1
|
Świeżak J, Smolarz K, Mirny Z, Altin D, Sokołowski A. Physiological and behavioral responses of the Baltic clam Macoma balthica to a laboratory simulated CO 2-leakage from a subseabed carbon storage site. MARINE POLLUTION BULLETIN 2025; 210:117276. [PMID: 39581049 DOI: 10.1016/j.marpolbul.2024.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Carbon capture and storage in sub-seabed geological reservoirs is now officially included in the atmospheric CO2 emissions reduction policy and meets the agenda of Sustainable Development Goals (SDGs). Over the last few years biological risk assessment studies have delivered substantial empirical data on possible consequences of CO2 leakages from underwater storage sites on benthic systems. Current knowledge on Carbon Capture and Storage CCS associated risks is limited to marine systems. Yet there are multiple areas identified as suitable for carbon storage, but their hydrogeochemical features are so distinct that they should be studied as separate cases. Baltic Sea is one example of an area but is host to a unique - in a world scale - ecosystem with low salinity in combination with reduced oxygen availability in the benthic zone. Geological surveys have designated a potential storage site in the Southern Baltic Sea, namely the B3 oil field. Thus, this study focuses on biological effects of seawater acidification caused by a simulated CO2 leakage scenarios under laboratory conditions on a model macrobenthic in-faunal species. Baltic clams Macoma balthica were exposed to different environmental pH scenarios: pH 7.7 (no leakage), pH 7.0 (moderate hypercapnia) and pH 6.3 (severe hypercapnia) in three independent experiments conducted with the use of a hyperbaric tank (Karl Eric Titank) mimicking hydrostatic pressure of 900 kPa, relevant to conditions at the B3 field. Selected physiological aspects of the Baltic clam, such as survival, shell growth rate, morphometric condition and biochemical composition were investigated along with their behavioral responses, i.e. sediment burrowing activity. The results showed modest effects of hypercapnia on physiological performance of the clams that did not lead to greater mortality in neither of the tested leakage scenarios. Apart from high survival of the clams even in the lowest seawater pH (6.3) there were only little changes observed in the burrowing depth of the clams and biochemical composition of their soft tissues related to seawater acidification. The most evident physiological responses of the clams to prolonged hypercapnia (40 days at pH 6.3) were manifested in decreased shell growth.
Collapse
Affiliation(s)
- Justyna Świeżak
- University of Gdańsk, Faculty of Oceanography and Geography, Gdynia, Poland.
| | - Katarzyna Smolarz
- University of Gdańsk, Faculty of Oceanography and Geography, Gdynia, Poland
| | - Zuzanna Mirny
- National Marine Fisheries Research Institute, Gdynia, Poland
| | - Dag Altin
- Biotrix, Trondheim, Norway; Research Infrastructure SeaLab, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Gdynia, Poland
| |
Collapse
|
2
|
Gao Y, Liu Z, Zhu T, Xin X, Jin Y, Wang L, Liu C, Song L. A bone morphogenetic protein regulates the shell formation of Crassostrea gigas under ocean acidification. Gene 2023; 884:147687. [PMID: 37541558 DOI: 10.1016/j.gene.2023.147687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are key factors controlling osteoblast differentiation, which have been proved to be involved in the hard tissue formation of marine mollusks. In the present study, a member of BMPs gene (CgBMP7) was identified from Pacific oyster Crassostrea gigas (C. gigas) with the aim to understand its possible role in the regulation of shell formation under ocean acidification (OA) conditions. The open reading frame (ORF) of CgBMP7 was of 1254 bp encoding a polypeptide of 417 amino acids. The deduced amino acid sequence of CgBMP7 was comprised of one signal peptide, one prodomain and one TGF-β domain, which shared 21.69%-61.10% identities with those from other species. The mRNA transcript of CgBMP7 was ubiquitously expressed in all the tested tissues of adult oysters with a higher expression level in mantle, notably highest in the middle fold (MF) of the three folds of mantle. The expression level of bone morphogenetic protein type I receptor (CgBMPR1B) mRNA was also highest in the MF and up-regulated dramatically post recombinant BMP7 protein (rCgBMP7) stimulation. After the blockage of BMPR1B with inhibitor LDN193189 (LDN), the mRNA expression level and phosphorylation level of CgSmad1/5/8 in mantle were decreased, and the mRNA expression levels of CgCaM and Cgengrailed-1 were down-regulated significantly. During the oysters were exposed to acidified seawater for weeks, the expression levels of CgBMP7, CgBMPR1B and CgSmad1/5/8 in the MF decreased significantly (p < 0.01) at the 4th week, and CgCaM and Cgengrailed-1 also exhibited the same variable expression patterns as CgBMP7. In addition, the growth of shell in the treatment group (pH 7.8) was slower than that in the control group (pH 8.1). These results collectively indicated that BMP7 was able to trigger the BMPR-Smad signaling pathway and involved in controlling the formation of oyster calcified shell under OA conditions.
