1
|
Ham S, Kim HS, Jo MJ, Cha E, Ryoo HS, Kim H, Lee H, Ko GJ, Park HD. Synergistic treatment of linoleic acid and cefazolin on Staphylococcus aureus biofilm-related catheter infections. Appl Environ Microbiol 2025:e0077025. [PMID: 40396720 DOI: 10.1128/aem.00770-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
Staphylococcus aureus is a human pathogen that causes severe infections through biofilm formation. S. aureus biofilm is particularly susceptible to catheters in patients undergoing peritoneal dialysis. Although antibiotics are used to treat catheter infections, high-concentration treatments adversely affect human host immune systems and change the physicochemical properties of the catheters. To improve therapeutic outcomes without side effects, we combined antibiotics and natural products. In this study, we propose a combination of linoleic acid (LA) and cefazolin (CFZ) to treat S. aureus infections synergistically and apply it to catheter environments and in vivo systems. LA is a polyunsaturated fatty acid derived from natural products, and CFZ is a major antibiotic used to treat S. aureus catheter-related infections. The optimum synergistic condition was determined using silicon pad-forming biofilm similar to catheter materials. S. aureus biofilms were considerably inhibited in vitro and in vivo owing to the improved antibacterial effects. Furthermore, the combination negatively regulated the chemokine levels in the peritoneum, kidney, and liver extracted from mouse models. Moreover, it did not affect the cytotoxicity of human omentum mesothelial cells and the functions of the kidney and liver. Therefore, the combination of LA and CFZ could be a potential synergistic therapy for S. aureus catheter infections.IMPORTANCECatheter contamination is commonly caused by Staphylococcus aureus biofilm formation, primarily in peritoneal dialysis patients. Although antibiotics are used to treat catheter infections, high concentrations of antibiotics impair the immune system of the human host and alter the physicochemical properties of catheters. Therefore, it is crucial to improve therapeutic outcomes while minimizing the side effects of antibiotics. Combined treatments with natural products can be solutions to alleviate these problems. Our study offers a new synergistic combination (linoleic acid and cefazolin) for the control of catheter infections caused by S. aureus biofilms, especially in peritoneal dialysis.
Collapse
Affiliation(s)
- Soyoung Ham
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Min Jee Jo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Eunji Cha
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Hwa-Soo Ryoo
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Hyojin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Heeho Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Bodur M, Yilmaz B, Ağagündüz D, Ozogul Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol Nutr Food Res 2025; 69:e202400752. [PMID: 40159804 PMCID: PMC12087734 DOI: 10.1002/mnfr.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Omega-3 fatty acids play a significant role in immunomodulation, with nutrigenomic approaches highlighting their impact on gene expression related to immune responses. Research indicates that omega-3 fatty acids can modulate inflammatory pathways, potentially reducing chronic inflammation and enhancing immune function. This review discusses the intersection of nutrigenomics and nutriepigenomics, focusing on how omega-3 fatty acids influence gene expression, immune function, and overall health. The immune system is a complex network responsible for defending the body against pathogens and maintaining internal balance. Comprised of innate and adaptive immunity, the system involves various cells, tissues, and organs working together to combat infections and prevent diseases. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a significant role in modulating the immune system. These fatty acids influence immune cell function, membrane fluidity, and signaling processes, enhancing immune responses and reducing inflammation. Furthermore, EPA and DHA affect several signaling pathways, reducing the expression of proinflammatory cytokines and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, a critical transcription factor in the inflammatory response. Additionally, they activate PPAR-γ, further diminishing inflammatory gene expression. As precursors to specialized proresolving lipid mediators, EPA and DHA help shift the lipid mediator profile from proinflammatory to antiinflammatory derivatives, thus aiding in the resolution of inflammation.
Collapse
Affiliation(s)
- Mahmut Bodur
- Faculty of Health SciencesDepartment of Nutrition and DieteticsAnkara UniversityAnkaraTurkey
| | - Birsen Yilmaz
- Department of Biological SciencesTata Institute of Fundamental ResearchHyderabadIndia
- Faculty of Health SciencesDepartment of Nutrition and DieteticsCukurova UniversityAdanaTurkey
| | - Duygu Ağagündüz
- Faculty of Health SciencesDepartment of Nutrition and DieteticsGazi UniversityAnkaraTurkey
| | - Yeşim Ozogul
- Faculty of FisheriesDepartment of Seafood Processing TechnologyCukurova UniversityAdanaTurkey
| |
Collapse
|
3
|
Hayati EK, Sabarudin A, Aulanni'am, Rozi F, Septaningsih DA, Rafi M. Liquid Chromatography-High-Resolution Mass Spectroscopy-Based Metabolomics for Identification Cytotoxic Compounds From Acalypha Indica L. on MCF-7 Breast Cancer Cells as Potential Anticancer Agents. Chem Biodivers 2025; 22:e202402187. [PMID: 39903842 DOI: 10.1002/cbdv.202402187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Acalypha indica is a weed used in traditional cancer treatments. In this study, we present the first attempt to use a metabolomic approach to identify cytotoxic compounds from A. indica extract with potential anticancer properties. The leaves of A. indica were extracted using ethanol, ethyl acetate, chloroform, and n-hexane. The cytotoxic activity against MCF-7 cells was evaluated, revealing 50% inhibition concentration (IC50) values ranging from 51.88 ± 7.80 to 226.86 ± 13.27 µg/mL. Metabolite profiling using liquid chromatography-high-resolution mass spectroscopy identified 27 metabolites and principal component analysis successfully differentiated the extracts, indicating variability in the compounds extracted using each solvent. To identify the cytotoxic compounds, orthogonal partial least-squares discriminant analysis was used to correlate metabolite profiles with IC50 values from the cytotoxic assay. From the results obtained, we successfully predicted six compounds contributing to the anticancer activity of A. indica, namely hernanol, 13(S)-HpOTrE, (±)9-HpODE, (+)-catechin, traumatic acid, and one compound as assumed to be theobromine. In silico analysis predicted that (+)-catechin and hernanol bind to the alpha-estrogen receptor with an affinity similar to that of doxorubicin.
Collapse
Affiliation(s)
- Elok Kamilah Hayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No. 50, Malang, Indonesia
| | - Akhmad Sabarudin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Aulanni'am
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Fachrur Rozi
- Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No. 50, Malang, Indonesia
| | | | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung IPB Dramaga Campus, Bogor, Indonesia
- Tropical Biopharmaca Research Center, International Research Institute of Food, Nutrition, and Health, IPB Taman Kencana Campus, Jl Taman Kencana No. 3, Bogor, Indonesia
| |
Collapse
|
4
|
Chen T, Lv D, Rong B, Shi Z, Li X, Jia Z, Gao Z, Zhong C. Phytochemical characterization and therapeutic mechanism of Xialiqi capsule on benign prostatic hyperplasia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04108-9. [PMID: 40223034 DOI: 10.1007/s00210-025-04108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Benign prostatic hyperplasia (BPH) is a common urological condition prevalent in elderly men. Xialiqi capsule (XLQC), a traditional Chinese patent medicine, is widely used to manage BPH. However, the precise mechanisms underlying XLQC's effectiveness in treating BPH are not well-understood. We aimed to investigate the phytochemical composition and therapeutic mechanisms of XLQC in the treatment of BPH. We conducted a comprehensive investigation that integrated high-performance liquid chromatography-mass spectrometry (LC-MS/MS), network pharmacological analysis, and animal experimental validation to explore potential pharmacodynamic compounds and mechanisms of action for XLQC in BPH treatment. In this study, a total of 12 components targeting eight molecular targets were identified; the major components included Danshensu, salidroside, 6-Acetylcodeine, azelaic acid, and berberine. The targets were CASP3, MMP9, PTGS2, IL6, ESR1, ERBB2, HIF1 A, and epidermal growth factor receptor (EGFR). Enrichment analysis revealed that the molecular targets are mainly through calcium signaling pathway, endocrine resistance, steroid hormone biosynthesis, HIF- 1 signaling pathway, and estrogen signaling pathway regulates cell proliferation and apoptosis as well as oxidative stress response. In vivo animal experiments demonstrated that XLQC effectively inhibited oxidative stress (OS) and cell proliferation by reducing malondialdehyde (MDA), increasing superoxide dismutase (SOD), and inhibiting the expression of Ki- 67 in prostate tissue, thereby improving prostate tissue morphology and reducing prostate index. XLQC can inhibit oxidative stress and cell proliferation, improve the morphology of prostate tissue, reduce the prostate index, and have therapeutic effects on BPH through multi-component, multi-target, and multi-pathway effects.
Collapse
Affiliation(s)
- Tengfei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baohai Rong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Zhuozhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Xiaolin Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Jia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaowang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Chongfu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan, Shandong Province, China.
| |
Collapse
|
5
|
Cheng R, Yoon YC, Jung CW, Kim TH, Wang Q, Cho W, Yang TJ, Van Le TH, Cho CJ, Kim JH, Hyun GH, Park JH, Kwon SW, Kim SJ. Development of a leaf metabolite-based intact sample distinguishing algorithm for the three varieties of Panax Vietnamensis. Sci Rep 2025; 15:7939. [PMID: 40050383 PMCID: PMC11885644 DOI: 10.1038/s41598-025-88321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Panax vietnamensis, indigenous to Vietnam and southern China, is classified into three subspecies: Panax vietnamensis Ha et Grushv. (PVV), Panax vietnamensis var. fuscidiscus (PVF), and Panax vietnamensis var. langbianensis (PVL). A method to distinguish these varieties in their intact form is absent, which poses a possible risk of misclassification. Here, we aimed to devise a plant metabolite-based discrimination algorithm for the three varieties, without causing significant damage to individual plants. A multivariate analysis on mass spectral data of PVV, PVF, and PVL revealed that a peak at m/z 426, which was subsequently identified as an indole alkaloid glycoside, was exclusive to PVF and therefore clearly distinguished PVF from PVV and PVL. Additionally, global metabolic profiling was conducted to elucidate the discrimination markers between PVV and PVL, and lysophospholipids and hydroxy fatty acids were selected as potential discrimination markers. The performance of these markers was validated by cross-validation using machine learning algorithm.
