1
|
Wei X, Wang D, Liu J, Zhu Q, Xu Z, Niu J, Xu W. Interpreting the Mechanism of Active Ingredients in Polygonati Rhizoma in Treating Depression by Combining Systemic Pharmacology and In Vitro Experiments. Nutrients 2024; 16:1167. [PMID: 38674858 PMCID: PMC11054788 DOI: 10.3390/nu16081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polygonati Rhizoma (PR) has certain neuroprotective effects as a homology of medicine and food. In this study, systematic pharmacology, molecular docking, and in vitro experiments were integrated to verify the antidepressant active ingredients in PR and their mechanisms. A total of seven compounds in PR were found to be associated with 45 targets of depression. Preliminarily, DFV docking with cyclooxygenase 2 (COX2) showed good affinity. In vitro, DFV inhibited lipopolysaccharide (LPS)-induced inflammation of BV-2 cells, reversed amoeba-like morphological changes, and increased mitochondrial membrane potential. DFV reversed the malondialdehyde (MDA) overexpression and superoxide dismutase (SOD) expression inhibition in LPS-induced BV-2 cells and decreased interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6 mRNA expression levels in a dose-dependent manner. DFV inhibited both mRNA and protein expression levels of COX2 induced by LPS, and the activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and caspase1 was suppressed, thus exerting an antidepressant effect. This study proves that DFV may be an important component basis for PR to play an antidepressant role.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Dan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiajia Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ziming Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinzhe Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, China
| |
Collapse
|
2
|
Quan W, Wang Y, Chen YH, Shao Q, Gong YZ, Hu JW, Liu WH, Wu ZJ, Wang J, Ma SB, Li XQ. Screening of rosmarinic acid from Salvia miltiorrhizae acting on the novel target TRPC1 based on the 'homology modelling-virtual screening-molecular docking-affinity assay-activity evaluation' method. PHARMACEUTICAL BIOLOGY 2023; 61:155-164. [PMID: 36604840 PMCID: PMC9828776 DOI: 10.1080/13880209.2022.2160769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Salvia miltiorrhizae Bunge (Lamiaceae) is a traditional Chinese medicine (TCM) for the treatment of 'thoracic obstruction'. Transient receptor potential canonical channel 1 (TRPC1) is a important target for myocardial injury treatment. OBJECTIVE This work screens the active component acting on TRPC1 from Salvia miltiorrhizae. MATERIALS AND METHODS TCM Systems Pharmacology Database and Analysis Platform (TCMSP) was used to retrieve Salvia miltiorrhiza compounds for preliminary screening by referring to Lipinski's rule of five. Then, the compound group was comprehensively scored by AutoDock Vina based on TRPC1 protein. Surface plasmon resonance (SPR) was used to determine the affinity of the optimal compound to TRPC1 protein. Western blot assay was carried out to observe the effect of the optimal compound on TRPC1 protein expression in HL-1 cells, and Fura-2/AM detection was carried out to observe the effect of the optimal compound on calcium influx in HEK293 cells. RESULTS Twenty compounds with relatively good characteristic parameters were determined from 202 compounds of Salvia miltiorrhiza. Rosmarinic acid (RosA) was obtained based on the molecular docking scoring function. RosA had a high binding affinity to TRPC1 protein (KD value = 1.27 µM). RosA (50 μM) could reduce the protein levels (417.1%) of TRPC1 after oxygen-glucose deprivation/reperfusion (OGD/R) in HL-1 cells and it could inhibit TRPC1-mediated Ca2+ influx injury (0.07 ΔRatio340/380) in HEK293 cells. DISCUSSION AND CONCLUSIONS We obtained the potential active component RosA acting on TRPC1 from Salvia miltiorrhizae, and we speculate that RosA may be a promising clinical candidate for myocardial injury therapy.
Collapse
Affiliation(s)
- Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, China
| | - Yu-han Chen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qing Shao
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yang-ze Gong
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jie-wen Hu
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Wei-hai Liu
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zi-jun Wu
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Wang
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shan-bo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiao-qiang Li
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
3
|
A Varon H, Santos P, Lopez-Vallejo F, Y Soto C. Novel scaffolds targeting Mycobacterium tuberculosis plasma membrane Ca 2+ transporter CtpF by structure-based strategy. Bioorg Chem 2023; 138:106648. [PMID: 37315451 DOI: 10.1016/j.bioorg.2023.106648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
CtpF is a Ca2+ transporter P-type ATPase key to the response to stress conditions and to Mycobacterium tuberculosis virulence, therefore, an interesting target for the design of novel anti-Mtb compounds. In this work, molecular dynamics simulations of four previously identified CtpF inhibitors allowed recognizing the key protein-ligand (P-L) interactions, which were then used to perform a pharmacophore-based virtual screening (PBVS) of 22 million compounds from ZINCPharmer. The top-rated compounds were then subjected to molecular docking, and their scores were refined by MM-GBSA calculations. In vitro assays showed that ZINC04030361 (Compound 7) was the best promising candidate, showing a MIC of 25.0 μg/mL, inhibition of Ca2+-ATPase activity (IC50) of 3.3 μM, cytotoxic activity of 27.2 %, and hemolysis of red blood cells lower than 0.2 %. Interestingly, the ctpF gene is upregulated in the presence of compound 7, compared to other alkali/alkaline P-type ATPases coding genes, strongly suggesting that CtpF is a compound 7-specific target.