Collapse
Affiliation(s)
- Yuqian Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ting Zhu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoyu Xin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| |
Collapse
|
3
|
Ferraz MA, Kiyama AC, Primel EG, Barbosa SC, Castro ÍB, Choueri RB, Gallucci F. Does pH variation influence the toxicity of organic contaminants in estuarine sediments? Effects of Irgarol on nematode assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152944. [PMID: 35007601 DOI: 10.1016/j.scitotenv.2022.152944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Natural pH values in coastal waters vary largely among locations, ecosystems, and time periods; still, there is an ongoing acidification trend. In this scenario, more acidic pH values can alter bioavailability of organic contaminants, to organisms. Despite this, interactive effects between pH and chemical substances are not usually considered in Ecological Risk Assessment protocols. This study investigated the effects of pH on the toxicity of a hydrophobic organic compound on a benthic community using a microcosm experiment setup to assess the response of nematode assemblages exposed to environmentally relevant concentrations of Irgarol at two natural pH conditions. Estuarine nematode assemblages were exposed to two concentrations of Irgarol at pH 7.0 and 8.0 for periods of 7 and 35 days. Lower diversity of nematode genera was observed at the highest tested Irgarol concentration (1281 ± 65 ng.g-1). The results showed that the effects of Irgarol contamination were independent of pH variation, indicating no influence of acidification within this range on the toxicity of Irgarol to benthic meiofauna. However, the results showed that estuarine nematode assemblages are impacted by long-term exposure to low (but naturally occurring) pHs. This indicates that estuarine organisms may be under naturally high physiological pressure and that permanent changes in the ecosystem's environmental factors, such as future coastal ocean acidification, may drive organisms closer to the edges of their tolerance windows.
Collapse
Affiliation(s)
- Mariana Aliceda Ferraz
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Ana Carolina Kiyama
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Sergiane Caldas Barbosa
- Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Rodrigo Brasil Choueri
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil.
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| |
Collapse
|
4
|
Fanelli E, Di Giacomo S, Gambi C, Bianchelli S, Da Ros Z, Tangherlini M, Andaloro F, Romeo T, Corinaldesi C, Danovaro R. Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea). BIOLOGY 2022; 11:biology11020321. [PMID: 35205186 PMCID: PMC8868750 DOI: 10.3390/biology11020321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022]
Abstract
The Aeolian Islands (Mediterranean Sea) host a unique hydrothermal system called the "Smoking Land" due to the presence of over 200 volcanic CO2-vents, resulting in water acidification phenomena and the creation of an acidified benthic environment. Here, we report the results of a study conducted at three sites located at ca. 16, 40, and 80 m of depth, and characterized by CO2 emissions to assess the effects of acidification on meio- and macrobenthic assemblages. Acidification caused significant changes in both meio- and macrofaunal assemblages, with a clear decrease in terms of abundance and a shift in community composition. A noticeable reduction in biomass was observed only for macrofauna. The most sensitive meiofaunal taxa were kinorhynchs and turbellarians that disappeared at the CO2 sites, while the abundance of halacarids and ostracods increased, possibly as a result of the larger food availability and the lower predatory pressures by the sensitive meiofaunal and macrofaunal taxa. Sediment acidification also causes the disappearance of more sensitive macrofaunal taxa, such as gastropods, and the increase in tolerant taxa such as oligochaetes. We conclude that the effects of shallow CO2-vents result in the progressive simplification of community structure and biodiversity loss due to the disappearance of the most sensitive meio- and macrofaunal taxa.
