1
|
Guerra-Andrés M, Fernández ÁF, Fontanil T. Exosomes, autophagy, and cancer: A complex triad. Int J Cancer 2025. [PMID: 40318053 DOI: 10.1002/ijc.35388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/07/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Despite remarkable progress in prevention, diagnosis, and therapy, the incidence of certain types of cancer persists, urging the identification of clinically relevant biomarkers and the development of novel therapeutic strategies to improve clinical outcomes and overcome treatment resistance. Exosomes, small extracellular vesicles released by diverse types of cells, have attracted interest in biomedical research due to their potential as carriers for different treatments. Moreover, exosomes play a pivotal role in intercellular communication, modulating various cellular processes. One of those is autophagy, a pro-survival pathway that is essential for human cells. Even though autophagy is traditionally described as a catabolic route, its machinery is intricately involved in various cellular responses, including vesicle formation and secretion. In this regard, the link between autophagy and exosomes is complex, bidirectional, and highly dependent on the cellular context. Interestingly, both processes have been extensively implicated in cancer pathogenesis, highlighting their potential as therapeutic targets. This review updates our understanding of how exosomes can participate in cancer development and progression, with a specific focus on their influence on tumor growth, angiogenesis, and metastasis. Additionally, the interplay between these extracellular vesicles and autophagy is minutely reviewed and discussed, as we hypothesize that this crosstalk may hold valuable clues for biomarker discovery and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Guerra-Andrés
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Tania Fontanil
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Ordoñez (Astracime S.L), Oviedo, Spain
- Lovinium Biocell CO LTD., Bangkok, Thailand
| |
Collapse
|
2
|
Swati, Basak P, Mittal BR, Shukla J, Chadha VD. Systemic effects of 177Lu-DOTATATE therapy to patients with metastatic neuroendocrine tumors: mechanistic insights and role of exosome. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07291-2. [PMID: 40263207 DOI: 10.1007/s00259-025-07291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE The present study aimed to evaluate the systemic redox status in metastatic neuroendocrine tumor (NET) patients following 177Lu-DOTATATE therapy and to explore the role of exosomes in communicating the redox signals in-vitro. METHODS Levels of reactive oxygen species (ROS), enzymes associated with oxidative stress and lipid peroxidation, gene expression of oxidative stress markers (COX2, iNOS, NF-κB and SOD) were determined in peripheral blood mononuclear cells (PBMCs) and serum isolated from a total of 30 NET subjects at three time points viz.: before, 4 weeks after first and fourth cycle of 177Lu-DOTATATE therapy. Serum cytokine levels (IL-2, IL-6, IFN-γ, TNF-α, IL-4, IL-10 and TGF-β) were measured by ELISA. DNA damage was assessed by checking the expression of γH2AX and DNA repair genes (ATM: Ataxia-Telangiectasia Mutated and ATR: Ataxia-Telangiectasia and Rad3-related). Plasma-derived exosomes were characterized, their uptake by PBMCs was visualized and consequent ROS generation was assessed in in-vitro co-culture. RESULTS The study exhibits a significant increase in ROS level and relatively higher expression of COX2 and iNOS in PBMCs of NET patients post therapy. Serum inflammatory cytokines including IL-2, IL-6 and TNF-α were found elevated. The study did not find any change in the expression of genes associated with DNA damage. In-vitro co-culture of PBMCs (isolated before therapy) with exosomes derived after therapy exhibited significant increase in ROS as compared to control cells. CONCLUSION The study concludes that 177Lu-DOTATATE therapy alters redox status, however it does not cause DNA damage, suggestive of its safety. Further, the study demonstrates the role of exosomes in spreading of oxidative stress systemically.
Collapse
Affiliation(s)
- Swati
- Centre for Nuclear Medicine (UIEAST), Panjab University, Chandigarh, India
| | - Preetam Basak
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - B R Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
3
|
Tian L, Jin J, Lu Q, Zhang H, Tian S, Lai F, Liu C, Liang Y, Lu Y, Zhao Y, Yao S, Ren W. Bidirectional modulation of extracellular vesicle-autophagy axis in acute lung injury: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2024; 180:117566. [PMID: 39423751 DOI: 10.1016/j.biopha.2024.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Acute lung injury (ALI), a multifactorial pathological condition, manifests through heightened inflammatory responses, compromised lung epithelial-endothelial barrier function, and oxidative stress, potentially culminating in respiratory failure and mortality. This study explores the intricate interplay between two crucial cellular mechanisms-extracellular vesicles (EVs) and autophagy-in the context of ALI pathogenesis and potential therapeutic interventions.EVs, bioactive membrane-bound structures secreted by cells, serve as versatile carriers of molecular cargo, facilitating intercellular communication and significantly influencing disease progression. Concurrently, autophagy, an essential intracellular degradation process, maintains cellular homeostasis and has emerged as a promising therapeutic target in ALI and acute respiratory distress syndrome.Our research unveils a fascinating "EV-Autophagy dual-drive pathway," characterized by reciprocal regulation between these two processes. EVs modulate autophagy activation and inhibition, while autophagy influences EV production, creating a dynamic feedback loop. This study posits that precise manipulation of this pathway could revolutionize ALI treatment strategies.By elucidating the mechanisms underlying this cellular crosstalk, we open new avenues for targeted therapies. The potential for engineered EVs to fine-tune autophagy in ALI treatment is explored, alongside innovative concepts such as EV-based vaccines for ALI prevention and management. This research not only deepens our understanding of ALI pathophysiology but also paves the way for novel, more effective therapeutic approaches in critical care medicine.
Collapse
Affiliation(s)
- Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Clinical Medical Center of Tissue Egineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Jin
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Qianying Lu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Huajing Zhang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Chuanchuan Liu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yangfan Liang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yujia Lu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Zhao
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China.