Collapse
Affiliation(s)
- Henry A Varon
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Paola Santos
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Fabian Lopez-Vallejo
- Departamento de Física y Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia-Sede Manizales, Kilómetro 9 vía al aeropuerto, La Nubia, Manizales 170003, Colombia.
| | - Carlos Y Soto
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Bogotá, Colombia
| |
Collapse
|
4
|
Aminu S, Danazumi AU, Alhafiz ZA, Gorna MW, Ibrahim MA. β-Sitosterol could serve as a dual inhibitor of Trypanosoma congolense sialidase and phospholipase A 2: in vitro kinetic analyses and molecular dynamic simulations. Mol Divers 2023; 27:1645-1660. [PMID: 36042119 DOI: 10.1007/s11030-022-10517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The involvement of Trypanosoma congolense sialidase alongside phospholipase A2 has been widely accepted as the major contributing factor to anemia during African animal trypanosomiasis. The enzymes aid the parasite in scavenging sialic acid and fatty acids necessary for survival in the infected host, but there are no specific drug candidates against the two enzymes. This study investigated the inhibitory effects of β-sitosterol on the partially purified T. congolense sialidase and phospholipase A2. Purification of the enzymes using DEAE cellulose column led to fractions with highest specific activities of 8016.41 and 39.26 µmol/min/mg for sialidase and phospholipase A2, respectively. Inhibition kinetics studies showed that β-sitosterol is non-competitive and an uncompetitive inhibitor of sialidase and phospholipase A2 with inhibition binding constants of 0.368 and 0.549 µM, respectively. Molecular docking of the compound revealed binding energies of - 8.0 and - 8.6 kcal/mol against the sialidase and phospholipase A2, respectively. Furthermore, 100 ns molecular dynamics simulation using GROMACS revealed stable interaction of β-sitosterol with both enzymes. Hydrogen bond interactions between the ligand and Glu284 and Leu102 residues of the sialidase and phospholipase A2, respectively, were found to be the major stabilizing forces. In conclusion, β-sitosterol could serve as a dual inhibitor of T. congolense sialidase and phospholipase A2; hence, the compound could be exploited further in the search for newer trypanocides.
Collapse
Affiliation(s)
- Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Ammar Usman Danazumi
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Zainab Aliyu Alhafiz
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Federal University, Gusau, Nigeria
| | - Maria Wiktoria Gorna
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
5
|
Murmu LK, Panda M, Meher BR, Purohit P, Behera J, Barik TK. Molecular surveillance of Kelch-13 gene in Plasmodium falciparum field isolates from Mayurbhanj District, Odisha, India, and in silico artemisinin-Kelch-13 protein interaction study. Parasitol Res 2023; 122:717-727. [PMID: 36729138 DOI: 10.1007/s00436-023-07784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/15/2023] [Indexed: 02/03/2023]
Abstract
The global malaria control and elimination program faces major threats due to the emergence and transmission of the anti-malarial drug-resistant strain of Plasmodium falciparum. Monitoring of artemisinin (ART) resistance marker Kelch-13 in the malaria-endemic region is essential in mitigating the disease's morbidity and mortality. The current study aimed to generate baseline information for further surveillance in the future. The current research was designed and conducted from July 2019 to June 2021 to monitor Pfkelch13 mutation at the molecular level in the eastern region of India. We also conducted an in silico study to understand the drug-protein interactions between ART and the protein crystal of PfKelch13 (KELCH) with PDB id:4ZGC. The kelch-13 gene was amplified by nested polymerase chain reaction (PCR) and sequenced through the Sanger sequencing method. Reference 3D7 clone (PF3D7_1343700) was used to align and probe all the sequences. The sequence analysis showed the absence of validated or associated mutation in the Kelch-13 propeller domain. The absence of natural selection in drug resistance was confirmed by the Tajima test. Further, in silico interaction studies between the drug ART and the Kelch propeller domain of P. falciparum were evaluated by structure predictions, molecular docking, molecular dynamics (MD) simulations, and estimations of binding free energies for the KELCH-ART complex. The results were compared with the apoprotein (KELCH-APO). The study confirmed the favorable binding of ART with the Kelch-13 propeller domain.
Collapse
Affiliation(s)
- Laxman Kumar Murmu
- P.G. Department of Zoology, Berhampur University, Berhampur, Odisha, 760007, India
| | - Madhusmita Panda
- Computational Biology & Bioinformatics Laboratory, P.G. Dept. of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Biswa Ranjan Meher
- Computational Biology & Bioinformatics Laboratory, P.G. Dept. of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Prasant Purohit
- Multi-Disciplinary Research Unit, M.K.C.G Medical College, Berhampur, Odisha, India
| | - Jayantiprava Behera
- Department of Pharmacology, M.K.C.G Medical College, Berhampur, Odisha, India
| | - Tapan Kumar Barik
- P.G. Department of Zoology, Berhampur University, Berhampur, Odisha, 760007, India.