Collapse
Affiliation(s)
- Emanuela Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
- Correspondence:
| | - Simone Di Giacomo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
| | - Cristina Gambi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
| | - Silvia Bianchelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
| | - Zaira Da Ros
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Michael Tangherlini
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Franco Andaloro
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Teresa Romeo
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| |
Collapse
|
5
|
Sokołowski A, Świeżak J, Hallmann A, Olsen AJ, Ziółkowska M, Øverjordet IB, Nordtug T, Altin D, Krause DF, Salaberria I, Smolarz K. Cellular level response of the bivalve Limecola balthica to seawater acidification due to potential CO 2 leakage from a sub-seabed storage site in the southern Baltic Sea: TiTank experiment at representative hydrostatic pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148593. [PMID: 34323752 DOI: 10.1016/j.scitotenv.2021.148593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Understanding of biological responses of marine fauna to seawater acidification due to potential CO2 leakage from sub-seabed storage sites has improved recently, providing support to CCS environmental risk assessment. Physiological responses of benthic organisms to ambient hypercapnia have been previously investigated but rarely at the cellular level, particularly in areas of less common geochemical and ecological conditions such as brackish water and/or reduced oxygen levels. In this study, CO2-related responses of oxygen-dependent, antioxidant and detoxification systems as well as markers of neurotoxicity and acid-base balance in the Baltic clam Limecola balthica from the Baltic Sea were quantified in 50-day experiments. Experimental conditions included CO2 addition producing pH levels of 7.7, 7.0 and 6.3, respectively and hydrostatic pressure 900 kPa, simulating realistic seawater acidities following a CO2 seepage accident at the potential CO2-storage site in the Baltic. Reduced pH interfered with most biomarkers studied, and modifications to lactate dehydrogenase and malate dehydrogenase indicate that aerobiosis was a dominant energy production pathway. Hypercapnic stress was most evident in bivalves exposed to moderately acidic seawater environment (pH 7.0), showing a decrease of glutathione peroxidase activity, activation of catalase and suppression of glutathione S-transferase activity likely in response to enhanced free radical production. The clams subjected to pH 7.0 also demonstrated acetylcholinesterase activation that might be linked to prolonged impact of contaminants released from sediment. The most acidified conditions (pH 6.3) stimulated glutathione and malondialdehyde concentration in the bivalve tissue suggesting potential cell damage. Temporal variations of most biomarkers imply that after a 10-to-15-day initial phase of an acute disturbance, the metabolic and antioxidant defence systems recovered their capacities.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Świeżak
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Anna Hallmann
- Medical University of Gdańsk, Department of Pharmaceutical Biochemistry, Dębinki 1, 80-211 Gdańsk, Poland
| | - Anders J Olsen
- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Marcelina Ziółkowska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | | | - Trond Nordtug
- SINTEF Ocean AS, Brattorkaia 17C, NO-7465 Trondheim, Norway
| | - Dag Altin
- Altins Biotrix, Finn Bergs veg 3, 7022 Trondheim, Norway
| | | | - Iurgi Salaberria
- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Katarzyna Smolarz
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
6
|
Unstable, Super Critical CO 2-Water Displacement in Fine Grained Porous Media under Geologic Carbon Sequestration Conditions. Sci Rep 2019; 9:11272. [PMID: 31375705 PMCID: PMC6677758 DOI: 10.1038/s41598-019-47437-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/29/2019] [Indexed: 11/22/2022] Open
Abstract
In this study we investigated fluid displacement water with supercritical (sc) CO2 in chalk under conditions close to those used for geologic CO2 sequestration (GCS), to answer two main questions: How much volume is available for scCO2 injection? And what is the main mechanism of displacement over a range of temperatures? Characterization of immiscible scCO2 displacement, at the pore scale in the complex microstructure in chalk reservoirs, offers a pathway to better understand the macroscopic processes at the continuum scale. Fluid behavior was simulated by solving the Navier-Stokes equations, using finite-volume methods within a pore network. The pore network was extracted from a high resolution 3D image of chalk, obtained using X-ray nanotomography. Viscous fingering dominates scCO2 infiltration and pores remain only partially saturated. The unstable front, developed with high capillary number, causes filling of pores aligned with the flow direction, reaching a maximum of 70% scCO2 saturation. The saturation rate increases with temperature but the final saturation state is the same for all investigated temperatures. The higher the saturation rate, the higher the dynamic capillary pressure coefficient. A higher dynamic capillary pressure coefficient indicates that scCO2 needs more time to reach capillary equilibrium in the porous medium.