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Clinical Medical Center of Tissue Egineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Nouri Z, Barfar A, Perseh S, Motasadizadeh H, Maghsoudian S, Fatahi Y, Nouri K, Yektakasmaei MP, Dinarvand R, Atyabi F. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases. J Nanobiotechnology 2024; 22:463. [PMID: 39095888 PMCID: PMC11297769 DOI: 10.1186/s12951-024-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Neurodegenerative disorders are complex, progressive, and life-threatening. They cause mortality and disability for millions of people worldwide. Appropriate treatment for neurodegenerative diseases (NDs) is still clinically lacking due to the presence of the blood-brain barrier (BBB). Developing an effective transport system that can cross the BBB and enhance the therapeutic effect of neuroprotective agents has been a major challenge for NDs. Exosomes are endogenous nano-sized vesicles that naturally carry biomolecular cargoes. Many studies have indicated that exosome content, particularly microRNAs (miRNAs), possess biological activities by targeting several signaling pathways involved in apoptosis, inflammation, autophagy, and oxidative stress. Exosome content can influence cellular function in healthy or pathological ways. Furthermore, since exosomes reflect the features of the parental cells, their cargoes offer opportunities for early diagnosis and therapeutic intervention of diseases. Exosomes have unique characteristics that make them ideal for delivering drugs directly to the brain. These characteristics include the ability to pass through the BBB, biocompatibility, stability, and innate targeting properties. This review emphasizes the role of exosomes in alleviating NDs and discusses the associated signaling pathways and molecular mechanisms. Furthermore, the unique biological features of exosomes, making them a promising natural transporter for delivering various medications to the brain to combat several NDs, are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Barfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
6
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Wandrey M, Jablonska J, Stauber RH, Gül D. Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life (Basel) 2023; 13:2033. [PMID: 37895415 PMCID: PMC10608050 DOI: 10.3390/life13102033] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The development of therapy resistance still represents a major hurdle in treating cancers, leading to impaired treatment success and increased patient morbidity. The establishment of minimally invasive liquid biopsies is a promising approach to improving the early diagnosis, as well as therapy monitoring, of solid tumors. Because of their manifold functions in the tumor microenvironment, tumor-associated small extracellular vesicles, referred to as exosomes, have become a subject of intense research. Besides their important roles in cancer progression, metastasis, and the immune response, it has been proposed that exosomes also contribute to the acquisition and transfer of therapy resistance, mainly by delivering functional proteins and RNAs, as well as facilitating the export of active drugs or functioning as extracellular decoys. Extensive research has focused on understanding the molecular mechanisms underlying the occurrence of resistance and translating these into strategies for early detection. With this review, we want to provide an overview of the current knowledge about the (patho-)biology of exosomes, as well as state-of-the-art methods of isolation and analysis. Furthermore, we highlight the role of exosomes in tumorigenesis and cancer treatment, where they can function as therapeutic agents, biomarkers, and/or targets. By focusing on their roles in therapy resistance, we will reveal new paths of exploiting exosomes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Madita Wandrey
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Jadwiga Jablonska
- Translational Oncology/ENT Department, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany;
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Roland H. Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Désirée Gül
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| |
Collapse
|
8
|
Asurappulige HSH, Thomas AD, Morse HR. Genotoxicity of cytokines at chemotherapy-induced 'storm' concentrations in a model of the human bone marrow. Mutagenesis 2023; 38:201-215. [PMID: 37326959 PMCID: PMC10448863 DOI: 10.1093/mutage/gead018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Donor cell leukaemia (DCL) is a complication of haematopoietic stem cell transplantation where donated cells become malignant within the patient's bone marrow. As DCL predominates as acute myeloid leukaemia, we hypothesized that the cytokine storm following chemotherapy played a role in promoting and supporting leukaemogenesis. Cytokines have also been implicated in genotoxicity; thus, we explored a cell line model of the human bone marrow (BM) to secrete myeloid cytokines following drug treatment and their potential to induce micronuclei. HS-5 human stromal cells were exposed to mitoxantrone (MTX) and chlorambucil (CHL) and, for the first time, were profiled for 80 cytokines using an array. Fifty-four cytokines were detected in untreated cells, of which 24 were upregulated and 10 were downregulated by both drugs. FGF-7 was the lowest cytokine to be detected in both untreated and treated cells. Eleven cytokines not detected at baseline were detected following drug exposure. TNFα, IL6, GM-CSF, G-CSF, and TGFβ1 were selected for micronuclei induction. TK6 cells were exposed to these cytokines in isolation and in paired combinations. Only TNFα and TGFβ1 induced micronuclei at healthy concentrations, but all five cytokines induced micronuclei at storm levels, which was further increased when combined in pairs. Of particular concern was that some combinations induced micronuclei at levels above the mitomycin C positive control; however, most combinations were less than the sum of micronuclei induced following exposure to each cytokine in isolation. These data infer a possible role for cytokines through chemotherapy-induced cytokine storm, in the instigation and support of leukaemogenesis in the BM, and implicate the need to evaluate individuals for variability in cytokine secretion as a potential risk factor for complications such as DCL.
Collapse
Affiliation(s)
- Harshini S H Asurappulige
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - H Ruth Morse
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
9
|
He X, Cai L, Tang H, Chen W, Hu W. Epigenetic modifications in radiation-induced non-targeted effects and their clinical significance. Biochim Biophys Acta Gen Subj 2023; 1867:130386. [PMID: 37230420 DOI: 10.1016/j.bbagen.2023.130386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ionizing radiation (IR) plays an important role in the diagnosis and treatment of cancer. Besides the targeted effects, the non-targeted effects, which cause damage to non-irradiated cells and genomic instability in normal tissues, also play a role in the side effects of radiotherapy and have been shown to involve both alterations in DNA sequence and regulation of epigenetic modifications. SCOPE OF REVIEW We summarize the recent findings regarding epigenetic modifications that are involved in radiation-induced non-targeted effects as well as their clinical significance in radiotherapy and radioprotection. MAJOR CONCLUSIONS Epigenetic modifications play an important role in both the realization and modulation of radiobiological effects. However, the molecular mechanisms underlying non-targeted effects still need to be clarified. GENERAL SIGNIFICANCE A better understanding of the epigenetic mechanisms related to radiation-induced non-targeted effects will guide both individualized clinical radiotherapy and individualized precise radioprotection.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weibo Chen
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Lv Y, Du X, Tang W, Yang Q, Gao F. Exosomes: The Role in Tumor Tolerance and the Potential Strategy for Tumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15020462. [PMID: 36839784 PMCID: PMC9960400 DOI: 10.3390/pharmaceutics15020462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Drug and radiotherapy resistance is the primary cause of treatment failure and poor prognosis in patients with tumors. Exosomes are extracellular vesicles loaded with substances such as nucleic acids, lipids, and proteins that transmit information between cells. Studies have found that exosomes are involved in tumor therapy resistance through drug efflux, promotion of drug resistance phenotypes, delivery of drug-resistance-related molecules, and regulation of anti-tumor immune responses. Based on their low immunogenicity and high biocompatibility, exosomes have been shown to reduce tumor therapy resistance by loading nucleic acids, proteins, and drugs inside xosomes or expressing tumor-specific antigens, target peptides, and monoclonal antibodies on their phospholipid bimolecular membranes. Consequently, future research on genetically engineered exosomes is expected to eliminate resistance to tumor treatment, improving the overall prognosis of patients with tumors.
Collapse
Affiliation(s)
- Yun Lv
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang 621000, China
| | - Xiaobo Du
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang 621000, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637503, China
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
- Correspondence: or (Q.Y.); (F.G.)
| | - Feng Gao
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang 621000, China
- Correspondence: or (Q.Y.); (F.G.)
| |
Collapse
|
11
|
Meng Q, Deng Y, Lu Y, Wu C, Tang S. Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol 2023; 149:423-439. [PMID: 36378341 DOI: 10.1007/s00432-022-04432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that perform post-transcriptional gene regulation. This review focuses on the role of tumor cell-derived miRNAs in the regulation of the tumor microenvironment (TME) via receptor cell recoding, including angiogenesis, expression of immunosuppressive molecules, formation of radiation resistance, and chemoresistance. Furthermore, we discuss the potential of these molecules as adjuvant therapies in combination with chemotherapy, radiotherapy, or immunotherapy, as well as their advantages as efficacy predictors for personalized therapy. MiRNA-based therapeutic agents for tumors are currently in clinical trials, and while challenges remain, additional research on tumor-derived miRNAs is warranted, which may provide significant clinical benefits to cancer patients.
Collapse
Affiliation(s)
- Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Yaoming Deng
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Yu Lu
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Chunfeng Wu
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Shifu Tang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China. .,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China.
| |
Collapse
|
12
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
14
|
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022; 20:171. [PMCID: PMC9620591 DOI: 10.1186/s12964-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy.
Video abstract
Collapse
Affiliation(s)
- Zhenyi Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Wen Zhong
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Liang Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ping Wen
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Yixuan Luo
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Chunli Wu
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
15
|
Shin JY, Kim DY, Lee J, Shin YJ, Kim YS, Lee PH. Priming mesenchymal stem cells with α-synuclein enhances neuroprotective properties through induction of autophagy in Parkinsonian models. STEM CELL RESEARCH & THERAPY 2022; 13:483. [PMID: 36153562 PMCID: PMC9509608 DOI: 10.1186/s13287-022-03139-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
Background Mesenchymal stem cells (MSCs) may be one of candidates for disease-modifying therapy in Parkinsonian diseases. As knowledge regarding the therapeutic properties of MSCs accumulates, some obstacles still remain to be overcome, especially, successful clinical translation requires the development of culture systems that mimic the natural MSC niche, while allowing clinical-scale cell expansion without compromising quality and function of the cells. In recent years, priming approaches using bioactive peptide or complement components have been investigated to enhance the therapeutic potential of MSCs. Methods We investigated an innovative priming strategy by conditioning the MSCs with α-synuclein (α-syn). To induce priming, MSCs were treated with different concentrations of α-syn and various time course. We evaluated whether α-syn enhances stemness properties of MSCs and priming MSCs with α-syn would modulate autophagy-related gene expression profiles. Results Treatment of naïve MSCs with α-syn upregulated transcriptional factors responsible for regulation of stemness, which was associated with the elevated expression of genes involved in glycolysis and cell re-programming. Primed MSCs with α-syn enhanced the expression of autophagy-regulating miRNA, and exosomes derived from primed MSCs were packed with autophagy-associated miRNA. In α-syn-overexpressing neuronal cells, primed MSCs with α-syn enhanced neuronal viability relative to naïve MSCs, through the induction of autophagy and lysosome activity. Animal study using an α-syn-overexpressing mice showed that the pro-survival effect of MSCs on dopaminergic neurons was more prominent in primed MSC-treated mice compared with that in naïve MSC-treated mice. Conclusions The present data suggest that MSC priming with α-syn exerts neuroprotective effects through augmented stemness and possibly the enhancement of autophagy-mediated α-syn modulation in Parkinsonian models. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03139-w.
