1
|
Nanashima A, Hiyoshi M, Imamura N, Hamada T, Tsuchimochi Y, Wada T, Shimizu I, Ochiai T. Clinical significances of liver fibrotic markers in patients with cholangiocarcinoma after radical resections. Turk J Surg 2024; 40:283-295. [PMID: 39980645 PMCID: PMC11832000 DOI: 10.47717/turkjsurg.2024.6486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/06/2024] [Indexed: 02/22/2025]
Abstract
Objectives We examined the relation between several fibrotic markers reflecting liver parenchymal injury and conventional liver function or surgical outcomes in 67 patients with cholangiocarcinoma who underwent biliary drainage for obstructive jaundice followed by surgical resection. Material and Methods We examined conventional clinicopathological factors, six hepatic fibrosis parameters, including platelet count, hyaluronic acid, Mac-2 binding protein glycosylation isomer (M2BPGi), type IV collagen 7S, aspartate aminotransferase-to-platelet ratio index (APRI), and FIB-4 index before hepatectomy, and surgical outcomes or long-term prognosis. Results Obstructive jaundice was observed in 57% of the patients, a history of biliary diseases in 7.5%, and chronic hepatic injuries in 17.9%. M2BPGi was significantly higher in patients with obstructive jaundice as the primary sign (p <0.05), the FIB-4 index was significantly correlated with patient age (p <0.01), and serum hyaluronic acid and T4C7 levels were significantly increased in distal cholangiocarcinoma (CC). No markers were associated with the histological hepatic fibrotic index, tumor-related factors, or postoperative morbidities. Tumor relapse was observed in 37% of patients, and cancer-related death was observed in 25%. A higher FIB-4 index was significantly associated with shorter cancer-free survival (p <0.05). Cox multivariate analysis showed that bilirubin levels, poor histological cancer differentiation, and absence of fibrotic markers were associated with cancer-free, cancer-specific overall, and overall survival. Conclusion Although a sufficient relation exists between these markers and elastographic or histological fibrotic indexes, the clinical significance of measuring conventional fibrotic markers might no longer be necessary in future studies.
Collapse
Affiliation(s)
- Atsushi Nanashima
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Masahide Hiyoshi
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Naoya Imamura
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Takeomi Hamada
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Yuki Tsuchimochi
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Takashi Wada
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Ikko Shimizu
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| | - Takahiro Ochiai
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Japan
| |
Collapse
|
2
|
Ding G, Wang T, Sun F, Liu M, Tang G, Yu S, Chu Y, Ma J, Cui Y, Wu G, Wu J. Multi-omics analysis of Prolyl 3-hydroxylase 1 as a prognostic biomarker for immune infiltration in ccRCC. NPJ Precis Oncol 2024; 8:256. [PMID: 39516330 PMCID: PMC11549470 DOI: 10.1038/s41698-024-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The formation of human collagen requires the presence of Prolyl 3-hydroxylase 1 (P3H1), but the regulatory mechanism of P3H1 remained insufficiently understood. Our study aimed to identify the role of P3H1 in clear cell renal cell carcinoma (ccRCC). P3H1 expression in ccRCC was validated using multiple databases and in vitro experiments. We performed a correlation analysis of P3H1 with drug sensitivity, immune checkpoints, and immune cell infiltration using transcriptome and single-cell sequencing. Drawing upon the Encyclopedia of RNA Interactomes database, we selected P3H1 as the focal point of our investigation, meticulously uncovering the intricate network of microRNAs and lncRNAs that potentially orchestrate ceRNA mechanisms. This study employs a multidimensional approach integrating vitro assays and multi-omics bioinformatics analyses to investigate P3H1's impact on ccRCC prognosis, immune modulation, immune checkpoints, ceRNA regulatory network, drug sensitivity, and therapeutic responses, aiming to uncover new insights into its therapeutic potential and inform future clinical strategies.
Collapse
Affiliation(s)
- Guixin Ding
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Tianqi Wang
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Fengze Sun
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Ming Liu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Gonglin Tang
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Shengqiang Yu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yongli Chu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Jian Ma
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yuanshan Cui
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| | - Gang Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
3
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Alhosani F, Ilce BY, Alhamidi RS, Bhamidimarri PM, Hamad AM, Alkhayyal N, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB. Int J Mol Sci 2024; 25:10367. [PMID: 39408697 PMCID: PMC11476988 DOI: 10.3390/ijms251910367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11- overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11-) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Alaa Mohamed Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Noura Alkhayyal
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Ho CM, Yen TL, Chang TH, Huang SH. COL6A3 Exosomes Promote Tumor Dissemination and Metastasis in Epithelial Ovarian Cancer. Int J Mol Sci 2024; 25:8121. [PMID: 39125689 PMCID: PMC11311469 DOI: 10.3390/ijms25158121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3 cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis. In vitro experiments showed that EXs from MSC-OCSPCs or SKOV3/COL6A3 cells significantly enhance invasion ability in ES2 or SKOV3/COL6A3 cells, respectively (both, p <0.001). In contrast, ES2 cells with ES2/shCOL6A3 EXs exhibited reduced invasion ability (p < 0.001). In vivo, the average disseminated tumor numbers in the peritoneal cavity were significantly greater in mice receiving intraperitoneally injected SKOV3/COL6A3 cells than in SKOV3 cells (p < 0.001). Furthermore, mice intravenously (IV) injected with SKOV3/COL6A3 cells and SKOV3/COL6A3-EXs showed increased lung colonization compared to mice injected with SKOV3 cells and PBS (p = 0.007) or SKOV3/COL6A3 cells and PBS (p = 0.039). Knockdown of COL6A3 or treatment with EX inhibitor GW4869 or rapamycin-abolished COL6A3-EXs may suppress the aggressiveness of EOC.
Collapse
Affiliation(s)
- Chih-Ming Ho
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City 242, Taiwan
- Department of Medical Research, Cathay General Hospital, Sijhih, New Taipei City 221, Taiwan;
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Sijhih, New Taipei City 221, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan;
| | - Shih-Hung Huang
- Department of Pathology, Cathay General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
6
|
Binabaj MM, Asgharzadeh F, Rahmani F, Al-Asady AM, Hashemzehi M, Soleimani A, Avan A, Mehraban S, Ghorbani E, Ryzhikov M, Khazaei M, Hassanian SM. Vactosertib potently improves anti-tumor properties of 5-FU for colon cancer. Daru 2023; 31:193-203. [PMID: 37740873 PMCID: PMC10624787 DOI: 10.1007/s40199-023-00474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/22/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Several studies have shown that the TGF-β signaling pathway plays a critical role in colorectal cancer (CRC) pathogenesis. The aim of the current study is to investigate the therapeutic potential of Vactosertib (EW-7197), a selective inhibitor of TGF-β receptor type I, either alone or in combination with the standard first-line chemotherapeutic treatment, 5-Fluorouracil (5-FU), in CRC progression in both cellular and animal models. METHODS Real-Time PCR, Zymography, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and Eosin (H&E) tissue staining, and Flow cytometry techniques were applied to determine the anti-tumor properties of this novel TGF-β inhibitor in in vitro (CT-26 cell line) and in vivo (inbred BALB/C mice) samples. RESULTS Our findings showed that Vactosertib decreased cell proliferation and induced spheroid shrinkage. Moreover, this inhibitor suppressed the cell cycle and its administration either alone or in combination with 5-FU induced apoptosis by regulating the expression of p53 and BAX proteins. It also improved 5-FU anti-cancer effects by decreasing the tumor volume and weight, increasing tumor necrosis, and regulating tumor fibrosis and inflammation in an animal model. Vactosertib also enhanced the inhibitory effect of 5-FU on invasive behavior of CRC cells by upregulating the expression of E-cadherin and inhibiting MMP-9 enzymatic activity. CONCLUSION This study demonstrating the potent anti-tumor effects of Vactosertib against CRC progression. Our results clearly suggest that this inhibitor could be a promising agent reducing CRC tumor progression when administered either alone or in combination with standard treatment in CRC patients.
