1
|
Blandinières A, Rossi E, Gendron N, Rancic J, Rosa M, Dupont A, Idelcadi S, Philippe A, Poitier B, Bièche I, Vacher S, Cholley B, Gaussem P, Susen S, Smadja DM. Unveiling the Angiogenic Potential and Functional Decline of Valve Interstitial Cells During Calcific Aortic Valve Stenosis Progression. J Cell Mol Med 2025; 29:e70511. [PMID: 40159645 PMCID: PMC11955408 DOI: 10.1111/jcmm.70511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
Valve interstitial cells (VICs) play a critical role in aortic valve calcification and angiogenic processes associated with calcific aortic valve stenosis (CAVS). Within the same valve, VICs from differently calcified regions can exhibit diverse phenotypic and functional properties. We hypothesised that VICs isolated from noncalcified (NC-VICs) and calcified (C-VICs) areas of human aortic valves possess distinct angiogenic characteristics. In this study, we isolated C-VICs and NC-VICs from 23 valves obtained after aortic valve replacement due to CAVS. Both VIC types exhibited similar phenotypes in culture, characterised by morphology, expression of mesenchymal/fibroblastic markers, proliferation and osteogenic differentiation. No significant differences were observed in the secretion of angiogenic factors, including VEGF-A, Ang-1, Ang-2, PlGF, bFGF between NC-VICs and C-VICs. However, when co-injected with endothelial colony-forming cells (ECFCs) into Matrigel implants in vivo in mice, implants containing NC-VICs showed significantly higher microvessel density compared to those with C-VICs (p < 0.001). Additionally, NC-VICs co-cultured with ECFCs expressed significantly higher levels of the perivascular markers αSMA and calponin compared to C-VICs (p < 0.001 and p < 0.05, respectively). In conclusion, our study reveals the heterogeneity in VIC plasticity within the aortic valve during CAVS. The diminished capacity of VICs from calcified areas to differentiate into perivascular cells suggests a loss of function as valve disease progresses. Furthermore, the ability of VICs to undergo perivascular differentiation may provide insights into valve homeostasis, angiogenesis and the exacerbation of calcification.
Collapse
Affiliation(s)
- Adeline Blandinières
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Elisa Rossi
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
| | - Nicolas Gendron
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Jeanne Rancic
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
| | - Mickael Rosa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Annabelle Dupont
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Salim Idelcadi
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
| | - Aurélien Philippe
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Bastien Poitier
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalCardiac Surgery DepartmentParisFrance
| | - Ivan Bièche
- Université Paris Cité and Pharmacogenomics Unit, Department of GeneticsParisFrance
| | - Sophie Vacher
- Université Paris Cité and Pharmacogenomics Unit, Department of GeneticsParisFrance
| | - Bernard Cholley
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalDepartment of Anesthesia and Intensive CareParisFrance
| | - Pascale Gaussem
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - David M. Smadja
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| |
Collapse
|
2
|
Grzelakowska A, Kalyanaraman B, Zielonka J. Small molecule probes for peroxynitrite detection. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100034. [PMID: 39781368 PMCID: PMC11709760 DOI: 10.1016/j.rbc.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Peroxynitrite (ONOO‒/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO- to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO‒ in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO‒, as they react directly and rapidly with ONOO-, they produce minor but ONOO‒‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO- in cell-free, cellular, and in vivo systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States
- Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
3
|
Pang PP, Sun H, Yu PX, Yang WM, Zheng YT, Li X, Zheng CB. The hydroxamic acid derivative YPX-C-05 alleviates hypertension and vascular dysfunction through the PI3K/Akt/eNOS pathway. Vascul Pharmacol 2024; 154:107251. [PMID: 38052330 DOI: 10.1016/j.vph.2023.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Hypertension is a prevalent cardiovascular disease characterized by elevated blood pressure and increased vascular resistance. HDAC inhibitors have emerged as potential therapeutic agents due to their ability to modulate gene expression and cellular processes. YPX-C-05, a novel hydroxamic acid-based HDAC inhibitor, shows promise in its vasodilatory effects and potential targets for hypertension treatment. In this study, we aimed to elucidate the mechanisms underlying YPX-C-05's vasodilatory effects and explore its therapeutic potential in hypertension. METHODS To determine the ex vivo vasodilatory effects of YPX-C-05, isolated aortic rings precontracted with phenylephrine were used. We assessed YPX-C-05's inhibitory effects on HDACs and its impact on histone H4 deacetylation levels in endothelial cells. Network pharmacology analysis was employed to predict putative targets of YPX-C-05 for hypertension treatment. To investigate the involvement of the PI3K/Akt/eNOS pathway, we employed enzyme-linked immunosorbent assay and to assess the levels of NO, ET-1, BH2, and BH4 in human umbilical vein endothelial cells. And we also analyzed the mRNA expression of eNOS and ET-1. Furthermore, Western blotting was conducted to quantify the phosphorylated and total Akt and eNOS levels in human umbilical vein endothelial cell lysates following treatment with YPX-C-05. In order to elucidate the vasodilatory mechanism of YPX-C-05, we employed pharmacological inhibitors for evaluation purposes. Furthermore, we evaluated the chronic antihypertensive effects of YPX-C-05 on N-omega-nitro-L-arginine-induced hypertensive mice in an in vivo model. Vascular remodeling was assessed through histological analysis. RESULTS Our findings demonstrated that YPX-C-05 exerts significant vasodilatory effects in isolated aortic rings precontracted with phenylephrine. Furthermore, YPX-C-05 exhibited inhibitory effects on HDACs and increased histone H4 acetylation in endothelial cells. Network pharmacology analysis predicted YPX-C-05 might activate endothelial eNOS via PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt/eNOS pathway attenuated the vasodilatory effects of YPX-C-05, as evidenced by reduced levels of phosphorylated Akt and eNOS in human umbilical vein endothelial cell lysates. The chronic administration of YPX-C-05 in N-omega-nitro-L-arginine-induced hypertensive mice resulted in significant antihypertensive effects. Histological analysis demonstrated a reduction in vascular remodeling, further supporting the therapeutic potential of YPX-C-05 in hypertension. CONCLUSION This study demonstrates for the first time that the novel hydroxamic acid-based HDAC inhibitor YPX-C-05 produces significant antihypertensive and vasodilatory effects through the PI3K/Akt/eNOS pathway. Our findings support the developing prospect of YPX-C-05 as a novel antihypertensive drug.
