1
|
Wu Y, Yang F. Co-exposure to microplastics enhances the allergenic potentials of house dust mite allergen Der p 1. ENVIRONMENTAL RESEARCH 2025; 277:121613. [PMID: 40239735 DOI: 10.1016/j.envres.2025.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Air pollution is believed to exacerbate the prevalence of allergic diseases. But the underlying processes and mechanisms are not fully understood. In this study, the effects of polystyrene microplastics (PS-MPs) with a diameter of 0.1 μm, 1 μm, and 5 μm were investigated on the allergenic potentials of house dust mite allergen Der p 1. The results reveal that co-exposure to PS-MPs promoted the IgE-binding capacity of Der p 1 by altering the conformation, elevating the ligand-binding activity, and strengthening the aggregation of Der p 1. PS-MPs also exacerbated the damage to airway epithelial barrier by increasing the permeability of bronchial epithelial cells. Ultimately, co-exposure to PS-MPs aggravated the Th2-mediated immune responses and allergic sensitization induced by Der p 1. These evidences indicate that co-exposure to PS-MPs enhanced the allergenic potentials of Der p 1. Moreover, the PS-MPs-induced enhancement of the allergenic potential of Der p 1 is size-dependent, with smaller PS-MPs exhibiting greater promotion on the allergenic potential of Der p 1. Given the ubiquitous occurrence of PS-MPs in the environment, the co-exposure of allergens and PS-MPs should be seriously considered when assessing the allergenic risk of allergens in the real environment, especially for the PS-MPs with smaller size.
Collapse
Affiliation(s)
- Yiting Wu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, 310058, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiashan, China.
| |
Collapse
|
2
|
Yang H, Xiao Y, Guo E, Xue J, Wu J, Ji Y, Fan C, Wu R. Influence of lecithin on the digestibility and immunoreactivity of β-conglycinin. Food Res Int 2024; 197:115251. [PMID: 39593333 DOI: 10.1016/j.foodres.2024.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
A growing body of evidence suggests that protein structure can be uniquely altered by lipids. However, the role of lecithin on the digestibility and immunoreactivity of allergenic protein remains poorly understood. Therefore, we investigated the impact of different protein/lecithin (P:L) ratios (5:1, 10:1, 20:1, 30:1 and 40:1) on the digestion properties, peptide profiles and immunoreactivity of β-conglycinin in vitro simulated gastrointestinal digestion. Results revealed that lecithin addition increased the degree of hydrolysis and digestion rate of β-conglycinin during digestion in a dose-dependent manner, which may be attributed to the enhancement of pepsin activity. Additionally, the addition of lecithin contributed to the dispersion and homogeneity of β-conglycinin digestion products. When the ratio of lecithin to β-conglycinin was 1:10, the obtained β-conglycinin digestion products exhibited the highest DH value (23.80 %) and the lowest antigenicity (52.69%) in the intestinal digestion. Peptidomics and immunoinformatic analysis further confirmed that PL-10 disrupted 18/30, 15/44, and 37/75 epitopes in the α, α', and β subunits of β-conglycinin, respectively. These results suggested that lecithin changed the cleavage preferences of β-conglycinin, and promoted the disruption of allergic epitopes, specifically for the β subunit. The study can contribute to our understanding of the role of lecithin in the digestion properties and immunoreactivity of allergenic protein.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinuo Xiao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Endian Guo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Xue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanli Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Chenxi Fan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Cavallari N, Johnson A, Nagl C, Seiser S, Rechberger GN, Züllig T, Kufer TA, Elbe-Bürger A, Geiselhart S, Hoffmann-Sommergruber K. Nonspecific lipid-transfer proteins trigger TLR2 and NOD2 signaling and undergo ligand-dependent endocytosis in epithelial cells. J Allergy Clin Immunol 2024; 154:1289-1299. [PMID: 39084297 DOI: 10.1016/j.jaci.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Allergens can cross the epithelial barrier to enter the body but how this cellular passage affects protein structures and the downstream interactions with the immune system are still open questions. OBJECTIVE We sought to show the molecular details and the effects of 3 nonspecific lipid transfer proteins (nsLTPs; Mal d 3 [allergenic nsLTP1 from apple], Cor a 8 [allergenic nsLTP1 from hazelnut], and Pru p 3 [allergenic nsLTP1 from peach]) on epithelial cell uptake and transport. METHODS We used fluorescent imaging, flow cytometry, and proteomic and lipidomic screenings to identify the mechanism involved in nsLTP cellular uptake and signaling on selected epithelial and transgenic cell lines. RESULTS nsLTPs are transported across the epithelium without affecting cell membrane stability or viability, and allergen uptake was largely impaired by inhibition of clathrin-mediated endocytosis. Analysis of the lipidome associated with nsLTPs showed a wide variety of lipid ligands predicted to bind inside the allergen hydrophobic cavity. Importantly, the internalization of nsLTPs was contingent on these ligands in the protein complex. nsLTPs were found to initiate cellular signaling via Toll-like receptor 2 but not the cluster of differentiation 1 protein receptor, despite neither being essential for nsLTP endocytosis. We also provide evidence that the 3 allergens induced intracellular stress signaling through activation of the NOD2 pathway. CONCLUSIONS Our work consolidates the current model on nsLTP-epithelial cell interplay and adds molecular details about cell transport and signaling. In addition, we have developed a versatile toolbox to extend these investigations to other allergens and cell types.