Collapse
Affiliation(s)
- Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Kerbala, Iraq
| | | | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Mehraban
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zhang Y, Chen Y, Chen Z, Zhou X, Chen S, Lan K, Wang Z, Zhang Y. Identification of P3H1 as a Predictive Prognostic Biomarker for Bladder Urothelial Carcinoma Based on the Cancer Genome Atlas Database. Pharmgenomics Pers Med 2023; 16:1041-1053. [PMID: 38058295 PMCID: PMC10697085 DOI: 10.2147/pgpm.s437974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Purpose The extracellular matrix in the tumor microenvironment are closely related to the development of tumors. This study's primary aim is to study the association between prolyl 3-hydroxylase 1 (P3H1) which mainly expresses collagen in extracellular matrix and the progression and prognosis of bladder cancer (BC). Methods The clinical and transcriptome data were acquired from the cancer genome atlas database. BLCAsubtyping is used to evaluate tissue subtypes of BC. The COX proportional hazards can be used to evaluate the survival process's influencing factors. Immunohistochemistry was used to identify differences in the expression of P3H1 in cancer and paired adjacent tissues. GSEA was used to investigate the underlying biological processes. Finally, ssGSEA, TIMER and pRRophetic were used to study the relationship between P3H1 and immune cell infiltration and drug sensitivity. Results The expression of P3H1 was substantially higher in highly invasive BC samples than in low invasive BC. P3H1 was an independent predictor of overall survival (HR = 1.12, p = 0.03). P3H1 expression was significantly higher in tumor tissues than adjacent normal tissues in clinical tissue samples, and was significantly higher in highly stage cancer than low stage cancer samples. Samples with high P3H1 expression had a higher level of immune cell infiltration and immune function, as well as a significant correlation with macrophage and dendritic cell infiltration and TGF-beta, Th1 cells, and macrophage regulation (cor >0.3, p <0.05). P3H1 high expression samples were substantially more sensitive to docetaxel, cisplatin, vinblastine, camptothecin, paclitaxel, and other medicines than P3H1 low expression samples. Discussion P3H1 is a possible oncogene and an independent predictor of poor prognosis in BC; it also has enhanced sensitivity to docetaxel, cisplatin, vinblastine, camptothecin, paclitaxel, and other medications.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Yang Chen
- Department of Nursing, Bishan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhiming Chen
- Department of Pathology, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Xinye Zhou
- Centre for Reproductive Medicine, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Shaochuan Chen
- Department of Urology, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Kaijian Lan
- Department of Urology, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, People’s Republic of China
| |
Collapse
|
8
|
Fejza A, Carobolante G, Poletto E, Camicia L, Schinello G, Di Siena E, Ricci G, Mongiat M, Andreuzzi E. The entanglement of extracellular matrix molecules and immune checkpoint inhibitors in cancer: a systematic review of the literature. Front Immunol 2023; 14:1270981. [PMID: 37854588 PMCID: PMC10579931 DOI: 10.3389/fimmu.2023.1270981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Immune-checkpoint inhibitors (ICIs) have emerged as a core pillar of cancer therapy as single agents or in combination regimens both in adults and children. Unfortunately, ICIs provide a long-lasting therapeutic effect in only one third of the patients. Thus, the search for predictive biomarkers of responsiveness to ICIs remains an urgent clinical need. The efficacy of ICIs treatments is strongly affected not only by the specific characteristics of cancer cells and the levels of immune checkpoint ligands, but also by other components of the tumor microenvironment, among which the extracellular matrix (ECM) is emerging as key player. With the aim to comprehensively describe the relation between ECM and ICIs' efficacy in cancer patients, the present review systematically evaluated the current literature regarding ECM remodeling in association with immunotherapeutic approaches. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO, CRD42022351180). PubMed, Web of Science, and Scopus databases were comprehensively searched from inception to January 2023. Titles, abstracts and full text screening was performed to exclude non eligible articles. The risk of bias was assessed using the QUADAS-2 tool. Results After employing relevant MeSH and key terms, we identified a total of 5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries were found and excluded. Following title and abstract screening, the full text was analyzed, and 47 studies meeting the eligibility criteria were retained. The studies included in this systematic review comprehensively recapitulate the latest observations associating changes of the ECM composition following remodeling with the traits of the tumor immune cell infiltration. The present study provides for the first time a broad view of the tight association between ECM molecules and ICIs efficacy in different tumor types, highlighting the importance of ECM-derived proteolytic products as promising liquid biopsy-based biomarkers to predict the efficacy of ICIs. Conclusion ECM remodeling has an important impact on the immune traits of different tumor types. Increasing evidence pinpoint at ECM-derived molecules as putative biomarkers to identify the patients that would most likely benefit from ICIs treatments. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351180, identifier CRD42022351180.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Biochemistry, Faculty of Medical Sciences, UBT-Higher Education Institute, Prishtina, Kosovo
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
9
|
Synytsya A, Janstová D, Šmidová M, Synytsya A, Petrtýl J. Evaluation of IR and Raman spectroscopic markers of human collagens: Insides for indicating colorectal carcinogenesis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122664. [PMID: 36996519 DOI: 10.1016/j.saa.2023.122664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Vibrational spectroscopic methods are widely used in the molecular diagnostics of carcinogenesis. Collagen, a component of connective tissue, plays a special role as a biochemical marker of pathological changes in tissues. The vibrational bands of collagens are very promising to distinguish between normal colon tissue, benign and malignant colon polyps. Differences in these bands indicate changes in the amount, structure, conformation and the ratio between the individual structural forms (subtypes) of this protein. The screening of specific collagen markers of colorectal carcinogenesis was carried out based on the FTIR and Raman (λex 785 nm) spectra of colon tissue samples and purified human collagens. It was found that individual types of human collagens showed significant differences in their vibrational spectra, and specific spectral markers were found for them. These collagen bands were assigned to specific vibrations in the polypeptide backbone, amino acid side chains and carbohydrate moieties. The corresponding spectral regions for colon tissues and colon polyps were investigated for the contribution of collagen vibrations. Mentioned spectral differences in collagen spectroscopic markers could be of interest for early ex vivo diagnosis of colorectal carcinoma if combine vibrational spectroscopy and colonoscopy.
Collapse
Affiliation(s)
- Alla Synytsya
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Daniela Janstová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Miroslava Šmidová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jaromír Petrtýl
- 4th Internal Clinic-Gastroenterology and Hepatology, 1(st) Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 00 Prague 2, Czech Republic
| |
Collapse
|
10
|
Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2023; 144:20-30. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modelling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.
Collapse
Affiliation(s)
- Lili Szabó
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
| |
Collapse
|
11
|
Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, Maniscalco G, Rajeeve V, Cutillas P, Trevisan C, Pozzobon M, Lockley M, Rastrick J, Läubli H, White A, Pearce OMT. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun 2023; 14:2514. [PMID: 37188691 PMCID: PMC10185550 DOI: 10.1038/s41467-023-38093-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Recent studies have shown that the tumor extracellular matrix (ECM) associates with immunosuppression, and that targeting the ECM can improve immune infiltration and responsiveness to immunotherapy. A question that remains unresolved is whether the ECM directly educates the immune phenotypes seen in tumors. Here, we identify a tumor-associated macrophage (TAM) population associated with poor prognosis, interruption of the cancer immunity cycle, and tumor ECM composition. To investigate whether the ECM was capable of generating this TAM phenotype, we developed a decellularized tissue model that retains the native ECM architecture and composition. Macrophages cultured on decellularized ovarian metastasis shared transcriptional profiles with the TAMs found in human tissue. ECM-educated macrophages have a tissue-remodeling and immunoregulatory phenotype, inducing altered T cell marker expression and proliferation. We conclude that the tumor ECM directly educates this macrophage population found in cancer tissues. Therefore, current and emerging cancer therapies that target the tumor ECM may be tailored to improve macrophage phenotype and their downstream regulation of immunity.