| |
Collapse
|
6
|
Wang Y, Tian J, Chen J, Ni S, Yao Y, Wang L, Wu X, Song R, Chen J. Nontargeted metabolomics integrated with 1 H NMR and LC-Q-TOF-MS/MS methods to depict a more comprehensive metabolic profile in response to chrysosplenetin and artemisinin co-treatment against artemisinin-sensitive and -resistant Plasmodium berghei K173. Biomed Chromatogr 2023; 37:e5561. [PMID: 36471489 DOI: 10.1002/bmc.5561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Our previous work revealed mutual and specific metabolites/pathways in artemisinin-sensitive and -resistant Plasmodium berghei K173-infected mice. In this study, we further investigated whether chrysosplenetin, a candidate chemical to prevent artemisinin resistance, can regulate these metabolites/pathways by integrating nontargeted metabolomics with 1 H NMR and LC-Q-TOF-MS/MS spectrum. The nuclear magnetic resonance method generated specifically altered metabolites in response to co-treatment with chrysosplenetin, including: the products of glycolysis such as glucose, pyruvate, lactate and alanine; taurine, closely associated with liver injury; arginine and proline as essential amino acids for parasites; TMAO, a biomarker for dysbacteriosis and renal function; and tyrosine, which is used to generate levodopa and dopamine and may improve the torpor state of mice. Importantly, we noticed that chrysosplenetin might depress the activated glycolysis induced by sensitive parasites, but oppositely promoted the inhibited glycolysis to generate more lactate, which suppresses the proliferation of resistant parasites. Moreover, chrysosplentin possibly disturbs the heme biosynthetic pathway in mitochondria. The MS method yielded changed coenzyme A, phosphatidylcholine and ceramides, closely related to mitochondria β-oxidation, cell proliferation, differentiation and apoptosis. These two means shared no overlapped metabolites and formed a more broader metabolic map to study the potential mechanisms of chrysosplenetin as a promising artemisinin resistance inhibitor.
Collapse
Affiliation(s)
- Yisen Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jingxuan Tian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jie Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shanhong Ni
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ying Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lirong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Xiuli Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Nema S, Verma K, Mani A, Maurya NS, Tiwari A, Bharti PK. Identification of Potential Antimalarial Drug Candidates Targeting Falcipain-2 Protein of Malaria Parasite-A Computational Strategy. BIOTECH 2022; 11:54. [PMID: 36546908 PMCID: PMC9775493 DOI: 10.3390/biotech11040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Falcipain-2 (FP-2) is one of the main haemoglobinase of P. falciparum which is an important molecular target for the treatment of malaria. In this study, we have screened alkaloids to identify potential inhibitors against FP-2 since alkaloids possess great potential as anti-malarial agents. A total of 340 alkaloids were considered for the study using a series of computational pipelines. Initially, pharmacokinetics and toxicity risk assessment parameters were applied to screen compounds. Subsequently, molecular docking algorithms were utilised to understand the binding efficiency of alkaloids against FP-2. Further, oral toxicity prediction was done using the pkCSM tool, and 3D pharmacophore features were analysed using the PharmaGist server. Finally, MD simulation was performed for Artemisinin and the top 3 drug candidates (Noscapine, Reticuline, Aclidinium) based on docking scores to understand the functional impact of the complexes, followed by a binding site interaction residues study. Overall analysis suggests that Noscapine conceded good pharmacokinetics and oral bioavailability properties. Also, it showed better binding efficiency with FP-2 when compared to Artemisinin. Interestingly, structure alignment analysis with artemisinin revealed that Noscapine, Reticuline, and Aclidinium might possess similar biological action. Molecular dynamics and free energy calculations revealed that Noscapine could be a potent antimalarial agent targeting FP-2 that can be used for the treatment of malaria and need to be studied experimentally in the future.
Collapse
Affiliation(s)
- Shrikant Nema
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal 462 023, Madhya Pradesh, India
| | - Kanika Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211 004, Uttar Pradesh, India
| | - Neha Shree Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211 004, Uttar Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal 462 023, Madhya Pradesh, India
| | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
| |
Collapse
|
8
|
Oliveira FA, Pinto ACS, Duarte CL, Taranto AG, Lorenzato Junior E, Cordeiro CF, Carvalho DT, Varotti FP, Fonseca AL. Evaluation of antiplasmodial activity in silico and in vitro of N-acylhydrazone derivatives. BMC Chem 2022; 16:50. [PMID: 35810303 PMCID: PMC9271247 DOI: 10.1186/s13065-022-00843-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
N-acylhydrazones are considered privileged structures in medicinal chemistry, being part of antimicrobial compounds (for example). In this study we show the activity of N-acylhydrazone compounds, namely AH1, AH2, AH4, AH5 in in vitro tests against the chloroquine-resistant strain of Plasmodium falciparum (W2) and against WI26 VA-4 human cell lines. All compounds showed low cytotoxicity (LC50 > 100 µM). The AH5 compound was the most active against Plasmodium falciparum, with an IC50 value of 0.07 μM. AH4 and AH5 were selected among the tested compounds for molecular docking calculations to elucidate possible targets involved in their mechanism of action and the SwissADME analysis to predict their pharmacokinetic profile. The AH5 compound showed affinity for 12 targets with low selectivity, while the AH4 compound had greater affinity for only one target (3PHC). These compounds met Lipinski's standards in the ADME in silico tests, indicating good bioavailability results. These results demonstrate that these N-acylhydrazone compounds are good candidates for future preclinical studies against malaria.