Collapse
Affiliation(s)
- Ranran Cheng
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Ha Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiang Wang
- Henan Academy of Sciences, No. 228, Chongshili Road, Zhengdong New District, Zhengzhou, 450002, Henan Province, China
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Thi Hong Van Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
| | - Chan Jae Cho
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jae Hyun Kim
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gyu Hwan Hyun
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hill Park
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sun Jo Kim
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Wu H, Gu J, He Y, Ji Y, Cao W, Li R, Gu Z, Wei G, Huo J. Exploring The Causal Relationship Between Lipid Profiles and Colorectal Cancer Through Mendelian Randomization: A Multidimensional Plasma Lipid Composition Perspective. J Cancer 2025; 16:1848-1859. [PMID: 40092699 PMCID: PMC11905406 DOI: 10.7150/jca.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Background: The causal relationship between blood lipids and colorectal cancer (CRC) risk has been preliminarily explored in previous Mendelian randomization (MR) studies, but these investigations were limited to conventional or partial metabolic lipid profiles. Recent advancements in genome-wide association studies of plasma lipidomics have expanded our understanding of lipid categories, underscoring the need to evaluate the causal associations between a broader range of lipid types and CRC risk to enhance risk assessment. Methods: This MR study utilized 179 lipid phenotypes across 13 lipid classes to investigate their causal associations with CRC risk. Genetic variants significantly associated with lipid traits at the genome-wide level (P<5×10-8) were used as instrumental variables for MR analysis. Initial analyses were conducted using a discovery dataset (n=321,040), followed by validation in an independent replication dataset (n=185,616). Meta-analysis was then employed to determine the strength of causal evidence. The inverse-variance weighted (IVW) method and Wald ratio were the primary MR approaches, complemented by up to nine methods for multidimensional validation. Sensitivity analyses included tests for pleiotropy, heterogeneity, Steiger directionality, and Bayesian colocalization analysis, among others. Results: After Bonferroni correction and rigorous validations, 9 significant causal associations were identified. Specifically, genetically predicted levels of sterol ester (27:1/20:5) (ORIVW = 1.214, 95% CI 1.119-1.317), phosphatidylcholine (20:4_0:0) (ORIVW = 1.147, 95% CI 1.077-1.222), phosphatidylcholine (16:0_22:4) (ORIVW = 1.312, 95% CI 1.170-1.472), phosphatidylcholine (16:0_22:5) (ORIVW =1.181, 95% CI 1.093-1.277), and phosphatidylcholine (18:0_20:5) (ORIVW = 1.198, 95% CI 1.104-1.300) were significantly associated with an increased risk of CRC. Conversely, levels of phosphatidylcholine (18:1_20:2) (ORIVW = 0.832, 95% CI 0.771-0.898), phosphatidylethanolamine (18:2_0:0) (ORIVW = 0.804, 95% CI 0.732-0.882), phosphatidylcholine (16:0_18:0) (ORWald ratio = 0.611, 95% CI 0.481-0.777), and phosphatidylcholine (O-18:1_18:2) (ORWald ratio = 0.723, 95% CI 0.620-0.840) were significantly associated with a decreased risk of CRC. Colocalization analysis revealed posterior probabilities for hypothesis 4 exceeding 90%, identifying rs174546 and rs28456 as shared causal variants. Additionally, 14 suggestive causal associations were observed. Conclusions: This study establishes a causal link between specific lipid species and CRC risk. These findings suggest new avenues for CRC prevention and treatment strategies.
Collapse
Affiliation(s)
- Hailan Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu 210022, Jiangsu, China
| | - Jialin Gu
- Department of Traditional Chinese medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yun He
- Department of Oncology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Yi Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Wen Cao
- Jiangsu Cancer Hospital, Nanjing 210009, Jiangsu, China
| | - Rongrong Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Zhancheng Gu
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou 215399, Jiangsu, China
| | - Guoli Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
| |
Collapse
|
7
|
Moran-Garrido M, Taha AY, Gaudioso Á, Ledesma MD, Barbas C. Development of an Oxylipin Library Using Liquid Chromatography-Ion Mobility Quadrupole Time-of-Flight: Application to Mouse Brain Tissue. Anal Chem 2025; 97:3643-3650. [PMID: 39924946 DOI: 10.1021/acs.analchem.4c06265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Oxylipins are bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) that play crucial roles in physiological and pathological processes. The analysis and identification of oxylipins are challenging due to the numerous isomeric forms. Ion mobility (IM), which separates ions based on their spatial configuration, combined with liquid chromatography (LC) and mass spectrometry (MS), has been proven effective for separating isomeric compounds. In this study, we developed an extensive oxylipin library containing information on retention time (RT), m/z, and CCS values for 74 oxylipin standards using LC-IM-QTOF-MS in positive and negative ionization modes. The oxylipins in the library were grouped into 15 isomer categories to evaluate the efficacy of IM in isomeric separation. Various adducts were investigated, including protonated, deprotonated, and sodiated forms. The ΔCCS% for more than 1000 isomeric pairs was calculated, revealing that 30% of these exhibited a ΔCCS% greater than 2%. Positive ionization mode demonstrated superior separation capabilities, with 274 isomer pairs achieving baseline separation (ΔCCS% > 4%). Sodium adducts significantly improved isomer separation. With the inclusion of LC separation, only nine oxylipins coeluted, forming six different isomeric pairs. CCS values for the adducts [M+Na]+ and [M+2Na-H]+ separated three of these isomeric pairs. The CCS values were compared to experimental libraries, confirming the high reproducibility of CCS measurements, with average errors below 2%. Applying this library to mouse brain samples, 19 different oxylipins were identified by matching RT, m/z, and CCS values. Coeluting isomers, 9- and 13-HODE, 8- and 12-HETE, and 15-oxo-ETE and 14(15)-EpETrE, were successfully separated and identified using drift time separation.
Collapse
Affiliation(s)
- Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, California United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California 95616, United States
- Center for Neuroscience, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ángel Gaudioso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
8
|
Yan R, Qiu X, Dai Y, Jiang Y, Gu H, Jiang Y, Ding L, Cheng S, Meng X, Wang Y, Zhao X, Li H, Wang Y, Li Z. Association between PPAR γ polymorphisms and neurological functional disability of ischemic stroke. J Cereb Blood Flow Metab 2025; 45:328-339. [PMID: 39161254 PMCID: PMC11572223 DOI: 10.1177/0271678x241274681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/04/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) plays a protective role against brain injury after stroke in mice. However, the relationship between PPARγ gene polymorphisms and the functional outcome of acute ischemic stroke (AIS) remains unknown. 8822 patients from The Third China National Stroke Registry (CNSR-III) after whole-genome sequencing, two functional single nucleotide polymorphisms(SNPs) in PPARγ, rs1801282 C > G and rs3856806 C > T, were further analysed. The primary outcome was neurological functional disability at three months. Of the 8822 patients, 968 (11.0%) and 3497 (39.6%) were carriers of rs1801282 and rs3856806, respectively. Carriers of rs3856806 showed reduced risks for three-month neurological functional disability (OR, 0.84; 95% CI, 0.73-0.98; p = 0.02) and reduced risks for higher infarct volume (OR 0.90, 95% CI, 0.81-0.99, p = 0.04). They also had a reduced risk of neurological functional disability only in case of lower baseline IL-6 levels (OR 0.64, 95% CI 0.48-0.84, Pinteraction = 0.01). Carriers of rs1801282 had a reduced risk for three-month neurological functional disability (OR 0.77, 95% CI, 0.61-0.99, p = 0.04). Our study suggested that PPARγ polymorphisms are associated with a reduced risk for neurological functional disability and higher infarct volume in AIS. Therefore, PPARγ can be a potential therapeutic target in AIS.
Collapse
Affiliation(s)
- Ran Yan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Qiu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yalun Dai
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingyu Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lingling Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Si Cheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
9
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
10
|
Grantz JM, Thirumalaikumar VP, Jannasch AH, Andolino C, Taechachokevivat N, Avila-Granados LM, Neves RC. The platelet and plasma proteome and targeted lipidome in postpartum dairy cows with elevated systemic inflammation. Sci Rep 2024; 14:31240. [PMID: 39732778 DOI: 10.1038/s41598-024-82553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Unregulated, systemic inflammation negatively impacts health and production in dairy cows. Soluble mediators and platelets have been studied for their expansive role in mediating inflammation. Our objectives were to compare the plasma oxylipin and endocannabinoid profiles, and the platelet and plasma proteomic profiles of healthy cows to cows experiencing elevated systemic inflammation as indicated by plasma haptoglobin (Hp) concentrations. Postpartum cows at 3 DIM with plasma Hp concentrations [Formula: see text] 0.50 g/L and no clinical disease were enrolled into the high-inflammation group (n = 8). Cows with plasma Hp concentrations [Formula: see text] 0.1 g/L and no clinical disease were enrolled into the low-inflammation group (n = 8). Targeted lipidomic analysis revealed differences in the plasma oxylipin and endocannabinoid profile between high- and low-inflammation cows. Cows in the high-inflammation group had increased plasma concentrations of the oxylipins 9(S)-HpOTrE, 9(S)-HOTrE, 13(S)-HpOTrE, and 9,10-EpOME, and the endocannabinoid anandamide. In-depth proteomic analysis of platelets between the high- and low-inflammation groups revealed significant differences in protein categories related to platelet granule release and cellular iron uptake. Proteomic outputs from plasma revealed 24 proteins to be different between high and low-inflammation groups, including proteins involved in autophagy and immune mediation. Together, our results indicate that cows experiencing an exacerbated systemic inflammatory response in the postpartum may have impaired disease resistance, and platelets could be contributors to their inflammatory state.
