albinism is the most common color variation described in fish and is a fascinating trait of some ornamental fish species. Albino mutants can be generated by knocking out core genes affecting melanin synthesis like slc45a2 in several fish species. However, genetic mutation remains challenging for species with unknown genome information. In this study, we generated albino mutants in two selected ornamental fish species, royal farlowella (Sturisoma panamense), and redhead cichlid (Vieja melanura). For this purpose, we carried out phylogenetic analyses of fish slc45a2 sequences and identified a highly conserved region among different fish species. A pair of degenerate primers spanning this region was designed and used to amplify a conserved slc45a2 fragment of 340 bp from the two fish species. Based on the amplified sequences, a target site in the 6th exon was used for designing guide RNA and this targeted site was first verified by the CRISPR/Cas9 system in the zebrafish (Danio rerio) model for the effectiveness. Then, specific guide RNAs were designed for the two ornamental fish species and tested. Most of the injected larvae completely lost black pigment over the whole body and eyes. DNA sequencing confirmed a high degree of mutation at the targeted site. Overall, we described a fast and efficient method to generate albino phenotype in fish species by targeting the conserved 6th exon of slc45a2 gene for genome editing via CRISPR/Cas9 and this approach could be a new genetic tool to generate desirable albino ornamental fish.
Collapse
Affiliation(s)
- Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, 250014, Jinan, China.
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore.
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore.
| |
Collapse
|
20
|
Krug J, Perner B, Albertz C, Mörl H, Hopfenmüller VL, Englert C. Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. eLife 2023; 12:81549. [PMID: 36820520 PMCID: PMC10010688 DOI: 10.7554/elife.81549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2023] Open
Abstract
Body pigmentation is a limitation for in vivo imaging and thus for the performance of longitudinal studies in biomedicine. A possibility to circumvent this obstacle is the employment of pigmentation mutants, which are used in fish species like zebrafish and medaka. To address the basis of aging, the short-lived African killifish Nothobranchius furzeri has recently been established as a model organism. Despite its short lifespan, N. furzeri shows typical signs of mammalian aging including telomere shortening, accumulation of senescent cells, and loss of regenerative capacity. Here, we report the generation of a transparent N. furzeri line by the simultaneous inactivation of three key loci responsible for pigmentation. We demonstrate that this stable line, named klara, can serve as a tool for different applications including behavioral experiments and the establishment of a senescence reporter by integration of a fluorophore into the cdkn1a (p21) locus and in vivo microscopy of the resulting line.
Collapse
Affiliation(s)
- Johannes Krug
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Birgit Perner
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Carolin Albertz
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Mörl
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Vera L Hopfenmüller
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University JenaJenaGermany
| |
Collapse
|
21
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
22
|
Gerlai R. Zebrafish (Danio rerio): A newcomer with great promise in behavioral neuroscience. Neurosci Biobehav Rev 2023; 144:104978. [PMID: 36442644 DOI: 10.1016/j.neubiorev.2022.104978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Behavioral neuroscience is an interdisciplinary field aimed at understanding the neurobiology of behavior. Numerous investigators turn to animals to model and understand the mechanisms underlying vertebrate brain function including human brain disorders, species that share evolutionary history with us. The zebrafish is a relatively new study species for such purposes. However, as this review attempts to demonstrate, it will likely have a good future in behavioral neuroscience. It is a simple vertebrate that is small and cheap to keep and study in the laboratory. Yet, it is similar enough to our own species, thus, we are able to use it for both translational as well as basic research. In this invited review, I will discuss its advantages and some of its disadvantages, the reasons and counterarguments why it should or should not be employed in research. I will focus on its utility in behavioral neuroscience, and will also provide a brief historical account of the evolution between zebrafish research and the science represented by the International Behavioral Neuroscience Society.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, Rm CCT4004, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
23
|
Lam PY. Longitudinal in vivo imaging of adult Danionella cerebrum using standard confocal microscopy. Dis Model Mech 2022; 15:283162. [PMID: 36398624 PMCID: PMC9844135 DOI: 10.1242/dmm.049753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Danionella cerebrum is a new vertebrate model that offers an exciting opportunity to visualize dynamic biological processes in intact adult animals. Key advantages of this model include its small size, life-long optical transparency, genetic amenability and short generation time. Establishing a reliable method for longitudinal in vivo imaging of adult D. cerebrum while maintaining viability will allow in-depth image-based studies of various processes involved in development, disease onset and progression, wound healing, and aging in an intact live animal. Here, a method for both prolonged and longitudinal confocal live imaging of adult D. cerebrum using custom-designed and 3D-printed imaging chambers is described. Two transgenic D. cerebrum lines were created to test the imaging system, i.e. Tg(mpeg1:dendra2) and Tg(kdrl:mCherry-caax). The first line was used to visualize macrophages and microglia, and the second for spatial registration. By using this approach, differences in immune cell morphology and behavior during homeostasis as well as in response to a stab wound or two-photon-induced brain injury were observed in intact adult fish over the course of several days.