Collapse
Affiliation(s)
- Pan-Pan Pang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hao Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Pei-Xia Yu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xun Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medicinal University, Guilin 541199, China.
| |
Collapse
|
4
|
Kiss T, Ungvari A, Gulej R, Nyúl-Tóth Á, Tarantini S, Benyo Z, Csik B, Yabluchanskiy A, Mukli P, Csiszar A, Ungvari Z. Whole brain irradiation-induced endothelial dysfunction in the mouse brain. GeroScience 2024; 46:531-541. [PMID: 37953375 PMCID: PMC10828224 DOI: 10.1007/s11357-023-00990-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Whole brain irradiation (WBI), also known as whole brain radiation therapy (WBRT), is a well-established treatment for multiple brain metastases and as a preventive measure to reduce the risk of recurrence after surgical removal of a cerebral metastasis. However, WBI has been found to lead to a gradual decline in neurocognitive function in approximately 50% of patients who survive the treatment, significantly impacting their overall quality of life. Recent preclinical investigations have shed light on the underlying mechanisms of this adverse effect, revealing a complex cerebrovascular injury that involves the induction of cellular senescence in various components of the neurovascular unit, including endothelial cells. The emergence of cellular senescence following WBI has been implicated in the disruption of the blood-brain barrier and impairment of neurovascular coupling responses following irradiation. Building upon these findings, the present study aims to test the hypothesis that WBI-induced endothelial injury promotes endothelial dysfunction, which mimics the aging phenotype. To investigate this hypothesis, we employed a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks) on young mice. Both the WBI-treated and control mice were fitted with a cranial window, enabling the assessment of microvascular endothelial function. In order to evaluate the endothelium-dependent, NO-mediated cerebral blood flow (CBF) responses, we topically administered acetylcholine and ATP, and measured the resulting changes using laser Doppler flowmetry. We found that the increases in regional CBF induced by acetylcholine and ATP were significantly diminished in mice subjected to WBI. These findings provide additional preclinical evidence supporting the notion that WBI induces dysfunction in cerebrovascular endothelial cells, which in turn likely contributes to the detrimental long-term effects of the treatment. This endothelial dysfunction resembles an accelerated aging phenotype in the cerebrovascular system and is likely causally linked to the development of cognitive impairment. By integrating these findings with our previous results, we have deepened our understanding of the lasting consequences of WBI. Moreover, our study underscores the critical role of cerebromicrovascular health in safeguarding cognitive function over the long term. This enhanced understanding highlights the importance of prioritizing cerebromicrovascular health in the context of preserving cognitive abilities.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Ungvari
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Benyo
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Xu S, Wang J, Sun K, Meng L, Qin C, Feng R, Tian Y, Zhai Y, Liang D, Zhang R, Tian H, Liu H, Chen Y, Fu Y, Chen P, Zhu Q, Teng J, Wang X. Cognitive Impairment in Chronic Kidney Disease Is Associated with Glymphatic System Dysfunction. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:384-397. [PMID: 37901711 PMCID: PMC10601941 DOI: 10.1159/000530635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/01/2023] [Indexed: 10/31/2023]
Abstract
Introduction This study was designed to explore the associations between impaired cognition in chronic kidney disease (CKD) patients and the dysfunction of the glymphatic system. Method Data were obtained from 77 CKD patients and 50 age-matched healthy control individuals from the First Affiliated Hospital of Zhengzhou University. CKD patients were stratified into with and without impaired cognitive function. T2-weighted magnetic resonance imaging results were used to assess area ratios for the perivascular space and ventricles in participants, while the Montreal Cognitive Assessment and the Mini-Mental State Examination were employed to measure cognitive function. Correlations between the perivascular space or ventricle area ratios and cognitive impairment were assessed in CKD patients. Results Significant increases in the burden of enlarged perivascular spaces in the frontal cortex and basal ganglia were observed in CKD patients with cognitive impairment relative to those without such impairment, with a concomitant increase in analyzed ventricle area ratios. Enlarged perivascular spaces in the frontal cortex, basal ganglia and increased area ratios of lateral ventricles and 4th ventricle exhibited relatively high sensitivity and specificity as means of differing between the CKD patients with and without cognitive impairment. Conclusion These results indicate that the burden of enlarged perivascular spaces in the frontal cortex and basal ganglia and increases in ventricle area ratio values may offer utility as biomarkers that can aid in detection of even mild cognitive decline in individuals with CKD. The dysfunction of the glymphatic system may play a key role in the pathogenesis of CKD-related cognitive impairment.
Collapse
Affiliation(s)
- Shuqin Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jiuqi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Kedi Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Lin Meng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Renyi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yiming Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yanping Zhai
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Furini G, De Carli A, Fonnesu R, Spezia PG, Scebba F, Pistello M, Lai M, Lionetti V. Gene silencing of endothelial von Willebrand factor reduces the susceptibility of human endothelial cells to SARS-CoV-2 infection. FEBS J 2023; 290:4300-4315. [PMID: 37098810 DOI: 10.1111/febs.16808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
Mechanisms underlying vascular endothelial susceptibility to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not fully understood. Emerging evidence indicates that patients lacking von Willebrand factor (vWF), an endothelial hallmark, are less severely affected by SARS-CoV-2 infection, yet the precise role of endothelial vWF in modulating coronavirus entry into endothelial cells is unknown. In the present study, we demonstrated that effective gene silencing by short interfering RNA (siRNA) for vWF expression in resting human umbilical vein endothelial cells (HUVECs) significantly reduced by 56% the cellular levels of SARS-CoV-2 genomic RNA. Similar reduction in intracellular SARS-CoV-2 genomic RNA levels was observed in non-activated HUVECs treated with siRNA targeting angiotensin-converting enzyme 2 (ACE2), the cellular gateway to coronavirus. By integrating quantitative information from real-time PCR and high-resolution confocal imaging, we demonstrated that ACE2 gene expression and its plasma membrane localization in HUVECs were both markedly reduced after treatment with siRNA anti-vWF or anti-ACE2. Conversely, siRNA anti-ACE2 did not reduce endothelial vWF gene expression and protein levels. Finally, SARS-CoV-2 infection of viable HUVECs was enhanced by overexpression of vWF, which increased ACE2 levels. Of note, we found a similar increase in interferon-β mRNA levels following transfection with untargeted, anti-vWF or anti-ACE2 siRNA and pcDNA3.1-WT-VWF. We envision that siRNA targeting endothelial vWF will protect against productive endothelial infection by SARS-CoV-2 through downregulation of ACE2 expression and might serve as a novel tool to induce disease resistance by modulating the regulatory role of vWF on ACE2 expression.
