1
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
2
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
3
|
de Araujo Dorneles ML, Cardoso-Lima R, Souza PFN, Santoro Rosa D, Magne TM, Santos-Oliveira R, Alencar LMR. Zika Virus (ZIKV): A New Perspective on the Nanomechanical and Structural Properties. Viruses 2022; 14:v14081727. [PMID: 36016349 PMCID: PMC9414353 DOI: 10.3390/v14081727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) from Flavivirus. In 2015, Brazil and other Latin American countries experienced an outbreak of ZIKV infections associated with severe neurological disorders such as Guillain–Barre syndrome (GBS), encephalopathy, and encephalitis. Here, a complete mechanical and structural analysis of the ZIKV has been performed using Atomic Force Microscopy (AFM). AFM analysis corroborated the virus mean size (~50 nm) and icosahedral geometry and revealed high mechanical resistance of both: the viral surface particle (~200 kPa) and its internal content (~800 kPa). The analysis demonstrated the detailed organization of the nucleocapsid structure (such as RNA strips). An interesting finding was the discovery that ZIKV has no surface self-assembling property. These results can contribute to the development of future treatment candidates and circumscribe the magnitude of viral transmission.
Collapse
Affiliation(s)
| | - Ruana Cardoso-Lima
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65020070, Brazil
| | - Pedro Filho Noronha Souza
- Department of Biochemistry, Federal University of Ceará, Fortaleza 60440900, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60440900, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo, São Paulo 04023062, Brazil
| | - Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65020070, Brazil
- Correspondence:
| |
Collapse
|
4
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
5
|
Mori A, Pomari E, Deiana M, Perandin F, Caldrer S, Formenti F, Mistretta M, Orza P, Ragusa A, Piubelli C. Molecular techniques for the genomic viral RNA detection of West Nile, Dengue, Zika and Chikungunya arboviruses: a narrative review. Expert Rev Mol Diagn 2021; 21:591-612. [PMID: 33910444 DOI: 10.1080/14737159.2021.1924059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Molecular technology has played an important role in arboviruses diagnostics. PCR-based methods stand out in terms of sensitivity, specificity, cost, robustness, and accessibility, and especially the isothermal amplification (IA) method is ideal for field-adaptable diagnostics in resource-limited settings (RLS).Areas covered: In this review, we provide an overview of the various molecular methods for West Nile, Zika, Dengue and Chikungunya. We summarize literature works reporting the assessment and use of in house and commercial assays. We describe limitations and challenges in the usage of methods and opportunities for novel approaches such as NNext-GenerationSequencing (NGS).Expert opinion: The rapidity and accuracy of differential diagnosis is essential for a successful clinical management, particularly in co-circulation area of arboviruses. Several commercial diagnostic molecular assays are available, but many are not affordable by RLS and not usable as Point-of-care/Point-of-need (POC/PON) such as RReal-TimeRT-PCR, Array-based methods and NGS. In contrast, the IA-based system fits better for POC/PON but it is still not ideal for the multiplexing detection system. Improvement in the characterization and validation of current molecular assays is needed to optimize their translation to the point of care.
Collapse
Affiliation(s)
- Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Francesca Perandin
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Sara Caldrer
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Fabio Formenti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Manuela Mistretta
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Pierantonio Orza
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Andrea Ragusa
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
6
|
Bohers C, Mousson L, Madec Y, Vazeille M, Rhim A, M’ghirbi Y, Bouattour A, Failloux AB. The recently introduced Aedes albopictus in Tunisia has the potential to transmit chikungunya, dengue and Zika viruses. PLoS Negl Trop Dis 2020; 14:e0008475. [PMID: 33007002 PMCID: PMC7556531 DOI: 10.1371/journal.pntd.0008475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 10/14/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
The mosquito Aedes albopictus was detected for the first time in Tunisia in 2018. With its establishment in the capital city of Tunis, local health authorities fear the introduction of new human arboviral diseases, like what happened in Europe with unexpected local cases of chikungunya, dengue and Zika. Even though this mosquito is competent to transmit the arboviruses mentioned above, the transmission level will vary depending on the couple, mosquito population and virus genotype. Here, we assessed the vector competence of Ae. albopictus Tunisia by experimental infections with chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses. We found that Ae. albopictus Tunisia was highly competent for CHIKV (transmission efficiency of 25% at 21 post-infection) and to a lesser extent, for ZIKV (8.7%) and DENV (8.3%). Virus was detected in mosquito saliva at day 3 (CHIKV), day 10 (ZIKV) and day 21 (DENV) post-infection. These results suggest that the risk of emergence of chikungunya is the highest imposing a more sustained surveillance to limit Ae. albopictus populations in densely populated urban dwellings and at the entry points of travelers returning from CHIKV-endemic regions.