Collapse
Affiliation(s)
- Pui-Ying Lam
- Neuroscience Research Center, Medical College of Wisconsin, 53226 Milwaukee, WI, USA,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 53226 Milwaukee, WI, USA,Author for correspondence ()
| |
Collapse
|
24
|
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review. Bioengineering (Basel) 2022; 10:5. [PMID: 36671577 PMCID: PMC9854701 DOI: 10.3390/bioengineering10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
25
|
Optical transparency and label-free vessel imaging of zebrafish larvae in shortwave infrared range as a tool for prolonged studying of cardiovascular system development. Sci Rep 2022; 12:20884. [PMID: 36463350 PMCID: PMC9719527 DOI: 10.1038/s41598-022-25386-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Optical techniques are utilized for the non-invasive analysis of the zebrafish cardiovascular system at early developmental stages. Being based mainly on conventional optical microscopy components and image sensors, the wavelength range of the collected and analyzed light is not out of the scope of 400-900 nm. In this paper, we compared the non-invasive optical approaches utilizing visible and near infrared range (VISNIR) 400-1000 and the shortwave infrared range (SWIR) 900-1700 nm. The transmittance spectra of zebrafish tissues were measured in these wavelength ranges, then vessel maps, heart rates, and blood flow velocities were calculated from data in VISNIR and SWIR. An increased pigment pattern transparency was registered in SWIR, while the heart and vessel detection quality in this range is not inferior to VISNIR. Obtained results indicate an increased efficiency of SWIR imaging for monitoring heart function and hemodynamic analysis of zebrafish embryos and larvae and suggest a prolonged registration period in this range compared to other optical techniques that are limited by pigment pattern development.
Collapse
|
26
|
Cho HJ, Lee WS, Jeong J, Lee JS. A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109428. [PMID: 35940544 DOI: 10.1016/j.cbpc.2022.109428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Nanomaterials have been widely employed from industrial to medical fields due to their small sizes and versatile characteristics. However, nanomaterials can also induce unexpected adverse effects on health. In particular, exposure of the nervous system to nanomaterials can cause serious neurological dysfunctions and neurodegenerative diseases. A number of studies have adopted various animal models to evaluate the neurotoxic effects of nanomaterials. Among them, zebrafish has become an attractive animal model for neurotoxicological studies due to several advantages, including the well-characterized nervous system, efficient genome editing, convenient generation of transgenic lines, high-resolution in vivo imaging, and an array of behavioral assays. In this review, we summarize recent studies on the neurotoxicological effects of nanomaterials, particularly engineered nanomaterials and nanoplastics, using zebrafish and discuss key findings with advantages and limitations of the zebrafish model in neurotoxicological studies.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
27
|
Chia K, Klingseisen A, Sieger D, Priller J. Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 2022; 15:940484. [PMID: 36311026 PMCID: PMC9606821 DOI: 10.3389/fnmol.2022.940484] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Klingseisen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Dirk Sieger,
| | - Josef Priller
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, DZNE, Berlin, Germany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Josef Priller,
| |
Collapse
|
28
|
Corradi L, Zaupa M, Sawamiphak S, Filosa A. Using pERK immunostaining to quantify neuronal activity induced by stress in zebrafish larvae. STAR Protoc 2022; 3:101731. [PMID: 36183255 PMCID: PMC9529592 DOI: 10.1016/j.xpro.2022.101731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
The larval zebrafish has emerged as a very useful model organism to study the neuronal circuits controlling neuroendocrine and behavioral responses to stress. This protocol describes how to expose zebrafish larvae to hyperosmotic stress and test whether candidate populations of neurons are activated or inhibited by the stressor using a relatively rapid immunofluorescence staining approach. This approach takes advantage of the phosphorylation of the extracellular signal-regulated kinase (ERK) upon neuronal activation. For complete details on the use and execution of this protocol, please refer to Corradi et al. (2022).