Collapse
|
16
|
Roy A, Bera S, Saso L, Dwarakanath BS. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Front Oncol 2022; 12:957373. [PMID: 36172166 PMCID: PMC9510974 DOI: 10.3389/fonc.2022.957373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an evolutionary conserved, lysosome-involved cellular process that facilitates the recycling of damaged macromolecules, cellular structures, and organelles, thereby generating precursors for macromolecular biosynthesis through the salvage pathway. It plays an important role in mediating biological responses toward various stress, including those caused by ionizing radiation at the cellular, tissue, and systemic levels thereby implying an instrumental role in shaping the tumor responses to radiotherapy. While a successful execution of autophagy appears to facilitate cell survival, abortive or interruptions in the completion of autophagy drive cell death in a context-dependent manner. Pre-clinical studies establishing its ubiquitous role in cells and tissues, and the systemic response to focal irradiation of tumors have prompted the initiation of clinical trials using pharmacologic modifiers of autophagy for enhancing the efficacy of radiotherapy. However, the outcome from the Phase I/II trials in many human malignancies has so far been equivocal. Such observations have not only precluded the advancement of these autophagy modifiers in the Phase III trial but have also raised concerns regarding their introduction as an adjuvant to radiotherapy. This warrants a thorough understanding of the biology of the cancer cells, including its spatio-temporal context, as well as its microenvironment all of which might be the crucial factors that determine the success of an autophagy modifier as an anticancer agent. This review captures the current understanding of the interplay between radiation induced autophagy and the biological responses to radiation damage as well as provides insight into the potentials and limitations of targeting autophagy for improving the radiotherapy of tumors.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biotechnology, Indian Academy Degree College (Autonomous), Bengaluru, Karnataka, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Soumen Bera
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Bilikere S. Dwarakanath
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Institute, Chennai, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| |
Collapse
|
17
|
Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF. The Footprint of Exosomes in the Radiation-Induced Bystander Effects. Bioengineering (Basel) 2022; 9:bioengineering9060243. [PMID: 35735486 PMCID: PMC9220715 DOI: 10.3390/bioengineering9060243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells nearby are known as bystander effects, while effects far from the ionising radiation-exposed cells are known as abscopal effects. These effects are presented as a consequence of intercellular communications. Therefore, a better understanding of the involved intercellular signals may bring promising new strategies for radiation risk assessment and potential targets for developing novel radiotherapy strategies. Recent studies indicate that radiation-derived extracellular vesicles, particularly exosomes, play a vital role in intercellular communications and may result in radioresistance and non-targeted effects. This review describes exosome biology, intercellular interactions, and response to different environmental stressors and diseases, and focuses on their role as functional mediators in inducing radiation-induced bystander effect (RIBE).
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês A. Marques
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
| | - Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
18
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23094493. [PMID: 35562884 PMCID: PMC9104172 DOI: 10.3390/ijms23094493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy.
Collapse
|
20
|
Pan D, Zhu S, Zhang W, Wei Z, Yang F, Guo Z, Ning G, Feng S. Autophagy induced by Schwann cell-derived exosomes promotes recovery after spinal cord injury in rats. Biotechnol Lett 2021; 44:129-142. [PMID: 34738222 PMCID: PMC8854309 DOI: 10.1007/s10529-021-03198-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
Spinal cord injury (SCI) is catastrophic to humans and society. However, there is currently no effective treatment for SCI. Autophagy is known to serve critical roles in both the physiological and pathological processes of the body, but its facilitatory and/or deleterious effects in SCI are yet to be completely elucidated. This study aimed to use primary Schwann cell-derived exosomes (SCDEs) to treat rats after SCI. In the present study, SCDEs were purified and their efficacy in ameliorating the components of SCI was examined. Using both in vivo and in vitro experiments, it was demonstrated that SCDEs increased autophagy and decreased apoptosis after SCI, which promoted axonal protection and the recovery of motor function. Furthermore, it was discovered that an increased number of SCDEs resulted in a decreased expression level of EGFR, which subsequently inhibited the Akt/mTOR signaling pathway, which upregulated the level of autophagy to ultimately induce microtubule acetylation and polymerization. Collectively, the present study identified that SCDEs could induce axonal protection after SCI by increasing autophagy and decreasing apoptosis, and it was suggested that this may involve the EGFR/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Weixin Zhang
- Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, 310053, China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhenglong Guo
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
21
|
AL-Abedi R, Tuncay Cagatay S, Mayah A, Brooks SA, Kadhim M. Ionising Radiation Promotes Invasive Potential of Breast Cancer Cells: The Role of Exosomes in the Process. Int J Mol Sci 2021; 22:ijms222111570. [PMID: 34769002 PMCID: PMC8583851 DOI: 10.3390/ijms222111570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Along with the cells that are exposed to radiation, non-irradiated cells can unveil radiation effects as a result of intercellular communication, which are collectively defined as radiation induced bystander effects (RIBE). Exosome-mediated signalling is one of the core mechanisms responsible for multidirectional communication of tumor cells and their associated microenvironment, which may result in enhancement of malignant tumor phenotypes. Recent studies show that exosomes and exosome-mediated signalling also play a dynamic role in RIBE in cancer cell lines, many of which focused on altered exosome cargo or their effects on DNA damage. However, there is a lack of knowledge regarding how these changes in exosome cargo are reflected in other functional characteristics of cancer cells from the aspects of invasiveness and metastasis. Therefore, in the current study, we aimed to investigate exosome-mediated bystander effects of 2 Gy X-ray therapeutic dose of ionizing radiation on the invasive potential of MCF-7 breast cancer cells in vitro via assessing Matrigel invasion potential, epithelial mesenchymal transition (EMT) characteristics and the extent of glycosylation, as well as underlying plausible molecular mechanisms. The findings show that exosomes derived from irradiated MCF-7 cells enhance invasiveness of bystander MCF-7 cells, possibly through altered miRNA and protein content carried in exosomes.
Collapse
|
22
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
23
|
Aili Y, Maimaitiming N, Mahemuti Y, Qin H, Wang Y, Wang Z. The Role of Exosomal miRNAs in Glioma: Biological Function and Clinical Application. Front Oncol 2021; 11:686369. [PMID: 34540663 PMCID: PMC8442992 DOI: 10.3389/fonc.2021.686369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gliomas are complex and heterogeneous central nervous system tumors with poor prognosis. Despite the increasing development of aggressive combination therapies, the prognosis of glioma is generally unsatisfactory. Exosomal microRNA (miRNA) has been successfully used in other diseases as a reliable biomarker and even therapeutic target. Recent studies show that exosomal miRNA plays an important role in glioma occurrence, development, invasion, metastasis, and treatment resistance. However, the association of exosomal miRNA between glioma has not been systemically characterized. This will provide a theoretical basis for us to further explore the relationship between exosomal miRNAs and glioma and also has a positive clinical significance in the innovative diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | | | - Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
24
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
25
|
Tomita K, Nagasawa T, Kuwahara Y, Torii S, Igarashi K, Roudkenar MH, Roushandeh AM, Kurimasa A, Sato T. MiR-7-5p Is Involved in Ferroptosis Signaling and Radioresistance Thru the Generation of ROS in Radioresistant HeLa and SAS Cell Lines. Int J Mol Sci 2021; 22:8300. [PMID: 34361070 PMCID: PMC8348045 DOI: 10.3390/ijms22158300] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
In cancer therapy, radioresistance or chemoresistance cells are major problems. We established clinically relevant radioresistant (CRR) cells that can survive over 30 days after 2 Gy/day X-ray exposures. These cells also show resistance to anticancer agents and hydrogen peroxide (H2O2). We have previously demonstrated that all the CRR cells examined had up-regulated miR-7-5p and after miR-7-5p knockdown, they lost radioresistance. However, the mechanism of losing radioresistance remains to be elucidated. Therefore, we investigated the role of miR-7-5p in radioresistance by knockdown of miR-7-5p using CRR cells. As a result, knockdown of miR-7-5p increased reactive oxygen species (ROS), mitochondrial membrane potential, and intracellular Fe2+ amount. Furthermore, miR-7-5p knockdown results in the down-regulation of the iron storage gene expression such as ferritin, up-regulation of the ferroptosis marker ALOX12 gene expression, and increases of Liperfluo amount. H2O2 treatment after ALOX12 overexpression led to the enhancement of intracellular H2O2 amount and lipid peroxidation. By contrast, miR-7-5p knockdown seemed not to be involved in COX-2 and glycolysis signaling but affected the morphology of CRR cells. These results indicate that miR-7-5p control radioresistance via ROS generation that leads to ferroptosis.