Collapse
Affiliation(s)
- Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesia and Resuscitation, Fondazione Toscana "G. Monasterio", Pisa, Italy
| | - Alessandro De Carli
- Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, Retrovirus Center, University of Pisa, Italy
| | - Rossella Fonnesu
- Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, Retrovirus Center, University of Pisa, Italy
| | - Pietro Giorgio Spezia
- Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, Retrovirus Center, University of Pisa, Italy
| | - Francesca Scebba
- BioMedicine Laboratory, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mauro Pistello
- Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, Retrovirus Center, University of Pisa, Italy
- Virology Unit, Pisa University Hospital, Italy
| | - Michele Lai
- Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, Retrovirus Center, University of Pisa, Italy
- CISUP - Centre for Instrumentation Sharing - University of Pisa, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesia and Resuscitation, Fondazione Toscana "G. Monasterio", Pisa, Italy
- BioMedicine Laboratory, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
7
|
Li Z, He Y, He H, Zhou W, Li M, Lu A, Che T, Shen S. Purification identification and function analysis of ACE inhibitory peptide from Ulva prolifera protein. Food Chem 2023; 401:134127. [DOI: 10.1016/j.foodchem.2022.134127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
8
|
GJD Modulates Cardiac/Vascular Inflammation and Decreases Blood Pressure in Hypertensive Rats. Mediators Inflamm 2022; 2022:7345116. [PMID: 36164390 PMCID: PMC9509256 DOI: 10.1155/2022/7345116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.
Collapse
|
9
|
Liu P, Wang S, Wang G, Zhao M, Du F, Li K, Wang L, Wu H, Chen J, Yang Y, Su G. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J Cell Mol Med 2022; 26:5165-5180. [PMID: 36071548 PMCID: PMC9575109 DOI: 10.1111/jcmm.17541] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis is a complex pathological process involving macrophages, endothelial cells and vascular smooth muscle cells that can lead to ischemic heart disease; however, the mechanisms underlying cell‐to‐cell communication in atherosclerosis are poorly understood. In this study, we focused on the role of exosomal miRNAs in crosstalk between macrophages and endothelial cells and explored the rarely studied molecular mechanisms involved. Our in vitro result showed that macrophage‐derived exosomal miR‐4532 significantly disrupted human umbilical vein endothelial cells (HUVECs) function by targeting SP1 and downstream NF‐κB P65 activation. In turn, increased endothelin‐1 (ET‐1), intercellular cell adhesion molecule‐1 (ICAM‐1) and vascular cell adhesion molecule‐1 (VCAM‐1) and decreased endothelial nitric oxide synthase (eNOS) expression in HUVECs increased attraction of macrophages, exacerbating foam cell formation and transfer of exosomal miR‐4532 to HUVECs. MiR‐4532 overexpression significantly promoted endothelial injury and pretreatment with an inhibitor of miR‐4532 or GW4869 (exosome inhibitor) could reverse this injury. In conclusion, our data reveal that exosomes have a critical role in crosstalk between HUVECs and macrophages. Further, exosomal miR‐4532 transferred from macrophages to HUVECs and targeting specificity protein 1 (SP1) may be a novel therapeutic target in patients with atherosclerosis.
Collapse
Affiliation(s)
- Peng Liu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuya Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangxin Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingming Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Fengli Du
- Shandong Provincial Public Health Clinical Center, Jinan, Shandong, China
| | - Kaiyuan Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lei Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huihui Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Jiamin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Yang Yang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guohai Su
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
10
|
An insight into the mechanisms of COVID-19, SARS-CoV2 infection severity concerning β-cell survival and cardiovascular conditions in diabetic patients. Mol Cell Biochem 2022; 477:1681-1695. [PMID: 35235124 PMCID: PMC8889522 DOI: 10.1007/s11010-022-04396-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023]
Abstract
A significantly high percentage of hospitalized COVID-19 patients with diabetes mellitus (DM) had severe conditions and were admitted to ICU. In this review, we have delineated the plausible molecular mechanisms that could explain why there are increased clinical complications in patients with DM that become critically ill when infected with SARS-CoV2. RNA viruses have been classically implicated in manifestation of new onset diabetes. SARS-CoV2 infection through cytokine storm leads to elevated levels of pro-inflammatory cytokines creating an imbalance in the functioning of T helper cells affecting multiple organs. Inflammation and Th1/Th2 cell imbalance along with Th17 have been associated with DM, which can exacerbate SARS-CoV2 infection severity. ACE-2-Ang-(1-7)-Mas axis positively modulates β-cell and cardiac tissue function and survival. However, ACE-2 receptors dock SARS-CoV2, which internalize and deplete ACE-2 and activate Renin-angiotensin system (RAS) pathway. This induces inflammation promoting insulin resistance that has positive effect on RAS pathway, causes β-cell dysfunction, promotes inflammation and increases the risk of cardiovascular complications. Further, hyperglycemic state could upregulate ACE-2 receptors for viral infection thereby increasing the severity of the diabetic condition. SARS-CoV2 infection in diabetic patients with heart conditions are linked to worse outcomes. SARS-CoV2 can directly affect cardiac tissue or inflammatory response during diabetic condition and worsen the underlying heart conditions.