Collapse
Affiliation(s)
- Nicola Cavallari
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Alexander Johnson
- Center for Anatomy & Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria; Medical Imaging Cluster, Vienna, Austria
| | - Christoph Nagl
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Saskia Seiser
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria.
| |
Collapse
|
4
|
Nonkhwao S, Leaokittikul D, Patramanon R, Jangpromma N, Daduang J, Daduang S. Revealing the pH-dependent conformational changes in sol g 2.1 protein and potential ligands binding. Sci Rep 2024; 14:21179. [PMID: 39261547 PMCID: PMC11391043 DOI: 10.1038/s41598-024-72014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Sol g 2, a major protein found in the venom of the tropical fire ant (Solenopsis geminata), is well-known for its ability to bind various hydrophobic molecules. In this study, we investigate the binding activity of recombinant Sol g 2.1 protein (rSol g 2.1) with potential molecules, including (E)-β-Farnesene, α-Caryophyllene, and 1-Octen-3-ol at different pH levels (pH 7.4 and 5.5) using fluorescence competitive binding assays (FCBA). Our results revealed that Sol g 2.1 protein has higher affinity binding with these ligands at neutral pH. Relevance to molecular docking and molecular dynamics simulations were utilized to provide insights into the stability and conformational dynamics of Sol g 2.1 and its ligand complexes. After simulation, we found that Sol g 2.1 protein has higher affinity binding with these ligands as well as high structural stability at pH 7.4 than at an acidic pH level, indicating by RMSD, RMSF, Rg, SASA, and principal component analysis (PCA). Additionally, the Sol g 2.1 protein complexes at pH 7.4 showed significantly lower binding free energy (∆Gbind) and higher total residue contributions, particularly from key non-polar amino acids such as Trp36, Met40, Cys62, and Ile104, compared to the lower pH environment. These explain why they exhibited higher binding affinity than the lower pH. Therefore, we suggested that Sol g 2.1 protein is a pH-responsive carrier protein. These findings also expand our understanding of protein-ligand interactions and offer potential avenues for the development of innovative drug delivery strategies targeting Sol g 2.1 protein.
Collapse
Affiliation(s)
- Siriporn Nonkhwao
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
Jacquet A, Soh WT. Spatiotemporal proteolytic susceptibility of allergens: positive or negative effects on the allergic sensitization? FRONTIERS IN ALLERGY 2024; 5:1426816. [PMID: 39044859 PMCID: PMC11263110 DOI: 10.3389/falgy.2024.1426816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
From their expression in their respective allergenic source to their processing by antigen presenting cells, allergens continuously encounter proteases. The ability of allergens to resist to proteolysis by digestive enzymes or host-cell/microbial proteases is considered as an important property that influences their allergenic potential. However, the relationship between proteolytic stability and allergenicity is much more complex and depends on various factors, such as the protein structure dynamics, the exposure level, the route of sensitization, and their respective protease susceptibility. In this review, we summarize and discuss the current knowledge on several aspects of allergen proteolytic stability in different environments including the allergenic sources, routes of sensitization (skin, respiratory tract, gastrointestinal tract) and endolysosomal compartment of antigen-presenting cells. Proteolytic stability alone cannot represent a definitive criterion to allergenicity. The proteolytic susceptibility of allergens in processed extracts can affect allergy diagnosis and immunotherapy. Furthermore, the fine tuning of allergen stability during antigen processing can be exploited for the development of novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ousaid SM, Bourcier G, Fernandez A, Llopis O, Lumeau J, Moreau A, Bunel T, Conforti M, Mussot A, Crozatier V, Balac S. Low phase noise self-injection-locked diode laser with a high-Q fiber resonator: model and experiment. OPTICS LETTERS 2024; 49:1933-1936. [PMID: 38621044 DOI: 10.1364/ol.514778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Low phase noise and narrow linewidth lasers are achieved by implementing self-injection locking of a DFB laser on two distinct fiber Fabry-Perot resonators. More than 45 dB improvement of the laser phase or frequency noise is observed when the laser is locked. In both cases, a frequency noise floor below 1 Hz2/Hz is measured. The integrated linewidth of the best of the two lasers is computed to be in the range of 400 Hz and appears to be dominated by vibration noise close to the carrier. The results are then compared with a model based on the retro-injected power and the Q factors ratio between the DFB laser and the resonator. This straightforward model facilitates the extraction of the theoretical performance of these sources close to the carrier, a characteristic still hidden by vibration noise.
Collapse
|
7
|
Wang K, Gali-Moya J, Ruano-Zaragoza M, Cain K, D'Auria G, Daly M, Barran P, Crevel R, Mills ENC. Bile salts enhance the susceptibility of the peach allergenic lipid transfer protein, Pru p 3, to in vitro gastrointestinal proteolysis. Sci Rep 2023; 13:15155. [PMID: 37704681 PMCID: PMC10499906 DOI: 10.1038/s41598-023-39599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Sensitisation to the lipid transfer protein Pru p 3 is associated with severe allergic reactions to peach, the proteins stability being thought to play a role in its allergenicity. Lipid binding increases susceptibility of Pru p 3 to digestion and so the impact of bile salts on the in vitro gastrointestinal digestibility of Pru p 3 was investigated and digestion products mapped by SDS-PAGE and mass spectrometry. Bile salts enhanced the digestibility of Pru p 3 resulting in an ensemble of around 100 peptides spanning the protein's sequence which were linked by disulphide bonds into structures of ~ 5-6 kDa. IgE binding studies with a serum panel from peach allergic subjects showed digestion reduced, but did not abolish, the IgE reactivity of Pru p 3. These data show the importance of including bile salts in vitro digestion systems and emphasise the need to profile of digestion in a manner that allows identification of immunologically relevant disulphide-linked peptide aggregates.
Collapse
Affiliation(s)
- Kai Wang
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Judit Gali-Moya
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Kathleen Cain
- Department of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giovanni D'Auria
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Matthew Daly
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita Barran
- Department of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - René Crevel
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
- René Crevel Consulting Ltd, Suite A 82 James Carter Road, Mildenhall, IP28 7HP, UK
| | - E N Clare Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU2 7XH, Surrey, UK.
| |
Collapse
|
8
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Santos-Silva CAD, Ferreira-Neto JRC, Amador VC, Bezerra-Neto JP, Vilela LMB, Binneck E, Rêgo MDS, da Silva MD, Mangueira de Melo ALT, da Silva RH, Benko-Iseppon AM. From Gene to Transcript and Peptide: A Deep Overview on Non-Specific Lipid Transfer Proteins (nsLTPs). Antibiotics (Basel) 2023; 12:antibiotics12050939. [PMID: 37237842 DOI: 10.3390/antibiotics12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.