Collapse
|
7
|
Molari M, Guilini K, Lins L, Ramette A, Vanreusel A. CO 2 leakage can cause loss of benthic biodiversity in submarine sands. MARINE ENVIRONMENTAL RESEARCH 2019; 144:213-229. [PMID: 30709637 DOI: 10.1016/j.marenvres.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
One of the options to mitigate atmospheric CO2 increase is CO2 Capture and Storage in sub-seabed geological formations. Since predicting long-term storage security is difficult, different CO2 leakage scenarios and impacts on marine ecosystems require evaluation. Submarine CO2 vents may serve as natural analogues and allow studying the effects of CO2 leakage in a holistic approach. At the study site east of Basiluzzo Islet off Panarea Island (Italy), gas emissions (90-99% CO2) occur at moderate flows (80-120 L m-2 h-1). We investigated the effects of acidified porewater conditions (pHT range: 5.5-7.7) on the diversity of benthic bacteria and invertebrates by sampling natural sediments in three subsequent years and by performing a transplantation experiment with a duration of one year, respectively. Both multiple years and one year of exposure to acidified porewater conditions reduced the number of benthic bacterial operational taxonomic units and invertebrate species diversity by 30-80%. Reduced biodiversity at the vent sites increased the temporal variability in bacterial and nematode community biomass, abundance and composition. While the release from CO2 exposure resulted in a full recovery of nematode species diversity within one year, bacterial diversity remained affected. Overall our findings showed that seawater acidification, induced by seafloor CO2 emissions, was responsible for loss of diversity across different size-classes of benthic organisms, which reduced community stability with potential relapses on ecosystem resilience.
Collapse
Affiliation(s)
- Massimiliano Molari
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Germany.
| | - Katja Guilini
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, 9000, Ghent, Belgium
| | - Lidia Lins
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, 9000, Ghent, Belgium
| | - Alban Ramette
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Germany
| | - Ann Vanreusel
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Sokołowski A, Brulińska D. The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica. MARINE ENVIRONMENTAL RESEARCH 2018; 140:289-298. [PMID: 30251647 DOI: 10.1016/j.marenvres.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Though biological consequences of CCS (Carbon Capture and Storage) implementation into the marine environment have received substantial research attention, the impact of potential CO2 leakage on benthic infauna in the Baltic Sea remained poorly recognized. This study quantified medium-term (56-day laboratory exposure) effects of CO2-induced seawater acidification (pH 7.7, 7.0 and 6.3) on energetic reserves and heat-shock protein HSP70 expression of adult bivalve Limecola balthica from the southern Baltic. While no clear impact was evident in the most acidic treatment (pH 6.3), moderate seawater hypercapnia (pH 7.0) induced elevated catabolism of high caloric reserves (carbohydrates including glycogen and lipids) in order to provide energy to cover enhanced metabolic requirements for acid-base regulation. Biochemical response did not involve, however, breakdown of proteins, suggesting that they were not utilized as metabolic substrates. As indicated also by subtle variations in the chaperone protein HSP70, the clams demonstrated high CO2 tolerance, presumably through development of efficient defensive/compensatory mechanisms during their larval and/or ontogenic life stages.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Dominika Brulińska
- University of Gdańsk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
9
|