Collapse
|
11
|
Khan I, Schmidt MO, Kallakury B, Jain S, Mehdikhani S, Levi M, Mendonca M, Welch W, Riegel AT, Wilcox CS, Wellstein A. Low Dose Chronic Angiotensin II Induces Selective Senescence of Kidney Endothelial Cells. Front Cell Dev Biol 2021; 9:782841. [PMID: 34957111 PMCID: PMC8696590 DOI: 10.3389/fcell.2021.782841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Angiotensin II can cause oxidative stress and increased blood pressure that result in long term cardiovascular pathologies. Here we evaluated the contribution of cellular senescence to the effect of chronic exposure to low dose angiotensin II in a model that mimics long term tissue damage. We utilized the INK-ATTAC (p16Ink4a–Apoptosis Through Targeted Activation of Caspase 8) transgenic mouse model that allows for conditional elimination of p16Ink4a -dependent senescent cells by administration of AP20187. Angiotensin II treatment for 3 weeks induced ATTAC transgene expression in kidneys but not in lung, spleen and brain tissues. In the kidneys increased expression of ATM, p15 and p21 matched with angiotensin II induction of senescence-associated secretory phenotype genes MMP3, FGF2, IGFBP2, and tPA. Senescent cells in the kidneys were identified as endothelial cells by detection of GFP expressed from the ATTAC transgene and increased expression of angiopoietin 2 and von Willebrand Factor, indicative of endothelial cell damage. Furthermore, angiotensin II induced expression of the inflammation-related glycoprotein versican and immune cell recruitment to the kidneys. AP20187-mediated elimination of p16-dependent senescent cells prevented physiologic, cellular and molecular responses to angiotensin II and provides mechanistic evidence of cellular senescence as a driver of angiotensin II effects.
Collapse
Affiliation(s)
- Irfan Khan
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Bhaskar Kallakury
- Division of Pathology, Georgetown University, Washington, DC, United States
| | - Sidharth Jain
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Shaunt Mehdikhani
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Margarida Mendonca
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC, United States
| | - William Welch
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Christopher S. Wilcox
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
- *Correspondence: Anton Wellstein,
| |
Collapse
|
12
|
Sato K, Sinclair JE, Sadeghirad H, Fraser JF, Short KR, Kulasinghe A. Cardiovascular disease in SARS-CoV-2 infection. Clin Transl Immunology 2021; 10:e1343. [PMID: 34512975 PMCID: PMC8423130 DOI: 10.1002/cti2.1343] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Pre-existing cardiovascular disease (CVD) increases the morbidity and mortality of COVID-19 and is strongly associated with poor disease outcomes. However, SARS-CoV-2 infection can also trigger de novo acute and chronic cardiovascular disease. Acute cardiac complications include arrhythmia, myocarditis and heart failure, which are significantly associated with higher in-hospital mortality. The possible mechanisms by which SARS-CoV-2 causes this acute cardiac disease include direct damage caused by viral invasion of cardiomyocytes as well as indirect damage through systemic inflammation. The long-term cardiac complications associated with COVID-19 are incompletely characterised and thought to include hypertension, arrhythmia, coronary atherosclerosis and heart failure. Although some cardiac-related symptoms can last over 6 months, the effect of these complications on long-term patient health remains unclear. The risk factors associated with long-term cardiovascular disease remain poorly defined. Determining which patients are most at-risk of long-term cardiovascular disease is vital so that targeted follow-up and patient care can be provided. The aim of this review was to summarise the current evidence of the acute and long-term cardiovascular consequences of SARS-CoV-2 infection and the mechanisms by which SARS-CoV-2 may cause cardiovascular disease.
Collapse
Affiliation(s)
- Kei Sato
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneQLDAustralia
- Faculty of MedicineUniversity of QueenslandSaint LuciaQLDAustralia
| | - Jane E Sinclair
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSaint LuciaQLDAustralia
| | - Habib Sadeghirad
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - John F Fraser
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneQLDAustralia
- Faculty of MedicineUniversity of QueenslandSaint LuciaQLDAustralia
| | - Kirsty R Short
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSaint LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSaint LuciaQLDAustralia
| | - Arutha Kulasinghe
- Faculty of MedicineUniversity of QueenslandSaint LuciaQLDAustralia
- The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
13
|
Razeghian-Jahromi I, Zibaeenezhad MJ, Lu Z, Zahra E, Mahboobeh R, Lionetti V. Angiotensin-converting enzyme 2: a double-edged sword in COVID-19 patients with an increased risk of heart failure. Heart Fail Rev 2021; 26:371-380. [PMID: 32844337 PMCID: PMC7447089 DOI: 10.1007/s10741-020-10016-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The coronavirus disease (COVID-19) pandemic is a global health priority. Given that cardiovascular diseases (CVD) are the leading cause of morbidity around the world and that several trials have reported severe cardiovascular damage in patients infected with SARS-CoV-2, a substantial number of COVID-19 patients with underlying cardiovascular diseases need to continue their medications in order to improve myocardial contractility and to prevent the onset of major adverse cardiovascular events (MACEs), including heart failure. Some of the current life-saving medications may actually simultaneously expose patients to a higher risk of severe COVID-19. Angiotensin-converting enzyme 2 (ACE2), a key counter regulator of the renin-angiotensin system (RAS), is the main entry gate of SARS-CoV-2 into human host cells and an established drug target to prevent heart failure. In fact, ACE inhibitors, angiotensin II receptor blockers, and mineralocorticoid antagonists may augment ACE2 levels to protect organs from angiotensin II overload. Elevated ACE2 expression on the host cell surface might facilitate viral entrance, at the same time sudden nonadherence to these medications triggers MACEs. Hence, safety issues in the use of RAS inhibitors in COVID-19 patients with cardiac dysfunction remain an unsolved dilemma and need paramount attention. Although ACE2 generally plays an adaptive role in both healthy subjects and patients with systolic and/or diastolic dysfunction, we conducted a literature appraisal on its maladaptive role. Understanding the exact role of ACE2 in COVID-19 patients at risk of heart failure is needed to safely manage RAS inhibitors in frail and non-frail critically ill patients.