Collapse
Affiliation(s)
| | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina 86085-981, Brazil
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Rahisa Helena da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
10
|
Picariello G, Siano F, Di Stasio L, Mamone G, Addeo F, Ferranti P. Structural properties of food proteins underlying stability or susceptibility to human gastrointestinal digestion. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Mameri H, Gaudin JC, Lollier V, Tranquet O, Brossard C, Pietri M, Marion D, Codreanu-Morel F, Beaudouin E, Wien F, Gohon Y, Briozzo P, Denery-Papini S. Critical structural elements for the antigenicity of wheat allergen LTP1 (Tri a 14) revealed by site-directed mutagenesis. Sci Rep 2022; 12:12253. [PMID: 35851276 PMCID: PMC9293932 DOI: 10.1038/s41598-022-15811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Lipid transfer proteins (LTPs) were identified as allergens in a large variety of pollens and foods, including cereals. LTPs belong to the prolamin superfamily and display an α-helical fold, with a bundle of four α-helices held together by four disulfide bonds. Wheat LTP1 is involved in allergic reactions to food. To identify critical structural elements of antibody binding to wheat LTP1, we used site-directed mutagenesis on wheat recombinant LTP1 to target: (i) sequence conservation and/or structure flexibility or (ii) each disulfide bond. We evaluated the modifications induced by these mutations on LTP1 secondary structure by synchrotron radiation circular dichroism and on its antigenicity with patient's sera and with mouse monoclonal antibodies. Disruption of the C28-C73 disulfide bond significantly affected IgE-binding and caused protein denaturation, while removing C13-C27 bond decreased LTP1 antigenicity and slightly modified LTP1 overall folding. In addition, we showed Lys72 to be a key residue; the K72A mutation did not affect global folding but modified the local 3D structure of LTP1 and strongly reduced IgE-binding. This work revealed a cluster of residues (C13, C27, C28, C73 and K72), four of which embedded in disulfide bonds, which play a critical role in LTP1 antigenicity.
Collapse
Affiliation(s)
- Hamza Mameri
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France. .,UMR 1208 IATE, Univ Montpellier, INRAE, L'Institut-Agro Montpellier, 34060, Montpellier, France.
| | - Jean-Charles Gaudin
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,INRAE, UMR 0588 Biologie intégrée pour la valorisation de la diversité des arbres et de la forêt (BIOFORA), 45075, Orléans, France
| | - Virginie Lollier
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,INRAE, UR BIA, 44316, Nantes, France.,INRAE, PROBE Research Infrastructure, BIBS Facility, 44316, Nantes, France
| | - Olivier Tranquet
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,INRAE UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), 13288, Marseille, France
| | - Chantal Brossard
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France
| | - Manon Pietri
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre René Gauducheau, 44805, Saint Herblain Cedex, France
| | - Didier Marion
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France
| | - Fanny Codreanu-Morel
- CHU Luxembourg, Centre Hospitalier de Luxembourg, Kanner Klinik, 1210, Luxembourg, Luxembourg
| | - Etienne Beaudouin
- Service d'Allergologie, Hôpital de Mercy, CHR Metz, 57000, Metz, France
| | - Frank Wien
- Synchrotron Soleil, Saint-Aubin, 91192, Gif-sur-Yvette, France
| | - Yann Gohon
- INRAE, UMR 1318 Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | - Pierre Briozzo
- INRAE, UMR 1318 Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | - Sandra Denery-Papini
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.
| |
Collapse
|
12
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
13
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, George Firbank L, Guerche P, Hejatko J, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Fernandez Dumont A, Moreno FJ. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J 2022; 20:e07044. [PMID: 35106091 PMCID: PMC8787593 DOI: 10.2903/j.efsa.2022.7044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Collapse
|
14
|
Effect of Point Mutations on Structural and Allergenic Properties of the Lentil Allergen Len c 3. MEMBRANES 2021; 11:membranes11120939. [PMID: 34940440 PMCID: PMC8703665 DOI: 10.3390/membranes11120939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022]
Abstract
Plant lipid transfer proteins (LTPs) are known to be clinically significant allergens capable of binding various lipid ligands. Recent data showed that lipid ligands affected the allergenic properties of plant LTPs. In this work, we checked the assumption that specific amino acid residues in the Len c 3 structure can play a key role both in the interaction with lipid ligands and IgE-binding capacity of the allergen. The recombinant analogues of Len c 3 with the single or double substitutions of Thr41, Arg45 and/or Tyr80 were obtained by site-directed mutagenesis. All these amino acid residues are located near the “bottom” entrance to the hydrophobic cavity of Len c 3 and are likely included in the IgE-binding epitope of the allergen. Using a bioinformatic approach, circular dichroism and fluorescence spectroscopies, ELISA, and experiments mimicking the allergen Len c 3 gastroduodenal digestion we showed that the substitution of all the three amino acid residues significantly affected structural organization of this region and led both to a change of the ligand-binding capacity and the allergenic potential of Len c 3.
Collapse
|
15
|
Foo ACY, Mueller GA. Abundance and Stability as Common Properties of Allergens. FRONTIERS IN ALLERGY 2021; 2:769728. [PMID: 35386965 PMCID: PMC8974735 DOI: 10.3389/falgy.2021.769728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023] Open
Abstract
There have been many attempts to identify common biophysical properties which differentiate allergens from their non-immunogenic counterparts. This review will focus on recent studies which examine two such factors: abundance and stability. Anecdotal accounts have speculated that the elevated abundance of potential allergens would increase the likelihood of human exposure and thus the probability of sensitization. Similarly, the stability of potential allergens dictates its ability to remain a viable immunogen during the transfer from the source to humans. This stability could also increase the resilience of potential allergens to both gastric and endosomal degradation, further skewing the immune system toward allergy. Statistical analyses confirm both abundance and stability as common properties of allergens, while epidemiological surveys show a correlation between exposure levels (abundance) and allergic disease. Additional studies show that changes in protein stability can predictably alter gastric/endosomal processing and immunogenicity, providing a mechanistic link between stability and allergenicity. However, notable exceptions exist to both hypotheses which highlight the multifaceted nature of immunological sensitization, and further inform our understanding of some of these other factors and their contribution to allergic disease.