Collapse
Affiliation(s)
- Laura Corradi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Freie Universität Berlin, Institute for Biology, Berlin, Germany
| | - Margherita Zaupa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Freie Universität Berlin, Institute for Biology, Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Corresponding author
| |
Collapse
|
29
|
Comparative in situ hybridization protocols in zebrafish. Biotechniques 2022; 73:123-130. [PMID: 36065907 PMCID: PMC9490454 DOI: 10.2144/btn-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In situ hybridization is a commonly used technique in molecular biology to assess the temporal and spatial expression of a given gene. As a long and labor-intensive protocol, double in situ hybridization, which detects two genes in series, is challenging and can require a lot of troubleshooting. Optional additives, polyvinyl alcohol and dextran sulfate, were tested in a standard in situ hybridization protocol and several colorimetric stain pairings using double in situ hybridization in zebrafish embryos. Optional additives can improve staining time and reduce nonspecific background. Nitro-blue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate (BCIP) + Fast Red/BCIP was the most effective stain pairing. As a proof-of-concept, this work shows that Cabin1 and atoh1b are expressed in distinct regions of the developing zebrafish brain. A comparison of colorimetric stains and protocols in double in situ hybridization in whole-mount zebrafish embryos.
Collapse
|
30
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
31
|
Kuroda T, Cançado CRX, Lattal KA. Effects of signaled and unsignaled delays of reinforcement on response maintenance in zebrafish (Danio rerio). J Exp Anal Behav 2022; 118:412-424. [PMID: 35989470 DOI: 10.1002/jeab.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
Effects of delays of reinforcement on zebrafish behavior were examined following training with immediate reinforcement. The delay was either signaled by an exteroceptive stimulus present for the entire delay period (fully signaled), signaled briefly only at delay onset (partial signal), or without a stimulus (unsignaled). Unsignaled delays consistently resulted in low response rates. Fully signaled delays resulted in higher response rates than unsignaled delays when the delay was 3 s, but this difference in response rates disappeared at 6-s delays. Partially signaled delays were less effective in maintaining responding than fully signaled delays, but more effective than unsignaled delays, although these results were only suggestive. These results indicate that stimulus changes that occur during delays to reinforcement have similar effects with zebrafish as with other species, but also that responding of zebrafish has a relatively low tolerance to the delay duration. A vast majority of experiments examining zebrafish behavior suggests that the fish have potential to serve as an interface between biological and behavioral science, but this may not be the case in some research areas involving delays, such as delay discounting.
Collapse
|
32
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals' cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors' behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
33
|
Rosa JT, Tarasco M, Gavaia PJ, Cancela ML, Laizé V. Screening of Mineralogenic and Osteogenic Compounds in Zebrafish—Tools to Improve Assay Throughput and Data Accuracy. Pharmaceuticals (Basel) 2022; 15:ph15080983. [PMID: 36015130 PMCID: PMC9412667 DOI: 10.3390/ph15080983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Bone disorders affect millions of people worldwide and treatments currently available often produce undesirable secondary effects or have limited efficacy. It is therefore of the utmost interest for patients to develop more efficient drugs with reduced off-target activities. In the long process of drug development, screening and preclinical validation have recently gained momentum with the increased use of zebrafish as a model organism to study pathological processes related to human bone disorders, and the development of zebrafish high-throughput screening assays to identify bone anabolic compounds. In this review, we provided a comprehensive overview of the literature on zebrafish bone-related assays and evaluated their performance towards an integration into screening pipelines for the discovery of mineralogenic/osteogenic compounds. Tools available to standardize fish housing and feeding procedures, synchronize embryo production, and automatize specimen sorting and image acquisition/analysis toward faster and more accurate screening outputs were also presented.