Collapse
Affiliation(s)
- E H Puttock
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E J Tyler
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Manni
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - E Maniati
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Butterworth
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Burger Ramos
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E Peerani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Hirani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Gauthier
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Y Liu
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - G Maniscalco
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Rajeeve
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Cutillas
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Trevisan
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Pozzobon
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Lockley
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - J Rastrick
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - H Läubli
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - A White
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - O M T Pearce
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Brisson BK, Dekky B, Berger AC, Mauldin EA, Loebel C, Yen W, Stewart DC, Gillette D, Assenmacher CA, Cukierman E, Burdick JA, Borges VF, Volk SW. Tumor-restrictive type III collagen in the breast cancer microenvironment: prognostic and therapeutic implications. RESEARCH SQUARE 2023:rs.3.rs-2631314. [PMID: 37090621 PMCID: PMC10120781 DOI: 10.21203/rs.3.rs-2631314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and in silico experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in noninvasive and invasive breast cancer cell lines. In human TNBC biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in noninvasive compared to invasive regions. Similarly, in silico analyses of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Becky K. Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashton C. Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel C. Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Aurora, Colorado, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Expression of Epithelial and Mesenchymal Markers in Plasmatic Extracellular Vesicles as a Diagnostic Tool for Neoplastic Processes. Int J Mol Sci 2023; 24:ijms24043578. [PMID: 36834987 PMCID: PMC9964693 DOI: 10.3390/ijms24043578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor-derived extracellular vesicles (TD-EVs) have active roles as cancer hallmark enablers. EVs RNA of epithelial and stromal cells carry information that facilitates the communication processes that contribute to oncological progression, so the objective of this work was to validate by RT-PCR the presence of epithelial (KRT19; CEA) and stromal (COL1A2; COL11A1) markers in RNA of plasmatic EVs in healthy and diverse-malignancy patients for the development of a non-invasive cancer diagnosis system using liquid biopsy. Ten asymptomatic controls and 20 cancer patients were included in the study, and results showed that the isolated plasmatic EVs by scanning transmission electron microscopy (STEM) andBiomedical Research Institute A Coruña nanoparticle tracking analysis (NTA) contained most exosome structures with also a considerable percentage of microvesicles. No differences were found in concentration and size distribution between the two cohorts of patients, but significant gene expression in epithelial and mesenchymal markers between healthy donors and patients with active oncological disease was shown. Results of quantitative RT-PCR are solid and reliable for KRT19, COL1A2, and COL11A1, so the analysis of RNA extracted from TD-EVs could be a correct approach to develop a diagnostic tool in oncological processes.
Collapse
|
15
|
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M, Brooks PC. Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 2023; 49:44. [PMID: 36633146 PMCID: PMC9868893 DOI: 10.3892/or.2023.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro‑ and anti‑tumorigenic functions in a cell type‑dependent manner. Therefore, designing strategies that block pro‑tumorigenic signaling, without impeding anti‑tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which β3‑integrin‑mediated binding to a secreted RGDKGE‑containing collagen fragment stimulates an autocrine‑like signaling pathway that differentially governs the activity of both YAP and (protein kinase‑A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD‑L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine‑like signaling pathway that may provide tumor cells with the ability to regulate PD‑L1, but our findings may also help in the development of more effective strategies to control pro‑tumorigenic β3‑integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.
Collapse
Affiliation(s)
- Jennifer M. Caron
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Xianghua Han
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Christine W. Lary
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Pradeep Sathyanarayana
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Scot C. Remick
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Marc S. Ernstoff
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Peter C. Brooks
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| |
Collapse
|
16
|
Pomerleau V, Nicolas VR, Jurkovic CM, Faucheux N, Lauzon MA, Boisvert FM, Perreault N. FOXL1+ Telocytes in mouse colon orchestrate extracellular matrix biodynamics and wound repair resolution. J Proteomics 2023; 271:104755. [PMID: 36272709 DOI: 10.1016/j.jprot.2022.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have identified FoxL1+-telocytes (TCFoxL1+) as key players in gut epithelial-mesenchymal interactions which can determine the colonic microenvironment. Bone morphogenetic protein signaling disruption in TCFoxL1+ alters the physical and cellular microenvironment and leads to colon pathophysiology. This suggests a role for TCFoxL1+ in stromagenesis, but it is hard to identify the specific contribution of TCFoxL1+ when analyzing whole tissue profiling studies. We performed ex vivo deconstruction of control and BmpR1a△FoxL1+ colon samples, isolated the mesenchyme-enriched fractions, and determined the protein composition of the in vivo extracellular matrix (ECM) to analyze microenvironment variation. Matrisomic analysis of mesenchyme fractions revealed modulations in ECM proteins with functions associated with innate immunity, epithelial wound healing, and the collagen network. These results show that TCFoxL1+ is critical in orchestrating the biodynamics of the colon ECM. TCFoxL1+ disfunction reprograms the gut's microenvironment and drives the intestinal epithelium toward colonic pathologies. SIGNIFICANCE: In this study, the method that was elected to isolate ECM proteins might not encompass the full extent of ECM proteins in a tissue, due to the protocol chosen, as this protocol by Naba et al., targets more the insoluble part of the matrisome and eliminates the more soluble components in the first steps. However, this ECM-enrichment strategy represents an improvement and interesting avenue to study ECM proteins in the colon compared to total tissue analysis with a background of abundant cellular protein. Thus, the matrisomic approach presented in this study, and its target validation delivered a broader evaluation of the matrix remodeling occurring in the colonic sub-epithelial mesenchyme of the BmpR1a△FoxL1+ mouse model.
Collapse
Affiliation(s)
- Véronique Pomerleau
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vilcy Reyes Nicolas
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Carla-Marie Jurkovic
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Faucheux
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc-Antoine Lauzon
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - François-Michel Boisvert
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Perreault
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
17
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
18
|
Hsu KS, Dunleavey JM, Szot C, Yang L, Hilton MB, Morris K, Seaman S, Feng Y, Lutz EM, Koogle R, Tomassoni-Ardori F, Saha S, Zhang XM, Zudaire E, Bajgain P, Rose J, Zhu Z, Dimitrov DS, Cuttitta F, Emenaker NJ, Tessarollo L, St. Croix B. Cancer cell survival depends on collagen uptake into tumor-associated stroma. Nat Commun 2022; 13:7078. [PMID: 36400786 PMCID: PMC9674701 DOI: 10.1038/s41467-022-34643-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Collagen I, the most abundant protein in humans, is ubiquitous in solid tumors where it provides a rich source of exploitable metabolic fuel for cancer cells. While tumor cells were unable to exploit collagen directly, here we show they can usurp metabolic byproducts of collagen-consuming tumor-associated stroma. Using genetically engineered mouse models, we discovered that solid tumor growth depends upon collagen binding and uptake mediated by the TEM8/ANTXR1 cell surface protein in tumor-associated stroma. Tumor-associated stromal cells processed collagen into glutamine, which was then released and internalized by cancer cells. Under chronic nutrient starvation, a condition driven by the high metabolic demand of tumors, cancer cells exploited glutamine to survive, an effect that could be reversed by blocking collagen uptake with TEM8 neutralizing antibodies. These studies reveal that cancer cells exploit collagen-consuming stromal cells for survival, exposing an important vulnerability across solid tumors with implications for developing improved anticancer therapy.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - James M. Dunleavey
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Christopher Szot
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Liping Yang
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Mary Beth Hilton