Collapse
Affiliation(s)
- Jillian M Grantz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Amber H Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Chaylen Andolino
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Natnicha Taechachokevivat
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Lisa M Avila-Granados
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Rafael C Neves
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Fung WH, van Lingen MR, Broos JY, Lam KH, van Dam M, Fung WK, Noteboom S, Koubiyr I, de Vries HE, Jasperse B, Teunissen CE, Giera M, Killestein J, Hulst HE, Strijbis EMM, Schoonheim MM, Kooij G. 9-HODE associates with thalamic atrophy and predicts white matter damage in multiple sclerosis. Mult Scler Relat Disord 2024; 92:105946. [PMID: 39447246 DOI: 10.1016/j.msard.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage. OBJECTIVES To investigate the potential association between plasma-derived LMs and MRI-quantified WM damage using fractional anisotropy (FA) and grey matter (GM) atrophy in dimethyl fumarate-treated relapsing remitting MS (RRMS) patients. METHODS Severity of FA-based WM damage and GM atrophy was determined in RRMS patients (n = 28) compared to age- and sex-matched controls (n = 31) at treatment initiation (baseline) and after 6 months. Plasma LMs were assessed using HPLC-MS/MS and baseline LMs were correlated to changes in FA and brain volumes. RESULTS We observed significant WM damage in RRMS patients (mean age 41.4 [SD 9.1]) at baseline and follow-up (z-score=-0.33 and 0.31, respectively) compared to controls (mean age 41.9 [SD 9.5]; p < 0.001 for both comparisons). Patients with severe WM damage showed a decline of thalamic volume (p = 0.02), and this decline correlated (r = 0.51, p < 0.001) with lower baseline levels of 9-HODE. This LM also predicted FA worsening (beta = 0.14, p < 0.001) over time at 6 months. CONCLUSION Despite the relatively small sample size, lower baseline levels of the LM 9-HODE correlated with more thalamic atrophy and predicted subsequent worsening of WM damage in RRMS patients.
Collapse
Affiliation(s)
- Wing Hee Fung
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Marike R van Lingen
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jelle Y Broos
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Leiden University Medical Centre (LUMC), Center of Proteomics and Metabolomics, Leiden, the Netherlands
| | - Ka-Hoo Lam
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Maureen van Dam
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wing Ka Fung
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ismail Koubiyr
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bas Jasperse
- MS Center Amsterdam, Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- MS Center Amsterdam, Neurochemistry Laboratory, Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martin Giera
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke E Hulst
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gijs Kooij
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Li H, Kang L, Dou S, Zhang Y, Zhang Y, Li N, Cao Y, Liu M, Han D, Li K, Feng W. Gleditsiae Sinensis Fructus ingredients and mechanism in anti-asthmatic bronchitis research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155857. [PMID: 39074420 DOI: 10.1016/j.phymed.2024.155857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Gleditsiae Sinensis Fructus (GSF) is commonly used in traditional medicine to treat respiratory diseases such as bronchial asthma. However, there is a lack of research on the chemical composition of GSF and the pharmacological substance and mechanism of action for GSF in treating bronchial asthma. PURPOSE The chemical constituents of GSF were analyzed using ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). In this study, we combined network pharmacology, molecular docking techniques, and experimental validation to explore the therapeutic efficacy and underlying mechanism of GSF in the treatment of bronchial asthma. METHODS Characterization of the chemical constituents of GSF was conducted using UHPLC-Q-Orbitrap HRMS. The identified chemical components were subjected to screening for active ingredients in the Swiss Absorption, Distribution, Metabolism, and Excretion (ADME) database. Relevant databases were utilized to retrieve target proteins for the active ingredients and targets associated with bronchial asthma disease, and the common targets between the two were selected. Subsequently, the protein-protein interaction (PPI) network was constructed using the String database and Cytoscape software to identify key targets. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the Metascape database. The "component-common target" network was constructed using Cytoscape to identify the primary active ingredients. Molecular docking validation was conducted using AutoDock software. The bronchial asthma mouse model was established using ovalbumin (OVA), and the lung organ index of the mice was measured. Lung tissue pathological changes were observed using hematoxylin and eosin (HE), Periodic Acid-Schiff (PAS), and Masson staining. The respiratory resistance (Penh) of the mice was assessed using a pulmonary function test instrument. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IgE, IL-4, IL-5, and IL-13 in the mouse serum. Immunofluorescence staining was performed to detect the protein expression levels of AKT and PI3K in the lung tissues. An in vitro experiment was performed to observe the effects of echinocystic acid (EA) on IL-4 stimulated Human ASMCs (hASMCs). Cell viability was measured using a CCK-8 assay to calculate the IC50 value of the EA. A wound healing test was conducted to observe the effect of EA on degree of healing. RT-qPCR was performed to detect the influence of EA on the mRNA expression levels of ALB, SRC, TNF-α, AKT1, and IL6 in the cells. RESULTS A total of 95 chemical constituents were identified from the GSF. Of these, 37 were identified as active ingredients. There were 169 overlapping targets between the active ingredients and the disease targets. A topological analysis of the protein-protein interaction (PPI) network identified the core targets as IL6, TNF, ALB, AKT1, and SRC. An enrichment analysis revealed that the treatment of bronchial asthma with GSF primarily involved the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway, among others. The primary active ingredients included 13(s)-HOTRE, linolenic acid, and acacetin. The molecular docking results demonstrated a favorable binding activity between the critical components of GSF and the core targets. Animal experimental studies indicated that GSF effectively improved symptoms, lung function, and lung tissue pathological changes in the OVA-induced asthmatic mice, while alleviating inflammatory responses. GSF decreased the fluorescent intensity of the AKT and PI3K proteins. The IC50 value of EA was 30.02μg/ml. EA (30) significantly promoted the proliferation of IL4-stimulated hASMCs cells. EA (30) significantly increased the expression of ALB and SRC mRNA and decreased the expressions of TNF-α, AKT, and IL6 mRNA. CONCLUSION The multiple active ingredients found in GSF exerted their anti-inflammatory effects through multiple targets and pathways. This preliminary study revealed the core target and the mechanism of action underlying its treatment of bronchial asthma. These findings provided valuable insights for further research on the pharmacological substances and quality control of GSF.
Collapse
Affiliation(s)
- Hongwei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Le Kang
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China.
| | - Shirong Dou
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Yiming Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Yumei Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Ning Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Yangang Cao
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
| | - Mengyun Liu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Deen Han
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kai Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China.
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Li C, Lv C, Larbi A, Liang J, Yang Q, Wu G, Quan G. Revisiting the Injury Mechanism of Goat Sperm Caused by the Cryopreservation Process from a Perspective of Sperm Metabolite Profiles. Int J Mol Sci 2024; 25:9112. [PMID: 39201798 PMCID: PMC11354876 DOI: 10.3390/ijms25169112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat sperm by analyzing changes of the metabolic characteristics in sperm during the cryopreservation process. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) technique was performed to explore metabolite profiles of fresh sperm (C group), equilibrated sperm (E group), and frozen-thawed sperm (F group). In total, 2570 metabolites in positive mode and 2306 metabolites in negative mode were identified, respectively. After comparative analyses among these three groups, 374 differentially abundant metabolites (DAMs) in C vs. E, 291 DAMs in C vs. F, and 189 DAMs in E vs. F were obtained in the positive mode; concurrently, 530 DAMs in C vs. E, 405 DAMs in C vs. F, and 193 DAMs in E vs. F were obtained in the negative mode, respectively. The DAMs were significantly enriched in various metabolic pathways, including 31 pathways in C vs. E, 25 pathways in C vs. F, and 28 pathways in E vs. F, respectively. Among them, 65 DAMs and 25 significantly enriched pathways across the three comparisons were discovered, which may be tightly associated with sperm characteristics and function. Particularly, the functional terms such as TCA cycle, biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycine, serine and threonine metabolism, alpha-linolenic acid metabolism, and pyruvate metabolism, as well as associated pivotal metabolites like ceramide, betaine, choline, fumaric acid, L-malic acid and L-lactic acid, were focused on. In conclusion, our research characterizes the composition of metabolites in goat sperm and their alterations induced by the cryopreservation process, offering a critical foundation for further exploring the molecular mechanisms of metabolism influencing the quality and freezing tolerance of goat sperm. Additionally, the impacts of equilibration at low temperature on sperm quality may need more attentions as compared to the freezing and thawing process.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Allai Larbi
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, El Jadida 24000, Morocco;
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Qige Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming 650500, China;
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
14
|
Pagac MP, Gempeler M, Campiche R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024; 12:1711. [PMID: 39203553 PMCID: PMC11357556 DOI: 10.3390/microorganisms12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Effects of pre- and probiotics on intestinal health are well researched and microbiome-targeting solutions are commercially available. Even though a trend to appreciate the presence of certain microbes on the skin is seeing an increase in momentum, our understanding is limited as to whether the utilization of skin-resident microbes for beneficial effects holds the same potential as the targeted manipulation of the gut microflora. Here, we present a selection of molecular mechanisms of cross-communication between human skin and the skin microbial community and the impact of these interactions on the host's cutaneous health with implications for the development of skin cosmetic and therapeutic solutions. Malassezia yeasts, as the main fungal representatives of the skin microfloral community, interact with the human host skin via lipid mediators, of which several are characterized by exhibiting potent anti-inflammatory activities. This review therefore puts a spotlight on Malassezia and provides a comprehensive overview of the current state of knowledge about these fungal-derived lipid mediators and their capability to reduce aesthetical and sensory burdens, such as redness and itching, commonly associated with inflammatory skin conditions. Finally, several examples of current skin microbiome-based interventions for cosmetic solutions are discussed, and models are presented for the use of skin-resident microbes as endogenous bio-manufacturing platforms for the in situ supplementation of the skin with beneficial metabolites.