Collapse
Affiliation(s)
- Joana T. Rosa
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
| | - Marco Tarasco
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- GreenColab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
34
|
Lindemann N, Kalix L, Possiel J, Stasch R, Kusian T, Köster RW, von Trotha JW. A comparative analysis of Danionella cerebrum and zebrafish (Danio rerio) larval locomotor activity in a light-dark test. Front Behav Neurosci 2022; 16:885775. [PMID: 35990722 PMCID: PMC9385977 DOI: 10.3389/fnbeh.2022.885775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Danionella comprises some of the smallest known vertebrate species and is evolutionary closely related to the zebrafish, Danio rerio. With its optical translucency, rich behavioral repertoire, and a brain volume of just 0.6 mm3, Danionella cerebrum (Dc) holds great promise for whole-brain in vivo imaging analyses with single cell resolution of higher cognitive functions in an adult vertebrate. Little is currently known, however, about the basic locomotor activity of adult and larval Danionella cerebrum and how it compares to the well-established zebrafish model system. Here, we provide a comparative developmental analysis of the larval locomotor activity of Dc and AB wildtype as well as crystal zebrafish in a light-dark test. We find similarities but also differences in both species, most notably a striking startle response of Dc following a sudden dark to light switch, whereas zebrafish respond most strongly to a sudden light to dark switch. We hypothesize that the different startle responses in both species may stem from their different natural habitats and could represent an opportunity to investigate how neural circuits evolve to evoke different behaviors in response to environmental stimuli.
Collapse
|
35
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
36
|
Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nat Commun 2022; 13:3435. [PMID: 35701478 PMCID: PMC9198099 DOI: 10.1038/s41467-022-31172-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/08/2022] [Indexed: 12/18/2022] Open
Abstract
Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. So far, the requirement of an NGG Protospacer Adjacent Motif (PAM) at a suitable position often limits the base editing possibility to model human pathological mutations in animals. Here we show that, using the CBE4max-SpRY variant recognizing nearly all PAM sequences, we could introduce point mutations for the first time in an animal model with high efficiency, thus drastically increasing the base editing possibilities. With this near PAM-less base editor we could simultaneously mutate several genes and we developed a co-selection method to identify the most edited embryos based on a simple visual screening. Finally, we apply our method to create a zebrafish model for melanoma predisposition based on the simultaneous base editing of multiple genes. Altogether, our results considerably expand the Base Editor application to introduce human disease-causing mutations in zebrafish. Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. Here the authors describe a near PAM-less base editor and its application in zebrafish to efficiently create disease models harbouring specific point mutations.
Collapse
|
37
|
Crilly S, McMahon E, Kasher PR. Zebrafish for modeling stroke and their applicability for drug discovery and development. Expert Opin Drug Discov 2022; 17:559-568. [PMID: 35587689 DOI: 10.1080/17460441.2022.2072828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The global health burden of stroke is significant and few therapeutic treatment options currently exist for patients. Pre-clinical research relies heavily on rodent stroke models but the limitations associated with using these systems alone has meant translation of drug compounds to the clinic has not been greatly successful to date. Zebrafish disease modeling offers a potentially complementary platform for pre-clinical compound screening to aid the drug discovery process for translational stroke research. AREAS COVERED In this review, the authors introduce stroke and describe the issues associated with the current pre-clinical drug development pipeline and the advantages that zebrafish disease modeling can offer. Existing zebrafish models of ischemic and hemorrhagic stroke are reviewed. Examples of how zebrafish models have been utilized for drug discovery in other disease disciplines are also discussed. EXPERT OPINION Zebrafish disease modeling holds the capacity and potential to significantly enhance the stroke drug development pipeline. However, for this system to be more widely accepted and incorporated into translational stroke research, continued improvement of the existing zebrafish stroke models, as well as focussed collaboration between zebrafish and stroke researchers, is essential.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Emily McMahon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Lichtenegger A, Mukherjee P, Zhu L, Morishita R, Tomita K, Oida D, Leskovar K, Abd El-Sadek I, Makita S, Kirchberger S, Distel M, Baumann B, Yasuno Y. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2202-2223. [PMID: 35519284 PMCID: PMC9045912 DOI: 10.1364/boe.455876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and local polarization parameters such as the birefringence and the degree of polarization uniformity were analyzed to quantify differences in tumor versus control regions. The proof-of-concept study in a limited number of animals revealed a significant decrease in birefringence in tumors found in the brain and near the eye compared to control regions. The presented work showed the potential of OCT and JM-OCT as non-destructive, high-resolution, and real-time imaging modalities for pre-clinical research based on zebrafish.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Lida Zhu