Collapse
Affiliation(s)
| | | | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Elyaspour Zahra
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razmkhah Mahboobeh
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vicenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
14
|
Zhang Q, Xue T, Guan J, Wang W, Shi J, Lu J, Jiang X. Irigenin alleviates angiotensin II-induced oxidative stress and apoptosis in HUVEC cells by activating Nrf2 pathway. Drug Dev Res 2021; 82:999-1007. [PMID: 33634899 DOI: 10.1002/ddr.21802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/12/2022]
Abstract
Endothelial dysfunction is closely related to various cardiovascular diseases. Oxidative stress and apoptosis are involved in the progress of endothelial dysfunction. Irigenin (IR) has antioxidative properties. We investigated IR as a novel therapy for angiotensin II (Ang II)-induced endothelial dysfunction and explored the potential mechanisms of IR. After human umbilical vein endothelial cell lines (HUVECs) were treated with Ang II (100, 200, 300 and 400 nmol/L) alone, IR (2.5, 5, 10, 20 and 40 μmol/L) alone or Ang II plus IR for 24 h, HUVECs viability, lactate dehydrogenase (LDH), apoptosis, oxidative stress, apoptosis-related protein and nuclear factor E2-related factor 2 (Nrf2) levels were detected by Cell Counting Kit (CCK)-8 assay, enzyme-linked immunosorbent assay, flow cytometry and western blot. Transfection rate of Nrf2 was detected by western blot. In the next rescue experiment, we used silent Nrf2 (siNrf2) to verify the previous experimental results. Different concentrations' Ang II repressed HUVECs viability and increased LDH release, and different concentrations' IR did not affect HUVECs viability or LDH release. Furthermore, IR elevated cell viability and Nrf2 level, inhibited LDH release, apoptosis, oxidative stress and apoptosis-related protein levels in Ang II-induced HUVECs. More important, siNrf2 suppressed the expression of Nrf2, and siNrf2 abrogated the protective effect of IR on Ang II-induced Nrf2 expression, cell viability, LDH activity, oxidative stress generation and apoptosis-related protein in HUVECs. IR protected HUVECs from Ang II-induced oxidative stress and apoptosis injury by activating Nrf2 pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou City, Zhejiang Province, China
| | - Tao Xue
- Department of Medical Therapeutics, First People's Hospital Affiliated to Huzhou University, Huzhou City, Zhejiang Province, China
| | - Jianming Guan
- Department of Ultrasound, First People's Hospital Affiliated to Huzhou University, Huzhou City, Zhejiang Province, China
| | - Wei Wang
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou City, Zhejiang Province, China
| | - Ji Shi
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou City, Zhejiang Province, China
| | - Jianzhong Lu
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou City, Zhejiang Province, China
| | - Xiping Jiang
- Department of Cardiology, The First People's Hospital Of Jiande, Jiande City, Zhejiang Province, China
| |
Collapse
|
15
|
Purinergic Regulation of Endothelial Barrier Function. Int J Mol Sci 2021; 22:ijms22031207. [PMID: 33530557 PMCID: PMC7865261 DOI: 10.3390/ijms22031207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Increased vascular permeability is a hallmark of several cardiovascular anomalies, including ischaemia/reperfusion injury and inflammation. During both ischaemia/reperfusion and inflammation, massive amounts of various nucleotides, particularly adenosine 5'-triphosphate (ATP) and adenosine, are released that can induce a plethora of signalling pathways via activation of several purinergic receptors and may affect endothelial barrier properties. The nature of the effects on endothelial barrier function may depend on the prevalence and type of purinergic receptors activated in a particular tissue. In this review, we discuss the influence of the activation of various purinergic receptors and downstream signalling pathways on vascular permeability during pathological conditions.
Collapse
|
16
|
Wang F, Wang H, Liu X, Yu H, Huang X, Huang W, Wang G. Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia-reperfusion injury. J Cell Mol Med 2021; 25:1783-1795. [PMID: 33470533 PMCID: PMC7875921 DOI: 10.1111/jcmm.16287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Neuregulin‐1 (NRG‐1) is reported to be cardioprotective through the extracellular‐regulated protein kinase (ERK) 1/2 pathway in myocardial ischaemia‐reperfusion injury (MIRI). NOX4‐induced ROS activated NLRP3 inflammasome and exacerbates MIRI. This study aims to investigate whether NRG‐1 can suppress NOX4 by ERK1/2 and consequently inhibit the NLRP3/caspase‐1 signal in MIRI. The myocardial infarct size (IS) was measured by TTC‐Evans blue staining. Immunohistochemical staining, real‐time quantitative PCR (RT‐qPCR) and Western blotting were used for detection of the factors, such as NOX4, ERK1/2, NLRP3, caspase‐1 and IL‐1β .The IS in the NRG‐1 (3 μg/kg, intravenous) group was lower than that in the IR group. Immunohistochemical analysis revealed NRG‐1 decreased 4HNE and NOX4. The RT‐qPCR and Western blot analyses revealed that NRG‐1 mitigated the IR‐induced up‐regulation of NOX4 and ROS production. Compared with the IR group, the NRG‐1 group exhibited a higher level of P‐ERK1/2 and a lower level of NLRP3. In the Langendorff model, PD98059 inhibited ERK1/2 and up‐regulated the expression of NOX4, NLRP3, caspase‐1 and IL‐1β, which exacerbated oxidative stress and inflammation. In conclusion, NRG‐1 can reduce ROS production by inhibiting NOX4 through ERK1/2 and inhibit the NLRP3/caspase‐1 pathway to attenuate myocardial oxidative damage and inflammation in MIRI.