Collapse
Affiliation(s)
- Chloé Bohers
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, Paris, France
| | - Yoann Madec
- Institut Pasteur, Department of Global Health, Epidemiology of Emerging Diseases, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, Paris, France
| | - Adel Rhim
- Laboratoire Virus, Vecteurs et Hôtes, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Youmna M’ghirbi
- Laboratoire Virus, Vecteurs et Hôtes, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Ali Bouattour
- Laboratoire Virus, Vecteurs et Hôtes, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, Paris, France
| |
Collapse
|
7
|
Glavinic U, Varga J, Paslaru AI, Hauri J, Torgerson P, Schaffner F, Veronesi E. Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime. Parasit Vectors 2020; 13:479. [PMID: 32948231 PMCID: PMC7501641 DOI: 10.1186/s13071-020-04361-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the huge epidemic of Zika virus (ZIKV) in Brazil in 2015, questions were raised to understand which mosquito species could transmit the virus. Aedes aegypti has been described as the main vector. However, other Aedes species (e.g. Ae. albopictus and Ae. japonicus) proven to be competent for other flaviviruses (e.g. West Nile, dengue and yellow fever), have been described as potential vectors for ZIKV under laboratory conditions. One of these, the Asian bush mosquito, Ae. japonicus, is widely distributed with high abundances in central-western Europe. In the present study, infection, dissemination and transmission rates of ZIKV (Dak84 strain) in two populations of Ae. japonicus from Switzerland (Zürich) and France (Steinbach, Haut-Rhin) were investigated under constant (27 °C) and fluctuating (14-27 °C, mean 23 °C) temperature regimes. RESULTS The two populations were each able to transmit ZIKV under both temperature regimes. Infectious virus particles were detected in the saliva of females from both populations, regardless of the incubation temperature regime, from 7 days post-exposure to infectious rabbit blood. The highest amount of plaque forming units (PFU) (400/ml) were recorded 14 days post-oral infection in the Swiss population incubated at a constant temperature. No difference in terms of infection, dissemination and transmission rate were found between mosquito populations. Temperature had no effect on infection rate but the fluctuating temperature regime resulted in higher dissemination rates compared to constant temperature, regardless of the population. Finally, transmission efficiency ranged between 7-23% and 7-10% for the constant temperature and 0-10% and 3-27% under fluctuating temperatures for the Swiss and the French populations, respectively. CONCLUSIONS To the best of our knowledge, this is the first study confirming vector competence for ZIKV of Ae. japonicus originating from Switzerland and France at realistic summer temperatures under laboratory conditions. Considering the continuous spread of this species in the northern part of Europe and its adaptation at cooler temperatures, preventative control measures should be adopted to prevent possible ZIKV epidemics.