Collapse
Affiliation(s)
- Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
| | - Taisuke Nagasawa
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai-City 983-8536, Miyagi, Japan;
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi-City 371-8510, Gunma, Japan;
| | - Kento Igarashi
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
| | - Mehryar Habibi Roudkenar
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht 41937-13194, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht 41937-13194, Iran
| | - Akihiro Kurimasa
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai-City 983-8536, Miyagi, Japan;
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-City 890-8544, Kagoshima, Japan; (T.N.); (Y.K.); (K.I.); (M.H.R.); (A.M.R.); (T.S.)
| |
Collapse
|
26
|
Chen Y, Cui J, Gong Y, Wei S, Wei Y, Yi L. MicroRNA: a novel implication for damage and protection against ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15584-15596. [PMID: 33533004 PMCID: PMC7854028 DOI: 10.1007/s11356-021-12509-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/12/2021] [Indexed: 04/16/2023]
Abstract
Ionizing radiation (IR) is a form of high energy. It poses a serious threat to organisms, but radiotherapy is a key therapeutic strategy for various cancers. It is significant to reduce radiation injury but maximize the effect of radiotherapy. MicroRNAs (miRNAs) are posttranscriptionally regulatory factors involved in cellular radioresponse. In this review, we show how miRNAs regulate important genes on cellular response to IR-induced damage and how miRNAs participate in IR-induced carcinogenesis. Additionally, we summarize the experimental and clinical evidence for miRNA involvement in radiotherapy and discuss their potential for improvement of radiotherapy. Finally, we highlight the role that miRNAs play in accident exposure to IR or radiotherapy as predictive biomarker. miRNA therapeutics have shown great perspective in radiobiology; miRNA may become a novel strategy for damage and protection against IR.
Collapse
Affiliation(s)
- Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yaqi Gong
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Shuang Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yuanyun Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
27
|
Yin T, Xin H, Yu J, Teng F. The role of exosomes in tumour immunity under radiotherapy: eliciting abscopal effects? Biomark Res 2021; 9:22. [PMID: 33789758 PMCID: PMC8011088 DOI: 10.1186/s40364-021-00277-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
As a curative treatment of localized tumours or as palliative control, radiotherapy (RT) has long been known to kill tumour cells and trigger the release of proinflammatory factors and immune cells to elicit an immunological response to cancer. As a crucial part of the tumour microenvironment (TME), exosomes, which are double-layered nanometre-sized vesicles, can convey molecules, present antigens, and mediate cell signalling to regulate tumour immunity via their contents. Different contents result in different effects of exosomes. The abscopal effect is a systemic antitumour effect that occurs outside of the irradiated field and is associated with tumour regression. This effect is mediated through the immune system, mainly via cell-mediated immunity, and results from a combination of inflammatory cytokine cascades and immune effector cell activation. Although the abscopal effect has been observed in various malignancies for many years, it is still a rarely identified clinical event. Researchers have indicated that exosomes can potentiate abscopal effects to enhance the effects of radiation, but the specific mechanisms are still unclear. In addition, radiation can affect exosome release and composition, and irradiated cells release exosomes with specific contents that change the cellular immune status. Hence, fully understanding how radiation affects tumour immunity and the interaction between specific exosomal contents and radiation may be a potential strategy to maximize the efficacy of cancer therapy. The optimal application of exosomes as novel immune stimulators is under active investigation and is described in this review.
Collapse
Affiliation(s)
- Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huixian Xin
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
28
|
Bian M, Yu Y, Li Y, Zhou Z, Wu X, Ye X, Yu J. Upregulating the Expression of LncRNA ANRIL Promotes Osteogenesis via the miR-7-5p/IGF-1R Axis in the Inflamed Periodontal Ligament Stem Cells. Front Cell Dev Biol 2021; 9:604400. [PMID: 33692995 PMCID: PMC7937634 DOI: 10.3389/fcell.2021.604400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) is a base length of about 3.8 kb lncRNA, which plays an important role in several biological functions including cell proliferation, migration, and senescence. This study ascertained the role of lncRNA ANRIL in the senescence and osteogenic differentiation of inflamed periodontal ligament stem cells (iPDLSCs). Methods Healthy periodontal ligament stem cells (hPDLSCs) and iPDLSCs were isolated from healthy/inflamed periodontal ligament tissues, respectively. The proliferation abilities were determined by CCK-8, EdU assay, and flow cytometry (FCM). The methods of Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR), alizarin red staining, alkaline phosphatase (ALP) staining, ALP activity detection, and immunofluorescence staining were described to determine the biological influences of lncRNA ANRIL on iPDLSCs. Senescence-associated (SA)-β-galactosidase (gal) staining, Western blot analysis, and qRT-PCR were performed to determine cell senescence. Dual-luciferase reporter assays were conducted to confirm the binding of lncRNA ANRIL and miR-7-5-p, as well as miR-7-5p and insulin-like growth factor receptor (IGF-1R). Results HPDLSCs and iPDLSCs were isolated and cultured successfully. LncRNA ANRIL and IGF-1R were declined, while miR-7-5p was upregulated in iPDLSCs compared with hPDLSCs. Overexpression of ANRIL enhanced the osteogenic protein expressions of OSX, RUNX2, ALP, and knocked down the aging protein expressions of p16, p21, p53. LncRNA ANRIL could promote the committed differentiation of iPDLSCs by sponging miR-7-5p. Upregulating miR-7-5p inhibited the osteogenic differentiation of iPDLSCs. Further analysis identified IGF-1R as a direct target of miR-7-5p. The direct binding of lncRNA ANRIL and miR-7-5p, miR-7-5p and the 3′-UTR of IGF-1R were verified by dual-luciferase reporter assay. Besides, rescue experiments showed that knockdown of miR-7-5p reversed the inhibitory effect of lncRNA ANRIL deficiency on osteogenesis of iPDLSCs. Conclusion This study disclosed that lncRNA ANRIL promotes osteogenic differentiation of iPDLSCs by regulating the miR-7-5p/IGF-1R axis.