Collapse
Affiliation(s)
- Fernanda A Oliveira
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Ana Claudia S Pinto
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil.
| | - Caique L Duarte
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Alex G Taranto
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Eder Lorenzato Junior
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Cleydson Finotti Cordeiro
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Diogo T Carvalho
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Fernando P Varotti
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Amanda L Fonseca
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
9
|
Quan W, Liu HX, Zhang W, Lou WJ, Gong YZ, Yuan C, Shao Q, Wang N, Guo C, Liu F. Cardioprotective effect of rosmarinic acid against myocardial ischaemia/reperfusion injury via suppression of the NF-κB inflammatory signalling pathway and ROS production in mice. PHARMACEUTICAL BIOLOGY 2021; 59:222-231. [PMID: 33600735 PMCID: PMC7894452 DOI: 10.1080/13880209.2021.1878236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 05/04/2023]
Abstract
CONTEXT Rosmarinic acid (RosA), a natural poly-phenolic compound isolated from a variety of Labiatae herbs, has been reported to have a range of biological effects. OBJECTIVE To investigate the cardioprotective effects of RosA against myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS Male C57BL/6J mice were given RosA (100 mg/kg) via intragastric administration. After 1 week of administration, the mice were subjected to 30 min/24 h myocardial I/R injury. The mice were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + I/R, and RosA + I/R. Infarct size (IS), cardiac function (including EF, FS), histopathology, serum enzyme activities, ROS changes, cis aconitase (ACO) activity, and specific mRNA and protein levels were assessed in vivo. HL-1 cells were pre-treated with or without RosA (50 μM), followed by stimulation with 9 h/6 h of oxygen and glucose deprivation/re-oxygenation (OGD/R). The cells were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + OGD/R, and RosA + OGD/R. Lactate dehydrogenase (LDH) levels, ACO activity, ROS changes and protein levels were measured in vitro. RESULTS Treatment with RosA reduced the following indicators in vivo (p < 0.05): (1) IS (14.5%); (2) EF (-23.4%) and FS (-18.4%); (3) the myocardial injury enzymes CK-MB (20.8 ng/mL) and cTnI (7.7 ng/mL); (4) DHE-ROS: (94.1%); (5) ACO activity (-2.1 mU/mg protein); (6) ogdh mRNA level (122.9%); and (7) OGDH protein level (69.9%). Moreover, treatment with RosA attenuated the following indicators in vitro (p < 0.05): (1) LDH level (191 U/L); (2) DHE-ROS: (165.2%); (3) ACO activity (-3.2 mU/mg protein); (4) ogdh mRNA level (70.0%); and (5) OGDH (110.1%), p-IκB-a (56.8%), and p-NF-κB (57.7%) protein levels. CONCLUSIONS RosA has the potential to treat myocardial I/R injury with potential application in the clinic.
Collapse
Affiliation(s)
- Wei Quan
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hui-xian Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wei-juan Lou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang-ze Gong
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Shao
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Na Wang
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Fei Liu
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Liang Y, Yi L, Deng P, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Pi H, Zhou Z. Rapamycin antagonizes cadmium-induced breast cancer cell proliferation and metastasis through directly modulating ACSS2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112626. [PMID: 34411822 DOI: 10.1016/j.ecoenv.2021.112626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a carcinogen that stimulates breast cancer (BC) progression. Rapamycin is a macrolide antibiotic produced by Streptomyces hygroscopicus that possesses a wide array of pharmacological activities, including anti-BC activity. However, the effects of rapamycin on Cd-increased BC progression and the underlying mechanism have not been fully elucidated. Here, we hypothesize that rapamycin antagonizes Cd-induced BC cell proliferation and metastasis by directly modulating ACSS2. In this study, we found that rapamycin efficiently inhibited Cd-induced proliferation, invasion and migration in MCF-7 and T47-D cells. Moreover, a surface plasmon resonance (SPR) assay confirmed that rapamycin directly binds to the ACSS2 protein with a calculated equilibrium dissociation constant (KD) of 18.3 μM. Molecular docking showed that there are three binding sites in the ACSS2 protein and that rapamycin binds at the coenzyme A (COA) binding site with a docking score of - 12.26 and a binding free energy of - 26.34 kcal/mol. More importantly, rapamycin suppresses Cd-induced BC progression by activating ACSS2. After cells were cotreated with an ACSS2 inhibitor, the effects of rapamycin were abolished. In conclusion, our findings suggest that rapamycin suppresses Cd-augmented BC progression by upregulating ACSS2, and ACSS2 may serve as a direct target of rapamycin for inhibiting xenobiotic (e.g., Cd)-mediated BC progression.