Collapse
Affiliation(s)
- Uros Glavinic
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jasmin Varga
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Anca Ioana Paslaru
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeannine Hauri
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Paul Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Francis Schaffner Consultancy, Lörracherstrasse 50, 4125, Riehen, Switzerland
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Vega-Rúa A, Marconcini M, Madec Y, Manni M, Carraretto D, Gomulski LM, Gasperi G, Failloux AB, Malacrida AR. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun Biol 2020; 3:326. [PMID: 32581265 PMCID: PMC7314749 DOI: 10.1038/s42003-020-1046-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/26/2020] [Indexed: 01/04/2023] Open
Abstract
The mosquito Aedes albopictus is one of the most dangerous invasive species. Its worldwide spread has created health concerns as it is a major vector of arboviruses of public health significance such as chikungunya (CHIKV). Dynamics of different genetic backgrounds and admixture events may have impacted competence for CHIKV in adventive populations. Using microsatellites, we infer the genetic structure of populations across the expansion areas that we then associate with their competence for different CHIKV genotypes. Here we show that the demographic history of Ae. albopictus populations is a consequence of rapid complex patterns of historical lineage diversification and divergence that influenced their competence for CHIKV. The history of adventive populations is associated with CHIKV genotypes in a genotype-by-genotype interaction that impacts their vector competence. Thus, knowledge of the demographic history and vector competence of invasive mosquitoes is pivotal for assessing the risk of arbovirus outbreaks in newly colonized areas.
Collapse
Affiliation(s)
- Anubis Vega-Rúa
- Laboratory of Vector Control Research, Institut Pasteur of Guadeloupe, 97139, Guadeloupe, France
| | - Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Yoann Madec
- Department of Infection and Epidemiology of Emerging Diseases, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel-Servet 1211 Genève and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Ludvik Marcus Gomulski
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors Unit, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.
| | - Anna Rodolfa Malacrida
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
9
|
Weaver SC, Chen R, Diallo M. Chikungunya Virus: Role of Vectors in Emergence from Enzootic Cycles. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:313-332. [PMID: 31594410 DOI: 10.1146/annurev-ento-011019-025207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chikungunya virus (CHIKV), a re-emerging mosquito-borne arbovirus, has caused millions of cases of severe, often chronic arthralgia during recent outbreaks. In Africa, circulation in sylvatic, enzootic cycles involves several species of arboreal mosquito vectors that transmit among diverse nonhuman primates and possibly other amplifying hosts. Most disease occurs when CHIKV emerges into a human-amplified cycle involving Aedes aegypti and sometimes Aedes albopictus transmission and extensive spread via travelers. Epidemiologic studies suggest that the transition from enzootic to epidemic cycles begins when people are infected via spillover in forests. However, efficient human amplification likely only ensues far from enzootic habitats where peridomestic vector and human densities are adequate. Recent outbreaks have been enhanced by mutations that adapt CHIKV for more efficient infection of Ae. albopictus, allowing for geographic expansion. However, epistatic interactions, sometimes resulting from founder effects following point-source human introductions, have profound effects on transmission efficiency, making CHIKV emergence somewhat unpredictable.
Collapse
Affiliation(s)
- Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA;
| | - Rubing Chen
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA;
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur Dakar, B.P. 220 Dakar, Senegal
| |
Collapse
|
10
|
Houé V, Gabiane G, Dauga C, Suez M, Madec Y, Mousson L, Marconcini M, Yen PS, de Lamballerie X, Bonizzoni M, Failloux AB. Evolution and biological significance of flaviviral elements in the genome of the arboviral vector Aedes albopictus. Emerg Microbes Infect 2020; 8:1265-1279. [PMID: 31469046 PMCID: PMC6735342 DOI: 10.1080/22221751.2019.1657785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since its genome details are publically available, the mosquito Aedes albopictus has become the central stage of attention for deciphering multiple biological and evolutionary aspects at the root of its success as an invasive species. Its genome of 1,967 Mb harbours an unusual high number of non-retroviral integrated RNA virus sequences (NIRVS). NIRVS are enriched in piRNA clusters and produce piRNAs, suggesting an antiviral effect. Here, we investigated the evolutionary history of NIRVS in geographically distant Ae. albopictus populations by comparing genetic variation as derived by neutral microsatellite loci and seven selected NIRVS. We found that the evolution of NIRVS was far to be neutral with variations both in their distribution and sequence polymorphism among Ae. albopictus populations. The Flaviviral elements AlbFlavi2 and AlbFlavi36 were more deeply investigated in their association with dissemination rates of dengue virus (DENV) and chikungunya virus (CHIKV) in Ae. albopictus at both population and individual levels. Our results show a complex association between NIRVS and DENV/CHIKV opening a new avenue for investigating the functional role of NIRVS as antiviral elements shaping vector competence of mosquitoes to arboviruses.