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Rion Morishita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Kiriko Tomita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Daisuke Oida
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Konrad Leskovar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
- Department of Physics, Faculty of Science, Damietta University, Egypt
| | - Shuichi Makita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute (CCRI), Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| |
Collapse
|
39
|
John N, Kolb J, Wehner D. Mechanical spinal cord transection in larval zebrafish and subsequent whole-mount histological processing. STAR Protoc 2022; 3:101093. [PMID: 35535165 PMCID: PMC9076965 DOI: 10.1016/j.xpro.2021.101093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
40
|
Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today 2022; 27:1513-1522. [DOI: 10.1016/j.drudis.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
41
|
Maciag M, Wnorowski A, Bednarz K, Plazinska A. Evaluation of β-adrenergic ligands for development of pharmacological heart failure and transparency models in zebrafish. Toxicol Appl Pharmacol 2022; 434:115812. [PMID: 34838787 DOI: 10.1016/j.taap.2021.115812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Cardiovascular toxicity represents one of the most common reasons for clinical trial failure. Consequently, early identification of novel cardioprotective strategies could prevent the later-stage drug-induced cardiac side effects. The use of zebrafish (Danio rerio) in preclinical studies has greatly increased. High-throughput and low-cost of assays make zebrafish model ideal for initial drug discovery. A common strategy to induce heart failure is a chronic β-adrenergic (βAR) stimulation. Herein, we set out to test a panel of βAR agonists to develop a pharmacological heart failure model in zebrafish. We assessed βAR agonists with respect to the elicited mortality, changes in heart rate, and morphological alterations in zebrafish larvae according to Fish Embryo Acute Toxicity Test. Among the tested βAR agonists, epinephrine elicited the most potent onset of heart stimulation (EC50 = 0.05 mM), which corresponds with its physiological role as catecholamine. However, when used at ten-fold higher dose (0.5 mM), the same compound caused severe heart rate inhibition (-28.70 beats/min), which can be attributed to its cardiotoxicity. Further studies revealed that isoetharine abolished body pigmentation at the sublethal dose of 7.50 mM. Additionally, as a proof of concept that zebrafish can mimic human cardiac physiology, we tested βAR antagonists (propranolol, carvedilol, metoprolol, and labetalol) and verified that they inhibited fish heart rate in a similar fashion as in humans. In conclusion, we proposed two novel pharmacological models in zebrafish; i.e., epinephrine-dependent heart failure and isoetharine-dependent transparent zebrafish. We provided strong evidence that the zebrafish model constitutes a valuable tool for cardiovascular research.
Collapse
Affiliation(s)
- Monika Maciag
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland.
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland.
| | - Kinga Bednarz
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Anita Plazinska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland.
| |
Collapse
|
42
|
Baillie JS, Stoyek MR, Quinn TA. Seeing the Light: The Use of Zebrafish for Optogenetic Studies of the Heart. Front Physiol 2021; 12:748570. [PMID: 35002753 PMCID: PMC8733579 DOI: 10.3389/fphys.2021.748570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins ("reporters" and "actuators"), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.
Collapse
Affiliation(s)
- Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
43
|
Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021; 22:13417. [PMID: 34948215 PMCID: PMC8707050 DOI: 10.3390/ijms222413417] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.
Collapse
Affiliation(s)
- Benedikt Bauer
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-University, 97074 Würzburg, Germany
| |
Collapse
|
44
|
An Orthotopic Model of Uveal Melanoma in Zebrafish Embryo: A Novel Platform for Drug Evaluation. Biomedicines 2021; 9:biomedicines9121873. [PMID: 34944689 PMCID: PMC8698893 DOI: 10.3390/biomedicines9121873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Uveal melanoma is a highly metastatic tumor, representing the most common primary intraocular malignancy in adults. Tumor cell xenografts in zebrafish embryos may provide the opportunity to study in vivo different aspects of the neoplastic disease and its response to therapy. Here, we established an orthotopic model of uveal melanoma in zebrafish by injecting highly metastatic murine B16-BL6 and B16-LS9 melanoma cells, human A375M melanoma cells, and human 92.1 uveal melanoma cells into the eye of zebrafish embryos in the proximity of the developing choroidal vasculature. Immunohistochemical and immunofluorescence analyses showed that melanoma cells proliferate during the first four days after injection and move towards the eye surface. Moreover, bioluminescence analysis of luciferase-expressing human 92.1 uveal melanoma cells allowed the quantitative assessment of the antitumor activity exerted by the canonical chemotherapeutic drugs paclitaxel, panobinostat, and everolimus after their injection into the grafted eye. Altogether, our data demonstrate that the zebrafish embryo eye is a permissive environment for the growth of invasive cutaneous and uveal melanoma cells. In addition, we have established a new luciferase-based in vivo orthotopic model that allows the quantification of human uveal melanoma cells engrafted in the zebrafish embryo eye, and which may represent a suitable tool for the screening of novel drug candidates for uveal melanoma therapy.