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA ,grid.418021.e0000 0004 0535 8394Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702 USA
| | - Karen Morris
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA ,grid.418021.e0000 0004 0535 8394Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702 USA
| | - Steven Seaman
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Yang Feng
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Emily M. Lutz
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Robert Koogle
- grid.418021.e0000 0004 0535 8394MCGP, NCI, Frederick, MD 21702 USA
| | | | - Saurabh Saha
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111 USA ,Present Address: Centessa Pharmaceuticals, Cambridge, MA 02139 USA
| | - Xiaoyan M. Zhang
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111 USA ,Present Address: Ikena Oncology, Cambridge, MA 02210 USA
| | - Enrique Zudaire
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA ,Present Address: Janssen Pharmaceutical Companies, J&J, R&D, Welsh Road McKean Road, Spring House, PA 19477 USA
| | - Pradip Bajgain
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Joshua Rose
- grid.48336.3a0000 0004 1936 8075Biomolecular Structure Section, Center for Structural Biology, NCI, NIH, Frederick, MD 21702 USA
| | - Zhongyu Zhu
- grid.48336.3a0000 0004 1936 8075Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702 USA ,grid.420872.bPresent Address: Lentigen Technology, Inc. 1201 Clopper Road, Gaithersburg, MD 20878 USA
| | - Dimiter S. Dimitrov
- grid.48336.3a0000 0004 1936 8075Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702 USA ,grid.21925.3d0000 0004 1936 9000Present Address: Center for Antibody Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Frank Cuttitta
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Nancy J. Emenaker
- grid.48336.3a0000 0004 1936 8075Division of Cancer Prevention, NCI, NIH, Bethesda, MD 20892 USA
| | - Lino Tessarollo
- grid.48336.3a0000 0004 1936 8075Neural Development Section, MCGP, NCI, NIH, Frederick, MD 21702 USA
| | - Brad St. Croix
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| |
Collapse
|
19
|
Tao J, Li X, Liang C, Liu Y, Zhou J. Expression of basement membrane genes and their prognostic significance in clear cell renal cell carcinoma patients. Front Oncol 2022; 12:1026331. [PMID: 36353536 PMCID: PMC9637577 DOI: 10.3389/fonc.2022.1026331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with limited treatment options. A recent study confirmed the involvement of basement membrane (BM) genes in the progression of many cancers. Therefore, we studied the role and prognostic significance of BM genes in ccRCC. METHODS Co-expression analysis of ccRCC-related information deposited in The Cancer Genome Atlas database and a BM geneset from a recent study was conducted. The differentially expressed BM genes were validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Least absolute shrinkage and selection operator regression and univariate Cox regression analyses were performed to identify a BM gene signature with prognostic significance for ccRCC. Multivariate Cox regression, time-dependent receiver operating characteristic, Kaplan-Meier, and nomogram analyses were implemented to appraise the prognostic ability of the signature and the findings were further verified using a Gene Expression Omnibus dataset. Additionally, immune cell infiltration and and pathway enrichment analyses were performed using ImmuCellAI and Gene Set Enrichment Analysis (GSEA), respectively. Finally, the DSIGDB dataset was used to screen small-molecule therapeutic drugs that may be useful in treating ccRCC patients. RESULTS We identified 108 BM genes exhibiting different expression levels compared to that in normal kidney tissues, among which 32 genes had prognostic values. The qRT-PCR analyses confirmed that the expression patterns of four of the ten selected genes were the same as the predicted ones. Additionally, we successfully established and validated a ccRCC patient prediction model based on 16 BM genes and observed that the model function is an independent predictor. GSEA revealed that differentially expressed BM genes mainly displayed significant enrichment of tumor and metabolic signaling cascades. The BM gene signature was also associated with immune cell infiltration and checkpoints. Eight small-molecule drugs may have therapeutic effects on ccRCC patients. CONCLUSION This study explored the function of BM genes in ccRCC for the first time. Reliable prognostic biomarkers that affect the survival of ccRCC patients were determined, and a BM gene-based prognostic model was established.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012270. [PMID: 36293126 PMCID: PMC9602794 DOI: 10.3390/ijms232012270] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.
Collapse
|
21
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
22
|
MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules 2022; 27:molecules27154811. [PMID: 35956764 PMCID: PMC9369872 DOI: 10.3390/molecules27154811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-related deaths are very commonly attributed to complications from metastases to neighboring as well as distant organs. Dissociate response in the treatment of pancreatic adenocarcinoma is one of the main causes of low treatment success and low survival rates. This behavior could not be explained by transcriptomics or genomics; however, differences in the composition at the protein level could be observed. We have characterized the proteomic composition of primary pancreatic adenocarcinoma and distant metastasis directly in human tissue samples, utilizing mass spectrometry imaging. The mass spectrometry data was used to train and validate machine learning models that could distinguish both tissue entities with an accuracy above 90%. Model validation on samples from another collection yielded a correct classification of both entities. Tentative identification of the discriminative molecular features showed that collagen fragments (COL1A1, COL1A2, and COL3A1) play a fundamental role in tumor development. From the analysis of the receiver operating characteristic, we could further advance some potential targets, such as histone and histone variations, that could provide a better understanding of tumor development, and consequently, more effective treatments.
Collapse
|
23
|
Lindgren M, Rask G, Jonsson J, Berglund A, Lundin C, Jonsson P, Ljuslinder I, Nyström H. Type IV Collagen in Human Colorectal Liver Metastases—Cellular Origin and a Circulating Biomarker. Cancers (Basel) 2022; 14:cancers14143396. [PMID: 35884455 PMCID: PMC9325127 DOI: 10.3390/cancers14143396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Patients with colorectal liver metastases (CLM) can be cured through surgery if metastases are detected early in disease progression. Today, CLM diagnosis relies heavily on diagnostic imaging, and cheap, non-invasive, and efficiently measurable biomarkers are needed. Circulating type IV collagen (COL IV) is a potential biomarker for detecting CLM. Patients with CLM show elevated circulating levels of COL IV and increased tissue expression of COL IV in CLM tissue, which could result from enhanced production and degradation of COL IV. This study aimed to establish the cellular source behind enhanced COL IV levels, which is helpful in the evaluation of the biomarker potential of COL IV. We show that fibroblasts express COL IV both in vitro and in the stromal tissue of CLM. We also found that CLM tissue expresses COL IV-degrading proteases. Lastly, CLM patients have higher circulating COL IV levels than healthy controls. Abstract Circulating type IV collagen (cCOL IV) is a potential biomarker for patients with colorectal liver metastases (CLM) who present with elevated levels of COL IV in both CLM tissue and circulation. This study aimed to establish the cellular origin of elevated levels of COL IV and analyze circulating COL IV in CLM patients. The cellular source was established through in situ hybridization, immunohistochemical staining, and morphological evaluation. Cellular expression in vitro was assessed by immunofluorescence. Tissue expression of COL IV-degrading matrix metalloproteinases (MMPs)-2, -7, -9, and -13 was studied with immunohistochemical staining. Plasma levels of COL IV in CLM patients and healthy controls were analyzed with ELISA. This study shows that cancer-associated fibroblasts (CAFs) express COL IV in the stroma of CLM and that COL IV is expressed in vitro by fibroblasts but not by tumor cells. MMP-2, -7, -9, and -13 are expressed in CLM tissue, mainly by hepatocytes and immune cells, and circulating COL IV is significantly elevated in CLM patients compared with healthy controls. Our study shows that stromal cells, not tumor cells, produce COL IV in CLM, and that circulating COL IV is elevated in patients with CLM.
Collapse
Affiliation(s)
- Moa Lindgren
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden; (G.R.); (J.J.); (A.B.); (C.L.); (H.N.)
- Correspondence:
| | - Gunilla Rask
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden; (G.R.); (J.J.); (A.B.); (C.L.); (H.N.)
- Department of Medical Biosciences/Pathology, Umeå University, SE-901 87 Umeå, Sweden
| | - Josefin Jonsson
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden; (G.R.); (J.J.); (A.B.); (C.L.); (H.N.)
| | - Anette Berglund
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden; (G.R.); (J.J.); (A.B.); (C.L.); (H.N.)
| | - Christina Lundin
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden; (G.R.); (J.J.); (A.B.); (C.L.); (H.N.)
| | - Pär Jonsson
- Department of Chemistry, Umeå University, SE-907 36 Umeå, Sweden;
| | - Ingrid Ljuslinder
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87 Umeå, Sweden;
| | - Hanna Nyström
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden; (G.R.); (J.J.); (A.B.); (C.L.); (H.N.)
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
24
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
25
|
Abstract
Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.