Collapse
Affiliation(s)
- Vincent Houé
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France.,Sorbonne Université, Collège Doctoral , Paris , France
| | - Gaelle Gabiane
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| | - Catherine Dauga
- Institut Pasteur, Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI) , Paris , France
| | - Marie Suez
- Institut de Biologie Paris-Seine , Paris , France
| | - Yoann Madec
- Department of Infection and Epidemiology, Institut Pasteur, Epidemiology of Emerging Diseases , Paris , France
| | - Laurence Mousson
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| | - Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Pei-Shi Yen
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 'Emergence des Pathologies Virales' , Marseille , France.,IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | | | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| |
Collapse
|
11
|
Experimental Assessment of Zika Virus Mechanical Transmission by Aedes Aegypti. Viruses 2019; 11:v11080695. [PMID: 31370135 PMCID: PMC6723193 DOI: 10.3390/v11080695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
The pandemic emergence of several mosquito-borne viruses highlights the need to understand the different ways in which they can be transmitted by vectors to human hosts. In this study, we evaluated the propensity of Aedes aegypti to transmit mechanically Zika virus (ZIKV) using an experimental design. Mosquitoes were allowed to feed on ZIKV-infected blood and were then rapidly transferred to feed on ZIKV-free blood until they finished their meal. The uninfected blood meals, the mosquito abdomens, as well as the mouthparts dissected from fully and partially engorged mosquitoes were analyzed using RT-qPCR and/or virus titration. All the fully engorged mosquito abdomens were ZIKV-infected, whereas their mouthparts were all ZIKV-negative. Nonetheless, one of the partially engorged mosquitoes carried infectious particles on mouthparts. No infectious virus was found in the receiver blood meals, while viral RNA was detected in 9% of the samples (2/22). Thus, mechanical transmission of ZIKV may sporadically occur via Ae. aegypti bite. However, as the number of virions detected on mouthparts (2 particles) is not sufficient to induce infection in a naïve host, our results indicate that mechanical transmission does not impact ZIKV epidemiology.
Collapse
|
12
|
Lindh E, Argentini C, Remoli ME, Fortuna C, Faggioni G, Benedetti E, Amendola A, Marsili G, Lista F, Rezza G, Venturi G. The Italian 2017 Outbreak Chikungunya Virus Belongs to an Emerging Aedes albopictus-Adapted Virus Cluster Introduced From the Indian Subcontinent. Open Forum Infect Dis 2018; 6:ofy321. [PMID: 30697571 PMCID: PMC6345083 DOI: 10.1093/ofid/ofy321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023] Open
Abstract
Background Chikungunya virus is an emerging mosquito-borne pathogen with a wide global distribution. With the severe morbidity that it causes, chikungunya virus is a major public health problem in the affected areas and poses a considerable risk for unaffected areas hosting competent vector populations. In the summer of 2017, Italy experienced a chikungunya virus outbreak that spread in the Lazio region and caused a secondary outbreak in the Calabrian village of Guardavalle, with a final case number of 436. The causative strain was recognized as an Indian Ocean lineage (IOL) virus. Methods To understand the underlying genetic and molecular features of the outbreak virus, viruses from mosquito pools and clinical samples were isolated in cell culture and subjected to whole-genome sequencing and genetic analyses. Results All 8 characterized genomes shared a high sequence identity. A distinct substitution pattern in the Italian 2017 viruses (including mutations in E1, E2, and nsP4) was partly shared with the Pakistani 2016 outbreak viruses. Evolutionary analyses indicate that these 2 recent outbreaks and several geographically widely distributed, travel-associated viruses form a cluster of rapidly emerging Indian-origin IOL viruses. Conclusions Our analyses show that the 2017 Italian outbreak virus belongs to a cluster of novel IOL chikungunya viruses originating in India. Their emergence calls for enhanced monitoring and strengthened preparedness measures, including vector control programs and raised awareness among general practitioners in countries potentially at risk.