Collapse
Affiliation(s)
- Minxia Bian
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Yan Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Yuzhi Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Zhou Zhou
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Xiao Wu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Xiaying Ye
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Li Z, Jella KK, Jaafar L, Moreno CS, Dynan WS. Characterization of exosome release and extracellular vesicle-associated miRNAs for human bronchial epithelial cells irradiated with high charge and energy ions. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:11-17. [PMID: 33612174 DOI: 10.1016/j.lssr.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Exosomes are extracellular vesicles that mediate transport of nucleic acids, proteins, and other molecules. Prior work has implicated exosomes in the transmission of radiation nontargeted effects. Here we investigate the ability of energetic heavy ions, representative of species found in galactic cosmic rays, to stimulate exosome release from human bronchial epithelial cells in vitro. Immortalized human bronchial epithelial cells (HBEC3-KT F25F) were irradiated with 1.0 Gy of high linear energy transfer (LET) 48Ti, 28Si, or 16O ions, or with 10 Gy of low-LET reference γ-rays, and extracellular vesicles were collected from conditioned media. Preparations were characterized by single particle tracking analysis, transmission electron microscopy, and immunoblotting for the exosomal marker, TSG101. Based on TSG101 levels, irradiation with high-LET ions, but not γ-rays, stimulated exosome release by about 4-fold, relative to mock-irradiated controls. The exosome-enriched vesicle preparations contained pro-inflammatory damage-associated molecular patterns, including HSP70 and calreticulin. Additionally, miRNA profiling was performed for vesicular RNAs using NanoString technology. The miRNA profile was skewed toward a small number of species that have previously been shown to be involved in cancer initiation and progression, including miR-1246, miR-1290, miR-23a, and miR-205. Additionally, a set of 24 miRNAs was defined as modestly over-represented in preparations from HZE ion-irradiated versus other cells. Gene set enrichment analysis based on the over-represented miRNAs showed highly significant association with nonsmall cell lung and other cancers.
Collapse
Affiliation(s)
- Zhentian Li
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Kishore K Jella
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Lahcen Jaafar
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States; Department of Biomedical Informatics, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States; Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, United States.
| |
Collapse
|
30
|
Xing H, Tan J, Miao Y, Lv Y, Zhang Q. Crosstalk between exosomes and autophagy: A review of molecular mechanisms and therapies. J Cell Mol Med 2021; 25:2297-2308. [PMID: 33506641 PMCID: PMC7933923 DOI: 10.1111/jcmm.16276] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles that primarily exist in bodily fluids such as blood. Autophagy is an intracellular degradation process, which, along with exosomes, can significantly influence human health and has therefore attracted considerable attention in recent years. Exosomes have been shown to regulate the intracellular autophagic process, which, in turn, affects the circulating exosomes. However, crosstalk between exosomal and autophagic pathways is highly complex, depends primarily on the environment, and varies greatly in different diseases. In addition, studies have demonstrated that exosomes, from specific cell, can mitigate several diseases by regulating autophagy, which can also affect the excessive release of some harmful exosomes. This phenomenon lays a theoretical foundation for the improvement of many diseases. Herein, we review the mechanisms and clinical significance of the association and regulation of exosomes and autophagy, in order to provide a new perspective for the prevention and treatment of associated diseases.
Collapse
Affiliation(s)
- Huifang Xing
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | | | - Yingmei Lv
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
31
|
Yang X, Ma L, Ye Z, Shi W, Zhang L, Wang J, Yang H. Radiation-induced bystander effects may contribute to radiation-induced cognitive impairment. Int J Radiat Biol 2021; 97:329-340. [PMID: 33332177 DOI: 10.1080/09553002.2021.1864498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Despite being a major treatment modality for brain cancer due to its efficiency in achieving cancer control, radiotherapy has long been known to cause long-term side effects, including radiation-induced cognitive impairment (RICI). Neurogenesis inhibition due to radiation-induced damage in neural stem cells (NSCs) has been demonstrated to be an important mechanism underlying RICI. Radiation-induced bystander effects (RIBEs) denote the biological responses in non-targeted cells after their neighboring cells are irradiated. We have previously demonstrated that RIBEs could play an important role in the skin wound healing process. Therefore, we aimed to investigate whether RIBEs contribute to RICI in this study. MATERIALS AND METHODS The transwell co-culture method was used to investigate bystander effects in mouse NSCs induced by irradiated GL261 mouse glioma cells in vitro. The proliferation, neurosphere-forming capacity and differentiation potential of NSCs were determined as the bystander endpoints. The exosomes were extracted from the media used to culture GL261 cells and were injected into the hippocampus of C57BL/6 mice. Two months later, the neurogenesis of mice was assessed using BrdU incorporation and immunofluorescence microscopy, and cognitive function was evaluated by the Morris Water Maze. RESULTS After co-culture with GL261 glioma cells, mouse NSCs displayed inhibited proliferation and reduced neurosphere-forming capacity and differentiation potential. The irradiated GL261 cells caused greater inhibition and reduction in NSCs than unirradiated GL261 cells. Moreover, adding the exosomes secreted by GL261 cells into the culture of NSCs inhibited NSC proliferation, suggesting that the cancer cell-derived exosomes may be critical intercellular signals. Furthermore, injection of the exosomes from GL261 cells into the hippocampus of mice caused significant neurogenesis inhibition and cognitive impairment two month later, and the exosomes from irradiated GL261 cells induced greater inhibitory effects. CONCLUSION RIBEs mediated by the exosomes from irradiated cancer cells could contribute to RICI and, therefore, could be a novel mechanism underlying RICI.
Collapse
Affiliation(s)
- Xuejiao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Linlin Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Zhujing Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Wenyu Shi
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, PR China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, PR China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Second Affiliated Hospital of Soochow University, Suzhou, PR China.,Institute of Radiotherapy & Oncology of Soochow University, Suzhou, PR China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China.,Institute of Radiotherapy & Oncology of Soochow University, Suzhou, PR China
| |
Collapse
|
32
|
Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2021; 8:595515. [PMID: 33490063 PMCID: PMC7817780 DOI: 10.3389/fcell.2020.595515] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are emerging as nanocarriers of biological information between cells. Extracellular vesicles transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and proteins), thus eliciting phenotypic changes in recipient cells. However, we only partially understand the cellular mechanisms driving the encounter of a soluble ligand transported in the lumen of extracellular vesicles with its cytosolic receptor: a step required to evoke a biologically relevant response. In this context, we review herein current evidence supporting the role of two well-described cellular transport pathways: the endocytic pathway as the main entry route for extracellular vesicles and the autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay between these pathways may result in the target engagement between an extracellular vesicle cargo protein and its cytosolic target within the acidic compartments of the cell. This mechanism of cell-to-cell communication may well own possible implications in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Member of the International Ph.D. Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
33
|
Wang H, Feng J, Ao F, Tang Y, Xu P, Wang M, Huang M. Tumor-derived exosomal microRNA-7-5p enhanced by verbascoside inhibits biological behaviors of glioblastoma in vitro and in vivo. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:569-582. [PMID: 33768139 PMCID: PMC7972934 DOI: 10.1016/j.omto.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Verbascoside (VB), a glycosylated phenylpropane compound, has been widely used in traditional medicine showing anti-inflammatory and anti-tumor effects in many diseases. The current study aimed to investigate the mechanism underlying the inhibitor effect of VB on glioblastoma (GBM). We isolated and identified the tumor-derived exosomes (TEXs) secreted by GBM cells before and after treatment with VB, after which, we detected expression of microRNA (miR)-7-5p in cells and TEXs by qRT-PCR. Loss- and gain-function assays were conducted to determine the role of miR-7-5p in GBM cells with the proliferation, apoptosis, invasion, migration, and microtubule formation of GBM cells detected. A subcutaneous tumor model and tumor metastasis model of nude mice were established to validate the in vitro findings. We found that VB promoted the expression of miR-7-5p in GBM and transferred miR-7-5p to recipient GBM cells by exosomal delivery. Consequently, miR-7-5p downregulated epidermal growth factor receptor (EGFR) expression to inactivate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, causing inhibition in the proliferation, migration, invasion, and microtubule formation of GBM cells in vitro, as well as decline in tumor formation and metastasis in vivo. Overall, VB can promote the expression of miR-7-5p in GBM cells and transfer miR-7-5p via exosomes, thereby inhibiting the occurrence of GBM.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Jiangxi Provincial Corps Hospital of Chinese People’s Armed Police Forces, Nanchang 330001, PR China
| | - Jiugeng Feng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Fan Ao
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, PR China
| | - Yiqiang Tang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, PR China
| | - Pengliang Xu
- Department of Neurosurgery, Jiangxi Provincial Corps Hospital of Chinese People’s Armed Police Forces, Nanchang 330001, PR China
| | - Min Wang
- Department of Neurosurgery, Jiangxi Provincial Corps Hospital of Chinese People’s Armed Police Forces, Nanchang 330001, PR China
| | - Min Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, PR China
- Corresponding author: Min Huang, Department of Radiation Oncology, Jiangxi Cancer Hospital, No. 519, Eastern Beijing Road, Nanchang 330029, Jiangxi Province, PR China.