Zhao L, Milano S, Walliser EO, Schöne BR. Bivalve shell formation in a naturally CO 2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures. CHEMOSPHERE 2018; 203:132-138. [PMID: 29614406 DOI: 10.1016/j.chemosphere.2018.03.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Marine bivalves inhabiting naturally pCO2-enriched habitats can likely tolerate high levels of acidification. Consequently, elucidating the mechanisms behind such resilience can help to predict the fate of this economically and ecologically important group under near-future scenarios of CO2-driven ocean acidification. Here, we assess the effects of four environmentally realistic pCO2 levels (900, 1500, 2900 and 6600 μatm) on the shell production rate of Mya arenaria juveniles originating from a periodically pCO2-enriched habitat (Kiel Fjord, Western Baltic Sea). We find a significant decline in the rate of shell growth as pCO2 increases, but also observe unchanged shell formation rates at moderate pCO2 levels of 1500 and 2900 μatm, the latter illustrating the capacity of the juveniles to partially mitigate the impact of high pCO2. Using recently developed geochemical tracers we show that M. arenaria exposed to a natural pCO2 gradient from 900 to 2900 μatm can likely concentrate HCO3- in the calcifying fluid through the exchange of HCO3-/Cl- and simultaneously maintain the pH homeostasis through active removal of protons, thereby being able to sustain the rate of shell formation to a certain extent. However, with increasing pCO2 beyond natural maximum the bivalves may have limited capacity to compensate for changes in the calcifying fluid chemistry, showing significant shell growth reduction. Findings of the present study may pave the way for elucidating the underlying mechanisms by which marine bivalves acclimate and adapt to high seawater pCO2.
Collapse
Affiliation(s)
- Liqiang Zhao
- Institute of Geosciences, University of Mainz, Mainz 55128, Germany; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | - Stefania Milano
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Eric O Walliser
- Institute of Geosciences, University of Mainz, Mainz 55128, Germany
| | - Bernd R Schöne
- Institute of Geosciences, University of Mainz, Mainz 55128, Germany
| |
Collapse
|
10
|
Molari M, Guilini K, Lott C, Weber M, de Beer D, Meyer S, Ramette A, Wegener G, Wenzhöfer F, Martin D, Cibic T, De Vittor C, Vanreusel A, Boetius A. CO 2 leakage alters biogeochemical and ecological functions of submarine sands. SCIENCE ADVANCES 2018; 4:eaao2040. [PMID: 29441359 PMCID: PMC5810613 DOI: 10.1126/sciadv.aao2040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/05/2018] [Indexed: 06/08/2023]
Abstract
Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m-2 hour-1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2.
Collapse
Affiliation(s)
- Massimiliano Molari
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Katja Guilini
- Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Christian Lott
- HYDRA Institute for Marine Sciences, Elba Field Station, Via del Forno 80, 57034 Campo nell’Elba (LI), Italy
| | - Miriam Weber
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- HYDRA Institute for Marine Sciences, Elba Field Station, Via del Forno 80, 57034 Campo nell’Elba (LI), Italy
| | - Dirk de Beer
- Microsensor Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Stefanie Meyer
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Alban Ramette
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Gunter Wegener
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University Bremen, 28359 Bremen, Germany
| | - Frank Wenzhöfer
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Daniel Martin
- Centre d’Estudis Avançats de Blanes (CEAB), Consejo Superior de Investigaciones Científicas (CSIC), Blanes, Girona, Catalunya, Spain
| | - Tamara Cibic
- Sezione di Oceanografia, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale–OGS, I-34151 Trieste, Italy
| | - Cinzia De Vittor
- Sezione di Oceanografia, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale–OGS, I-34151 Trieste, Italy
| | - Ann Vanreusel
- Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Antje Boetius
- HGF-MPG (Helmholtz Gemeinschaft Deutscher Forschungszenten–Max Planck Gesellschaft) Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University Bremen, 28359 Bremen, Germany
- HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
11
|
Mevenkamp L, Ong EZ, Van Colen C, Vanreusel A, Guilini K. Combined, short-term exposure to reduced seawater pH and elevated temperature induces community shifts in an intertidal meiobenthic assemblage. MARINE ENVIRONMENTAL RESEARCH 2018; 133:32-44. [PMID: 29198410 DOI: 10.1016/j.marenvres.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
In future global change scenarios the surface ocean will experience continuous acidification and rising temperatures. While effects of both stressors on marine, benthic communities are fairly well studied, consequences of the interaction of both factors remain largely unknown. We performed a short-term microcosm experiment exposing a soft-bottom community from an intertidal flat in the Westerscheldt estuary to two levels of seawater pH (ambient pHT = 7.9, reduced pHT = 7.5) and temperature (10 °C ambient and 13 °C elevated temperature) in a crossed design. After 8 weeks, meiobenthic community structure and nematode staining ratios, as a proxy for mortality, were compared between treatments and structural changes were related to the prevailing abiotic conditions in the respective treatments (pore water pHT, sediment grain size, total organic matter content, total organic carbon and nitrogen content, phytopigment concentrations and carbonate concentration). Pore water pHT profiles were significantly altered by pH and temperature manipulations and the combination of elevated temperature and reduced pH intensified the already more acidic porewater below the oxic zone. Meiofauna community composition was significantly affected by the combination of reduced pH and elevated temperature resulting in increased densities of predatory Platyhelminthes, reduced densities of Copepoda and Nauplii and complete absence of Gastrotricha compared to the experimental control. Furthermore, nematode staining ratio was elevated when seawater pH was reduced pointing towards reduced degradation rates of dead nematode bodies. The observed synergistic interactions of pH and temperature on meiobenthic communities and abiotic sediment characteristics underline the importance of multistressor experiments when addressing impacts of global change on the marine environment.
Collapse
Affiliation(s)
- Lisa Mevenkamp
- Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium.
| | - Ee Zin Ong
- Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Carl Van Colen
- Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Katja Guilini
- Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Laroche O, Wood SA, Tremblay LA, Ellis JI, Lear G, Pochon X. A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations. MARINE POLLUTION BULLETIN 2018; 127:97-107. [PMID: 29475721 DOI: 10.1016/j.marpolbul.2017.11.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Standardized ecosystem-based monitoring surveys are critical for providing information on marine ecosystem health. Environmental DNA/RNA (eDNA/eRNA) metabarcoding may facilitate such surveys by quickly and effectively characterizing multi-trophic levels. In this study, we assessed the suitability of eDNA/eRNA metabarcoding to evaluate changes in benthic assemblages of bacteria, Foraminifera and other eukaryotes along transects at three offshore oil and gas (O&G) drilling and production sites, and compared these to morphologically characterized macro-faunal assemblages. Bacterial communities were the most responsive to O&G activities, followed by Foraminifera, and macro-fauna (the latter assessed by morphology). The molecular approach enabled detection of hydrocarbon degrading taxa such as the bacteria Alcanivorax and Microbulbifer at petroleum impacted stations. Most identified indicator taxa, notably among macro-fauna, were highly specific to site conditions. Based on our results we suggest that eDNA/eRNA metabarcoding can be used as a stand-alone method for biodiversity assessment or as a complement to morphology-based monitoring approaches.
Collapse
Affiliation(s)
- Olivier Laroche
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand.