Collapse
Affiliation(s)
- Erika Lindh
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy.,European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Claudio Argentini
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Elena Remoli
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Fortuna
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | | | - Eleonora Benedetti
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Antonello Amendola
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Marsili
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Rezza
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
13
|
Mascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J, Ng V, Young I, Waddell L. A scoping review of published literature on chikungunya virus. PLoS One 2018; 13:e0207554. [PMID: 30496207 PMCID: PMC6264817 DOI: 10.1371/journal.pone.0207554] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) has caused several major epidemics globally over the last two decades and is quickly expanding into new areas. Although this mosquito-borne disease is self-limiting and is not associated with high mortality, it can lead to severe, chronic and disabling arthritis, thereby posing a heavy burden to healthcare systems. The two main vectors for CHIKV are Aedes aegypti and Aedes albopictus (Asian tiger mosquito); however, many other mosquito species have been described as competent CHIKV vectors in scientific literature. With climate change, globalization and unfettered urban planning affecting many areas, CHIKV poses a significant public health risk to many countries. A scoping review was conducted to collate and categorize all pertinent information gleaned from published scientific literature on a priori defined aspects of CHIKV and its competent vectors. After developing a sensitive and specific search algorithm for the research question, seven databases were searched and data was extracted from 1920 relevant articles. Results show that CHIKV research is reported predominantly in areas after major epidemics have occurred. There has been an upsurge in CHIKV publications since 2011, especially after first reports of CHIKV emergence in the Americas. A list of hosts and vectors that could potentially be involved in the sylvatic and urban transmission cycles of CHIKV has been compiled in this scoping review. In addition, a repository of CHIKV mutations associated with evolutionary fitness and adaptation has been created by compiling and characterizing these genetic variants as reported in scientific literature.
Collapse
Affiliation(s)
- Mariola Mascarenhas
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Sophiya Garasia
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Philippe Berthiaume
- National Microbiology Laboratory at St. Hyacinthe, Public Health Agency of Canada, St. Hyacinthe, Quebec, Canada
| | - Tricia Corrin
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Judy Greig
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victoria Ng
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Lisa Waddell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Experimental Adaptation of the Yellow Fever Virus to the Mosquito Aedes albopictus and Potential risk of urban epidemics in Brazil, South America. Sci Rep 2018; 8:14337. [PMID: 30254315 PMCID: PMC6156417 DOI: 10.1038/s41598-018-32198-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 01/25/2023] Open
Abstract
Despite the availability of an efficient vaccine, Yellow fever (YF), a viral disease transmitted by mosquitoes, is still a threat. In Brazil, the yellow fever virus (YFV) has been restricted to a jungle cycle for more than 70 years. However, YFV has recently invaded populated cities in the Southeast such as Rio de Janeiro where the opportunistic mosquito Aedes albopictus is well established. Using in vivo passages of YFV in Ae. albopictus, we have selected viral strains presenting substitutions in NS1 gene. We did 10 passages of YFV-74018 on two distinct Ae. albopictus populations: (i) Manaus collected from a YFV-endemic area in Amazonia and (ii) PNMNI from a YFV-free area in the state of Rio de Janeiro. Full viral genomes were deep sequenced at each passage. We obtained two YFV strains presenting a non-synonymous substitution in the NS1 gene. Interestingly, they intervened at two different positions in NS1 gene according to the mosquito population: I2772T in Ae. albopictus Manaus and S3303N in Ae. albopictus PNMNI. Both substitutions reached fixation at the passage 10. Our data suggest that YFV has the potential for adaption to Ae. albopictus thereby posing a threat to most cities in South America where this mosquito is present.