Collapse
Affiliation(s)
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
16
|
Abstract
INTRODUCTION Allergies affect 20-30% of the population and respiratory allergies are mostly due to pollen grains from anemophilous plants. One to 5% of people suffer from food allergies and clinicians report increasing numbers of pollen-food allergy syndrome (PFAS), such that the symptoms have broadened from respiratory to gastrointestinal, and even to anaphylactic shock in the presence of cofactors. Thirty to 60% of food allergies are associated with pollen allergy while the percentage of pollen allergies associated to food allergy varies according to local environment and dietary habits. AREAS COVERED Articles published in peer-reviewed journals, covered by PubMed databank, clinical data are discussed including symptoms, diagnosis, and management. A chapter emphasizes the role of six well-known allergen families involved in PFAS: PR10 proteins, profilins, lipid transfer proteins, thaumatin-like proteins, isoflavone reductases, and β-1,3 glucanases. The relevance in PFAS of three supplementary allergen families is presented: oleosins, polygalacturonases, and gibberellin-regulated proteins. To support the discussion a few original relevant results were added. EXPERT OPINION Both allergenic sources, pollen and food, are submitted to the same stressful environmental changes resulting in an increase of pathogenesis-related proteins in which numerous allergens are found. This might be responsible for the potential increase of PFAS.
Collapse
Affiliation(s)
- Pascal Poncet
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France.,Immunology Department, Institut Pasteur , Paris, France
| | - Hélène Sénéchal
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France
| | - Denis Charpin
- Aix Marseille University and French Clean Air Association (APPA) , Marseille, France
| |
Collapse
|
17
|
Levine TP. TMEM106B in humans and Vac7 and Tag1 in yeast are predicted to be lipid transfer proteins. Proteins 2021; 90:164-175. [PMID: 34347309 DOI: 10.1002/prot.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 11/05/2022]
Abstract
TMEM106B is an integral membrane protein of late endosomes and lysosomes involved in neuronal function, its overexpression being associated with familial frontotemporal lobar degeneration, and point mutation linked to hypomyelination. It has also been identified in multiple screens for host proteins required for productive SARS-CoV-2 infection. Because standard approaches to understand TMEM106B at the sequence level find no homology to other proteins, it has remained a protein of unknown function. Here, the standard tool PSI-BLAST was used in a nonstandard way to show that the lumenal portion of TMEM106B is a member of the late embryogenesis abundant-2 (LEA-2) domain superfamily. More sensitive tools (HMMER, HHpred, and trRosetta) extended this to predict LEA-2 domains in two yeast proteins. One is Vac7, a regulator of PI(3,5)P2 production in the degradative vacuole, equivalent to the lysosome, which has a LEA-2 domain in its lumenal domain. The other is Tag1, another vacuolar protein, which signals to terminate autophagy and has three LEA-2 domains in its lumenal domain. Further analysis of LEA-2 structures indicated that LEA-2 domains have a long, conserved lipid-binding groove. This implies that TMEM106B, Vac7, and Tag1 may all be lipid transfer proteins in the lumen of late endocytic organelles.
Collapse
|
18
|
Chruszcz M, Chew FT, Hoffmann‐Sommergruber K, Hurlburt BK, Mueller GA, Pomés A, Rouvinen J, Villalba M, Wöhrl BM, Breiteneder H. Allergens and their associated small molecule ligands-their dual role in sensitization. Allergy 2021; 76:2367-2382. [PMID: 33866585 PMCID: PMC8286345 DOI: 10.1111/all.14861] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023]
Abstract
Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small‐molecule ligands. Ligand‐binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds. Pollen and plant food allergens of the family 10 of pathogenesis‐related proteins bind a variety of small molecules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in vitro. However, their natural ligand binding was reported to be highly specific. Insect and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty acids with a similar level of specificity, while the food allergen β‐lactoglobulin from cow's milk is notably more promiscuous. Non‐specific lipid transfer proteins from pollen and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility displayed by their lipid‐binding cavities. Ligands increase the stability of allergens to thermal and/or proteolytic degradation. They can also act as immunomodulatory agents that favor a Th2 polarization. In summary, ligand‐binding allergens expose the immune system to a variety of biologically active compounds whose impact on the sensitization process has not been well studied thus far.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC USA
| | - Fook Tim Chew
- Department of Biological Sciences National University of Singapore Singapore
| | - Karin Hoffmann‐Sommergruber
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Barry K. Hurlburt
- Agricultural Research Service Southern Regional Research Center US Department of Agriculture New Orleans LA USA
| | - Geoffrey A. Mueller
- National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park NC USA
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville VA USA
| | - Juha Rouvinen
- Department of Chemistry University of Eastern Finland Joensuu Finland
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology Universidad Complutense de Madrid Madrid Spain
| | | | - Heimo Breiteneder
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
19
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
20
|
Mattar H, Padfield P, Simpson A, Mills ENC. The impact of a baked muffin matrix on the bioaccessibility and IgE reactivity of egg and peanut allergens. Food Chem 2021; 362:129879. [PMID: 34118511 DOI: 10.1016/j.foodchem.2021.129879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 11/20/2022]
Abstract
Baked matrices, such as muffin, may help to promote tolerance to food allergens by modifying allergen structure, digestibility, and capacity to stimulate the immune responses. However, the impact of the muffin matrix on the bioaccessibility of allergens in the gastrointestinal tract is not well understood. Muffin containing egg and peanut was subjected to in vitro oral-gastro-duodenal digestion. During gastric digestion, the majority of the egg allergen Gal d 2 and the peanut allergens Ara h 1 and 3 were not bioaccessible. Subsequent duodenal digestion increased allergen bioaccessibility with Gal d 2 and the peanut allergen Ara h 2 proving highly resistant to digestion. The IgE reactivity of bioaccessible peanut allergens was retained to a greater extent than that of egg allergens after oral-gastric digestion. The starch and gluten-rich muffin matrix modifies allergen bioaccessiblity in a manner more similar to baked matrices such as bread, than low water activity matrices such as cookies.