Collapse
Affiliation(s)
- Fuhua Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Huan Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuejing Liu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiaomin Huang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
17
|
Cappetta D, De Angelis A, Flamini S, Cozzolino A, Bereshchenko O, Ronchetti S, Cianflone E, Gagliardi A, Ricci E, Rafaniello C, Rossi F, Riccardi C, Berrino L, Bruscoli S, Urbanek K. Deficit of glucocorticoid-induced leucine zipper amplifies angiotensin-induced cardiomyocyte hypertrophy and diastolic dysfunction. J Cell Mol Med 2021; 25:217-228. [PMID: 33247627 PMCID: PMC7810940 DOI: 10.1111/jcmm.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Antonella De Angelis
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Sara Flamini
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Anna Cozzolino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and EducationUniversity of PerugiaPerugiaItaly
| | - Simona Ronchetti
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Eleonora Cianflone
- Department of Medical and Surgical SciencesUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| | - Andrea Gagliardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Erika Ricci
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Carlo Riccardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Stefano Bruscoli
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Konrad Urbanek
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
- Department of Experimental and Clinical MedicineUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| |
Collapse
|
18
|
Nyúl-Tóth Á, Tarantini S, Kiss T, Toth P, Galvan V, Tarantini A, Yabluchanskiy A, Csiszar A, Ungvari Z. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease. GeroScience 2020; 42:1685-1698. [PMID: 32844283 PMCID: PMC7732885 DOI: 10.1007/s11357-020-00256-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Clinical studies show that cerebral amyloid angiopathy (CAA) associated with Alzheimer's disease (AD) and arterial hypertension are independent risk factors for cerebral microhemorrhages (CMHs). To test the hypothesis that amyloid pathology and hypertension interact to promote the development of CMHs, we induced hypertension in the Tg2576 mouse model of AD and respective controls by treatment with angiotensin II (Ang II) and the NO synthesis inhibitor L-NAME. The number, size, localization, and neurological consequences (gait alterations) of CMHs were compared. We found that compared to control mice, in TG2576 mice, the same level of hypertension led to significantly increased CMH burden and exacerbation of CMH-related gait alterations. In hypertensive TG2576 mice, CMHs were predominantly located in the cerebral cortex at the cortical-subcortical boundary, mimicking the clinical picture seen in patients with CAA. Collectively, amyloid pathologies exacerbate the effects of hypertension, promoting the genesis of CMHs, which likely contribute to their deleterious effects on cognitive function. Therapeutic strategies for prevention of CMHs that reduce blood pressure and preserve microvascular integrity are expected to exert neuroprotective effects in high-risk elderly AD patients.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Clinical Medicine, Department of Neurosurgery and Szentagothai Research Center, Medical School, University of Pecs, Pecs, Hungary
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
19
|
Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, Pasqua T, Penna C, Rocca C, Samaja M, Angelone T. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience 2020; 42:1021-1049. [PMID: 32430627 PMCID: PMC7237344 DOI: 10.1007/s11357-020-00198-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells following binding with the cell surface ACE2 receptors, thereby leading to coronavirus disease 2019 (COVID-19). SARS-CoV-2 causes viral pneumonia with additional extrapulmonary manifestations and major complications, including acute myocardial injury, arrhythmia, and shock mainly in elderly patients. Furthermore, patients with existing cardiovascular comorbidities, such as hypertension and coronary heart disease, have a worse clinical outcome following contraction of the viral illness. A striking feature of COVID-19 pandemics is the high incidence of fatalities in advanced aged patients: this might be due to the prevalence of frailty and cardiovascular disease increase with age due to endothelial dysfunction and loss of endogenous cardioprotective mechanisms. Although experimental evidence on this topic is still at its infancy, the aim of this position paper is to hypothesize and discuss more suggestive cellular and molecular mechanisms whereby SARS-CoV-2 may lead to detrimental consequences to the cardiovascular system. We will focus on aging, cytokine storm, NLRP3/inflammasome, hypoxemia, and air pollution, which is an emerging cardiovascular risk factor associated with rapid urbanization and globalization. We will finally discuss the impact of clinically available CV drugs on the clinical course of COVID-19 patients. Understanding the role played by SARS-CoV2 on the CV system is indeed mandatory to get further insights into COVID-19 pathogenesis and to design a therapeutic strategy of cardio-protection for frail patients.
Collapse
Affiliation(s)
- F Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Gerbino
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - V Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - M Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - L M Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - P Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy.
| | - T Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - C Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - C Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - M Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - T Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
20
|
|
21
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
22
|
Couplet medicines of leech and centipede granules improve erectile dysfunction via inactivation of the CaSR/PLC/PKC signaling in streptozotocin-induced diabetic rats. Biosci Rep 2020; 40:221835. [PMID: 31922200 PMCID: PMC7000366 DOI: 10.1042/bsr20193845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 01/20/2023] Open
Abstract
Erectile dysfunction (ED) is one of the significant complications of diabetes mellitus (DM), and CASR plays an important role in cellular antiapoptosis and NO production in the vascular endothelium by activating PKC. The present study was aimed to investigate the efficacy of Leech and Centipede Granules (LCG) through the CaSR/PLC/PKC signaling. Fifty male Sprague-Dawley rats were treated with streptozotocin to induce the DM model. After 10 weeks, an apomorphine test was used to confirm DMED. Rats with DMED were administrated with LCG and U73122 for 4 weeks. Fasting blood glucose, body weight, insulin and glucagon levels were measured. Erectile function in rats was assessed by apomorphine. Serums were measured using enzyme-linked immunosorbent assay and flow cytometry, and penile tissues were harvested for histologic and the expression of related targets analyses. After treatment, fasting blood glucose, body weight, insulin, glucagon levels, and erectile function were significantly ameliorated in the LCG groups. The LOX-1, NOX, and EMPs concentrations were significantly decreased with LCG treatment. LCG also continuously increased NO and decreased ET-1 content in penile tissues. LCG and U73122 administration also improved penile fibrosis by significantly decreasing VCAM-1, ICAM-1, and CD62P. The data also showed that LCG reduced the apoptosis level in the penis. Furthermore, the inhibited activation of the CaSR/PLC/PKC pathway was observed in DMED rats with LCG treatment. Collectively, LCG significantly ameliorated erectile function of DMED rats via increased NO generation, inhibiting endothelial cells apoptosis and penile fibrosis, which might benefit from the suppression of CaSR/PLC/PKC pathway in DMED rats.