Collapse
|
15
|
Pham Thi KL, Briant L, Gavotte L, Labbe P, Perriat-Sanguinet M, Cornillot E, Vu TD, Nguyen TY, Tran VP, Nguyen VS, Devaux C, Afelt A, Tran CC, Phan TN, Tran ND, Frutos R. Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vietnam. Parasit Vectors 2017; 10:556. [PMID: 29121985 PMCID: PMC5680899 DOI: 10.1186/s13071-017-2422-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Dengue virus remains a major threat in Vietnam, while chikungunya virus is expected to become one. Surveillance was conducted from 2012 to 2014 in Vietnam to assess the presence of dengue and chikungunya viruses in patients hospitalized with acute fever in five Vietnam provinces neighboring Lao PDR and Cambodia. Surveillance was extended to mosquitoes present in the vicinity of the patients’ households. Results A total 558 human serum samples were collected along with 1104 adult mosquitoes and 12,041 larvae from 2250 households. Dengue virus was found in 17 (3%) human serum samples and in 9 (0.8%) adult mosquitoes. Chikungunya virus was detected in 2 adult mosquitoes (0.18%) while no chikungunya virus was detected in humans. Differing densities of mosquito populations were found, with the highest in the Long An Province border with Cambodia. Long An Province also displayed the lowest rate of infection, despite a very high Breteau Index, high human population density and presence of the main cross border road system. The highest incidence was found in Dac Nong Province, where the Breteau and Container indices were the second lowest. Dengue virus was detected in five Aedes albopictus, three Aedes aegypti and one Culex vishnui. Chikungunya virus was detected in two Ae. aegypti. All infected mosquitoes belonged to haplotypes described in other parts of the world and a number of novel haplotypes were found among uninfected mosquitoes. Conclusions Dengue is considered to be regularly introduced to Vietnam from Cambodia, mostly through human movement. The data reported here provides a complementary picture. Due to intensive international trade, long-distance transportation of mosquito populations may play a role in the regular importation of dengue in Vietnam through Ho Chi Minh City. It is important to decipher the movement of mosquitoes in Vietnam, not only at the Lao PDR and Cambodia borders but also through international trade routes. Mosquito surveillance programs should address and follow mosquito populations instead of mosquito species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2422-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim Lien Pham Thi
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam. .,IRIM, University of Montpellier, CNRS, Montpellier, France. .,Cirad, Intertryp, UMR 17, TA-A17/G, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France.
| | | | - Laurent Gavotte
- ISEM, University of Montpellier, CNRS, EPHE IRD, Montpellier, France
| | - Pierrick Labbe
- ISEM, University of Montpellier, CNRS, EPHE IRD, Montpellier, France
| | | | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Montpellier, France.,IRCM, University of Montpellier, INSERM, ICM,, Montpellier, France
| | - Trong Duoc Vu
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Thi Yen Nguyen
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Vu Phong Tran
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Van Soai Nguyen
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Christian Devaux
- Aix Marseille Université, CNRS, IRD, INSERM, AP-HM, URMITE, IHU-Méditerranée infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Aneta Afelt
- University of Warsaw, Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Prosta 69, 00-838, Warsaw, Poland
| | - Chi Cuong Tran
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Thi Nga Phan
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Nhu Duong Tran
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Roger Frutos
- Cirad, Intertryp, UMR 17, TA-A17/G, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France. .,IES, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Lequime S, Richard V, Cao-Lormeau VM, Lambrechts L. Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti. Virus Evol 2017; 3:vex031. [PMID: 29497564 PMCID: PMC5782851 DOI: 10.1093/ve/vex031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like other pathogens with high mutation and replication rates, within-host dengue virus
(DENV) populations evolve during infection of their main mosquito vector, Aedes
aegypti. Within-host DENV evolution during transmission provides opportunities
for adaptation and emergence of novel virus variants. Recent studies of DENV genetic
diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues
such as midgut and salivary glands, suggesting that convergent positive selection is not a
major driver of within-host DENV evolution in the vector. However, it is unknown whether
this conclusion extends to the transmitted viral subpopulation because it is technically
difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome
sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individual
Ae. aegypti mosquitoes previously infected with one of two DENV-1
genotypes. We compared the transmitted viral subpopulations found in the pooled saliva
samples collected in time series with the input viral population present in the infectious
blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of
the input viral population was unchanged. Although the pooling strategy prevents analysis
of individual saliva samples, our results demonstrate the lack of strong convergent
positive selection during a single round of DENV transmission by Ae.