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Environmental Research Institute, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Louis A Tremblay
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Joanne I Ellis
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre, Thuwal 23955-6900, Saudi Arabia
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| |
Collapse
|
13
|
Sokołowski A, Brulińska D, Mirny Z, Burska D, Pryputniewicz-Flis D. Differing responses of the estuarine bivalve Limecola balthica to lowered water pH caused by potential CO 2 leaks from a sub-seabed storage site in the Baltic Sea: An experimental study. MARINE POLLUTION BULLETIN 2018; 127:761-773. [PMID: 28987450 DOI: 10.1016/j.marpolbul.2017.09.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/17/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Sub-Seabed CCS is regarded as a key technology for the reduction of CO2 emissions, but little is known about the mechanisms through which leakages from storage sites impact benthic species. In this study, the biological responses of the infaunal bivalve Limecola balthica to CO2-induced seawater acidification (pH7.7, 7.0, and 6.3) were quantified in 56-day mesocosm experiments. Increased water acidity caused changes in behavioral and physiological traits, but even the most acidic conditions did not prove to be fatal. In response to hypercapnia, the bivalves approached the sediment surface and increased respiration rates. Lower seawater pH reduced shell weight and growth, while it simultaneously increased soft tissue weight; this places L. balthica in a somewhat unique position among marine invertebrates.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Dominika Brulińska
- University of Gdańsk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Zuzanna Mirny
- National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - Dorota Burska
- University of Gdańsk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | | |
Collapse
|
14
|
Ong EZ, Briffa M, Moens T, Van Colen C. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule. MARINE ENVIRONMENTAL RESEARCH 2017; 130:38-47. [PMID: 28712827 DOI: 10.1016/j.marenvres.2017.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO2 waters.
Collapse
Affiliation(s)
- E Z Ong
- Ghent University, Biology Department, Marine Biology Research Group, Krijgslaan 281-S8, B 9000 Ghent, Belgium; Marine Biology & Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK.
| | - M Briffa
- Marine Biology & Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - T Moens
- Ghent University, Biology Department, Marine Biology Research Group, Krijgslaan 281-S8, B 9000 Ghent, Belgium
| | - C Van Colen
- Ghent University, Biology Department, Marine Biology Research Group, Krijgslaan 281-S8, B 9000 Ghent, Belgium
| |
Collapse
|
15
|
Bamber SD, Westerlund S. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:295-305. [PMID: 27776295 DOI: 10.1016/j.aquatox.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Sub-sea geological storage of carbon dioxide (CO2) provides a viable option for the Carbon Capture and Storage (CCS) approach for reducing atmospheric emissions of this greenhouse gas. Although generally considered to offer a low risk of major leakage, it remains relevant to establish the possible consequences for marine organisms that live in or on sediments overlying these storage areas if such an event may occur. The present study has used a series of laboratory exposures and behavioral bioassays to establish the sensitivity of Arctica islandica to simulated leakages of CO2. This long-lived bivalve mollusc is widely distributed throughout the North Sea, an area where geological storage is currently taking place and where there are plans to expand this operation significantly. A recently published model has predicted a maximum drop of 1.9pH units in seawater at the point source of a substantial escape of CO2 from sub-sea geological storage in this region. Valve movements of A. islandica exposed to reduced pH seawater were recorded continuously using Hall effect proximity sensors. Valve movement regulation is important for optimising the flow of water over the gills, which supplies food and facilitates respiration. A stepwise reduction in seawater pH showed an initial increase in both the rate and extent of valve movements in the majority of individuals tested when pH fell to 6.2 units. Exposing A. islandica to pH 6.2 seawater continuously for seven days resulted in a clear increase in valve movements during the first 40h of exposure, followed by a gradual reduction in activity intensity over the subsequent five days, suggesting acclimation. The ability of both exposed and control bivalves to burrow successfully into sediment on completion of this exposure was very similar. A final exposure trial, testing whether increased valve movements initiated by reduced pH were related to foot extension during attempted burrowing, found no such association. In summary, significant changes in valve behavior did not occur until seawater pH fell to 6.2 units. The response took the form of an increase in valve activity rather than closure. The absence of foot extension coincident with increased valve movements indicates A. islandica were not attempting to burrow, leaving the possibility that valve movements are supporting a respiratory response to hypercapnia. In conclusion, A. islandica appears to be tolerant of reductions in seawater pH equivalent to those predicted for substantial losses of CO2 through leakage from sub-sea geological storage.
Collapse
Affiliation(s)
- Shaw D Bamber
- International Research Institute of Stavanger, Mekjarvik 12, N-4070 Randaberg, Norway.
| | - Stig Westerlund
- International Research Institute of Stavanger, Mekjarvik 12, N-4070 Randaberg, Norway.
| |
Collapse
|