Collapse
Affiliation(s)
- Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lai Yi
- Department of Hematology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine (Central Hospital of Zhuzhou City), Central South University, Zhuzhou, Hunan, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhou Zhou
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Al-Subaie AM, Kamaraj B. The Structural Effect of FLT3 Mutations at 835th Position and Their Interaction with Acute Myeloid Leukemia Inhibitors: In Silico Approach. Int J Mol Sci 2021; 22:7602. [PMID: 34299222 PMCID: PMC8303888 DOI: 10.3390/ijms22147602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) gene mutations have been found in more than one-third of Acute Myeloid Leukemia (AML) cases. The most common point mutation in FLT3 occurs at the 835th residue (D835A/E/F/G/H/I/N/V/Y), in the activation loop region. The D835 residue is critical in maintaining FLT3 inactive conformation; these mutations might influence the interaction with clinically approved AML inhibitors used to treat the AML. The molecular mechanism of each of these mutations and their interactions with AML inhibitors at the atomic level is still unknown. In this manuscript, we have investigated the structural consequence of native and mutant FLT-3 proteins and their molecular mechanisms at the atomic level, using molecular dynamics simulations (MDS). In addition, we use the molecular docking method to investigate the binding pattern between the FLT-3 protein and AML inhibitors upon mutations. This study apparently elucidates that, due to mutations in the D835, the FLT-3 structure loses its conformation and becomes more flexible compared to the native FLT3 protein. These structural changes are suggested to contribute to the relapse and resistance responses to AML inhibitors. Identifying the effects of FLT3 at the molecular level will aid in developing a personalized therapeutic strategy for treating patients with FLT-3-associated AML.
Collapse
Affiliation(s)
- Abeer M. Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia
| |
Collapse
|
12
|
Chitrala KN, Nagarkatti P, Nagarkatti M. Computational analysis of deleterious single nucleotide polymorphisms in catechol O-Methyltransferase conferring risk to post-traumatic stress disorder. J Psychiatr Res 2021; 138:207-218. [PMID: 33865170 PMCID: PMC8969201 DOI: 10.1016/j.jpsychires.2021.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is one of the prevalent neurological disorder which is drawing increased attention over the past few decades. Major risk factors for PTSD can be categorized into environmental and genetic factors. Among the genetic risk factors, polymorphisms in the catechol-O-methyltransferase (COMT) gene is known to be associated with the risk for PTSD. In the present study, we analysed the impact of deleterious single nucleotide polymorphisms (SNPs) in the COMT gene conferring risk to PTSD using computational based approaches followed by molecular dynamic simulations. The data on COMT gene associated with PTSD were collected from several databases including Online Mendelian Inheritance in Man (OMIM) search. Datasets related to SNP were downloaded from the dbSNP database. To study the structural and dynamic effects of COMT wild type and mutant forms, we performed molecular dynamics simulations (MD simulations) at a time scale of 300 ns. Results from screening the SNPs using the computational tools SIFT and Polyphen-2 demonstrated that the SNP rs4680 (V158M) in COMT has a deleterious effect with phenotype in PTSD. Results from the MD simulations showed that there is some major fluctuations in the structural features including root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF) and secondary structural elements including α-helices, sheets and turns between wild-type (WT) and mutant forms of COMT protein. In conclusion, our study provides novel insights into the deleterious effects and impact of V158M mutation on COMT protein structure which plays a key role in PTSD.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Prakash Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
13
|
Khanal P. Antimalarial and anticancer properties of artesunate and other artemisinins: current development. MONATSHEFTE FUR CHEMIE 2021; 152:387-400. [PMID: 33814617 PMCID: PMC8008344 DOI: 10.1007/s00706-021-02759-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
This review provides a recent perspective of artesunate and other artemisinins as antimalarial drugs and their uses in cancer therapy. Artesunate is an artemisinin derivative. Artemisinin is extracted from the plant Artemisia annua. Artemisinin and its derivatives have been the most useful drug for malarial treatment in human history. The artesunate has an advantage of a hydrophilic group over other artemisinins which makes it a more potent drug. On the industrial scale, artemisinins are synthesized in semisynthetic ways. The 1,2,4-endoperoxide bridge of artemisinins is responsible for the drug's antimalarial activity. There is the emergence of artemisinin resistance on Plasmodium falciparum and pieces of evidence suggest that it is mainly due to the mutation at Kelch13 protein of P. falciparum. Clinical trial data show that the artesunate is more favorable than quinine and other artemisinins to treat patients with severe malaria. Pieces of evidence indicate that artemisinins can be developed as anticancer drugs. The mechanism of actions on how artemisinins act as an anticancer drug involves oxidative stress, DNA damage and repair, and various types of cell deaths. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Pitambar Khanal
- Nagarik College, Tribhuvan University, Gaidakot-2, Nawalparasi Purva, Gandaki, Nepal
| |
Collapse
|
14
|