Collapse
Affiliation(s)
- Hadeer Mattar
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Phil Padfield
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Angela Simpson
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Wythenshawe Hospital Manchester University NHS Foundation Trust, M23 9LT Manchester, UK
| | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Martín-Pedraza L, Mayorga C, Gomez F, Bueno-Díaz C, Blanca-Lopez N, González M, Martínez-Blanco M, Cuesta-Herranz J, Molina E, Villalba M, Benedé S. IgE-Reactivity Pattern of Tomato Seed and Peel Nonspecific Lipid-Transfer Proteins after in Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3511-3518. [PMID: 33719421 PMCID: PMC9134490 DOI: 10.1021/acs.jafc.0c06949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The influence of gastrointestinal digestion on the immunological properties of three different nonspecific lipid-transfer proteins (nsLTPs) described in tomato fruit has been assessed using an in vitro system mimicking the stomach and intestine digestion conditions. Tomato peel/pulp nsLTP, Sola l 3, was degraded after digestion, although the immunoglobulin E (IgE) recognition of intact protein and a 10 kDa band were still observed after 30 min of duodenal digestion in the presence of phosphatidylcholine. The tomato seed nsLTP, Sola l 7, showed a higher stability than the other seed allergen, Sola l 6, during digestion. Sola l 7 showed an IgE immunoreactive 6.5 kDa band in immunoblotting analysis, retaining up to 7% of its IgE-binding capacity in inhibition ELISA test after 60 min of duodenal digestion and keeping intact its ability to activate basophils after digestion. These results suggest that the tomato seed allergen Sola l 7 might be considered as an important allergen in the induction of allergic responses to tomato due to its high stability against gastrointestinal digestion.
Collapse
Affiliation(s)
- Laura Martín-Pedraza
- Department
of Biochemistry and Molecular Biology, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | - Cristobalina Mayorga
- Allergy
Research Laboratory, IBIMA, Regional University
Hospital of Málaga, UMA, 29009 Málaga, Spain
| | - Francisca Gomez
- Allergy
Research Laboratory, IBIMA, Regional University
Hospital of Málaga, UMA, 29009 Málaga, Spain
| | - Cristina Bueno-Díaz
- Department
of Biochemistry and Molecular Biology, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | | | - Miguel González
- Allergy
Research Laboratory, IBIMA, Regional University
Hospital of Málaga, UMA, 29009 Málaga, Spain
| | - Mónica Martínez-Blanco
- Instituto
de Investigación en Ciencias de la Alimentación (CIAL,
CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | - Elena Molina
- Instituto
de Investigación en Ciencias de la Alimentación (CIAL,
CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Mayte Villalba
- Department
of Biochemistry and Molecular Biology, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Benedé
- Instituto
de Investigación en Ciencias de la Alimentación (CIAL,
CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
22
|
Foo ACY, Thompson PM, Mueller GA. Removal and Replacement of Endogenous Ligands from Lipid-Bound Proteins and Allergens. J Vis Exp 2021. [PMID: 33720118 DOI: 10.3791/61780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many major allergens bind to hydrophobic lipid-like molecules, including Mus m 1, Bet v 1, Der p 2, and Fel d 1. These ligands are strongly retained and have the potential to influence the sensitization process either through directly stimulating the immune system or altering the biophysical properties of the allergenic protein. In order to control for these variables, techniques are required for the removal of endogenously bound ligands and, if necessary, replacement with lipids of known composition. The cockroach allergen Bla g 1 encloses a large hydrophobic cavity which binds a heterogeneous mixture of endogenous lipids when purified using traditional techniques. Here, we describe a method through which these lipids are removed using reverse-phase HPLC followed by thermal annealing to yield Bla g 1 in either its Apo-form or reloaded with a user-defined mixture of fatty acid or phospholipid cargoes. Coupling this protocol with biochemical assays reveal that fatty acid cargoes significantly alter the thermostability and proteolytic resistance of Bla g 1, with downstream implications for the rate of T-cell epitope generation and allergenicity. These results highlight the importance of lipid removal/reloading protocols such as the one described herein when studying allergens from both recombinant and natural sources. The protocol is generalizable to other allergen families including lipocalins (Mus m 1), PR-10 (Bet v 1), MD-2 (Der p 2) and Uteroglobin (Fel d 1), providing a valuable tool to study the role of lipids in the allergic response.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Nuclear Magnetic Resonance Group, National Institute of Environmental Health Sciences
| | - Peter M Thompson
- Nuclear Magnetic Resonance Group, National Institute of Environmental Health Sciences
| | - Geoffrey A Mueller
- Nuclear Magnetic Resonance Group, National Institute of Environmental Health Sciences;
| |
Collapse
|
23
|
Finkina EI, Melnikova DN, Bogdanov IV, Matveevskaya NS, Ignatova AA, Toropygin IY, Ovchinnikova TV. Impact of Different Lipid Ligands on the Stability and IgE-Binding Capacity of the Lentil Allergen Len c 3. Biomolecules 2020; 10:biom10121668. [PMID: 33322094 PMCID: PMC7763088 DOI: 10.3390/biom10121668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, we isolated the lentil allergen Len c 3, belonging to the class of lipid transfer proteins, cross-reacting with the major peach allergen Pru p 3 and binding lipid ligands. In this work, the allergenic capacity of Len c 3 and effects of different lipid ligands on the protein stability and IgE-binding capacity were investigated. Impacts of pH and heat treating on ligand binding with Len c 3 were also studied. It was shown that the recombinant Len c 3 (rLen c 3) IgE-binding capacity is sensitive to heating and simulating of gastroduodenal digestion. While being heated or digested, the protein showed a considerably lower capacity to bind specific IgE in sera of allergic patients. The presence of lipid ligands increased the thermostability and resistance of rLen c 3 to digestion, but the level of these effects was dependent upon the ligand's nature. The anionic lysolipid LPPG showed the most pronounced protective effect which correlated well with experimental data on ligand binding. Thus, the Len c 3 stability and allergenic capacity can be retained in the conditions of food heat cooking and gastroduodenal digestion due to the presence of certain lipid ligands.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- Science-Educational Center, M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (E.I.F.); (D.N.M.); (I.V.B.); (A.A.I.)