Collapse
Affiliation(s)
- Martin Patrick Pagac
- DSM-Firmenich, Perfumery & Beauty, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland; (M.G.); (R.C.)
| | | | | |
Collapse
|
15
|
Wu Z, Hong ZY, Xu Y, Wang DR, Han QB, Liu P, Liu XR, Zhang LY. Composition of Sphagnum palustre L. extracts using different extraction methods. Nat Prod Res 2024; 38:2731-2736. [PMID: 37424239 DOI: 10.1080/14786419.2023.2232077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
Sphagnum palustre L. is a Chinese herbal medicine with a long history, however, few studies have been performed on its chemical composition and active effects. In this study, we investigated the composition and antibacterial and antioxidant capacities of extracts obtained from Sphagnum palustre L. phytosomes extracted with conventional solvents (water, methanol, and ethanol) and two different hydrogen bond donors (citric acid and 1,2-propanediol) modified with choline chloride-type deep eutectic solvents (DESs). The results show that Sphagnum palustre extracts contained 253 compounds, including citric acid, ethyl maltol, and thymol. The highest total phenolic content (TPC) was obtained with a DES extraction method combining 1,2-propanediol and choline chloride (39.02 ± 7.08 mg gallic acid equivalent/g dried weight (DW). This shows the composition of Sphagnum palustre as a natural product and the application of DESs in the extraction of active ingredients, demonstrating the potential of peat moss extracts in cosmetics and health products.
Collapse
Affiliation(s)
- Zhi Wu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Zheng-Yi Hong
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yang Xu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Dai-Rong Wang
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Qing-Bin Han
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Ping Liu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Xiao-Rong Liu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Lan-Yue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Zhang X, Gao Y, Mai Z, Li Y, Wang J, Zhao X, Zhang Y. Untargeted Metabolomic Analysis Reveals Plasma Differences between Mares with Endometritis and Healthy Ones. Animals (Basel) 2024; 14:1933. [PMID: 38998045 PMCID: PMC11240781 DOI: 10.3390/ani14131933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group (n = 8) and the healthy control group (n = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics. A total of 28 differentially abundant metabolites were identified by screening and identifying differentially abundant metabolites and analyzing the pathway enrichment of differentially. Ten metabolites were identified as potential biomarkers for the diagnosis of endometritis in mares. Among them, seven exhibited a decrease in the endometritis groups, including hexadecanedioic acid, oleoyl ethanolamide (OEA), [fahydroxy(18:0)]12_13-dihydroxy-9z-octa (12,13-diHOME), deoxycholic acid 3-glucuronide (DCA-3G), 2-oxindole, and (+/-)9-HPODE, and 13(S)-HOTRE. On the other hand, three metabolites, adenosine 5'-monophosphate (AMP), 5-hydroxy-dl-tryptophan (5-HTP), and l-formylkynurenine, demonstrated an increase. These substances primarily participate in the metabolism of tryptophan and linolenic acid, as well as fat and energy. In conclusion, metabolomics revealed differentially abundant metabolite changes in patients with mare endometritis. These specific metabolites can be used as potential biomarkers for the non-invasive diagnosis of mare endometritis.
Collapse
Affiliation(s)
- Xijun Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Jiamian Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
17
|
Takić M, Ranković S, Girek Z, Pavlović S, Jovanović P, Jovanović V, Šarac I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int J Mol Sci 2024; 25:4909. [PMID: 38732139 PMCID: PMC11084241 DOI: 10.3390/ijms25094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.
Collapse
Affiliation(s)
- Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Slavica Ranković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Zdenka Girek
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Suzana Pavlović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Petar Jovanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| |
Collapse
|
18
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
19
|
Evans WA, Eccles-Miller JA, Anderson E, Farrell H, Baldwin WS. 9-HODE and 9-HOTrE alter mitochondrial metabolism, increase triglycerides, and perturb fatty acid uptake and synthesis associated gene expression in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102635. [PMID: 39142221 PMCID: PMC11404490 DOI: 10.1016/j.plefa.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) prevalence is rising and can lead to detrimental health outcomes such as Non-Alcoholic Steatohepatitis (NASH), cirrhosis, and cancer. Recent studies have indicated that Cytochrome P450 2B6 (CYP2B6) is an anti-obesity CYP in humans and mice. Cyp2b-null mice are diet-induced obese, and human CYP2B6-transgenic (hCYP2B6-Tg) mice reverse the obesity or diabetes progression, but with increased liver triglyceride accumulation in association with an increase of several oxylipins. Notably, 9-hydroxyoctadecadienoic acid (9-HODE) produced from linoleic acid (LA, 18:2, ω-6) is the most prominent of these and 9-hydroxyoctadecatrienoic acid (9-HOTrE) from alpha-linolenic acid (ALA, 18:3, ω-3) is the most preferentially produced when controlling for substrate concentrations in vitro. Transactivation assays indicate that 9-HODE and 9-HOTrE activate PPARα and PPARγ. In Seahorse assays performed in HepG2 cells, 9-HOTrE increased spare respiratory capacity, slightly decreased palmitate metabolism, and increased non-glycolytic acidification in a manner consistent with slightly increased glutamine utilization; however, 9-HODE exhibited no effect on metabolism. Both compounds increased triglyceride and pyruvate concentrations, most strongly by 9-HOTrE, consistent with increased spare respiratory capacity. qPCR analysis revealed several perturbations in fatty acid uptake and metabolism gene expression. 9-HODE increased expression of CD36, FASN, PPARγ, and FoxA2 that are involved in lipid uptake and production. 9-HOTrE decreased ANGPTL4 expression and increased FASN expression consistent with increased fatty acid uptake, fatty acid production, and AMPK activation. Our findings support the hypothesis that 9-HODE and 9-HOTrE promote steatosis, but through different mechanisms as 9-HODE is directly involved in fatty acid uptake and synthesis; 9-HOTrE weakly inhibits mitochondrial fatty acid metabolism while increasing glutamine use.
Collapse
Affiliation(s)
- William A Evans
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | | | | - Hannah Farrell
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | |
Collapse
|
20
|
De Bernardo G, D’Urso G, Spadarella S, Giordano M, Leone G, Casapullo A. Analysis of the Fecal Metabolomic Profile in Breast vs. Different Formula Milk Feeding in Late Preterm Infants. Metabolites 2024; 14:72. [PMID: 38276307 PMCID: PMC10820811 DOI: 10.3390/metabo14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Human milk is the gold standard for infant nutrition, but when it is not available or insufficient to satisfy the needs of the infant, formula milk is proposed as an effective substitute. A prospective observational cohort study was conducted on late preterm infants fed with breast and two different formula milks. On this basis, they were divided into three groups: group FMPB (fed with formula + postbiotic), group FM (fed with standard formula), and group BM (breastfed). Stool samples for a metabolomic study were collected at T0 (5-7 days after birth), T1 (30 days of life), and T2 (90 days of life), giving rise to 74 samples analyzed via liquid chromatography coupled with high-resolution mass spectrometry. The T0, T1, and T2 LC-MS raw data were processed for Partial Least Square Discriminant Analysis (PLS-DA), followed by a statistical analysis. This preliminary study highlighted a good overlapping between the fecal metabolome of breast and substitute feeding systems, confirming the efficacy of the formula preparations as breast milk substitutes. Moreover, several similarities were also detected between the FMPB and BM metabolome, highlighting that the addition of a postbiotic to standard formula milk could be more effective and considered a better alternative to breast milk.
Collapse
Affiliation(s)
- Giuseppe De Bernardo
- Division of Pediatrics Neonatology and NICU, Ospedale Buon Consiglio Fatebenefratelli, 80123 Naples, Italy; (S.S.); (G.L.)
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Simona Spadarella
- Division of Pediatrics Neonatology and NICU, Ospedale Buon Consiglio Fatebenefratelli, 80123 Naples, Italy; (S.S.); (G.L.)
| | - Maurizio Giordano
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy;
| | - Giuseppina Leone
- Division of Pediatrics Neonatology and NICU, Ospedale Buon Consiglio Fatebenefratelli, 80123 Naples, Italy; (S.S.); (G.L.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| |
Collapse
|
21
|
Lin YP, Fang QL, Fu SN, Li XP, Shi R, Du CH, Qiao X, Yin XQ, Zeng YC, Zhao XJ, Hua Y. The alleviating effect of Scutellaria amoena extract on the regulation of gut microbiota and its metabolites in NASH rats by inhibiting the NLRP3/ASC/caspase-1 axis. Front Pharmacol 2023; 14:1143785. [PMID: 38026986 PMCID: PMC10660680 DOI: 10.3389/fphar.2023.1143785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Scutellaria amoena (SA) is the root of S. amoena C.H. Wright of Labiatae, also known as Scutellaria southwestern. This is mainly distributed in Sichuan, Yunnan, and Guizhou in China. In southwest China, SA is used as an alternative method to genuine medicine for the treatment of allergy, diarrhea, inflammation, hepatitis, and bronchitis. Thus far, studies on the effects of SA on non-alcoholic steatohepatitis (NASH) are lacking. This paper investigated the effect of SA on the regulation of gut microbiota and its metabolites in NASH rats by inhibiting the NOD-like receptor 3 (NLRP3)/apoptosis-associated speck-like protein (ASC)/caspase-1 axis. Methods: A NASH rat model was induced by a high-fat diet (HFD) for 12 weeks, and rats were orally given different doses of SA extracts (150 and 300 mg/kg/d) for 6 weeks. Changes in histological parameters, body weight, organ indexes, cytokines, and biochemical parameters related to NLRP3 in NASH rats were checked. 16S rRNA gene sequencing and UPLC-MS/MS technology were used to analyze the changes in the gut microbiota composition and its metabolites in NASH rats. Results: SA significantly inhibited the HFD-induced increase in body weight, lipid levels, and inflammatory infiltration. SA notably inhibited the HFD-induced increase in the upper and lower factors of NLRP3, such as transforming growth factor (TGF)-β, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-18, pro-IL-18, IL-1β, pro-IL-1β, NLRP3, ASC, and caspase-1. Additionally, mRNA expressions of caspase-1, NLRP3, and ASC were significantly downregulated after SA treatment. The results of the intestinal flora showed that SA could increase the diversity of flora and change its structure and composition in NASH rats by reducing Firmicutes/Bacteroidetes (F/B) ratio, Blautia (genus), Lachospiraceae (family), and Christensenellaceae R-7 group (genus), and increasing Muribaculaceae (family) and Bacteroides (genus). The metabolomics revealed that 24 metabolites were possibly the key metabolites for SA to regulate the metabolic balance of NASH rats, including chenodeoxycholic acid, xanthine, and 9-OxoODE. Nine metabolic pathways were identified, including primary bile acid biosynthesis, bile secretion, purine metabolism, and secondary bile acid biosynthesis. Conclusion: SA can regulate the intestinal microbial balance and metabolic disorder by inhibiting the NLRP3/ASC/caspase-1 axis to relieve NASH.