Collapse
|
23
|
Tuscany Sangiovese grape juice imparts cardioprotection by regulating gene expression of cardioprotective C-type natriuretic peptide. Eur J Nutr 2019; 59:2953-2968. [PMID: 31707544 DOI: 10.1007/s00394-019-02134-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE A regular intake of red grape juice has cardioprotective properties, but its role on the modulation of natriuretic peptides (NPs), in particular of C-type NP (CNP), has not yet been proven. The aims were to evaluate: (1) in vivo the effects of long-term intake of Tuscany Sangiovese grape juice (SGJ) on the NPs system in a mouse model of myocardial infarction (MI); (2) in vitro the response to SGJ small RNAs of murine MCEC-1 under physiological and ischemic condition; (3) the activation of CNP/NPR-B/NPR-C in healthy human subjects after 7 days' SGJ regular intake. METHODS (1) C57BL/6J male and female mice (n = 33) were randomly subdivided into: SHAM (n = 7), MI (n = 15) and MI fed for 4 weeks with a normal chow supplemented with Tuscany SGJ (25% vol/vol, 200 µl/per day) (MI + SGJ, n = 11). Echocardiography and histological analyses were performed. Myocardial NPs transcriptional profile was investigated by Real-Time PCR. (2) MCEC-1 were treated for 24 h with a pool of SGJ small RNAs and cell viability under 24 h exposure to H2O2 was evaluated by MTT assay. (3) Human blood samples were collected from seven subjects before and after the 7 days' intake of Tuscany SGJ. NPs and miRNA transcriptional profile were investigated by Real-Time PCR in MCEC-1 and human blood. RESULTS Our experimental data, obtained in a multimodal pipeline, suggest that the long-term intake of SGJ promotes an adaptive response of the myocardium to the ischemic microenvironment through the modulation of the cardiac CNP/NPR-B/NPR-C system. CONCLUSIONS Our results open new avenue in the development of functional foods aimed at enhancing cardioprotection of infarcted hearts through action on the myocardial epigenome.
Collapse
|
24
|
Xin-Ji-Er-Kang Alleviates Myocardial Infarction-Induced Cardiovascular Remodeling in Rats by Inhibiting Endothelial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4794082. [PMID: 31341899 PMCID: PMC6614977 DOI: 10.1155/2019/4794082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022]
Abstract
The present study was designed to elucidate the beneficial effects of XJEK on myocardial infarction (MI) in rats, especially through the amelioration of endothelial dysfunction (ED). 136 Sprague-Dawley rats were randomized into 13 groups: control group for 0wk (n = 8); sham groups for 2, 4, and 6 weeks (wk); MI groups for 2, 4, and 6 wk; MI+XJEK groups for 2, 4, and 6w k; MI+Fosinopril groups for 2, 4, and 6 wk (n = 8~10). In addition, 8 rats were treated for Evans blue staining and Tetrazolium chloride (TTC) staining to determine the infarct size. Cardiac function, ECG, and cardiac morphological changes were examined. Colorimetric analysis was employed to detect nitric oxide (NO), and enzyme-linked immunosorbent assay (ELISA) was applied to determine N-terminal probrain natriuretic peptide (NT-ProBNP), endothelin-1 (ET-1), angiotensin II (Ang II), asymmetric dimethylarginine (ADMA), tetrahydrobiopterin (BH4), and endothelial NO synthase (eNOS) content. The total eNOS and eNOS dimer/(dimer+monomer) ratios in cardiac tissues were detected by Western blot. We found that administration of XJEK markedly ameliorated cardiovascular remodeling (CR), which was manifested by decreased HW/BW ratio, CSA, and less collagen deposition after MI. XJEK administration also improved cardiac function by significant inhibition of the increased hemodynamic parameters in the early stage and by suppression of the decreased hemodynamic parameters later on. XJEK also continuously suppressed the increased NT-ProBNP content in the serum of MI rats. XJEK improved ED with stimulated eNOS activities, as well as upregulated NO levels, BH4 content, and eNOS dimer/(dimer+monomer) ratio in the cardiac tissues. XJEK downregulated ET-1, Ang II, and ADMA content obviously compared to sham group. In conclusion, XJEK may exert the protective effects on MI rats and could continuously ameliorate ED and reverse CR with the progression of MI over time.
Collapse
|
25
|
Bernardini C, Zannoni A, Bertocchi M, Tubon I, Fernandez M, Forni M. Water/ethanol extract of Cucumis sativus L. fruit attenuates lipopolysaccharide-induced inflammatory response in endothelial cells. Altern Ther Health Med 2018; 18:194. [PMID: 29941006 PMCID: PMC6019722 DOI: 10.1186/s12906-018-2254-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 06/10/2018] [Indexed: 02/07/2023]
Abstract
Background It is widely accepted the key role of endothelium in the onset of many chronic and acute vascular and cardiovascular diseases. In the last decade, traditional compounds utilized in “folk medicine” were considered with increasing interest to discover new bioactive molecules potentially effective in a wide range of diseases including cardiovascular ones. Since ancient times different parts of the Cucumis sativus L. plant were utilized in Ayurvedic medicine, among these, fruits were traditionally used to alleviate skin problem such as sunburn irritation and inflammation. The main purpose of the present research was, in a well-defined in vitro model of endothelial cells, to investigate whether a water/ethanol extract of Cucumis sativus L. (CSE) fruit can attenuate the damaging effect of pro-inflammatory lipopolysaccharide (LPS). Methods Cell viability, gene expression of endothelial cell markers, cytokines secretion and in vitro angiogenesis assay were performed on porcine Aortic Endothelial Cells exposed to increasing doses (0.02; 02; 2 mg/ml) of CSE in the presence of pro-inflammatory lipopolysaccharide (LPS 10 μg/ml). Results CSE reduced LPS-induced cytotoxicity and decreased the cellular detachment, restoring the expression of tight junction ZO-1. The increase of TLR4 expression induced by LPS was counterbalanced by the presence of CSE, while the protective gene Hemeoxygenase (HO)-1 was increased. Cucumis sativus L. inhibited the early robust secretion of inflammatory IL-8 and GM-CSFs, furthermore inhibition of inflammatory IL-6 and IL-1α occurred late at 7 and 24 h respectively. On the contrary, the secretion of anti-inflammatory IL-10, together with IL-18 and IFN-γ was increased. Moreover, the in vitro angiogenesis induced by inflammatory LPS was prevented by the presence of Cucunis sativus L. extract, at any doses tested. Conclusions Our results have clearly demonstrated that Cucumis sativus L. extract has attenuated lipopolysaccharide-induced inflammatory response in endothelial cells.