| |
Collapse
|
34
|
Ni N, Ma W, Tao Y, Liu J, Hua H, Cheng J, Wang J, Zhou B, Luo D. Exosomal MiR-769-5p Exacerbates Ultraviolet-Induced Bystander Effect by Targeting TGFBR1. Front Physiol 2020; 11:603081. [PMID: 33329055 PMCID: PMC7719707 DOI: 10.3389/fphys.2020.603081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Exosomal microRNAs have been investigated in bystander effect, but it is unclear whether microRNA works in ultraviolet radiation-induced bystander effects (UV-RIBEs) and what the underlying mechanism could be. Exosomes from ultraviolet (UV)-irradiated human skin fibroblasts (HSFs) were isolated and transferred to normal HSFs, followed by the detection of proliferation rate, oxidative damage level, and apoptosis rate. Exosomal miRNAs were evaluated and screened with miRNA sequencing and quantitative reverse transcriptase-polymerase chain reaction method. MiRNA shuttle and bystander photodamage reactions were observed after transfection of miR-769-5p. MiR-769-5p targeting gene transforming growth factor-β1 (TGFBR1), and TGFBR1 mRNA 3'-untranslated region (UTR) was assessed and identified by Western blotting and dual-luciferase reporter assay. Bystander effects were induced after being treated with isolated exosomes from UV-irradiated HSFs. Exosomal miR-769-5p expression was significantly upregulated. Human skin fibroblasts showed lower proliferation, increasing oxidative damage, and faster occurrence of apoptosis after transfection. Exosome-mediated transfer of miR-769-5p was observed. Upregulation of miR-769-5p induced bystander effects, whereas downregulation of miR-769-5p can suppress UV-RIBEs. In addition, miR-769-5p was found to downregulate TGFBR1 gene expression by directly targeting its 3'-UTR. Our results demonstrate that exosome-mediated miR-769-5p transfer could function as an intercellular messenger and exacerbate UV-RIBEs. MiR-769-5p inhibits the expression of TGFBR1 by targeting TGFBR1 mRNA 3'-UTR.
Collapse
Affiliation(s)
- Na Ni
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanling Tao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Hua
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawei Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
A Biomarker Panel of Radiation-Upregulated miRNA as Signature for Ionizing Radiation Exposure. Life (Basel) 2020; 10:life10120361. [PMID: 33352926 PMCID: PMC7766228 DOI: 10.3390/life10120361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation causes serious injury to the human body and has long-time impacts on health. It is important to find optimal biomarkers for the early quick screening of exposed individuals. A series of miRNAs signatures have been developed as the new biomarkers for diagnosis, survival, and prognostic prediction of cancers. Here, we have identified the ionizing radiation-inducible miRNAs profile through microarray analysis. The biological functions were predicted for the top six upregulated miRNAs by 4 Gy γ-rays: miR-1246, miR-1307-3p, miR-3197, miR-4267, miR-5096 and miR-7641. The miRNA-gene network and target gene-pathway network analyses revealed that DNAH3 is the target gene associated with all the six miRNAs. GOLGB1 is related to 4 miRNAs and other 26 genes targeted by 3 miRNAs. The upregulation of fifteen miRNAs were further verified at 4 h and 24 h after 0 to 10 Gy irradiation in the human lymphoblastoid AHH-1 cells, and some demonstrated a dose-dependent increased. Six miRNAs, including miR-145, miR-663, miR-1273g-3p, miR-6090, miR-6727-5p and miR-7641, were validated to be dose-dependently upregulated at 4 h or 24 h post-irradiation in both AHH-1 and human peripheral blood lymphocytes irradiated ex vivo. This six-miRNA signature displays the superiority as a radiation biomarker for the translational application of screening and assessment of radiation exposed individuals.
Collapse
|
36
|
Abramowicz A, Łabaj W, Mika J, Szołtysek K, Ślęzak-Prochazka I, Mielańczyk Ł, Story MD, Pietrowska M, Polański A, Widłak P. MicroRNA Profile of Exosomes and Parental Cells is Differently Affected by Ionizing Radiation. Radiat Res 2020; 194:133-142. [PMID: 32383628 DOI: 10.1667/rade-20-00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 11/03/2022]
Abstract
Exosomes are key mediators of cell-to-cell communication involved in different aspects of the response to ionizing radiation. The functional role of exosomes depends on their molecular cargo, including protein and miRNA content. In this work, we compared the miRNA profile of cells exposed to a high-dose of radiation and the exosomes released by those cells. FaDu cells (derived from human head and neck cancer) were exposed to 2 and 8 Gy doses, exosomes were purified from culture media at 36 h postirradiation using a combination of differential centrifugation, ultrafiltration and precipitation, then microRNA was analyzed using the RNA-seq approach. There were 439 miRNA species quantified, and significant differences in their relative abundance were observed between the cells and exosomes; several low-abundance miRNAs were over-represented while high-abundance miRNA were under-represented in exosomes. There were a few miRNA species markedly affected in irradiated cells and in exosomes released by these cells. However, markedly different radiation-induced effects were observed in both miRNA sets, which could be exemplified by miR-3168 significantly downregulated in cells and upregulated in exosomes. On the other hand, both 2 and 8 Gy radiation doses induced similar effects. Radiation-affected miRNA species present in exosomes are linked to genes involved in the DNA damage and cytokine-mediated response, which may suggest their hypothetical role in the exosome-mediated radiation-induced bystander effect reported elsewhere.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | - Wojciech Łabaj
- Silesian University of Technology, 44-100, Gliwice, Poland
| | - Justyna Mika
- Silesian University of Technology, 44-100, Gliwice, Poland
| | - Katarzyna Szołtysek
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | | | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Michael D Story
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, Texas 75390
| | - Monika Pietrowska
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | | | - Piotr Widłak
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| |
Collapse
|
37
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
39
|
Sorrentino D, Frentzel J, Mitou G, Blasco RB, Torossian A, Hoareau-Aveilla C, Pighi C, Farcé M, Meggetto F, Manenti S, Espinos E, Chiarle R, Giuriato S. High Levels of miR-7-5p Potentiate Crizotinib-Induced Cytokilling and Autophagic Flux by Targeting RAF1 in NPM-ALK Positive Lymphoma Cells. Cancers (Basel) 2020; 12:cancers12102951. [PMID: 33066037 PMCID: PMC7650725 DOI: 10.3390/cancers12102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Anaplastic lymphoma kinase positive anaplastic large cell lymphomas are a pediatric disease, which still needs treatment improvement. Crizotinib was the first ALK-targeted inhibitor used in clinics, but relapses are now known to occur. Current research efforts indicate that combined therapies could represent a superior strategy to eradicate malignant cells and prevent tumor recurrence. Autophagy is a self-digestion cellular process, known to be induced upon diverse cancer therapies. Our present work demonstrates that the potentiation of the crizotinib-induced autophagy flux, through the serine/threonine kinase RAF1 downregulation, drives ALK+ ALCL cells to death. These results should encourage further investigations on the therapeutic modulation of autophagy in this particular cancer settings and other ALK-related malignancies. Abstract Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.