Collapse
Affiliation(s)
- Yu-Ping Lin
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Qiong-Lian Fang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Sheng-Nan Fu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xin-Ping Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Cheng-Hong Du
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xue Qiao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xun-Qing Yin
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Cheng Zeng
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiu-Juan Zhao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| |
Collapse
|
22
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
23
|
McNeill JN, Roshandelpoor A, Alotaibi M, Choudhary A, Jain M, Cheng S, Zarbafian S, Lau ES, Lewis GD, Ho JE. The association of eicosanoids and eicosanoid-related metabolites with pulmonary hypertension. Eur Respir J 2023; 62:2300561. [PMID: 37857430 PMCID: PMC10586234 DOI: 10.1183/13993003.00561-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Eicosanoids are bioactive lipids that regulate systemic inflammation and exert vasoactive effects. Specific eicosanoid metabolites have previously been associated with pulmonary hypertension (PH), yet their role remains incompletely understood. METHODS We studied 482 participants with chronic dyspnoea who underwent clinically indicated cardiopulmonary exercise testing (CPET) with invasive haemodynamic monitoring. We performed comprehensive profiling of 888 eicosanoids and eicosanoid-related metabolites using directed non-targeted mass spectrometry, and examined associations with PH (mean pulmonary arterial pressure (mPAP) >20 mmHg), PH subtypes and physiological correlates, including transpulmonary metabolite gradients. RESULTS Among 482 participants (mean±sd age 56±16 years, 62% women), 200 had rest PH. We found 48 eicosanoids and eicosanoid-related metabolites that were associated with PH. Specifically, prostaglandin (11β-dhk-PGF2α), linoleic acid (12,13-EpOME) and arachidonic acid derivatives (11,12-DiHETrE) were associated with higher odds of PH (false discovery rate q<0.05 for all). By contrast, epoxide (8(9)-EpETE), α-linolenic acid (13(S)-HOTrE(γ)) and lipokine derivatives (12,13-DiHOME) were associated with lower odds. Among PH-related eicosanoids, 14 showed differential transpulmonary metabolite gradients, with directionality suggesting that metabolites associated with lower odds of PH also displayed pulmonary artery uptake. In individuals with exercise PH, eicosanoid profiles were intermediate between no PH and rest PH, with six metabolites that differed between rest and exercise PH. CONCLUSIONS Our findings highlight the role of specific eicosanoids, including linoleic acid and epoxide derivatives, as potential regulators of inflammation in PH. Of note, physiological correlates, including transpulmonary metabolite gradients, may prioritise future studies focused on eicosanoid-related pathways as important contributors to PH pathogenesis.
Collapse
Affiliation(s)
- Jenna N McNeill
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- These three authors contributed equally to this work
| | - Athar Roshandelpoor
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- These three authors contributed equally to this work
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
- These three authors contributed equally to this work
| | - Arrush Choudhary
- Division of Internal Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mohit Jain
- Department of Medicine and Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shahrooz Zarbafian
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily S Lau
- These three authors contributed equally to this work
| | - Gregory D Lewis
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
24
|
von Gerichten J, West AL, Irvine NA, Miles EA, Calder PC, Lillycrop KA, Burdge GC, Fielding BA. Oxylipin secretion by human CD3 + T lymphocytes in vitro is modified by the exogenous essential fatty acid ratio and life stage. Front Immunol 2023; 14:1206733. [PMID: 37388745 PMCID: PMC10300345 DOI: 10.3389/fimmu.2023.1206733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Immune function changes across the life stages; for example, senior adults exhibit a tendency towards a weaker cell-mediated immune response and a stronger inflammatory response than younger adults. This might be partly mediated by changes in oxylipin synthesis across the life course. Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that modulate immune function and inflammation. A number of PUFAs are precursors to oxylipins, including the essential fatty acids (EFAs) linoleic acid (LA) and α-linolenic acid (ALA). LA and ALA are also substrates for synthesis of longer chain PUFAs. Studies with stable isotopes have shown that the relative amounts of LA and ALA can influence their partitioning by T lymphocytes between conversion to longer chain PUFAs and to oxylipins. It is not known whether the relative availability of EFA substrates influences the overall pattern of oxylipin secretion by human T cells or if this changes across the life stages. To address this, the oxylipin profile was determined in supernatants from resting and mitogen activated human CD3+ T cell cultures incubated in medium containing an EFA ratio of either 5:1 or 8:1 (LA : ALA). Furthermore, oxylipin profiles in supernatants of T cells from three life stages, namely fetal (derived from umbilical cord blood), adults and seniors, treated with the 5:1 EFA ratio were determined. The extracellular oxylipin profiles were affected more by the EFA ratio than mitogen stimulation such that n-3 PUFA-derived oxylipin concentrations were higher with the 5:1 EFA ratio than the 8:1 ratio, possibly due to PUFA precursor competition for lipoxygenases. 47 oxylipin species were measured in all cell culture supernatants. Extracellular oxylipin concentrations were generally higher for fetal T cells than for T cells from adult and senior donors, although the composition of oxylipins was similar across the life stages. The contribution of oxylipins towards an immunological phenotype might be due to the capacity of T cells to synthesize oxylipins rather than the nature of the oxylipins produced.
Collapse
Affiliation(s)
- Johanna von Gerichten
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Nicola A. Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
25
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
26
|
Kim SK, Choe JY, Kim JW, Park KY. HMG-CoA Reductase Inhibitors Suppress Monosodium Urate-Induced NLRP3 Inflammasome Activation through Peroxisome Proliferator-Activated Receptor-γ Activation in THP-1 Cells. Pharmaceuticals (Basel) 2023; 16:522. [PMID: 37111279 PMCID: PMC10145217 DOI: 10.3390/ph16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPAR-γ) is thought to negatively regulate NLRP3 inflammasome activation. The aim of this study was to identify the inhibitory effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on monosodium urate (MSU) crystal-induced NLRP3 inflammasome activation through the regulation of PPAR-γ in THP-1 cells. The expression of PPAR-γ, NLRP3, caspase-1, and interleukin-1β (IL-1β) in human monocytic THP-1 cells transfected with PPAR-γ siRNA or not and stimulated with MSU crystals was assessed using quantitative a real time-polymerase chain reaction and Western blotting. The expression of those markers in THP-1 cells pretreated with statins (atorvastatin, simvastatin, and mevastatin) was also evaluated. Intracellular reactive oxygen species (ROS) were measured using H2DCF-DA and flow cytometry analyses. THP-1 cells treated with MSU crystals (0.3 mg/mL) inhibited PARR-γ and increased NLRP3, caspase-1, and IL-1β mRNA and protein expression, and all those changes were significantly reversed by treatment with atorvastatin, simvastatin, or mevastatin. PPAR-γ activity revealed that MSU crystals suppressed PPAR-γ activity, which was markedly augmented by atorvastatin, simvastatin, and mevastatin. Transfecting cells with PPAR-γ siRNA attenuated the inhibitory effect of statins on MSU crystal-mediated NLRP3 inflammasome activation. Statins also significantly reduced the intracellular ROS generation caused by stimulation with MSU crystals. The inhibitory effects of atorvastatin and simvastatin on intracellular ROS generation were reduced in THP-1 cells transfected with PPAR-γ siRNA. This study demonstrates that PPAR-γ is responsible for suppressing MSU-mediated NLRP3 inflammasome activation. The inhibitory effect of statins on MSU-induced NLRP3 inflammasome activation depends on PPAR-γ activity and production and the inhibition of ROS generation.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| |
Collapse
|
27
|
Cambiaggi L, Chakravarty A, Noureddine N, Hersberger M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076110. [PMID: 37047085 PMCID: PMC10093787 DOI: 10.3390/ijms24076110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
α-linolenic acid (ALA) is an essential C-18 n-3 polyunsaturated fatty acid (PUFA), which can be elongated to longer n-3 PUFAs, such as eicosapentaenoic acid (EPA). These long-chain n-3 PUFAs have anti-inflammatory and pro-resolution effects either directly or through their oxylipin metabolites. However, there is evidence that the conversion of ALA to the long-chain PUFAs is limited. On the other hand, there is evidence in humans that supplementation of ALA in the diet is associated with an improved lipid profile, a reduction in the inflammatory biomarker C-reactive protein (CRP) and a reduction in cardiovascular diseases (CVDs) and all-cause mortality. Studies investigating the cellular mechanism for these beneficial effects showed that ALA is metabolized to oxylipins through the Lipoxygenase (LOX), the Cyclooxygenase (COX) and the Cytochrome P450 (CYP450) pathways, leading to hydroperoxy-, epoxy-, mono- and dihydroxylated oxylipins. In several mouse and cell models, it has been shown that ALA and some of its oxylipins, including 9- and 13-hydroxy-octadecatrienoic acids (9-HOTrE and 13-HOTrE), have immunomodulating effects. Taken together, the current literature suggests a beneficial role for diets rich in ALA in human CVDs, however, it is not always clear whether the described effects are attributable to ALA, its oxylipins or other substances present in the supplemented diets.