Collapse
|
26
|
Casieri V, Matteucci M, Cavallini C, Torti M, Torelli M, Lionetti V. Long-term Intake of Pasta Containing Barley (1-3)Beta-D-Glucan Increases Neovascularization-mediated Cardioprotection through Endothelial Upregulation of Vascular Endothelial Growth Factor and Parkin. Sci Rep 2017; 7:13424. [PMID: 29044182 PMCID: PMC5647408 DOI: 10.1038/s41598-017-13949-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023] Open
Abstract
Barley (1-3)β-D-Glucan (BBG) enhances angiogenesis. Since pasta is very effective in providing a BBG-enriched diet, we hypothesized that the intake of pasta containing 3% BBG (P-BBG) induces neovascularization-mediated cardioprotection. Healthy adult male C57BL/6 mice fed P-BBG (n = 15) or wheat pasta (Control, n = 15) for five-weeks showed normal glucose tolerance and cardiac function. With a food intake similar to the Control, P-BBG mice showed a 109% survival rate (P < 0.01 vs. Control) after cardiac ischemia (30 min)/reperfusion (60 min) injury. Left ventricular (LV) anion superoxide production and infarct size in P-BBG mice were reduced by 62 and 35% (P < 0.0001 vs. Control), respectively. The capillary and arteriolar density of P-BBG hearts were respectively increased by 12 and 18% (P < 0.05 vs. Control). Compared to the Control group, the VEGF expression in P-BBG hearts was increased by 87.7% (P < 0.05); while, the p53 and Parkin expression was significantly increased by 125% and cleaved caspase-3 levels were reduced by 33% in P-BBG mice. In vitro, BBG was required to induce VEGF, p53 and Parkin expression in human umbelical vascular endothelial cells. Moreover, the BBG-induced Parkin expression was not affected by pifithrin-α (10 uM/7days), a p53 inhibitor. In conclusion, long-term dietary supplementation with P-BBG confers post-ischemic cardioprotection through endothelial upregulation of VEGF and Parkin.
Collapse
Affiliation(s)
| | - Marco Matteucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudia Cavallini
- ATTRE (Advanced Therapies and Tissue Regeneration) Laboratory, Innovation Accelerator CNR, Bologna, Italy
| | - Milena Torti
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Michele Torelli
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,UOS Anesthesia and Intensive Care, Fondazione Toscana "G. Monasterio", Pisa, Italy.
| |
Collapse
|
27
|
An Q, Hu Q, Wang B, Cui W, Wu F, Ding Y. Oleanolic acid alleviates diabetic rat carotid artery injury through the inhibition of NLRP3 inflammasome signaling pathways. Mol Med Rep 2017; 16:8413-8419. [PMID: 28944913 DOI: 10.3892/mmr.2017.7594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
The overexpression of inflammasome components is correlated with diabetes‑associated complications. Oleanolic acid is a triterpenoid compound which is important in arterial injury. The present study evaluated whether oleanolic acid improved diabetic rat carotid artery injury through the inhibition of nucleotide‑binding domain, leucine‑rich‑containing family, pyrin domain‑containing‑3 (NLRP3) inflammasomes signaling pathways. A diabetic rat model was induced using streptozotocin (60 mg/kg) and underwent carotid artery injury. Morphometric analysis was performed using hematoxylin and eosin staining. The mRNA and protein levels were assayed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. It was found that oleanolic acid (100 mg/kg/day) improved body weight, glucose metabolic disorders, neointimal hyperplasia and endothelial dysfunction in diabetic rats with carotid artery injury. In addition, oleanolic acid administration significantly downregulated the mRNA and protein expression levels of endothelin 1 in diabetic rats. Oleanolic acid decreased the intimal area and the ratio of neointima to media in diabetic rats. Serum levels of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and IL‑18 in the oleanolic acid‑treated diabetic rats were downregulated. Consistent with the serum results, it was demonstrated that oleanolic acid administration caused a significant decrease in the levels of NLRP3, caspase‑1 and IL‑1β in the carotid arteries of diabetic rats. Taken together, these observations suggested that oleanolic acid attenuated carotid artery injury in diabetic rats and the underlying mechanism was mediated, at least partially, through the suppression of NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Qian An
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Qian Hu
- Staff Room of Surgery, Zhengzhou Railway Vocational Technical College, Zhengzhou, Henan 450052, P.R. China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Wenjun Cui
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Fei Wu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Yu Ding
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| |
Collapse
|
28
|
Agostini S, Lionetti V. New insights into the non-hemostatic role of von Willebrand factor in endothelial protection. Can J Physiol Pharmacol 2017; 95:1183-1189. [PMID: 28715643 DOI: 10.1139/cjpp-2017-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During exposure to ischemia-reperfusion (I/R) insult, angiotensin II (AngII)-induced endothelin-1 (ET-1) upregulation in endothelial cells progressively impairs nitric oxide (NO) bioavailability while increasing levels of superoxide anion (O2-) and leading to the onset of endothelial dysfunction. Moreover, the overexpression of ET-1 increases the endothelial and circulating levels of von Willebrand factor (vWF), a glycoprotein with a crucial role in arterial thrombus formation. Nowadays, the non-hemostatic role of endothelial vWF is emerging, although we do not yet know whether its increased expression is cause or consequence of endothelial dysfunction. Notably, the vWF blockade or depletion leads to endothelial protection in cultured cells, animal models of vascular injury, and patients as well. Despite the recent efforts to develop an effective pharmacological strategy, the onset of endothelial dysfunction is still difficult to prevent and remains closely related to adverse clinical outcome. Unraveling the non-hemostatic role of endothelial vWF in the onset of endothelial dysfunction could provide new avenues for protection against vascular injury mediated by AngII.
Collapse
Affiliation(s)
- Silvia Agostini
- a Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- a Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,b UOS Anesthesiology, Fondazione Toscana "G. Monasterio", Pisa, Italy
| |
Collapse
|