Collapse
|
45
|
Vega NM, Ludington WB. From a parts list to assembly instructions and an operating manual: how small host models can re-write microbiome theory. Curr Opin Microbiol 2021; 64:146-151. [PMID: 34739919 DOI: 10.1016/j.mib.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Nic M Vega
- Biology Department, Emory University, Atlanta, GA, United States.
| | - William B Ludington
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States
| |
Collapse
|
46
|
Verdi V, Bécot A, van Niel G, Verweij FJ. In vivo imaging of EVs in zebrafish: New perspectives from "the waterside". FASEB Bioadv 2021; 3:918-929. [PMID: 34761174 PMCID: PMC8565201 DOI: 10.1096/fba.2021-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.
Collapse
Affiliation(s)
- Vincenzo Verdi
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Anaïs Bécot
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| | - Guillaume van Niel
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Frederik J Verweij
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| |
Collapse
|
47
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
48
|
Cornuault JK, Byatt G, Paquet ME, De Koninck P, Moineau S. Zebrafish: a big fish in the study of the gut microbiota. Curr Opin Biotechnol 2021; 73:308-313. [PMID: 34653834 DOI: 10.1016/j.copbio.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/03/2022]
Abstract
The importance of the gut microbiota in host health is now well established, but the underlying mechanisms remain poorly understood. Among the animal models used to investigate microbiota-host interactions, the zebrafish (Danio renio) is gaining attention. Several factors contribute to the recent interest in this model, including its low cost, the ability to assess large cohorts, the possibility to obtain germ-free larvae from non-axenic parents, and the availability of optical methodologies to probe the transparent larvae and adults from various genetic lines. We review recent findings on the zebrafish gut microbiota and its modulation by exogenous microbes, nutrition, and environmental factors. We also highlight the potential of this model for assessing the impact of the gut microbiota on brain development.
Collapse
Affiliation(s)
- Jeffrey K Cornuault
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Gabriel Byatt
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada; CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
| | - Marie-Eve Paquet
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
| | - Paul De Koninck
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, G1V 0A6, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
49
|
Katz SR, Yakovlev MA, Vanselow DJ, Ding Y, Lin AY, Parkinson DY, Wang Y, Canfield VA, Ang KC, Cheng KC. Whole-organism 3D quantitative characterization of zebrafish melanin by silver deposition micro-CT. eLife 2021; 10:e68920. [PMID: 34528510 PMCID: PMC8445617 DOI: 10.7554/elife.68920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
We previously described X-ray histotomography, a high-resolution, non-destructive form of X-ray microtomography (micro-CT) imaging customized for three-dimensional (3D), digital histology, allowing quantitative, volumetric tissue and organismal phenotyping (Ding et al., 2019). Here, we have combined micro-CT with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy, and further allowed direct quantitative comparisons of melanin content across wild-type and mutant samples, including subtle phenotypes not previously noticed. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution, with potential applications in other model organisms and melanocytic neoplasms. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables.
Collapse
Affiliation(s)
- Spencer R Katz
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Medical Scientist Training Program, Penn State College of MedicineHersheyUnited States
| | - Maksim A Yakovlev
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Daniel J Vanselow
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Yifu Ding
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Medical Scientist Training Program, Penn State College of MedicineHersheyUnited States
| | - Alex Y Lin
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | | | - Yuxin Wang
- Mobile Imaging Innovations, IncPalatineUnited States
| | - Victor A Canfield
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Khai C Ang
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Zebrafish Functional Genomics Core, Penn State College of MedicineHersheyUnited States
| | - Keith C Cheng
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Zebrafish Functional Genomics Core, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
50
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|