Collapse
|
26
|
Biomarker LEPRE1 induces pelitinib-specific drug responsiveness by regulating ABCG2 expression and tumor transition states in human leukemia and lung cancer. Sci Rep 2022; 12:2928. [PMID: 35190588 PMCID: PMC8861100 DOI: 10.1038/s41598-022-06621-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022] Open
Abstract
Biomarkers for treatment sensitivity or drug resistance used in precision medicine include prognostic and predictive molecules, critical factors in selecting appropriate treatment protocols and improving survival rates. However, identification of accurate biomarkers remain challenging due to the high risk of false-positive findings and lack of functional validation results for each biomarker. Here, we discovered a mechanical correlation between leucine proline-enriched proteoglycan 1 (LEPRE1) and pelitinib drug sensitivity using in silico statistical methods and confirmed the correlation in acute myeloid leukemia (AML) and A549 lung cancer cells. We determined that high LEPRE1 levels induce protein kinase B activation, overexpression of ATP-binding cassette superfamily G member 2 (ABCG2) and E-cadherin, and cell colonization, resulting in a cancer stem cell-like phenotype. Sensitivity to pelitinib increases in LEPRE1-overexpressing cells due to the reversing effect of ABCG2 upregulation. LEPRE1 silencing induces pelitinib resistance and promotes epithelial-to-mesenchymal transition through actin rearrangement via a series of Src/ERK/cofilin cascades. The in silico results identified a mechanistic relationship between LEPRE1 and pelitinib drug sensitivity, confirmed in two cancer types. This study demonstrates the potential of LEPRE1 as a biomarker in cancer through in-silico prediction and in vitro experiments supporting the clinical development of personalized medicine strategies based on bioinformatics findings.
Collapse
|
27
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
28
|
A Mass Spectrometry Imaging Based Approach for Prognosis Prediction in UICC Stage I/II Colon Cancer. Cancers (Basel) 2021; 13:cancers13215371. [PMID: 34771536 PMCID: PMC8582467 DOI: 10.3390/cancers13215371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor treatment is heavily dictated by the tumor progression status. However, in colon cancer, it is difficult to predict disease progression in the early stages. In this study, we have employed a proteomic analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). MALDI-MSI is a technique that measures the molecular content of (tumor) tissue. We analyzed tumor samples of 276 patients. If the patients developed distant metastasis, they were considered to have a more aggressive tumor type than the patients that did not. In this comparative study, we have developed bioinformatics methods that can predict the tendency of tumor progression and advance a couple of molecules that could be used as prognostic markers of colon cancer. The prediction of tumor progression can help to choose a more adequate treatment for each individual patient. Abstract Currently, pathological evaluation of stage I/II colon cancer, following the Union Internationale Contre Le Cancer (UICC) guidelines, is insufficient to identify patients that would benefit from adjuvant treatment. In our study, we analyzed tissue samples from 276 patients with colon cancer utilizing mass spectrometry imaging. Two distinct approaches are herein presented for data processing and analysis. In one approach, four different machine learning algorithms were applied to predict the tendency to develop metastasis, which yielded accuracies over 90% for three of the models. In the other approach, 1007 m/z features were evaluated with regards to their prognostic capabilities, yielding two m/z features as promising prognostic markers. One feature was identified as a fragment from collagen (collagen 3A1), hinting that a higher collagen content within the tumor is associated with poorer outcomes. Identification of proteins that reflect changes in the tumor and its microenvironment could give a very much-needed prediction of a patient’s prognosis, and subsequently assist in the choice of a more adequate treatment.
Collapse
|
29
|
Jensen C, Nissen NI, Von Arenstorff CS, Karsdal MA, Willumsen N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:326. [PMID: 34656158 PMCID: PMC8520279 DOI: 10.1186/s13046-021-02133-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Despite the overall clinical success of immune checkpoint inhibitors (ICIs) for treating patients with solid tumors, a large number of patients do not benefit from this approach. Consequently, there is a need for predictive biomarkers. The most prevalent biomarkers such as PD-L1 expression and tumor mutational burden (TMB) do not reliably predict response to ICIs across different solid tumor types suggesting that a broader view of regulating factors in the tumor microenvironment is needed. Emerging evidence indicates that one central common denominator of resistance to ICIs may be fibrotic activity characterized by extracellular matrix (ECM) and collagen production by cancer-associated fibroblasts (CAFs). A fibroblast-and collagen-rich stroma attenuates immunotherapy response by contributing to inhibition and exclusion of T cells. Here we review opportunities and limitations in the utilization of the most prevalent biomarkers for ICIs and elaborate on the unique opportunities with biomarkers originating from the activated fibroblasts producing an impermeable ECM. We propose that ECM and collagen biomarkers measured non-invasively may be a novel and practical approach to optimize treatment strategies and improve patient selection for ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark.
| | - Neel I Nissen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
30
|
Karsdal MA, Genovese F, Rasmussen DGK, Bay-Jensen AC, Mortensen JH, Holm Nielsen S, Willumsen N, Jensen C, Manon-Jensen T, Jennings L, Reese-Petersen AL, Henriksen K, Sand JM, Bager C, Leeming DJ. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin Biochem 2021; 97:11-24. [PMID: 34453894 DOI: 10.1016/j.clinbiochem.2021.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES There is a need for precision medicine and an unspoken promise of an optimal approach for identification of the right patients for value-based medicine based on big data. However, there may be a misconception that measurement of proteins is more valuable than measurement of fewer selected biomarkers. In population-based research, variation may be somewhat eliminated by quantity. However, this fascination of numbers may limit the attention to and understanding of the single. This review highlights that protein measurements (with collagens as examples) may mean different things depending on the targeted epitope - formation or degradation of tissues, and even signaling potential of proteins. DESIGN AND METHODS PubMed was searched for collagen, neo-epitope, biomarkers. RESULTS Ample examples of assays with specific epitopes, either pathological such as HbA1c, or domain specific such as pro-peptides, which total protein arrays would not have identified were evident. CONCLUSIONS We suggest that big data may be considered as the funnel of data points, in which most important parameters will be selected. If the technical precision is low or the biological accuracy is limited, and we include suboptimal quality of biomarkers, disguised as big data, we may not be able to fulfill the promise of helping patients searching for the optimal treatment. Alternatively, if the technical precision of the total protein quantification is high, but we miss the functional domains with the most considerable biological meaning, we miss the most important and valuable information of a given protein. This review highlights that measurements of the same protein in different ways may provide completely different meanings. We need to understand the pathological importance of each epitope quantified to maximize protein measurements.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark.
| | - F Genovese
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D G K Rasmussen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - S Holm Nielsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - N Willumsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | | | | | - K Henriksen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Bager
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| |
Collapse
|
31
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:9185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| |
Collapse
|
32
|
Liu YL, Bager CL, Willumsen N, Ramchandani D, Kornhauser N, Ling L, Cobham M, Andreopoulou E, Cigler T, Moore A, LaPolla D, Fitzpatrick V, Ward M, Warren JD, Fischbach C, Mittal V, Vahdat LT. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer 2021; 7:108. [PMID: 34426581 PMCID: PMC8382701 DOI: 10.1038/s41523-021-00313-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tetrathiomolybdate (TM) is a novel, copper-depleting compound associated with promising survival in a phase II study of patients with high-risk and triple-negative breast cancer. We sought to elucidate the mechanism of TM by exploring its effects on collagen processing and immune function in the tumor microenvironment (TME). Using an exploratory cohort, we identified markers of collagen processing (LOXL2, PRO-C3, C6M, and C1M) that differed between those with breast cancer versus controls. We measured these collagen biomarkers in TM-treated patients on the phase II study and detected evidence of decreased collagen cross-linking and increased degradation over formation in those without disease compared to those who experienced disease progression. Preclinical studies revealed decreased collagen deposition, lower levels of myeloid-derived suppressor cells, and higher CD4+ T-cell infiltration in TM-treated mice compared with controls. This study reveals novel mechanisms of TM targeting the TME and immune response with potential applications across cancer types.