| | - Daria N. Melnikova
- Science-Educational Center, M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (E.I.F.); (D.N.M.); (I.V.B.); (A.A.I.)
| | - Ivan V. Bogdanov
- Science-Educational Center, M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (E.I.F.); (D.N.M.); (I.V.B.); (A.A.I.)
| | - Natalia S. Matveevskaya
- G.N. Gabrichevsky Research Institute of Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Anastasia A. Ignatova
- Science-Educational Center, M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (E.I.F.); (D.N.M.); (I.V.B.); (A.A.I.)
| | | | - Tatiana V. Ovchinnikova
- Science-Educational Center, M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (E.I.F.); (D.N.M.); (I.V.B.); (A.A.I.)
- Department of Bioorganic Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-336-44-44
| |
Collapse
|
24
|
Megeressa M, Siraj B, Zarina S, Ahmed A. Structural characterization and in vitro lipid binding studies of non-specific lipid transfer protein 1 (nsLTP1) from fennel (Foeniculum vulgare) seeds. Sci Rep 2020; 10:21243. [PMID: 33277525 PMCID: PMC7718255 DOI: 10.1038/s41598-020-77278-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are cationic proteins involved in intracellular lipid shuttling in growth and reproduction, as well as in defense against pathogenic microbes. Even though the primary and spatial structures of some nsLTPs from different plants indicate their similar features, they exhibit distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. The present study determined the complete amino acid sequence, in silico 3D structure modeling, and the antiproliferative activity of nsLTP1 from fennel (Foeniculum vulgare) seeds. Fennel is a member of the family Umbelliferae (Apiaceae) native to southern Europe and the Mediterranean region. It is used as a spice medicine and fresh vegetable. Fennel nsLTP1 was purified using the combination of gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). Its homogeneity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The purified nsLTP1 was treated with 4-vinyl pyridine, and the modified protein was then digested with trypsin. The complete amino acid sequence of nsLTP1 established by intact protein sequence up to 28 residues, overlapping tryptic peptides, and cyanogen bromide (CNBr) peptides. Hence, it is confirmed that fennel nsLTP1 is a 9433 Da single polypeptide chain consisting of 91 amino acids with eight conserved cysteines. Moreover, the 3D structure is predicted to have four α-helices interlinked by three loops and a long C-terminal tail. The lipid-binding property of fennel nsLTP1 is examined in vitro using fluorescent 2-p-toluidinonaphthalene-6-sulfonate (TNS) and validated using a molecular docking study with AutoDock Vina. Both of the binding studies confirmed the order of binding efficiency among the four studied fatty acids linoleic acid > linolenic acid > Stearic acid > Palmitic acid. A preliminary screening of fennel nsLTP1 suppressed the growth of MCF-7 human breast cancer cells in a dose-dependent manner with an IC50 value of 6.98 µM after 48 h treatment.
Collapse
Affiliation(s)
- Mekdes Megeressa
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Bushra Siraj
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
25
|
Abstract
This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
Collapse
|
26
|
Madni ZK, Tripathi SK, Salunke DM. Structural insights into the lipid transfer mechanism of a non-specific lipid transfer protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:340-352. [PMID: 31793077 DOI: 10.1111/tpj.14627] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The non-specific lipid transfer proteins (nsLTPs) are multifunctional seed proteins engaged in several different physiological processes. The nsLTPs are stabilized by four disulfide bonds and exhibit a characteristic hydrophobic cavity, which is the primary lipid binding site. While these proteins are known to transfer lipids between membranes, the mechanism of lipid transfer has remained elusive. Four crystal structures of nsLTP from Solanum melongena, one in the apo-state and three myristic acid bound states were determined. Among the three lipid bound states, two lipid molecules were bound on the nsLTP surface at different positions and one was inside the cavity. The lipid-dependent conformational changes leading to opening of the cavity were revealed based on structural and spectroscopic data. The surface-bound lipid represented a transient intermediate state and the lipid ultimately moved inside the cavity through the cavity gate as revealed by molecular dynamics simulations. Two critical residues in the loop regions played possible 'gating' role in the opening and closing of the cavity. Antifungal activity and membrane permeabilization effect of nsLTP against Fusarium oxysporum suggested that it could possibly involve in bleaching out the lipids. Collectively, these studies support a model of lipid transfer mechanism by nsLTP via intermediate states.
Collapse
Affiliation(s)
- Zaid Kamal Madni
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, India
| | - Sunil Kumar Tripathi
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, India
| | - Dinakar M Salunke
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
27
|
Oeo-Santos C, López-Rodríguez JC, García-Mouton C, San Segundo-Acosta P, Jurado A, Moreno-Aguilar C, García-Álvarez B, Pérez-Gil J, Villalba M, Barderas R, Cruz A. Biophysical and biological impact on the structure and IgE-binding of the interaction of the olive pollen allergen Ole e 7 with lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183258. [PMID: 32142819 DOI: 10.1016/j.bbamem.2020.183258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Ole e 7 allergen from Olea europaea pollen possesses a major clinical relevance because it produces severe symptoms, such as anaphylaxis, in allergic patients exposed to high olive pollen counts. Ole e 7 is a non-specific lipid transfer protein (nsLTP) characterized by the presence of a tunnel-like hydrophobic cavity, which may be suitable for hosting and, thus, transporting lipids -as it has been described for other nsLTPs-. The identification of the primary amino acid sequence of Ole e 7, and its production as a recombinant allergen, allowed characterizing its lipid-binding properties and its effect at air-liquid interfaces. Fluorescence and interferometry experiments were performed using different phospholipid molecular species and free fatty acids to analyse the lipid-binding ability and specificity of the allergen. Molecular modelling of the allergen was used to determine the potential regions involved in lipid interaction. Changes in Ole e 7 structure after lipid interaction were analysed by circular dichroism. Changes in the IgE binding upon ligand interaction were determined by ELISA. Wilhelmy balance measurements and fluorescence surfactant adsorption tests were performed to analyse the surface activity of the allergen. Using these different approaches, we have demonstrated the ability of Ole e 7 to interact and bind to a wide range of lipids, especially negatively charged phospholipids and oleic acid. We have also identified the protein structural regions and the residues potentially involved in that interaction, suggesting how lipid-protein interactions could define the behaviour of the allergen once inhaled at the airways.