aegypti. This finding reinforces the idea that genetic drift and purifying
selection are the dominant evolutionary forces shaping within-host DENV genetic diversity
during transmission by mosquitoes.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 25-28 rue du Docteur Roux, 75015 Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, 4 place Jussieu, 75005 Paris, France
| | - Vaea Richard
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - Van-Mai Cao-Lormeau
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 25-28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
17
|
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017; 9:E185. [PMID: 28703771 PMCID: PMC5537677 DOI: 10.3390/v9070185] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Control and Prevention, Fort Collins, CO, USA.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Division of Microbiology & Infectious Diseases, PathWest, Nedlands, Western Australia 6009.
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Helmut-Ruska-Haus, Chariteplatz 1, 10117 Berlin, Germany.
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of Czech Republic, 60365 Brno, Czech Republic.
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, University of Helsinki, 00014 Helsinki, Finland.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd., Singapore 169857 Singapore.
| |
Collapse
|
18
|
Tiger on the prowl: Invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse 1894) in the Indo-Pacific. PLoS Negl Trop Dis 2017; 11:e0005546. [PMID: 28410388 PMCID: PMC5406021 DOI: 10.1371/journal.pntd.0005546] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/26/2017] [Accepted: 04/02/2017] [Indexed: 01/13/2023] Open
Abstract
Background Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range. Methodology/Principal findings We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia’s Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source. Conclusions/Significance There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species’ native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis. The Asian tiger mosquito, Aedes albopictus, is an aggressive mosquito that has expanded globally in the last century, chiefly due to the increase of human movements. It is a major public health concern due to its role in transmitting dengue, chikungunya and Zika viruses. Understanding how populations of Ae. albopictus are genetically related and how they have been introduced into new regions is important for controlling them and assessing their disease risk; few studies have explored this in the Indo-Pacific. In our study, we sampled a broader range of populations of Ae. albopictus in the Indo-Pacific to explore genetic patterns and to investigate the likely route of invasion through Australasia. We uncovered clear genetic groups throughout this region, but also found that some geographically distant populations are closely related, likely due to human-associated movements. We also found, that Ae. albopictus likely colonized New Guinea from mainland Southeast (SE) Asia before spreading to the Solomon Islands via either PNG or SE Asia. In contrast, the populations in Australia’s Torres Strait Islands were introduced from Indonesia. Interestingly, we found major genetic changes over time in some Torres Strait populations, less than a decade after its introduction, potentially reflective of a random reduction in genetic diversity (genetic drift) or a secondary invasion.
Collapse
|
19
|
Manni M, Guglielmino CR, Scolari F, Vega-Rúa A, Failloux AB, Somboon P, Lisa A, Savini G, Bonizzoni M, Gomulski LM, Malacrida AR, Gasperi G. Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl Trop Dis 2017; 11:e0005332. [PMID: 28135274 PMCID: PMC5300280 DOI: 10.1371/journal.pntd.0005332] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/09/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive species represent a global concern for their rapid spread and the possibility of infectious disease transmission. This is the case of the global invader Aedes albopictus, the Asian tiger mosquito. This species is a vector of medically important arboviruses, notably chikungunya (CHIKV), dengue (DENV) and Zika (ZIKV). The reconstruction of the complex colonization pattern of this mosquito has great potential for mitigating its spread and, consequently, disease risks. METHODOLOGY/PRINCIPAL FINDINGS Classical population genetics analyses and Approximate Bayesian Computation (ABC) approaches were combined to disentangle the demographic history of Aedes albopictus populations from representative countries in the Southeast Asian native range and in the recent and more recently colonized areas. In Southeast Asia, the low differentiation and the high co-ancestry values identified among China, Thailand and Japan indicate that, in the native range, these populations maintain high genetic connectivity, revealing their ancestral common origin. China appears to be the oldest population. Outside Southeast Asia, the invasion process in La Réunion, America and the Mediterranean Basin is primarily supported by a chaotic propagule distribution, which cooperates in maintaining a relatively high genetic diversity within the adventive populations. CONCLUSIONS/SIGNIFICANCE From our data, it appears that independent and also trans-continental introductions of Ae. albopictus may have facilitated the rapid establishment of adventive populations through admixture of unrelated genomes. As a consequence, a great amount of intra-population variability has been detected, and it is likely that this variability may extend to the genetic mechanisms controlling vector competence. Thus, in the context of the invasion process of this mosquito, it is possible that both population ancestry and admixture contribute to create the conditions for the efficient transmission of arboviruses and for outbreak establishment.