Collapse
Affiliation(s)
- Ying L Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | - Anne Moore
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Linda T Vahdat
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
33
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
34
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
35
|
Nissen NI, Kehlet S, Johansen AZ, Chen IM, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Sun S, Manon-Jensen T, He Y, Langholm L, Willumsen N. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer 2021; 149:228-238. [PMID: 33687786 DOI: 10.1002/ijc.33551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
Type XI collagen has been associated with tumor fibrosis and aggressiveness in patients with pancreatic ductal adenocarcinoma (PDAC). The propeptide on Type XI collagen is released into the circulation after proteolytic processing at either amino acid 253 or 511. This allows for a noninvasive biomarker approach to quantify Type XI collagen production. We developed two ELISA-based biomarkers, targeting the two enzymatic cleavage sites (PRO-C11-253 and PRO-C11-511). In a discovery cohort including serum from patients with PDAC (n = 39, Stages 1-4), chronic pancreatitis (CP, n = 12) and healthy controls (n = 20), PRO-C11-511, but not PRO-C11-253, was significantly upregulated in patients with PDAC and CP compared to healthy controls. Furthermore, PRO-C11-511 levels >75th percentile were associated with poor overall survival (OS) (HR, 95% CI: 3.40, 1.48-7.83). The PRO-C11-511 biomarker potential was validated in serum from 686 patients with PDAC. Again, high levels of PRO-C11-511 (>75th percentile) were associated with poor OS (HR, 95% CI: 1.68, 1.40-2.02). Furthermore, PRO-C11-511 remained significant after adjusting for clinical risk factors (HR, 95% CI: 1.50, 1.22-1.86). In conclusion, quantifying serum levels of Type XI collagen with PRO-C11-511 predicts poor OS in patients with PDAC. This supports that Type XI collagen is important for PDAC biology and that PRO-C11-511 has prognostic noninvasive biomarker potential for patients with PDAC.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shu Sun
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Yi He
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Lasse Langholm
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | |
Collapse
|
36
|
Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Bioanalytical methods for circulating extracellular matrix-related proteins: new opportunities in cancer diagnosis. Anal Bioanal Chem 2021; 414:147-165. [PMID: 34091712 DOI: 10.1007/s00216-021-03416-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
The role of the extracellular matrix (ECM) remodeling in tumorigenesis and metastasis is becoming increasingly clear. Cancer development requires that tumor cells recruit a tumor microenvironment permissive for further tumor growth. This is a dynamic process that takes place by a cross-talk between tumor cells and ECM. As a consequence, molecules derived from the ECM changes associated to cancer are released into the bloodstream, representing potential biomarkers of tumor development. This article highlights the importance of developing and improving bioanalytical methods for the detection of ECM remodeling-derived components, as a step forward to translate the basic knowledge about cancer progression into the clinical practice.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
37
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
38
|
Sanegre S, Eritja N, de Andrea C, Diaz-Martin J, Diaz-Lagares Á, Jácome MA, Salguero-Aranda C, García Ros D, Davidson B, Lopez R, Melero I, Navarro S, Ramon Y Cajal S, de Alava E, Matias-Guiu X, Noguera R. Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma. Front Cell Dev Biol 2021; 9:670185. [PMID: 34150764 PMCID: PMC8209546 DOI: 10.3389/fcell.2021.670185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
The invasive tumor front (the tumor–host interface) is vitally important in malignant cell progression and metastasis. Tumor cell interactions with resident and infiltrating host cells and with the surrounding extracellular matrix and secreted factors ultimately determine the fate of the tumor. Herein we focus on the invasive tumor front, making an in-depth characterization of reticular fiber scaffolding, infiltrating immune cells, gene expression, and epigenetic profiles of classified aggressive primary uterine adenocarcinomas (24 patients) and leiomyosarcomas (11 patients). Sections of formalin-fixed samples before and after microdissection were scanned and studied. Reticular fiber architecture and immune cell infiltration were analyzed by automatized algorithms in colocalized regions of interest. Despite morphometric resemblance between reticular fibers and high presence of macrophages, we found some variance in other immune cell populations and distinctive gene expression and cell adhesion-related methylation signatures. Although no evident overall differences in immune response were detected at the gene expression and methylation level, impaired antimicrobial humoral response might be involved in uterine leiomyosarcoma spread. Similarities found at the invasive tumor front of uterine adenocarcinomas and leiomyosarcomas could facilitate the use of common biomarkers and therapies. Furthermore, molecular and architectural characterization of the invasive front of uterine malignancies may provide additional prognostic information beyond established prognostic factors.
Collapse
Affiliation(s)
- Sabina Sanegre
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| | - Núria Eritja
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Carlos de Andrea
- Cancer CIBER (CIBERONC), Madrid, Spain.,Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Juan Diaz-Martin
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Ángel Diaz-Lagares
- Cancer CIBER (CIBERONC), Madrid, Spain.,Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Carmen Salguero-Aranda
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - David García Ros
- Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Rafel Lopez
- Cancer CIBER (CIBERONC), Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Ignacio Melero
- Cancer CIBER (CIBERONC), Madrid, Spain.,Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Samuel Navarro
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| | - Santiago Ramon Y Cajal
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Enrique de Alava
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Xavier Matias-Guiu
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Rosa Noguera
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| |
Collapse
|
39
|
Hachey SJ, Movsesyan S, Nguyen QH, Burton-Sojo G, Tankazyan A, Wu J, Hoang T, Zhao D, Wang S, Hatch MM, Celaya E, Gomez S, Chen GT, Davis RT, Nee K, Pervolarakis N, Lawson DA, Kessenbrock K, Lee AP, Lowengrub J, Waterman ML, Hughes CCW. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. LAB ON A CHIP 2021; 21:1333-1351. [PMID: 33605955 PMCID: PMC8525497 DOI: 10.1039/d0lc01216e] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 05/23/2023]
Abstract
Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.
Collapse
Affiliation(s)
- Stephanie J. Hachey
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Silva Movsesyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Quy H. Nguyen
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Giselle Burton-Sojo
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Ani Tankazyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Tuyen Hoang
- Department of Biostatistics, University of California, IrvineIrvineCA92697USA
| | - Da Zhao
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
| | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Elizabeth Celaya
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Samantha Gomez
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - George T. Chen
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Ryan T. Davis
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Devon A. Lawson
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - John Lowengrub
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| |
Collapse
|
40
|
Han X, Caron JM, Lary CW, Sathyanarayana P, Vary C, Brooks PC. An RGDKGE-Containing Cryptic Collagen Fragment Regulates Phosphorylation of Large Tumor Suppressor Kinase-1 and Controls Ovarian Tumor Growth by a Yes-Associated Protein-Dependent Mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:527-544. [PMID: 33307038 PMCID: PMC7927278 DOI: 10.1016/j.ajpath.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
The growth and spread of malignant tumors, such as ovarian carcinomas, are governed in part by complex interconnected signaling cascades occurring between stromal and tumor cells. These reciprocal cross-talk signaling networks operating within the local tissue microenvironment may enhance malignant tumor progression. Understanding how novel bioactive molecules generated within the tumor microenvironment regulate signaling pathways in distinct cellular compartments is critical for the development of more effective treatment paradigms. Herein, we provide evidence that blocking cellular interactions with an RGDKGE-containing collagen peptide that selectively binds integrin β3 on ovarian tumor cells enhances the phosphorylation of the hippo effector kinase large tumor suppressor kinase-1 and reduces nuclear accumulation of yes-associated protein and its target gene c-Myc. Selectively targeting this RGDKGE-containing collagen fragment inhibited ovarian tumor growth and the development of ascites fluid in vivo. These findings suggest that this bioactive collagen fragment may represent a previously unknown regulator of the hippo effector kinase large tumor suppressor kinase-1 and regulate ovarian tumor growth by a yes-associated protein-dependent mechanism. Taken together, these data not only provide new mechanistic insight into how a unique collagen fragment may regulate ovarian cancer, but in addition may help provide a useful new alternative strategy to control ovarian tumor progression based on selectively disrupting a previously unappreciated signaling cascade.