Collapse
Affiliation(s)
- Lucia Cambiaggi
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Akash Chakravarty
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
28
|
Multi-Omics Analysis of Lung Tissue Demonstrates Changes to Lipid Metabolism during Allergic Sensitization in Mice. Metabolites 2023; 13:metabo13030406. [PMID: 36984845 PMCID: PMC10054742 DOI: 10.3390/metabo13030406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Allergy and asthma pathogenesis are associated with the dysregulation of metabolic pathways. To understand the effects of allergen sensitization on metabolic pathways, we conducted a multi-omics study using BALB/cJ mice sensitized to house dust mite (HDM) extract or saline. Lung tissue was used to perform untargeted metabolomics and transcriptomics while both lung tissue and plasma were used for targeted lipidomics. Following statistical comparisons, an integrated pathway analysis was conducted. Histopathological changes demonstrated an allergic response in HDM-sensitized mice. Untargeted metabolomics showed 391 lung tissue compounds were significantly different between HDM and control mice (adjusted p < 0.05); with most compounds mapping to glycerophospholipid and sphingolipid pathways. Several lung oxylipins, including 14-HDHA, 8-HETE, 15-HETE, 6-keto-PGF1α, and PGE2 were significantly elevated in HDM-sensitized mice (p < 0.05). Global gene expression analysis showed upregulated calcium channel, G protein–signaling, and mTORC1 signaling pathways. Genes related to oxylipin metabolism such as Cox, Cyp450s, and cPla2 trended upwards. Joint analysis of metabolomics and transcriptomics supported a role for glycerophospholipid and sphingolipid metabolism following HDM sensitization. Collectively, our multi-omics results linked decreased glycerophospholipid and sphingolipid compounds and increased oxylipins with allergic sensitization; concurrent upregulation of associated gene pathways supports a role for bioactive lipids in the pathogenesis of allergy and asthma.
Collapse
|
29
|
Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development. Biomedicines 2023; 11:biomedicines11010171. [PMID: 36672679 PMCID: PMC9855822 DOI: 10.3390/biomedicines11010171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized.
Collapse
|
30
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
31
|
Lucchinetti E, Lou PH, Holtzhauer G, Noureddine N, Wawrzyniak P, Hartling I, Lee M, Strachan E, Clemente-Casares X, Tsai S, Rogler G, Krämer SD, Hersberger M, Zaugg M. Novel lipid emulsion for total parenteral nutrition based on 18-carbon n-3 fatty acids elicits a superior immunometabolic phenotype in a murine model compared with standard lipid emulsions. Am J Clin Nutr 2022; 116:1805-1819. [PMID: 36166844 DOI: 10.1093/ajcn/nqac272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND While lipid emulsions in modern formulations for total parenteral nutrition (TPN) provide essential fatty acids and dense calories, they also promote inflammation and immunometabolic disruptions. OBJECTIVES We aimed to develop a novel lipid emulsion for TPN use with superior immunometabolic actions compared with available standard lipid emulsions. METHODS A novel lipid emulsion [Vegaven (VV)] containing 30% of 18-carbon n-3 fatty acids (α-linolenic acid and stearidonic acid) was developed for TPN (VV-TPN) and compared with TPN containing soybean oil-based lipid emulsion (IL-TPN) and fish-oil-based lipid emulsion (OV-TPN). In vivo studies were performed in instrumented male C57BL/6 mice subjected to 7-d TPN prior to analysis of cytokines, indices of whole-body and hepatic glucose metabolism, immune cells, lipid mediators, and mucosal bowel microbiome. RESULTS IL-6 to IL-10 ratios were significantly lower in liver and skeletal muscle of VV-TPN mice when compared with IL-TPN or OV-TPN mice. VV-TPN and OV-TPN each increased hepatic insulin receptor abundance and resulted in similar HOMA-IR values, whereas only VV-TPN increased hepatic insulin receptor substrate 2 and maintained normal hepatic glycogen content, effects that were IL-10-dependent and mediated by glucokinase activation. The percentages of IFN-γ- and IL-17-expressing CD4+ T cells were increased in livers of VV-TPN mice, and liver macrophages exhibited primed phenotypes when compared with IL-TPN. This immunomodulation was associated with successful elimination of the microinvasive bacterium Akkermansia muciniphila from the bowel mucosa by VV-TPN as opposed to standard lipid emulsions. Assay of hepatic lipid mediators revealed a distinct profile with VV-TPN, including increases in 9(S)-hydroxy-octadecatrienoic acid. When co-administered with IL-TPN, hydroxy-octadecatrienoic acids mimicked the VV-TPN immunometabolic phenotype. CONCLUSIONS We here report the unique anti-inflammatory, insulin-sensitizing, and immunity-enhancing properties of a newly developed lipid emulsion designed for TPN use based on 18-carbon n-3 fatty acids.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Megan Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Erin Strachan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
32
|
Quaranta A, Revol-Cavalier J, Wheelock CE. The octadecanoids: an emerging class of lipid mediators. Biochem Soc Trans 2022; 50:1569-1582. [PMID: 36454542 PMCID: PMC9788390 DOI: 10.1042/bst20210644] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023]
Abstract
Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Larodan Research Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
33
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
West AL, von Gerichten J, Irvine NA, Miles EA, Lillycrop KA, Calder PC, Fielding BA, Burdge GC. Fatty acid composition and metabolic partitioning of α-linolenic acid are contingent on life stage in human CD3 + T lymphocytes. Front Immunol 2022; 13:1079642. [PMID: 36582247 PMCID: PMC9792684 DOI: 10.3389/fimmu.2022.1079642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Immune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course. Methods and Results We investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3+ T lymphocytes and in CD3+ T lymphocytes from adults (median 41 years) and seniors (median 70 years). Quiescent fetal T cells had higher saturated (SFA), monounsaturated fatty acid (MUFA), and ω-6 polyunsaturated fatty acid (PUFA) contents than adults or seniors. Activation-induced changes in fatty acid composition differed between life stages. The principal metabolic fates of [13C]18:3ω-3 were constitutive hydroxyoctadecatrienoic acid synthesis and β-oxidation and carbon recycling into SFA and MUFA. These processes declined progressively across the life course. Longer chain ω-3 PUFA synthesis was a relatively minor metabolic fate of 18:3ω-3 at all life stages. Fetal and adult T lymphocytes had similar lipid droplet contents, which were lower than in T cells from seniors. Variation in the lipid droplet content of adult T cells accounted for 62% of the variation in mitogen-induced CD69 expression, but there was no significant relationship in fetal cells or lymphocytes from seniors. Discussion Together these findings show that fatty acid metabolism in human T lymphocytes changes across the life course in a manner that may facilitate the adaptation of immune function to different life stages.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A. Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,*Correspondence: Graham C. Burdge,
| |
Collapse
|
35
|
da Silva Batista E, Nakandakari SCBR, Ramos da Silva AS, Pauli JR, Pereira de Moura L, Ropelle ER, Camargo EA, Cintra DE. Omega-3 pleiad: The multipoint anti-inflammatory strategy. Crit Rev Food Sci Nutr 2022; 64:4817-4832. [PMID: 36382659 DOI: 10.1080/10408398.2022.2146044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.
Collapse
Affiliation(s)
- Ellencristina da Silva Batista
- Graduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrition Department, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - José Rodrigo Pauli
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Enilton A Camargo
- Graduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, Brazil
| |
Collapse
|
36
|
Lv L, Ruan G, Ping Y, Cheng Y, Tian Y, Xiao Z, Zhao X, Chen D, Wei Y. Clinical study on sequential treatment of severe diarrhea irritable bowel syndrome with precision probiotic strains transplantation capsules, fecal microbiota transplantation capsules and live combined bacillus subtilis and enterococcus faecium capsules. Front Cell Infect Microbiol 2022; 12:1025889. [PMID: 36250045 PMCID: PMC9555570 DOI: 10.3389/fcimb.2022.1025889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To study the effect of precision probiotic strains transplantation capsules on diarrhea irritable bowel syndrome compared with fecal microbiota transplantation capsules and live combined bacillus subtilis and enterococcus faecium capsules. Methods Two patients with severe irritable bowel syndrome were treated with precision probiotic strains transplantation capsules, fecal microbiota transplantation capsules and live combined bacillus subtilis and enterococcus faecium capsules in sequence. IBS-SSS, IBS-QoL, GSRS, stool frequency, stool character, degree of abdominal pain, GAD-7, and PHQ9 scores of patients at 0, 2, 4, 6, 8, 10, and 12 weeks of treatment were monitored and recorded, and stool samples were collected for metagenomics and metabolomics. Results It was found that the IBS-SSS score of patient case 1 decreased by 175 points and that of patient case 2 decreased by 100 points after treatment of precision probiotic strains transplantation capsules. There was no significant decrease after fecal microbiota transplantation capsules and live combined bacillus subtilis and enterococcus faecium capsules were used. At the same time, compared with fecal microbiota transplantation and live combined bacillus subtilis and enterococcus faecium capsules, the IBS QoL, stool frequency, stool character, degree of abdominal pain and GAD-7 score of patient case 1 improved more significantly by the precision probiotic strains transplantation capsules. And the stool frequency and stool character score of patient case 2 decreased more significantly. Intestinal microbiota also improved more significantly after the precise capsule transplantation treatment. And we found Eubacterium_ Eligens showed the same change trend in the treatment of two patients, which may play a role in the treatment. Conclusion precision probiotic strains transplantation capsules is more beneficial to improve the intestinal microbiota of patients than microbiota transplantation capsule and live combined bacillus subtilis and enterococcus faecium capsules, so as to better alleviate clinical symptoms. This study provides a more perfect and convenient therapeutic drugs for the treatment of IBS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yanling Wei
- *Correspondence: Dongfeng Chen, ; Yanling Wei,
| |
Collapse
|
37
|
Jia X, Peng Y, Ma X, Liu X, Yu K, Wang C. Analysis of metabolic disturbances attributable to sepsis-induced myocardial dysfunction using metabolomics and transcriptomics techniques. Front Mol Biosci 2022; 9:967397. [PMID: 36046606 PMCID: PMC9421372 DOI: 10.3389/fmolb.2022.967397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Sepsis-induced myocardial dysfunction (SIMD) is the most common and severe sepsis-related organ dysfunction. We aimed to investigate the metabolic changes occurring in the hearts of patients suffering from SIMD. Methods: An animal SIMD model was constructed by injecting lipopolysaccharide (LPS) into mice intraperitoneally. Metabolites and transcripts present in the cardiac tissues of mice in the experimental and control groups were extracted, and the samples were studied following the untargeted metabolomics–transcriptomics high-throughput sequencing method. SIMD-related metabolites were screened following univariate and multi-dimensional analyses methods. Additionally, differential analysis of gene expression was performed using the DESeq package. Finally, metabolites and their associated transcripts were mapped to the relevant metabolic pathways after extracting transcripts corresponding to relevant enzymes. The process was conducted based on the metabolite information present in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results: One hundred and eighteen significant differentially expressed metabolites (DEMs) (58 under the cationic mode and 60 under the anionic mode) were identified by studying the SIMD and control groups. Additionally, 3,081 significantly differentially expressed genes (DEGs) (1,364 were down-regulated and 1717 were up-regulated DEGs) were identified in the transcriptomes. The comparison was made between the two groups. The metabolomics–transcriptomics combination analysis of metabolites and their associated transcripts helped identify five metabolites (d-mannose, d-glucosamine 6-phosphate, maltose, alpha-linolenic acid, and adenosine 5′-diphosphate). Moreover, irregular and unusual events were observed during the processes of mannose metabolism, amino sugar metabolism, starch metabolism, unsaturated fatty acid biosynthesis, platelet activation, and purine metabolism. The AMP-activated protein kinase (AMPK) signaling pathways were also accompanied by aberrant events. Conclusion: Severe metabolic disturbances occur in the cardiac tissues of model mice with SIMD. This can potentially help in developing the SIMD treatment methods.