Collapse
Affiliation(s)
- Carmen Oeo-Santos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan Carlos López-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Cristina García-Mouton
- Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas and Research Institute "Hospital 12 de Octubre (imas12)", Universidad Complutense, 28040 Madrid, Spain
| | - Pablo San Segundo-Acosta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aurora Jurado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain; Allergy Network ARADyAL, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Moreno-Aguilar
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain; Allergy Network ARADyAL, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña García-Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas and Research Institute "Hospital 12 de Octubre (imas12)", Universidad Complutense, 28040 Madrid, Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; Allergy Network ARADyAL, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Barderas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain.
| | - Antonio Cruz
- Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas and Research Institute "Hospital 12 de Octubre (imas12)", Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Abstract
The prevalence of food allergy is raising in industrialized countries, but the mechanisms behind this increased incidence are not fully understood. Environmental factors are believed to play a role in allergic diseases, including lifestyle influences, such as diet. There is a close relationship between allergens and lipids, with many allergenic proteins having the ability to bind lipids. Dietary lipids exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to cells of the adaptive immunity. In addition to modifying the immunostimulating properties of proteins, lipids also alter their digestibility and intestinal absorption, changing allergen bioavailability. This study provides an overview of the role of dietary lipids in food allergy, taking into account epidemiological information, as well as results of mechanistic investigations using in vivo, ex vivo and in vitro models. The emerging link among high-fat diets, obesity, and allergy is also discussed.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
29
|
Cuevas-Zuviría B, Garrido-Arandia M, Díaz-Perales A, Pacios LF. Energy Landscapes of Ligand Motion Inside the Tunnel-Like Cavity of Lipid Transfer Proteins: The Case of the Pru p 3 Allergen. Int J Mol Sci 2019; 20:ijms20061432. [PMID: 30901853 PMCID: PMC6471300 DOI: 10.3390/ijms20061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Allergies are a widespread problem in western countries, affecting a large part of the population, with levels of prevalence increasingly rising due to reasons still not understood. Evidence accumulated in recent years points to an essential role played by ligands of allergen proteins in the sensitization phase of allergies. In this regard, we recently identified the natural ligand of Pru p 3, a lipid transfer protein, a major allergen from peach fruit and a model of food allergy. The ligand of Pru p 3 has been shown to play a key role in the sensitization to peach and to other plant food sources that provoke cross-reactivity in a large proportion of patients allergic to peach. However, the question of which is the binding pose of this ligand in its carrier protein, and how it can be transferred to receptors of the immune system where it develops its function as a coadjuvant was not elucidated. In this work, different molecular dynamics simulations have been considered as starting points to study the properties of the ligand–protein system in solution. Besides, an energy landscape based on collective variables that describe the process of ligand motion within the cavity of Pru p 3 was obtained by using well-tempered metadynamics. The simulations revealed the differences between distinct binding modes, and also revealed important aspects of the motion of the ligand throughout its carrier protein, relevant to its binding–unbinding process. Our findings are potentially interesting for studying protein–ligand systems beyond the specific case of the allergen protein dealt with here.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - María Garrido-Arandia
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Araceli Díaz-Perales
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, UPM, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Luis F Pacios
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, UPM, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Impact of lipid binding on the tertiary structure and allergenic potential of Jug r 3, the non-specific lipid transfer protein from walnut. Sci Rep 2019; 9:2007. [PMID: 30765752 PMCID: PMC6376136 DOI: 10.1038/s41598-019-38563-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Plant non-specific lipid transfer proteins type 1 (nsLTP1) are small basic proteins with a hydrophobic cavity able to host a number of different ligands: i.e. fatty acids, fatty acyl-CoA, phospholipids, glycolipids, and hydroxylated fatty acids. However, ligand binding specificity differs among nsLTPs. Within this protein family, Jug r 3 from walnut has been identified as a major allergen. So far, data on the structural characterization of Jug r 3 and its lipid binding capacity are lacking. We report the results from a fluorescence-based ligand-binding assay and ligand-based NMR experiments, to study the binding interactions between Jug r 3 and the 18-carbon monounsaturated oleic acid. Furthermore, protein-based NMR experiments were employed to detect the oleate binding site of Jug r 3. The NMR data were used to dock the oleate molecule into the structural model of Jug r 3. Finally, the impact of the interaction on the allergenic potential of Jug r 3 was investigated by IgE ELISA with 6 sera from walnut allergic patients. Our data corroborate the hypothesis of direct impact of food-derived matrix on the IgE reactivity of nsLTPs.
Collapse
|
31
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
32
|
The Effect of Digestion and Digestibility on Allergenicity of Food. Nutrients 2018; 10:nu10091129. [PMID: 30134536 PMCID: PMC6164088 DOI: 10.3390/nu10091129] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Food allergy prevalence numbers are still on the rise. Apart from environmental influences, dietary habits, food availability and life-style factors, medication could also play a role. For immune tolerance of food, several contributing factors ensure that dietary compounds are immunologically ignored and serve only as source for energy and nutrient supply. Functional digestion along the gastrointestinal tract is essential for the molecular breakdown and a prerequisite for appropriate uptake in the intestine. Digestion and digestibility of carbohydrates and proteins thus critically affect the risk of food allergy development. In this review, we highlight the influence of amylases, gastric acid- and trypsin-inhibitors, as well as of food processing in the context of food allergenicity.