Collapse
Affiliation(s)
- XiangHua Han
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Jennifer M Caron
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Christine W Lary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Pradeep Sathyanarayana
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Calvin Vary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Peter C Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine.
| |
Collapse
|
41
|
Dobrota R, Jordan S, Juhl P, Maurer B, Wildi L, Bay-Jensen AC, Karsdal MA, Herrick AL, Distler JHW, Allanore Y, Hoffmann-Vold AM, Siebuhr AS, Distler O. Circulating collagen neo-epitopes and their role in the prediction of fibrosis in patients with systemic sclerosis: a multicentre cohort study. THE LANCET. RHEUMATOLOGY 2021; 3:e175-e184. [PMID: 38279380 DOI: 10.1016/s2665-9913(20)30385-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Extracellular matrix remodelling is a hallmark of systemic sclerosis. We evaluated extracellular matrix neo-epitopes as potential serum biomarkers for progression of fibrosis in systemic sclerosis. METHODS We included patients meeting the 2013 American College of Rheumatology and European League Against Rheumatism criteria and healthy controls from a derivation and validation cohort. The primary outcome was progression of fibrosis at follow-up, defined as decline in percentage of predicted forced vital capacity of 10% or more in patients with interstitial lung disease or increase in modified Rodnan skin score of 25% or more and more than 5 points at a 1-year follow-up visit. Longitudinal assessment and biobanking followed European Scleroderma Trials and Research standards. Extracellular matrix-degradation (BGM, C3M, C4M, and C6M) and extracellular matrix-formation neo-epitopes (PRO-C1, PRO-C3, PRO-C4, PRO-C5, and PRO-C6) were measured in serum using validated ELISAs. FINDINGS Between Aug 18, 2011, and Jan 19, 2015, 149 patients with systemic sclerosis (27 [18%] progressors and 122 [82%] non-progressors) and 29 healthy controls were included in the derivation cohort. Concentrations of type III and IV collagen neo-epitopes were higher in patients with systemic sclerosis compared with healthy controls and were significantly associated with systemic sclerosis in univariable logistic regression. Concentrations of degradation neo-epitopes of type III and IV collagens and their turnover ratios distinguished between progressors and non-progressors (C3M area under the curve 0·77 [95% CI 0·67-0·86], p<0·0001; PRO-C3:C3M 0·70 [0·59-0·80], p=0·0013; C4M 0·73 [0·63-0·82], p<0·0001; PRO-C4:C4M 0·75 [0·64-0·86], p<0·0001). 384 patients with systemic sclerosis (73 [19%] progressors) and 60 healthy controls were included in the multicentre validation cohort between April 17, 2003, and Jan 24, 2017. Analysis of the validation cohort confirmed that neo-epitopes of type III and IV collagens are changed in progressors. In a pooled analysis of both cohorts, the serum concentrations of formation neo-epitopes PRO-C3 and PRO-C4 and the turnover ratio of type IV collagen (PRO-C4:C4M) were higher in skin progressors. The turnover ratio of type IV collagen and PRO-C3 significantly predicted skin progression in a multivariable model adjusted for modified Rodnan skin score, sex, and age. INTERPRETATION These data suggest that neo-epitopes of type III and IV collagens are promising biomarkers for the assessment and prediction of extracellular matrix remodelling in systemic sclerosis. They could be used in clinical practice to risk stratify patients at risk of progression of fibrosis. FUNDING None.
Collapse
Affiliation(s)
- Rucsandra Dobrota
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Suzana Jordan
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pernille Juhl
- Immuno-Science, Nordic Bioscience, Biomarker and Research, Herlev, Denmark; Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Britta Maurer
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas Wildi
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Ariane L Herrick
- Division of Musculoskeletal & Dermatological Sciences, The University of Manchester, Salford Royal Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jörg H W Distler
- Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Allanore
- INSERM U1016, Department of Rheumatology, Cochin Hospital, AP-HP, Paris Descartes University, Paris, France
| | | | - Anne Sofie Siebuhr
- Immuno-Science, Nordic Bioscience, Biomarker and Research, Herlev, Denmark
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Martins Cavaco AC, Dâmaso S, Casimiro S, Costa L. Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev 2021; 39:603-623. [PMID: 32447477 DOI: 10.1007/s10555-020-09888-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression through dissemination to tumor-surrounding tissues and metastasis development is a hallmark of cancer that requires continuous cell-to-cell interactions and tissue remodeling. In fact, metastization can be regarded as a tissue disease orchestrated by cancer cells, leading to neoplastic colonization of new organs. Collagen is a major component of the extracellular matrix (ECM), and increasing evidence suggests that it has an important role in cancer progression and metastasis. Desmoplasia and collagen biomarkers have been associated with relapse and death in cancer patients. Despite the increasing interest in ECM and in the desmoplastic process in tumor microenvironment as prognostic factors and therapeutic targets in cancer, further research is required for a better understanding of these aspects of cancer biology. In this review, published evidence correlating collagen with cancer prognosis is retrieved and analyzed, and the role of collagen and its fragments in cancer pathophysiology is discussed.
Collapse
Affiliation(s)
- Ana C Martins Cavaco
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Sara Dâmaso
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Luís Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal.
| |
Collapse
|
43
|
Wang S, Bager CL, Karsdal MA, Chondros D, Taverna D, Willumsen N. Blood-based extracellular matrix biomarkers as predictors of survival in patients with metastatic pancreatic ductal adenocarcinoma receiving pegvorhyaluronidase alfa. J Transl Med 2021; 19:39. [PMID: 33478521 PMCID: PMC7819178 DOI: 10.1186/s12967-021-02701-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Extensive extracellular matrix (ECM) remodeling is a hallmark of metastatic pancreatic ductal adenocarcinoma (mPDA). We investigated fragments of collagen types III (C3M, PRO-C3), VI (PRO-C6), and VIII (C8-C), and versican (VCANM) in plasma as biomarkers for predicting progression-free survival (PFS) and overall survival (OS) in patients with mPDA treated with pegvorhyaluronidase alfa, a biologic that degrades the ECM component hyaluronan (HA), in a randomized phase 2 study (HALO109-202). Methods HALO109-202 comprised a discovery cohort (Stage 1, n = 94) and a validation cohort (Stage 2, n = 95). Plasma ECM biomarkers were analyzed by ELISAs. Univariate Cox regression analysis and Kaplan–Meier plots evaluated predictive associations between biomarkers, PFS and OS in patients treated with pegvorhyaluronidase alfa plus nab-paclitaxel/gemcitabine (PAG) versus nab-paclitaxel/gemcitabine (AG) alone. Results PFS was improved with PAG vs. AG in Stage 1 patients with high C3M/PRO-C3 ratio (median cut-off): median PFS (mPFS) 8.0 vs. 5.3 months, P = 0.031; HR = 0.40; 95% CI 0.17–0.92). High C3M/PRO-C3 ratio was validated in Stage 2 patients by predicting a PFS benefit of PAG vs. AG (mPFS: 8.8 vs. 3.4 months, P = 0.046; HR = 0.46; 95% CI 0.21–0.98). OS was also improved in patients with high C3M/PRO-C3 ratio treated with PAG vs. AG (mOS 13.8 vs 8.5 months, P = 0.009; HR = 0.35; 95% CI 0.16–0.77). Interestingly, high C3M/PRO-C3 ratio predicted for a PFS benefit to PAG vs. AG both in patients with HA-low tumors (HR = 0.36; 95% CI 0.17–0.79) and HA-high tumors (HR = 0.20; 95% CI 0.06–0.69). Conclusions The C3M/PRO-C3 ratio measuring type III collagen turnover in plasma has potential as a blood-based predictive biomarker in patients with mPDA and provides additional value to a HA biopsy when applied for patient selection. Trial registration: NCT01839487. Registered 25 April 2016
Collapse
Affiliation(s)
- Song Wang
- Halozyme Therapeutics, Inc., San Diego, CA, USA
| | - Cecilie L Bager
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
44
|
Nissen NI, Kehlet S, Boisen MK, Liljefors M, Jensen C, Johansen AZ, Johansen JS, Erler JT, Karsdal M, Mortensen JH, Høye A, Willumsen N. Prognostic value of blood-based fibrosis biomarkers in patients with metastatic colorectal cancer receiving chemotherapy and bevacizumab. Sci Rep 2021; 11:865. [PMID: 33441622 PMCID: PMC7806753 DOI: 10.1038/s41598-020-79608-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
A desmoplastic colorectal cancer stroma, characterized by excess turnover of the cancer-associated fibroblast derived collagens type III and VI, can lead to reduced drug-uptake and poor treatment response. We investigated the association between biomarkers of collagen type III and VI and overall survival (OS) in patients with metastatic colorectal cancer (mCRC). Serum samples were collected from 252 patients with mCRC prior to treatment with bevacizumab and chemotherapy. Serum concentrations of biomarkers reflecting formation of collagen type III (PRO-C3) and VI (PRO-C6) and degradation of collagen type VI (C6M and C6Mα3) were determined by ELISA. The biomarkers were evaluated for associations with OS, individually, combined, and after adjusting for carcinoembryonic antigen (CEA), lactate dehydrogenase (LDH) and performance status (PS). High baseline levels (> median) of each collagen biomarker were significantly associated with shorter OS (PRO-C3: HR = 2.0, 95%CI = 1.54-2.63; PRO-C6: HR = 1.6, 95%CI = 1.24-2.11; C6M: HR = 1.4, 95%CI = 1.05-1.78; C6Mα3: HR = 1.6, 95%CI = 1.16-2.07). PRO-C3 and PRO-C6 remained significant after adjustment for CEA, LDH and PS. Weak correlations were seen between the collagen biomarkers (r = 0.03-0.59) and combining all improved prognostic capacity (HR = 3.6, 95%CI = 2.30-5.76). Collagen biomarkers were predictive of shorter OS in patients with mCRC. This supports that collagen- and CAF biology is important in CRC.