Collapse
Affiliation(s)
- Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anubis Vega-Rúa
- Laboratory of Medical Entomology, Environment and Health Unit, Morne Jolivière, Institut Pasteur of Guadeloupe, Les Abymes, Guadeloupe (French West Indies)
- Department of Virology, Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Pradya Somboon
- Department of Parasitology, Chiang Mai University, Chiang Mai, Thailand
| | - Antonella Lisa
- Computational Biology Unit, Institute of Molecular Genetics-National Research Council, Pavia, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Ludvik M. Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna R. Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, Coetzee M, Elahee KB, Fernandez-Salas I, Kamal HA, Kamgang B, Khater EIM, Kramer LD, Kramer V, Lopez-Solis A, Lutomiah J, Martins A, Micieli MV, Paupy C, Ponlawat A, Rahola N, Rasheed SB, Richardson JB, Saleh AA, Sanchez-Casas RM, Seixas G, Sousa CA, Tabachnick WJ, Troyo A, Powell JR. Global genetic diversity of Aedes aegypti. Mol Ecol 2016; 25:5377-5395. [PMID: 27671732 DOI: 10.1111/mec.13866] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.
Collapse
Affiliation(s)
| | - Diego Ayala
- Laboratory MIVEGEC, Institut de Recherche pour le Développement, Montpellier, 34394, France.,Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Ambicadutt Bheecarry
- Vector Biology and Control Division, Ministry of Health and Quality of Life, Mauritius, Mauritius
| | - Olger Calderon-Arguedas
- Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Dave D Chadee
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad, WI
| | - Marina Chiappero
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - Maureen Coetzee
- School of Pathology, Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
| | - Khouaildi Bin Elahee
- Vector Biology and Control Division, Ministry of Health and Quality of Life, Mauritius, Mauritius
| | | | - Hany A Kamal
- Dallah Establishment, Pest Control Projects, Jeddah, Kingdom of Saudi Arabia
| | - Basile Kamgang
- Research Unit Liverpool School of Tropical Medicine, Oganisation de Coordination pour la lute contre les Endemies en Afrique Centrale, Yaounde, Cameroon
| | - Emad I M Khater
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Vicki Kramer
- Vector Borne Disease Section, California Department of Public Health, Sacramento, CA, USA
| | - Alma Lopez-Solis
- Centro Regional de Investigación en Salud Pública INSP, Tapachula, Chiapas, Mexico
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fever Laboratory, Center for Virus Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54628-00200, Nairobi, Kenya
| | - Ademir Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC-FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria Victoria Micieli
- Centro de Estudios Parasitológicos y de Vectores, CONICET, La Plata, Buenos Aires, Argentina
| | - Christophe Paupy
- Laboratory MIVEGEC, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | | | - Nil Rahola
- Laboratory MIVEGEC, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Syed Basit Rasheed
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| | | | - Amag A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rosa Maria Sanchez-Casas
- School of Veterinary Medicine, Escobedo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Gonçalo Seixas
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Carla A Sousa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Walter J Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, IFAS, Vero Beach, FL, USA
| | - Adriana Troyo
- Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Jeffrey R Powell
- Yale University, 21 Sachem Street, New Haven, CT, 06520-8105, USA
| |
Collapse
|