Pagliaro L, Marchesini M, Roti G. Targeting oncogenic Notch signaling with SERCA inhibitors. J Hematol Oncol 2021; 14:8. [PMID: 33407740 PMCID: PMC7789735 DOI: 10.1186/s13045-020-01015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
15
|
Pathaw N, Gurung AB, Chrungoo NK, Bhattacharjee A, Roy SS, Ansari MA, Sharma SK. In silico molecular modelling, structural dynamics simulation and characterization of antifungal nature of β-glucosidase enzyme from Sechium edule. J Biomol Struct Dyn 2020; 39:4501-4509. [PMID: 32666889 DOI: 10.1080/07391102.2020.1791956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
β-glucosidase is an enzyme that has ability to cleave β-glycosidic bonds present in oligosaccharides and glycoconjugates. They are known to be present across all domains of living organism and have important roles in many biological processes including plant defense mechanism. In the present study, a β-glucosidase enzyme identified from seeds of Sechium edule was characterized using various bioinformatics tools. A homology model (SeBG) was generated using a β-glucosidase crystal structure from Oryza sativa (PDB ID: 3PTK) as template. In silico structural binding studies on putative β-glucosidase protein revealed a stable and strong interaction indicative of higher GOLD fitness score with the substrates: p-nitrophenyl-β-d-glucopyranoside (pNPG), laminarin, chitotriose, N-acetylglucosamine and N-acetylmuramic acid suggesting its possible role in broad spectrum antifungal and antimicrobial activity. Assessment of the in vitro enzyme activity with pNPG showed a Km and Vmax values of 2.7 mM and 22 µMmin-1mL-1mg-1, respectively. While, the in vitro enzyme activity with laminarin showed a Km and Vmax values of 0.31 mM and 0.043 µMmin-1mL-1mg-1. The broad spectrum activity of the protein shown in our result indicates SeBG as a promising biocontrol agent against phytopathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neeta Pathaw
- ICAR Research Complex for NEH Region, Lamphelpat, Imphal, Manipur, India
| | - Arun Bahadur Gurung
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, India
| | - Nikhil Kumar Chrungoo
- Centre for Advanced Studies in Botany, North Eastern Hill University, Shillong, India
| | - Atanu Bhattacharjee
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Lamphelpat, Imphal, Manipur, India
| | - Meraj Alam Ansari
- ICAR Research Complex for NEH Region, Lamphelpat, Imphal, Manipur, India
| | | |
Collapse
|
16
|
A Study of Synergy of Combination of Eosin B with Chloroquine, Artemisinin, and Sulphadoxine-Pyrimethamine on Plasmodium falciparum In Vitro and Plasmodium berghei In Vivo. J Trop Med 2020; 2020:3013701. [PMID: 32565830 PMCID: PMC7285249 DOI: 10.1155/2020/3013701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023] Open
Abstract
Methods Drug assessment was carried out singly or in combination on Plasmodium falciparum in vitro using the candle jar method at three inhibitory concentrations. Percent parasitemia of live cells was obtained by microscopic counting. Peter's suppression test was carried out on mice infected with Plasmodium berghei after 3 administration of the drugs singly and in combination, and parasites were counted by microscopy for 10 days. Results Synergy was exhibited by isobolograms of eosin B combined with artesunate and sulphadoxine-pyrimethamine with more than 10 fold reduction of all drugs in vitro. A good combination index was obtained with artesunate at 50% inibitory concentration with 3.4 nM eosin B and 1.7 nM artesunate in contrast to 124 nM eosin B and 7.6 nM artesunate singly. In vivo studies also showed a considerable lowering of the effective dose of eosin B 30 mg/kg: artesunate 3 mg/kg with 200 mg/kg eosin B and 60 mg/kg artesunate separately. Sulphadoxine-pyrimethamine seemed to have the greatest synergistic effect with a combination index of 0.007, but this could be due to it consisting of a combination of three drugs. Eosin B's combination index with chloroquine was fair, and in vivo tests too did not show as much competence as the other two drugs. Conclusion and Interpretation. It can be concluded that eosin B can be used in combination with antimalarial drugs with favorable results.
Collapse
|
17
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
18
|
Nagarajan N, Yapp EKY, Le NQK, Kamaraj B, Al-Subaie AM, Yeh HY. Application of Computational Biology and Artificial Intelligence Technologies in Cancer Precision Drug Discovery. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8427042. [PMID: 31886259 PMCID: PMC6925679 DOI: 10.1155/2019/8427042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
Abstract
Artificial intelligence (AI) proves to have enormous potential in many areas of healthcare including research and chemical discoveries. Using large amounts of aggregated data, the AI can discover and learn further transforming these data into "usable" knowledge. Being well aware of this, the world's leading pharmaceutical companies have already begun to use artificial intelligence to improve their research regarding new drugs. The goal is to exploit modern computational biology and machine learning systems to predict the molecular behaviour and the likelihood of getting a useful drug, thus saving time and money on unnecessary tests. Clinical studies, electronic medical records, high-resolution medical images, and genomic profiles can be used as resources to aid drug development. Pharmaceutical and medical researchers have extensive data sets that can be analyzed by strong AI systems. This review focused on how computational biology and artificial intelligence technologies can be implemented by integrating the knowledge of cancer drugs, drug resistance, next-generation sequencing, genetic variants, and structural biology in the cancer precision drug discovery.