Collapse
Affiliation(s)
- Xiaonan Jia
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yahui Peng
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaohui Ma
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaowei Liu
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Kaijiang Yu
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- *Correspondence: Kaijiang Yu, ; Changsong Wang,
| | - Changsong Wang
- Departments of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
- *Correspondence: Kaijiang Yu, ; Changsong Wang,
| |
Collapse
|
38
|
Yao L, Cheng S, Yang J, Xiang F, Zhou Z, Zhang Q, Pang Y, Zhou W, Abliz Z. Metabolomics reveals the intervention effect of Zhuang medicine Longzuantongbi granules on a collagen-induced arthritis rat model by using UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115325. [PMID: 35508204 DOI: 10.1016/j.jep.2022.115325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is known as "Fawang" in Zhuang medical theory. Longzuantongbi granules (LZTBG) is an in-hospital preparation used at the First Affiliated Hospital of the Guangxi University of Chinese Medicine. This medicine is based on traditional Zhuang medicine theory for the treatment of "Fawang", and has an effectiveness of over 86.67%. It comprises eight medicinal materials, including the main drug Toddalia asiatica (L.) Lam. and Kadsura coccinea (Lem.) A.C. Smith, the assisting drugs Alangium chinense (Lour.) Harms, Zanthoxylum nitidum (Roxb.) DC., Sinomenium acutum (Thunb.) Rehd.et Wils., Bauhinia championii (Benth.) Benth., Spatholobus suberectus Dunn, and Ficus hirta Vahl. All of these herbs are commonly used in Zhuang medicine. AIM OF THE STUDY This study aims to reveal the effect of LZTBG on collagen-induced arthritis (CIA) rats, to discover the potential efficacy-related biomarkers and explore the intervention mechanism of LZTBG from a molecular level, based on metabolomics. MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly assigned into a normal group, a CIA model group, a positive control (MTX) group and two different LZTBG treatment groups (5.4 g/kg/d and 2.7 g/kg/d). Body weight, arthritis index (AI), paw swelling, and hematoxylin and eosin (HE) staining experiments were used to evaluate the efficacy of the established model. A metabolomics method based on an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was established to analyze plasma taken from the rats, and to explore the interventional mechanism of LZTBG. RESULTS LZTBG showed a positive effect on the CIA model rats. Thirty-one differential metabolites were screened out, and combined with pathway analysis, 11 potential efficacy-related biomarkers were then mapped in the pathway. These included linoleic acid (LA), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), arachidonic acid (AA), 12-HETE, alpha-linolenic acid (ALA), 13(S)-HOT, 2-oxobutanoate, 3-hydroxybutyric acid, L-Valine, and acetylcholine. Furthermore, it was found that these metabolites may exhibit an intervention effect by means of modulating pathways related to both lipid metabolism and amino acid metabolism to associated with inflammation. CONCLUSION LZTBG can effectively alleviate symptoms of RA, an effect that can primarily be attributed to the regulation of multiple pathways and multiple targets These results demonstrate that LC-MS/MS-based metabolomics is an advantageous technique for the investigation of the intervention effect and molecular mechanism of traditional compound medicine.
Collapse
Affiliation(s)
- Lan Yao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Shuohan Cheng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jing Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Fangfang Xiang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China
| | - Qinghuai Zhang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yuzhou Pang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Wenbin Zhou
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China.
| | - Zeper Abliz
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
39
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
40
|
Conway J, Certo M, Lord JM, Mauro C, Duggal NA. Understanding the role of host metabolites in the induction of immune senescence: Future strategies for keeping the ageing population healthy. Br J Pharmacol 2022; 179:1808-1824. [PMID: 34435354 DOI: 10.1111/bph.15671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham and University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
42
|
Lu J, Li W, Gao T, Wang S, Fu C, Wang S. The association study of chemical compositions and their pharmacological effects of Cyperi Rhizoma (Xiangfu), a potential traditional Chinese medicine for treating depression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114962. [PMID: 34968659 DOI: 10.1016/j.jep.2021.114962] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperi Rhizoma (CR) derives from the rhizome or tuber of Cyperus rotundus L. of Cyperaceae. It is an herbal medicine which has been widely used in different healthcare systems like in China, India, Iran, and Japan. In Chinese medicine, CR could promote the flow of Qi in the Liver and Sanjiao channels, regulate menstruation and alleviate pain. Clinically, CR is used for depression, flatulence, hypochondriac pain, and dysmenorrhea. Thus, it has a long history and significant curative effect for the treatment of various Qi stagnation symptoms. AIM OF THIS REVIEW This review focuses on explaining the major antidepressant mechanisms of CR, and assessing the shortcomings of existing work. Besides, clinical applications, pharmacological effects and their corresponding chemical compositions and quality control of CR have been researched. MATERIALS AND METHODS The search terms "Cyperus rotundus L." was used to obtain the literatures from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The information provided in this review to illustrate material basis of CR were only limited to papers which reported on the chemical compositions and pharmacological effects simultaneously. RESULT The study showed that CR has significant application in Qi stagnation, like depressed liver, stomach, and bowel disorders, etc. in different countries or districts. Aqueous extract, EtOH extract, essential oil, total oligomeric flavonoids and five other extracts were effective constituents displaying pharmacological activities such as antibacterial, antioxidant, neuroprotective, antihemolytic, and anti-inflammatory effect. 41 kinds of specific components like α-cyperone, nootkatone exhibited corresponding pharmacological activities mentioned above. Different concentrations of ethanol extract, essential oil, decoction of CR and monomer composition like α-cyperone, rotunduside G had anti-depressant effects. CONCLUSIONS In the present study, we have provided scientific information and research developments on traditional uses, phytochemical compositions and corresponding pharmacological activities, and quality control status on CR. The antidepression effect and its corresponding chemical compositions were generalized separately. The pharmacological activities studies should be more focused on the reflection of traditional clinical values. CR could be a significant potential herbal medicine to develop antidepressant drugs with lower side effects.
Collapse
Affiliation(s)
- Junrong Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Institute of Qinghai-Tibetan plateau, Southwest Minzu University, Chengdu, 610225, Sichuan, China.
| | - Tianhui Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China.
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
43
|
Kurano M, Sakai E, Yatomi Y. Understanding modulations of lipid mediators in cancer using a murine model of carcinomatous peritonitis. Cancer Med 2022; 11:3491-3507. [PMID: 35315587 PMCID: PMC9487885 DOI: 10.1002/cam4.4699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have investigated the possible involvement of eicosanoids, lysophospholipids, and sphingolipids in cancer. We considered that comprehensive measurement of these lipid mediators might provide a better understanding of their involvement in the pathogenesis of cancer. In the present study, we attempted to elucidate the modulations of sphingolipids, lysophospholipids, diacyl‐phospholipids, eicosanoids, and related mediators in cancer by measuring their levels simultaneously by a liquid chromatography‐mass spectrometry method in a mouse model of carcinomatous peritonitis. Methods We investigated the modulations of these lipids in both ascitic fluid and plasma specimens obtained from Balb/c mice injected intraperitoneally with Colon‐26 cells, as well as the modulations of the lipid contents in the cancer cells obtained from the tumor xenografts. Results The results were as follows: the levels of sphingosine 1‐phosphate were increased, while those of lysophosphatidic acid (LysoPA), especially unsaturated long‐chain LysoPA, tended to be increased, in the ascitic fluid. Our findings suggested that ceramides, sphingomyelin, and phosphatidylcholine, their precursors, were supplied by both de novo synthesis and from elsewhere in the body. The levels of lysophosphatidylserine (LysoPS), lysophosphatidylinositol, lysophosphatidylglycerol, and lysophosphatidylethanolamine were also increased in the ascitic fluid, while those of phosphatidylserine (PS), a precursor of LysoPS, were markedly decreased. The levels of arachidonic acid derivatives, especially PGE2‐related metabolites, were increased, while the plasma levels of eicosanoids and related mediators were decreased. Comprehensive statistical analyses mainly identified PS in the ascitic fluid and eicosanoids in the plasma as having highly negative predictive values for cancer. Conclusions The results proposed many unknown associations of lipid mediators with cancer, underscoring the need for further studies. In particular, the PS/LysoPS pathway could be a novel therapeutic target, and plasma eicosanoids could be useful biomarkers for cancer.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
44
|
Reitsma SE, Lakshmanan HHS, Johnson J, Pang J, Parra-Izquierdo I, Melrose AR, Choi J, Anderson DEJ, Hinds MT, Stevens JF, Aslan JE, McCarty OJT, Lo JO. Chronic edible dosing of Δ9-tetrahydrocannabinol (THC) in nonhuman primates reduces systemic platelet activity and function. Am J Physiol Cell Physiol 2022; 322:C370-C381. [PMID: 35080922 PMCID: PMC8858671 DOI: 10.1152/ajpcell.00373.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.