Collapse
|
33
|
Pekar J, Ret D, Untersmayr E. Stability of allergens. Mol Immunol 2018; 100:14-20. [PMID: 29606336 PMCID: PMC6020993 DOI: 10.1016/j.molimm.2018.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
For proteins to cause IgE-mediated allergic reactions, several common characteristics have to be defined, including small molecular size, solubility and stability to changing pH levels and enzymatic degradation. Nevertheless, these features are not unique for potent allergens, but are also observed in non-allergenic proteins. Due to the increasing awareness by regulatory authorities regarding the allergy pandemic, definition of characteristics unique to potent allergens would facilitate allergenicity assessment in the future. Despite major research efforts even to date the features unique for major allergens have not been elucidated so far. The route of allergen entry into the organism determines to a great extent these required characteristics. Especially orally ingested allergens are exposed to the harsh milieu of the gastrointestinal tract but might additionally be influenced by food processing. Depending on molecular properties such as disulphide bonds contributing to protein fold and formation of conformational IgE epitopes, posttranslational protein modification or protein food matrix interactions, enzymatic and thermal stability might differ between allergens. Moreover, also ligand binding influences structural stability. In the current review article, we aim at highlighting specific characteristics and molecular pattern contributing to a stabilized protein structure and overall allergenicity.
Collapse
Affiliation(s)
- Judith Pekar
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
34
|
Scheurer S, Schülke S. Interaction of Non-Specific Lipid-Transfer Proteins With Plant-Derived Lipids and Its Impact on Allergic Sensitization. Front Immunol 2018; 9:1389. [PMID: 29973934 PMCID: PMC6019453 DOI: 10.3389/fimmu.2018.01389] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023] Open
Abstract
Non-specific lipid-transfer proteins (nsLTPs) represent a family of ubiquitous plant proteins belonging to the prolamin superfamily. nsLTPs are characterized by a globular α-helical structure stabilized by four disulfide bonds and a hydrophobic cavity which acts as ligand-binding site for a broad spectrum of lipids and hydrophobic molecules. nsLTPs are involved in membrane biogenesis and in the adaption of plants to abiotic and biotic stress. They display antimicrobial activity by the ability to permeabilize the cell membrane of phytopathogens. Moreover, in the presence of lipids, nsLTPs are suggested to activate the plant immune system by a receptor-dependent mechanism. Additionally, nsLTPs from pollen and plant-derived food, in particular type 1 nsLTPs (9 kDa), are described as potent allergens. Within the nsLTP family Pru p 3 from peach is the clinically most relevant allergen which can cause genuine food allergy and frequently elicits severe clinical reactions. So far, the allergenic properties of nsLTPs are attributed to both their low molecular mass and their high thermal and proteolytic stability which allow them to reach the immune system in a biological intact form. Recently, the interaction of nsLTPs with lipids has been suggested to increase their allergenic properties and to promote the allergic sensitization to these proteins. This review will summarize the current knowledge on diversity of lipid ligands of plant LTPs, and illustrate recent studies performed with allergenic nsLTPs to investigate the effect of lipid binding on the structural modification and IgE-binding properties of proteins, and finally the potential effect on the innate immune responses.
Collapse
Affiliation(s)
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
35
|
Dubiela P, Aina R, Polak D, Geiselhart S, Humeniuk P, Bohle B, Alessandri S, Del Conte R, Cantini F, Borowski T, Bublin M, Hoffmann-Sommergruber K. Enhanced Pru p 3 IgE-binding activity by selective free fatty acid-interaction. J Allergy Clin Immunol 2017; 140:1728-1731.e10. [PMID: 28712832 DOI: 10.1016/j.jaci.2017.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Pawel Dubiela
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Roberta Aina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dominika Polak
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Piotr Humeniuk
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Rebecca Del Conte
- CERM & the Department of Chemistry, University of Florence, Florence, Italy
| | - Francesca Cantini
- CERM & the Department of Chemistry, University of Florence, Florence, Italy
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
36
|
Grutsch S, Fuchs JE, Ahammer L, Kamenik AS, Liedl KR, Tollinger M. Conformational Flexibility Differentiates Naturally Occurring Bet v 1 Isoforms. Int J Mol Sci 2017; 18:E1192. [PMID: 28587205 PMCID: PMC5486015 DOI: 10.3390/ijms18061192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
The protein Bet v 1 represents the main cause for allergic reactions to birch pollen in Europe and North America. Structurally homologous isoforms of Bet v 1 can have different properties regarding allergic sensitization and Th2 polarization, most likely due to differential susceptibility to proteolytic cleavage. Using NMR relaxation experiments and molecular dynamics simulations, we demonstrate that the initial proteolytic cleavage sites in two naturally occurring Bet v 1 isoforms, Bet v 1.0101 (Bet v 1a) and Bet v 1.0102 (Bet v 1d), are conformationally flexible. Inaccessible cleavage sites in helices and strands are highly flexible on the microsecond-millisecond time scale, whereas those located in loops display faster nanosecond-microsecond flexibility. The data consistently show that Bet v 1.0102 is more flexible and conformationally heterogeneous than Bet v 1.0101. Moreover, NMR hydrogen-deuterium exchange measurements reveal that the backbone amides in Bet v 1.0102 are significantly more solvent exposed, in agreement with this isoform's higher susceptibility to proteolytic cleavage. The differential conformational flexibility of Bet v 1 isoforms, along with the transient exposure of inaccessible sites to the protein surface, may be linked to proteolytic susceptibility, representing a potential structure-based rationale for the observed differences in Th2 polarization and allergic sensitization.
Collapse
Affiliation(s)
- Sarina Grutsch
- Institute of Organic Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Julian E Fuchs
- Institute of Inorganic and Theoretical Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Linda Ahammer
- Institute of Organic Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Anna S Kamenik
- Institute of Inorganic and Theoretical Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Klaus R Liedl
- Institute of Inorganic and Theoretical Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Martin Tollinger
- Institute of Organic Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| |
Collapse
|