Collapse
Affiliation(s)
| | - Edward K. Y. Yapp
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634
| | - Nguyen Quoc Khanh Le
- School of Humanities, Nanyang Technological University, 14 Nanyang Dr, Singapore 637332
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, 14 Nanyang Dr, Singapore 637332
| |
Collapse
|
19
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
20
|
Bansal D, Bharti PK, Acharya A, Abdelraheem MH, Patel P, Elmalik A, Abosalah S, Khan FY, ElKhalifa M, Kaur H, Farag E, Sarmah NP, Mohapatra PK, Sehgal R, Mahanta J, Sultan AA. Molecular surveillance of putative drug resistance markers of antifolate and artemisinin among imported Plasmodium falciparum in Qatar. Pathog Glob Health 2019; 113:158-166. [PMID: 31296112 PMCID: PMC6758627 DOI: 10.1080/20477724.2019.1639018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malaria remains a significant public health challenge and is of global importance. Imported malaria is a growing problem in non-endemic areas throughout the world and also in Qatar due to a massive influx of migrants from endemic countries. Antimalarial drug resistance is an important deterrent in our fight against malaria today. Molecular markers mirror intrinsic antimalarial drug resistance and their changes precede clinical resistance. Thus, in the present study, molecular markers of sulphadoxine-pyrimethamine (Pfdhfr and Pfdhps) and artemisinin (PfATPase6 and Pfk13) were sequenced to determine the drug resistance genotypes among 118 imported P. falciparum isolates in Qatar, between 2013 and 2016. All the isolates had mutant Pfdhfr alleles, with either double mutant (51I/108N) (59.3%) or triple mutant (51I, 59R and 108N) (30.6%) genotypes. I164L substitution was not found in this study. In case of Pfdhps, majority of the samples were carriers of either single (S436A/ A437G/ K540E) mutant (47.2%) or double (S436A/K540E, A437G/K540E, K540E/A581G) mutant (39.8%). A single novel point mutation (431V) was observed in the samples originated from Nigeria and Ghana. Polymorphisms in PfATPase6 were absent and only one non-synonymous mutation in Pfk13 was found at codon G453A from a sample of Kenyan origin. High levels of sulphadoxine-pyrimethamine resistance in the present study provide potential information about the spread of antimalarial drug resistance and will be beneficial for the treatment of imported malaria cases in Qatar.
Collapse
Affiliation(s)
- Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City , Doha , Qatar
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research , Jabalpur , India
| | - Anushree Acharya
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City , Doha , Qatar
| | - Mohamed H Abdelraheem
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, Sultan Qaboos University , Muscat , Oman
| | - Priyanka Patel
- National Institute for Research in Tribal Health, Indian Council of Medical Research , Jabalpur , India
| | - Ashraf Elmalik
- Department of Emergency Medicine, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Salem Abosalah
- Department of Emergency Medicine, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Fahmi Y Khan
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Mohamed ElKhalifa
- Department of Laboratory Medicine and Pathology, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Hargobinder Kaur
- Department of Parasitology, Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | | | - Nilanju P Sarmah
- Regional Medical Research Centre, NE, Indian Council of Medical Research , Dibrugarh , India
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research , Dibrugarh , India
| | - Rakesh Sehgal
- Department of Parasitology, Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research , Dibrugarh , India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City , Doha , Qatar
| |
Collapse
|
21
|
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. J Glob Antimicrob Resist 2019; 18:1-11. [PMID: 30685461 DOI: 10.1016/j.jgar.2019.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Nowadays, drug resistance in parasites is considered to be one of the foremost concerns in health and disease management. It is interconnected worldwide and undermines the health of millions of people, threatening to grow worse. Unfortunately, it does not receive serious attention from every corner of society. Consequently, drug resistance in parasites is gradually complicating and challenging the treatment of parasitic diseases. In this context, we have dedicated ourselves to review the incidence of drug resistance in the protozoan parasites Plasmodium, Leishmania, Trypanosoma, Entamoeba and Toxoplasma gondii. Moreover, understanding the role of ATP-binding cassette (ABC) transporters in drug resistance is essential in the control of parasitic diseases. Therefore, we also focused on the involvement of ABC transporters in drug resistance, which will be a superior approach to find ways for better regulation of diseases caused by parasitic infections.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dibyapriya Roy Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
22
|
Pasupureddy R, Atul, Seshadri S, Pande V, Dixit R, Pandey KC. Current scenario and future strategies to fight artemisinin resistance. Parasitol Res 2019; 118:29-42. [PMID: 30478733 DOI: 10.1007/s00436-018-6126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Atul
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
| | - Kailash C Pandey
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.