Collapse
Affiliation(s)
- Domenico Sorrentino
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Julie Frentzel
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Merck Serono S.A., Department of Biotechnology Process Sciences, Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland
| | - Géraldine Mitou
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Rafael B. Blasco
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
| | - Avédis Torossian
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Coralie Hoareau-Aveilla
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Chiara Pighi
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Manon Farcé
- Pôle Technologique du CRCT—Plateau de Cytométrie et Tri cellulaire—INSERM U1037, F-31037 Toulouse, France;
| | - Fabienne Meggetto
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sylvie Giuriato
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +33-(5)-82-74-16-35
| |
Collapse
|
40
|
Huang R, Gao S, Han Y, Ning H, Zhou Y, Guan H, Liu X, Yan S, Zhou PK. BECN1 promotes radiation-induced G2/M arrest through regulation CDK1 activity: a potential role for autophagy in G2/M checkpoint. Cell Death Discov 2020; 6:70. [PMID: 32802407 PMCID: PMC7406511 DOI: 10.1038/s41420-020-00301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Authophagy and G2/M arrest are two important mechanistic responses of cells to ionizing radiation (IR), in particular the IR-induced fibrosis. However, what interplayer and how it links the autophagy and the G2/M arrest remains elusive. Here, we demonstrate that the autophagy-related protein BECN1 plays a critical role in ionizing radiation-induced G2/M arrest. The treatment of cells with autophagy inhibitor 3-methyladenine (3-MA) at 0-12 h but not 12 h postirradiation significantly sensitized them to IR, indicating a radio-protective role of autophagy in the early response of cells to radiation. 3-MA and BECN1 disruption inactivated the G2/M checkpoint following IR by abrogating the IR-induced phosphorylation of phosphatase CDC25C and its target CDK1, a key mediator of the G2/M transition in coordination with CCNB1. Irradiation increased the nuclear translocation of BECN1, and this process was inhibited by 3-MA. We confirmed that BECN1 interacts with CDC25C and CHK2, and which is mediated the amino acids 89-155 and 151-224 of BECN1, respectively. Importantly, BECN1 deficiency disrupted the interaction of CHK2 with CDC25C and the dissociation of CDC25C from CDK1 in response to irradiation, resulting in the dephosphorylation of CDK1 and overexpression of CDK1. In summary, IR induces the translocation of BECN1 to the nucleus, where it mediates the interaction between CDC25C and CHK2, resulting in the phosphorylation of CDC25C and its dissociation from CDK1. Consequently, the mitosis-promoting complex CDK1/CCNB1 is inactivated, resulting in the arrest of cells at the G2/M transition. Our findings demonstrated that BECN1 plays a role in promotion of radiation-induced G2/M arrest through regulation of CDK1 activity. Whether such functions of BECN1 in G2/M arrest is dependent or independent on its autophagy-related roles is necessary to further identify.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078 Changsha, Hunan Province China
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Yanqin Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078 Changsha, Hunan Province China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078 Changsha, Hunan Province China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Shuang Yan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, 511436 Guangzhou, P. R. China
| |
Collapse
|
41
|
Hassanpour M, Rezabakhsh A, Rezaie J, Nouri M, Rahbarghazi R. Exosomal cargos modulate autophagy in recipient cells via different signaling pathways. Cell Biosci 2020; 10:92. [PMID: 32765827 PMCID: PMC7395405 DOI: 10.1186/s13578-020-00455-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
Vesicular system of mammalian cells is composed of two intracellular and extracellular vesicles systems, which contributes to the intra/intercellular communication and cellular homeostasis. These systems mediate transferring of biological molecules like proteins, nucleic acids, and lipids inside the cytoplasm, and between the cells. By the present study, authors describe molecular crosslink between exosome biogenesis and autophagy and take a certain focus on the autophagic cargos of exosomes and signaling pathways involved in exosome-induced autophagy in target cells and vice versa. Autophagy the generation of double-phospholipid vesicles, is a process that engulfs damaged proteins and organelles, share molecular similarity and function synergy with exosomes biogenesis for degradation or exocytosis of certain cargo. Exosomes, the smallest subtype of extracellular vesicles, originating from the membrane of the multivesicular body located inside cells demonstrate key roles in the intracellular and intercellular communication. Growing evidence demonstrates the interaction between exosome biogenesis and autophagy both at intertwined molecular pathways and crossbred vesicles known as amphisomes. Crosstalk between exosome biogenesis and autophagy contributes to maintain cellular homeostasis under external and internal stresses. Moreover, these processes can modulate each other via different signaling pathways. Exosomes contain autophagic cargos that induce autophagy via the cascade of molecular events in target cells, which called here exosome-induced autophagy. Taken together, crosstalk between exosome biogenesis and autophagy plays pivotal roles in cell homeostasis. Shedding light on the interaction between endomembrane systems may promote our knowledge about the relation between exosome and autophagy pathways in lysosome-related disorders against treatments; proposing a theoretical approach for therapy.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., Urmia, 57147 Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Exosomes: Multiple-targeted multifunctional biological nanoparticles in the diagnosis, drug delivery, and imaging of cancer cells. Biomed Pharmacother 2020; 129:110442. [PMID: 32593129 DOI: 10.1016/j.biopha.2020.110442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are biological nanoparticles (30-150 nm) secreted in the extracellular area from all of cells, that mediate intercellular message. Exosomes act as the carriers for numerous proteins, DNAs, RNAs and cell-signaling molecules. Therefore, exosomes secreted by the tumor cells are useful for diagnostic purposes because of their persistent presence in the blood and their provision of genetic cargo similar to those in tumor. Due to the risks of aggressive activity and ambiguity of biological activity in other tissues, the use of exosomes in drug delivery and imaging has been limited. However, their high loading, stability and longer circulation time, excellent targeting, high cell penetration performance, and optimal biodegradability have made them potential agents in targeted cancer treatment. Therefore, in addition to examining methods for isolating and loading exosomes, this paper discusses the applications of exosomes in biological measurement, imaging, and therapeutic activities. Also, this review describes the challenges of using exosomes compared to conventional methods and shows that it is very useful to use them due to less aggressive activities. Finally, this review attempts to provide an appropriate incentive by showing the performance of exosomes in cancer therapy through targeted drug delivery, gene therapy, imaging and diagnosis.
Collapse
|
43
|
Abramowicz A, Story MD. The Long and Short of It: The Emerging Roles of Non-Coding RNA in Small Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12061445. [PMID: 32498257 PMCID: PMC7352322 DOI: 10.3390/cancers12061445] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Small extracellular vesicles (EVs) play a significant role in intercellular communication through their non-coding RNA (ncRNA) cargo. While the initial examination of EV cargo identified both mRNA and miRNA, later studies revealed a wealth of other types of EV-related non-randomly packed ncRNAs, including tRNA and tRNA fragments, Y RNA, piRNA, rRNA, and lncRNA. A number of potential roles for these ncRNA species were suggested, with strong evidence provided in some cases, whereas the role for other ncRNA is more speculative. For example, long non-coding RNA might be used as a potential diagnostic tool but might also mediate resistance to certain cancer-specific chemotherapy agents. piRNAs, on the other hand, have a significant role in genome integrity, however, no role has yet been defined for the piRNAs found in EVs. While our knowledgebase for the function of ncRNA-containing EVs is still modest, the potential role that these EV-ensconced ncRNA might play is promising. This review summarizes the ncRNA content of EVs and describes the function where known, or the potential utility of EVs that harbor specific types of ncRNA.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
44
|
Zhang Y, Liu J, Zhou L, Hao S, Ding Z, Xiao L, Zhou M. Exosomal Small RNA Sequencing Uncovers Dose-Specific MiRNA Markers for Ionizing Radiation Exposure. Dose Response 2020; 18:1559325820926735. [PMID: 32528236 PMCID: PMC7263154 DOI: 10.1177/1559325820926735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Acute exposure to ionizing radiation (IR) is hazardous or even lethal. Accurate estimation of the doses of IR exposure is critical to wisely determining the following treatments. Exosomes are nanoscale vesicles harboring biomolecules and mediate the communications among cells and tissues to influence biological processes. Screening out the microRNAs (miRNAs) contained in exosomes as biomarkers can be useful for estimating the IR exposure doses and exploring the correlation between these miRNAs and the occurrence of disease. Methods: We treated mice with 2.0, 6.5, and 8.0 Gy doses of IR and collected the mice sera at 0, 24, 48, and 72 hours after exposure. Then, the serum exosomes were isolated by ultracentrifuge and the small RNA portion was extracted for sequencing and the following bioinformatics analysis. Qualitative polymerase chain reaction was performed to validate the potential dose-specific markers. Results: Fifty-six miRNAs (31 upregulated, 25 downregulated) were differentially expressed after exposure of the above 3 IR doses and may act as common IR exposure miRNA markers. Bioinformatic analysis also identified several dosage-specific responsive miRNAs. Importantly, IR-induced miR-151-3p and miR-128-3p were significantly and stably increased at 24 hours in different mouse strains with distinct genetic background after exposed to 8.0 Gy of IR. Conclusion: Our study shows that miR-151-3p and miR-128-3p can be used as dose-specific biomarkers of 8.0 Gy IR exposure, which can be used to determine the exposure dose by detecting the amount of the 2 miRNAs in serum exosomes.