Collapse
Affiliation(s)
- Neel I Nissen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark.
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| | - Stephanie Kehlet
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Liljefors
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christina Jensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Joachim H Mortensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Anette Høye
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Nicholas Willumsen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
45
|
Seetha A, Devaraj H, Sudhandiran G. Effects of combined treatment with Indomethacin and Juglone on AOM/DSS induced colon carcinogenesis in Balb/c mice: Roles of inflammation and apoptosis. Life Sci 2021; 264:118657. [PMID: 33148421 DOI: 10.1016/j.lfs.2020.118657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
AIM Indomethacin [IND] is reported to treat colon cancer. However, continuous exposure to IND causes gastric ulceration, an adverse side effect in humans. This study implies the therapeutic effect of IND and juglone [JUG] against colon carcinogenesis, without gastric ulceration - an adverse side effect of IND. MATERIALS AND METHODS Adult male Balb/C mice were divided into six groups randomly: control, AOM/DSS-induced, IND-treated, JUG-treated, IND + JUG-treated and drug-control. Levels of serum markers, haematoxylin & eosin staining to observe tissue architecture, toluidine blue staining to detect mast cells expression, Masson's trichrome and sirius-red staining were used to detect the collagen deposition. RT-PCR and western blot analysis were carried out to detect inflammation and apoptosis. KEY FINDINGS IND + JUG effectively decreased the levels of serum markers: CEA, AFP, LDH, AST and ALT. Although, IND restored colonic architecture by regulating the accumulation of mast cell and collagen content, it causes gastric ulceration. To address this adverse effect of IND, JUG was given along with IND and was shown to alleviate IND-induced gastric ulceration. AOM/DSS induced animals showed increased expression of inflammatory molecules - TNFα, NFκB and Cox-2, apoptosis regulator - Bcl-2 and decreased expression of pro-apoptotic molecules - Bad, Bax and caspase3; whereas, IND and JUG treated groups showed decreased inflammatory expression with increased expression of pro-apoptotic molecules. SIGNIFICANCE IND and JUG reduce the inflammatory activity and induce apoptotic cell death, while JUG effectively prevents IND induced gastric ulceration. These findings establish that a combination of IND + JUG may serve as a promising treatment regimen for colon cancer.
Collapse
Affiliation(s)
- Alagesan Seetha
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | - Halagowder Devaraj
- Department of Zoology, University of Madras, Guindy Campus, Chennai, India
| | | |
Collapse
|
46
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Gordon-Weeks A, Yuzhalin AE. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers (Basel) 2020; 12:E3331. [PMID: 33187209 PMCID: PMC7696558 DOI: 10.3390/cancers12113331] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.
Collapse
Affiliation(s)
- Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6607, Level 6 John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Arseniy E. Yuzhalin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
48
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1259] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
49
|
Jensen C, Sinkeviciute D, Madsen DH, Önnerfjord P, Hansen M, Schmidt H, Karsdal MA, Svane IM, Willumsen N. Granzyme B Degraded Type IV Collagen Products in Serum Identify Melanoma Patients Responding to Immune Checkpoint Blockade. Cancers (Basel) 2020; 12:cancers12102786. [PMID: 32998446 PMCID: PMC7601429 DOI: 10.3390/cancers12102786] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Novel biomarkers that can identify melanoma patients responding to immune checkpoint inhibitor therapy are urgently needed. As high T-cell infiltration and low fibrotic activity are associated with response, we aimed to examine the serum biomarker potential of granzyme B degraded type IV collagen (C4G) products in combination with the fibrosis biomarker PRO-C3. We found that high C4G combined with low PRO-C3 has the potential to identify patients responding to immune checkpoint inhibitor therapy suggesting that these biomarkers may provide a non-invasive tool for patient selection and therapeutic decision-making in the future. Abstract A T-cell permissive tumor microenvironment, characterized by the presence of activated T cells and low fibrotic activity is crucial for response to immune checkpoint inhibitors (ICIs). Granzyme B has been shown to promote T-cell migration through the basement membrane by the degradation of type IV collagen. In this study, we evaluated the biomarker potential of measuring granzyme B-mediated degradation of type IV collagen (C4G) in combination with a fibroblast activation biomarker (PRO-C3) non-invasively for identifying metastatic melanoma patients responding to the ICI ipilimumab. A monoclonal antibody was generated against C4G and used to develop a competitive electro-chemiluminescence immunoassay. C4G and PRO-C3 were measured in pretreatment serum from metastatic melanoma patients (n = 54). The C4G assay was found specific for a granzyme B-generated neo-epitope on type IV collagen. The objective response rate (ORR) was 2.6-fold higher (18% vs. 7%) in patients with high C4G levels (>25th percentile) vs. low levels (≤25th percentile). Likewise, high C4G levels at baseline were associated with longer overall survival (OS) (log-rank, p = 0.040, and hazard ratio (HR) = 0.48, 95%CI: 0.24–0.98, p = 0.045). Combining high C4G with low PRO-C3 correlated with improved OS with a median OS of 796 days vs. 273 days (p = 0.0003) and an HR of 0.30 (95%CI: 0.15–0.60, p = 0.0006). In conclusion, these results suggest that high granzyme B degraded type IV collagen (C4G) combined with low PRO-C3 quantified non-invasively has the potential to identify the responders to ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (D.S.); (M.A.K.); (N.W.)
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Dovile Sinkeviciute
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (D.S.); (M.A.K.); (N.W.)
- Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (D.H.M.); (M.H.); (I.M.S.)
| | - Patrik Önnerfjord
- Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (D.H.M.); (M.H.); (I.M.S.)
| | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Morten Asser Karsdal
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (D.S.); (M.A.K.); (N.W.)
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (D.H.M.); (M.H.); (I.M.S.)
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (D.S.); (M.A.K.); (N.W.)
| |
Collapse
|
50
|
Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol 2020; 10:1488. [PMID: 33014790 PMCID: PMC7461916 DOI: 10.3389/fonc.2020.01488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancers are complex ecosystems composed of malignant cells embedded in an intricate microenvironment made of different non-transformed cell types and extracellular matrix (ECM) components. The tumor microenvironment is governed by constantly evolving cell-cell and cell-ECM interactions, which are now recognized as key actors in the genesis, progression and treatment of cancer lesions. The ECM is composed of a multitude of fibrous proteins, matricellular-associated proteins, and proteoglycans. This complex structure plays critical roles in cancer progression: it functions as the scaffold for tissues organization and provides biochemical and biomechanical signals that regulate key cancer hallmarks including cell growth, survival, migration, differentiation, angiogenesis, and immune response. Cells sense the biochemical and mechanical properties of the ECM through specialized transmembrane receptors that include integrins, discoidin domain receptors, and syndecans. Advanced stages of several carcinomas are characterized by a desmoplastic reaction characterized by an extensive deposition of fibrillar collagens in the microenvironment. This compact network of fibrillar collagens promotes cancer progression and metastasis, and is associated with low survival rates for cancer patients. In this review, we highlight how fibrillar collagens and their corresponding integrin receptors are modulated during cancer progression. We describe how the deposition and alignment of collagen fibers influence the tumor microenvironment and how fibrillar collagen-binding integrins expressed by cancer and stromal cells critically contribute in cancer hallmarks.
Collapse
Affiliation(s)
| | | | | | | | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|