- Department of Biochemistry, Indian Council of Medical Research, National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
23
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2019; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
24
|
Thirumal Kumar D, Eldous HG, Mahgoub ZA, George Priya Doss C, Zayed H. Computational modelling approaches as a potential platform to understand the molecular genetics association between Parkinson's and Gaucher diseases. Metab Brain Dis 2018; 33:1835-1847. [PMID: 29978341 DOI: 10.1007/s11011-018-0286-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Abstract
Gaucher's disease (GD) is a genetic disorder in which glucocerebroside accumulates in cells and specific organs. It is broadly classified into type I, type II and type III. Patients with GD are at high risk of Parkinson's disease (PD), and the clinical and pathological presentation of GD patients with PD is almost identical to idiopathic PD. Several experimental models like cell culture, animal models, and transgenic mice models were used to understand the molecular mechanism behind GD and PD association; however, such mechanism remains unclear. In this context, based on literature reports, we identified the most common mutations K198T, E326K, T369M, N370S, V394L, D409H, L444P, and R496H, in the Glucosylceramidase (GBA) protein that are known to cause GD1, and represent a risk of developing PD. However, to date, no computational analyses have designed to elucidate the potential functional role of GD mutations with increased risk of PD. The present computational pipeline allows us to understand the structural and functional significance of these GBA mutations with PD. Based on the published data, the most common and severe mutations were E326K, N370S, and L444P, which further selected for our computational analysis. PredictSNP and iStable servers predicted L444P mutant to be the most deleterious and responsible for the protein destabilization, followed by the N370S mutation. Further, we used the structural analysis and molecular dynamics approach to compare the most frequent deleterious mutations (N370S and L444P) with the mild mutation E326K. The structural analysis demonstrated that the location of E326K and N370S in the alpha helix region of the protein whereas the mutant L444P was in the starting region of the beta sheet, which might explain the predicted pathogenicity level and destabilization effect of the L444P mutant. Finally, Molecular Dynamics (MD) at 50 ns showed the highest deviation and fluctuation pattern in the L444P mutant compared to the two mutants E326K and N370S and the native protein. This was consistent with more loss of intramolecular hydrogen bonds and less compaction of the radius of gyration in the L444P mutant. The proposed study is anticipated to serve as a potential platform to understand the mechanism of the association between GD and PD, and might facilitate the process of drug discovery against both GD and PD.
Collapse
Affiliation(s)
- D Thirumal Kumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hend Ghasan Eldous
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - Zainab Alaa Mahgoub
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
25
|
Badshah SL, Ullah A, Ahmad N, Almarhoon ZM, Mabkhot Y. Increasing the Strength and Production of Artemisinin and Its Derivatives. Molecules 2018; 23:E100. [PMID: 29301383 PMCID: PMC6017432 DOI: 10.3390/molecules23010100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/04/2022] Open
Abstract
Artemisinin is a natural sesquiterpene lactone obtained from the Artemisia annua herb. It is widely used for the treatment of malaria. In this article, we have reviewed the role of artemisinin in controlling malaria, spread of resistance to artemisinin and the different methods used for its large scale production. The highest amount of artemisinin gene expression in tobacco leaf chloroplast leads to the production of 0.8 mg/g of the dry weight of the plant. This will revolutionize the treatment and control of malaria in third world countries. Furthermore, the generations of novel derivatives of artemisinin- and trioxane ring structure-inspired compounds are important for the treatment of malaria caused by resistant plasmodial species. Synthetic endoperoxide-like artefenomel and its derivatives are crucial for the control of malaria and such synthetic compounds should be further explored.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan.
| | - Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan.
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan.
| | - Zainab M Almarhoon
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yahia Mabkhot
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
26
|
Thirumal Kumar D, Lavanya P, George Priya Doss C, Tayubi IA, Naveen Kumar DR, Francis Yesurajan I, Siva R, Balaji V. A Molecular Docking and Dynamics Approach to Screen Potent Inhibitors Against Fosfomycin Resistant Enzyme in Clinical Klebsiella pneumoniae. J Cell Biochem 2017; 118:4088-4094. [PMID: 28409871 DOI: 10.1002/jcb.26064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023]
Abstract
Klebsiella pneumoniae, BA6753 was cultured from a patient in the Clinical Microbiology Laboratory of Christian Medical College. K. pneumoniae, BA6753 has a multidrug resistance plasmid encoding novel FosA variant-7, fosfomycin resistance enzyme. Minimal side effects and a wide range of bactericidal activity of fosfomycin have resulted in its expanded clinical use that prompts the rise of fosfomycin-resistant strains. At present, there are no effective inhibitors available to conflict the FosA-medicated fosfomycin resistance. To develop effective FosA inhibitors, it is crucial to understand the structural and dynamic properties of resistance enzymes. Hence, the present study focuses on the identification of potent inhibitors that can effectively bind to the fosfomycin resistance enzyme, thus predispose the target to inactivate by the second antibiotic. Initially, a series of active compounds were screened against the resistant enzyme, and the binding affinities were confirmed using docking simulation analysis. For efficient activity, the binding affinity of the resistance enzyme ought to be high with the inhibitor than the fosfomycin drug. Consequently, the enzyme-ligand complex which showed higher binding affinity than the fosfomycin was employed for subsequent analysis. The stability of the top scoring enzyme-ligand complex was further validated using molecular dynamics simulation studies. On the whole, we presume that the compound 19583672 demonstrates a higher binding affinity for the resistance enzyme comparing to other compounds and fosfomycin. We believe that further enhancement of the lead compound can serve as a potential inhibitor against resistance enzyme in drug discovery process. J. Cell. Biochem. 118: 4088-4094, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- D Thirumal Kumar
- School of Biosciences and Technology, VIT University, Vellore, 632014, India
| | - P Lavanya
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India
| | - C George Priya Doss
- School of Biosciences and Technology, VIT University, Vellore, 632014, India
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - D R Naveen Kumar
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India
| | - I Francis Yesurajan
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India
| | - R Siva
- School of Biosciences and Technology, VIT University, Vellore, 632014, India
| | - V Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, India
| |
Collapse
|