Collapse
Affiliation(s)
- Ying Zhang
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuai Hao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lin Xiao
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Abstract
The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Tang Z, Xu T, Li Y, Fei W, Yang G, Hong Y. Inhibition of CRY2 by STAT3/miRNA-7-5p Promotes Osteoblast Differentiation through Upregulation of CLOCK/BMAL1/P300 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:865-876. [PMID: 31982773 PMCID: PMC6994415 DOI: 10.1016/j.omtn.2019.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that cryptochrome circadian regulatory (CRY) proteins have emerged as crucial regulators of osteogenic differentiation. However, the associated mechanisms are quite elusive. In this study, we show that knockdown of CRY2 downregulated the expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN) to facilitate osteoblast differentiation. Further study identified that CRY2 was directly targeted by microRNA (miR)-7-5p, which was highly induced during osteoblast differentiation. The expression of Runx2, ALP, collagen type I alpha 1 (Col1a1), and OCN was upregulated by overexpression of miR-7-5p and induction of osteoblast differentiation. Moreover, signal transducer and activator of transcription 3 (STAT3) transcriptionally activated miR-7-5p to significantly enhance the expression of above osteogenic marker genes and mineral formation. However, overexpression of CRY2 abolished the osteogenic differentiation induced by miR-7-5p overexpression. Silencing of CRY2 unraveled the binding of CRY2 with the circadian locomotor output cycles kaput (CLOCK)/brain and muscle ARNT-like 1 (BMAL1) complex to release CLOCK/BMAL1, which facilitated the binding of CLOCK/BMAL1 to the promoter region of the P300 E-box to stimulate the transcription of P300. P300 subsequently promoted the acetylation of histone 3 and the formation of a transcriptional complex with Runx2 to enhance osteogenesis. Taken together, our study revealed that CRY2 is repressed by STAT3/miR-7-5p to promote osteogenic differentiation through CLOCK/BMAL1/P300 signaling. The involved molecules may be potentially targeted for treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhenghui Tang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; School of Life Sciences, Shanghai University, Shanghai 200244, China
| | - Tianyuan Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Yinghua Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yang Hong
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China.
| |
Collapse
|
47
|
Cao Y, Wen J, Li Y, Chen W, Wu Y, Li J, Huang G. Uric acid and sphingomyelin enhance autophagy in iPS cell-originated cardiomyocytes through lncRNA MEG3/miR-7-5p/EGFR axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3774-3785. [PMID: 31559872 DOI: 10.1080/21691401.2019.1667817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yinyin Cao
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Junxiang Wen
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Yang Li
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Weicheng Chen
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Yao Wu
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Jian Li
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Guoying Huang
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
48
|
Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 2019; 35:531-545. [PMID: 31529349 DOI: 10.1007/s10103-019-02880-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
This review article aims to address the kinetic of TDEs in cancer cells pre- and post-radiotherapy. Radiotherapy is traditionally used for the treatment of multiple cancer types; however, there is growing evidence to show that radiotherapy exerts NTEs on cells near to the irradiated cells. In tumor mass, irradiated cells can affect non-irradiated cells in different ways. Of note, exosomes are nano-scaled cell particles releasing from tumor cells and play key roles in survival, metastasis, and immunosuppression of tumor cells. Recent evidence indicated that irradiation has the potential to affect the dynamic of different signaling pathways such as exosome biogenesis. Indeed, exosomes act as intercellular mediators in various cell communication through transmitting bio-molecules. Due to their critical roles in cancer biology, exosomes are at the center of attention. TDEs contain an exclusive molecular signature that they may serve as tumor biomarker in the diagnosis of different cancers. Interestingly, radiotherapy and IR could also contribute to altering the dynamic of exosome secretion. Most probably, the content of exosomes in irradiated cells is different compared to exosomes originated from the non-irradiated BCs. Irradiated cells release exosomes with exclusive content that mediate NTEs in BCs. Considering variation in cell type, IR doses, and radio-resistance or radio-sensitivity of different cancers, there is, however, contradictions in the feature and activity of irradiated exosomes on neighboring cells.
Collapse
|
49
|
Meng L, Liu S, Ding P, Chang S, Sang M. Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J Cell Biochem 2019; 121:1039-1049. [PMID: 31490018 DOI: 10.1002/jcb.29339] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Autophagy is a kind of intracellular degradation pathway which could be regulated by many noncoding RNAs. ciRS-7, also called CDR1as, is a circular RNA that is relatively well studied at present. In our recent study, we have found that the expression of ciRS-7 is abnormally increased in the esophageal squamous cell carcinoma (ESCC), and may function as an oncogene to accelerate ESCC progression through sponging miR-876-5p. Meanwhile, another study showed that ciRS-7 is highly expressed in the triple-negative breast cancer (TNBC) and may function as a competing endogenous RNA of miR-1299 to maintain the high migration and invasive capacity of TNBC cells. Of interest, in the present work, we observed that ciRS-7 could inhibit starvation or rapamycin-induced autophagy of ESCC cells and miR-1299 promotes starvation or rapamycin-induced autophagy of ESCC cells. Mechanically, miR-1299 could directly bind to the 3'-untranslated region of epidermal growth factor receptor (EGFR) and then affects its downstream Akt-mTOR pathway in ESCC cells. Consistent with our past findings, ciRS-7 could also sponge miR-1299 in ESCC cells. Taken together, this study has shed light on that circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling.
Collapse
Affiliation(s)
- Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sihua Liu
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingan Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Chang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
50
|
Tang J, Chen Q, Zhang F, Zhang W, Duan S, Xiao D. [Peripheral blood exosomes from patients with multiple myeloma mediate bortezomib resistance in cultured multiple myeloma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:485-489. [PMID: 31068294 DOI: 10.12122/j.issn.1673-4254.2019.04.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the role of exosome in mediating bortezomib (Btz) resistance in multiple myeloma cells in vitro and explore the underlying mechanisms. METHODS Peripheral blood samples were collected from 15 patients with multiple myeloma with Btz tolerance, and serum exosomes were isolated by ultracentrifugation and identified with electron microscopy, NTA and Western blotting. In vitro cultured multiple myeloma cells were treated with gradient concentrations of Btz to determine the optimal drug concentration for subsequent experiment. The cells were pretreated with different concentrations of exosomes, and their sensitivity to BTZ was assessed using MTS assay. We searched the exosome database Exocarta and used STRING to generate the network map and the protein interaction graph. RESULTS The diameters of the vesicles isolated from the peripheral blood of the patients were mostly below 200 nm with a mean particle size of 153 nm and a mode of 140.1 nm. The results of Western blotting showed that the isolated exosomes expressed the marker proteins CD63, Tsg101 and Alix. In cultured multiple myeloma cells, pretreatment with exosomes resulted in a decreased sensitivity of the cells to bortezomib, and longer treatment durations and higher exosome concentrations consistently enhanced the resistance of the cells to the same Btz concentration. Analysis of the Exocarta database identified human serum exosomal proteins ABCB1, ABCB4, PDCD6IP, and EGFR, among which EGFR served as a network node. CONCLUSIONS Exosome within a specific concentration range may serve as a signal carrier to mediate the resistance of multiple myeloma cells to Btz. EGFR likely plays a key role to promote exosome-mediated Btz resistance in myeloma cells.
Collapse
Affiliation(s)
- Juxian Tang
- Department of Hematology, Third Affiliated Hospital of Southern Medical University/Academy of Orthopedics of Guangdong Province, Guangzhou 510630, China
| | - Qi Chen
- Department of Hematology, Third Affiliated Hospital of Southern Medical University/Academy of Orthopedics of Guangdong Province, Guangzhou 510630, China
| | - Feng Zhang
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Wenjun Zhang
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Sirong Duan
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Duan Xiao
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|