Collapse
Affiliation(s)
- Stéphanie E. Reitsma
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | - Jennifer Johnson
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Iván Parra-Izquierdo
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon,2Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Alex R. Melrose
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon,2Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jaewoo Choi
- 3Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Deirdre E. J. Anderson
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Monica T. Hinds
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jan Frederik Stevens
- 3Linus Pauling Institute, Oregon State University, Corvallis, Oregon,4College of Pharmacy, Oregon State university, Corvallis, Oregon
| | - Joseph E. Aslan
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon,2Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Owen J. T. McCarty
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jamie O. Lo
- 5Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
45
|
Multi-Omic Profiling of Macrophages Treated with Phospholipids Containing Omega-3 and Omega-6 Fatty Acids Reveals Complex Immunomodulatory Adaptations at Protein, Lipid and Metabolic Levels. Int J Mol Sci 2022; 23:ijms23042139. [PMID: 35216253 PMCID: PMC8879791 DOI: 10.3390/ijms23042139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.
Collapse
|
46
|
Misheva M, Kotzamanis K, Davies LC, Tyrrell VJ, Rodrigues PRS, Benavides GA, Hinz C, Murphy RC, Kennedy P, Taylor PR, Rosas M, Jones SA, McLaren JE, Deshpande S, Andrews R, Schebb NH, Czubala MA, Gurney M, Aldrovandi M, Meckelmann SW, Ghazal P, Darley-Usmar V, White DA, O'Donnell VB. Oxylipin metabolism is controlled by mitochondrial β-oxidation during bacterial inflammation. Nat Commun 2022; 13:139. [PMID: 35013270 PMCID: PMC8748967 DOI: 10.1038/s41467-021-27766-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial β-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin β-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by β-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial β-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.
Collapse
Affiliation(s)
- Mariya Misheva
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Konstantinos Kotzamanis
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Luke C Davies
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Patricia R S Rodrigues
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christine Hinz
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Paul Kennedy
- Cayman Chemical, 1180 E Ellsworth Rd, Ann Arbor, MI, 48108, USA
| | - Philip R Taylor
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, CF14 4XN, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Simon A Jones
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - James E McLaren
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Sumukh Deshpande
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gausstraße 20, 42119, Wuppertal, Germany
| | - Magdalena A Czubala
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Mark Gurney
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Sven W Meckelmann
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Peter Ghazal
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Daniel A White
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK.
| |
Collapse
|
47
|
Cao M, Huang X, Wang F, Zhang Y, Zhou B, Chen H, Yuan R, Ma S, Geng H, Xu D, Yan C, Xing B. Transcriptomics and Metabolomics Revealed the Biological Response of Chlorella pyrenoidesa to Single and Repeated Exposures of AgNPs at Different Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15776-15787. [PMID: 34787402 DOI: 10.1021/acs.est.1c04059] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increased release of engineered nanoparticles (ENPs) from widely used commercial products has threatened environmental health and safety, particularly the repeated exposures to ENPs with relatively low concentration. Herein, we studied the response of Chlorella pyrenoidesa (C. pyrenoidesa) to single and repeated exposures to silver nanoparticles (AgNPs). Repeated exposures to AgNPs promoted chlorophyll a and carotenoid production, and increased silver accumulation, thus enhancing the risk of AgNPs entering the food chain. Notably, the extracellular polymeric substances (EPS) content of the 1-AgNPs and 3-AgNPs groups were dramatically increased by 119.1% and 151.5%, respectively. We found that C. pyrenoidesa cells exposed to AgNPs had several significant alterations in metabolic process and cellular transcription. Most of the genes and metabolites are altered in a dose-dependent manner. Compared with the control group, single exposure had more differential genes and metabolites than repeated exposures. 562, 1341, 4014, 227, 483, and 2409 unigenes were differentially expressed by 1-0.5-AgNPs, 1-5-AgNPs, 1-10-AgNPs, 3-0.5-AgNPs, 3-5-AgNPs, and 3-10-AgNPs treatment groups compared with the control. Metabolomic analyses revealed that AgNPs altered the levels of sugars and amino acids, suggesting that AgNPs reprogrammed carbon/nitrogen metabolism. The changes of genes related to carbohydrate and amino acid metabolism, such as citrate synthase (CS), isocitrate dehydrogenase (IDH1), and malate dehydrogenase (MDH), further supported these results. These findings elucidated the mechanism of biological responses to repeated exposures to AgNPs, providing a new perspective on the risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, P. R. China
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Xitong Huang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, P. R. China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Huilun Chen
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Shuai Ma
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Dan Xu
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Changchun Yan
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Muzio G, Barrera G, Pizzimenti S. Peroxisome Proliferator-Activated Receptors (PPARs) and Oxidative Stress in Physiological Conditions and in Cancer. Antioxidants (Basel) 2021; 10:antiox10111734. [PMID: 34829605 PMCID: PMC8614822 DOI: 10.3390/antiox10111734] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily. Originally described as “orphan nuclear receptors”, they can bind both natural and synthetic ligands acting as agonists or antagonists. In humans three subtypes, PPARα, β/δ, γ, are encoded by different genes, show tissue-specific expression patterns, and contribute to the regulation of lipid and carbohydrate metabolisms, of different cell functions, including proliferation, death, differentiation, and of processes, as inflammation, angiogenesis, immune response. The PPAR ability in increasing the expression of various antioxidant genes and decreasing the synthesis of pro-inflammatory mediators, makes them be considered among the most important regulators of the cellular response to oxidative stress conditions. Based on the multiplicity of physiological effects, PPAR involvement in cancer development and progression has attracted great scientific interest with the aim to describe changes occurring in their expression in cancer cells, and to investigate the correlation with some characteristics of cancer phenotype, including increased proliferation, decreased susceptibility to apoptosis, malignancy degree and onset of resistance to anticancer drugs. This review focuses on mechanisms underlying the antioxidant and anti-inflammatory properties of PPARs in physiological conditions, and on the reported beneficial effects of PPAR activation in cancer.
Collapse
|
49
|
Zhang J, Liu L, Zhang L, Chen S, Chen Y, Cai C. Targeted fatty acid metabolomics to discover Parkinson's disease associated metabolic alteration. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4781. [PMID: 34523199 DOI: 10.1002/jms.4781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) remains to be elucidated, and the metabolomics analysis has the potential to identify metabolic profiles that are involved in PD pathogenesis. Here we applied a target metabolomics approach to measure the plasma levels of 158 fatty acid metabolites in a discovery cohort including 42 PD patients and 54 health volunteers, and found two upregulated (arachidonic acid and 13-hydroxy-octadecatrienoic acid) and eleven down-regulated (docosahexaenoic acid, lyso-platelet-activating factor, 12-hydroxy-eicosatetraenoic acid, dihydroxy-eicosatrienoic acids, dihidroxy-octadecenoic acids, 17,18-dihydroxy-eicosatetraenoic acid, and hydroperoxy-octadecadienoic acids) metabolites as primary candidate marker of PD. A support vector machine algorithm with primary candidate marker was used in an independent validation cohort to identify PD. Arachidonic acid and 13-hydroxy-octadecatrienoic acid were evaluated as an effective tool in that area under the receiver operating characteristic curve reached 0.995 and 0.912 in the validation set for diagnosing PD from healthy volunteers. Besides, the sensitivity and specificity of arachidonic acid as diagnostic factor of PD in validation set were 100% and 94.10%. Similarly, the sensitivity and specificity of 13-hydroxy-octadecatrienoic acid were 100% and 82.40% for identifying PD. This target fatty acid metabolomics demonstrated a series of plasma fatty acid metabolite as PD candidate marker with high efficiency and provided insights into the understanding of PD metabolic regulation.
Collapse
Affiliation(s)
- Junjie Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lulu Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lijiang Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Simei Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Chun Cai
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
50
|
Xu X, Li J, Zhang Y, Zhang L. Arachidonic Acid 15-Lipoxygenase: Effects of Its Expression, Metabolites, and Genetic and Epigenetic Variations on Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:684-696. [PMID: 34486255 PMCID: PMC8419644 DOI: 10.4168/aair.2021.13.5.684] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15) is an enzyme that can oxidize polyunsaturated fatty acids. ALOX15 is strongly expressed in airway epithelial cells, where it catalyzes the conversion of arachidonic acid to 15-hydroxyeicosatetraenoic acid (15-HETE) involved in various airway inflammatory diseases. Interleukin (IL)-4 and IL-13 induce ALOX15 expression by activating Jak2 and Tyk2 kinases as well as signal transducers and activators of transcription (STATs) 1/3/5/6. ALOX15 up-regulation and subsequent association with phosphatidylethanolamine-binding protein 1 (PEBP1) activate the mitogen-activated extracellular signal-regulated kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway, thus inducing eosinophil-mediated airway inflammation. In addition, ALOX15 plays a significant role in promoting the migration of immune cells, such as immature dendritic cells, activated T cells, and mast cells, and airway remodeling, including goblet cell differentiation. Genome-wide association studies have revealed multiple ALOX15 variants and their significant correlation with the risk of developing airway diseases. The epigenetic modifications of the ALOX15 gene, such as DNA methylation and histone modifications, have been shown to closely relate with airway inflammation. This review summarizes the role of ALOX15 in different phenotypes of asthma, chronic obstructive pulmonary disease, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, and nasal polyps, suggesting new treatment strategies for these airway inflammatory diseases with complex etiology and poor treatment response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|