1
|
Gul S, Shi Y, Hu J, Song S. The Influence of Microbiota on Wild Birds' Parental Coprophagy Behavior: Current Advances and Future Research Directions. Microorganisms 2024; 12:2468. [PMID: 39770671 PMCID: PMC11677090 DOI: 10.3390/microorganisms12122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive review provides an in-depth exploration of the intriguing phenomenon of parental coprophagy in wild birds and its profound implications on the influence of adult avian parents' health. This review investigates the composition and dynamics of avian feces' microbiota, casting light on the various dietary, environmental, and genetic factors that influence its diversity. Furthermore, it emphasizes parental coprophagy, a behavior observed in numerous bird species, particularly among herbivorous and passerine birds. The review investigates multiple hypotheses proposed to explain the occurrence of coprophagy. It delves into its function as a potential mechanism for transmitting microorganisms, particularly feces bacteria, from nestlings to their parents. This microbial transfer may affect the health and well-being of adult avian parents. In addition, the review highlights the current research deficits and debates surrounding coprophagy. These gaps include crucial aspects such as the onset of coprophagy, its long-term effects on both parents and offspring, the nutritional implications of consuming nestling feces, the potential risks of pathogen transmission, and the ecological and evolutionary factors that drive this behavior. As the review synthesizes existing knowledge and identifies areas requiring additional research, it emphasizes the significance of future studies that comprehensively address these gaps. By doing so, we can understand coprophagy's ecological and evolutionary significance in wild birds, advancing our knowledge on avian biology. This information can improve conservation efforts to protect migratory bird populations and their complex ecosystems.
Collapse
Affiliation(s)
- Saba Gul
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
| | - Yurou Shi
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
| | - Jie Hu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
- Institute of Environmental Sciences, Leiden University, 2333CC Leiden, The Netherlands
| | - Sen Song
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
| |
Collapse
|
2
|
Scheelings TF, Van TTH, Moore RJ, Skerratt LF. Location Matters: Variations in Cloacal Microbiota Composition of Spatially Separated Freshwater Turtles. MICROBIAL ECOLOGY 2024; 87:140. [PMID: 39545996 PMCID: PMC11568018 DOI: 10.1007/s00248-024-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
The gut microbiota of vertebrates is malleable and may be shaped by both intrinsic and extrinsic factors. Here, the effect that geography has on the cloacal microbiota of two species of Australian freshwater chelonians, eastern longneck turtle (Chelodina longicollis) and Macquarie River turtle (Emydura macquarii), captured from waterbodies with different levels of anthropogenic pressure was investigated. We analysed the microbiota composition, structure and diversity through 16S rRNA gene amplicon sequencing. It was hypothesised that animals from less disturbed environments would harbour a more diverse cloacal microbial population. The cloacal microbiotas from 93 turtles (C. longicollis n = 78; E. macquarii n = 15), from five locations, were analysed. For both species, the most predominant phylum was Proteobacteria. Cloacal microbiota alpha diversity varied significantly between the C. longicollis from all locations, but no differences were found for E. macquarii. In C. longicollis, turtles from wetlands within the centre of Melbourne had the lowest alpha diversity metrics, while the highest alpha diversity values were seen in turtles captured from an undisturbed rural waterbody. Beta diversity, obtained by weighted UniFrac distance, showed significant differences between locations of capture for both species of turtles in this investigation. For C. longicollis, 87 biomarkers were identified responsible for explaining differences between locations, and in E. macquarii, 42 biomarkers were found. This is the first study to explore the cloacal microbiota composition of the eastern longneck turtle and gives greater insight into microbial community structures in Macquarie River turtles. Our study demonstrated that cloacal microbiota composition of freshwater turtles was significantly influenced by locality and that disrupted environments may reduce microbial diversity in C. longicollis. Interestingly, we discovered that the effects of location contrasted significantly between species for alpha diversity with differences discovered for C. longicollis but not E. macquarii. However, for both species, beta diversity was notably influenced by habitat type. These results highlight the need to interpret chelonian microbiota data in the context of geography and human disturbance of the environment.
Collapse
Affiliation(s)
- T Franciscus Scheelings
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia.
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia
| |
Collapse
|
3
|
Włodarczyk R, Drzewińska-Chańko J, Kamiński M, Meissner W, Rapczyński J, Janik-Superson K, Krawczyk D, Strapagiel D, Ożarowska A, Stępniewska K, Minias P. Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds. FEMS Microbiol Ecol 2024; 100:fiae040. [PMID: 38515294 PMCID: PMC11008731 DOI: 10.1093/femsec/fiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Joanna Drzewińska-Chańko
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Maciej Kamiński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Jan Rapczyński
- Forestry Student Scientific Association, Ornithological Section, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland
| | - Katarzyna Janik-Superson
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Dawid Krawczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland
| | - Dominik Strapagiel
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Katarzyna Stępniewska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
4
|
Zhang Y, He X, Mo X, Wu H, Zhao D. Similarities and differences: species and diet impact gut microbiota of captive pheasants. PeerJ 2024; 12:e16979. [PMID: 38560462 PMCID: PMC10979745 DOI: 10.7717/peerj.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
The fecal microbiota plays an important role in maintaining animal health and is closely related to host life activities. In recent years, there have been an increasing number of studies on the fecal microbiota from birds. An exploration of the effects of species and living environments on the composition of gut microbiota will provide better protection for wildlife. In this study, non-injury sampling and 16S rDNA high-throughput sequencing were used to investigate the bacterial composition and diversity of the fecal microbiota in silver pheasants (Lophura nycthemera) and golden pheasants (Chrysolophus pictus) from Tianjin Zoo and Beijing Wildlife Park. The results showed that the abundance of Firmicutes was the highest in all fecal samples. At the genus level, Bacteroides was the common dominant bacteria, while there were some differences in other dominant bacteria genera. There were significant differences in fecal microbial composition between the golden pheasants from Tianjin Zoo and Beijing Wildlife Park. The metabolic analysis and functional prediction suggested that the gut microbiota composition and host metabolism were influenced by dietary interventions and living conditions. The results of this study provide the basis for further research of intestinal microbial of L. nycthemera and C. pictus, and valuable insights for conservation of related species.
Collapse
Affiliation(s)
- Yushuo Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xin He
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xiuhong Mo
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
5
|
Wang S, Su M, Hu X, Wang X, Han Q, Yu Q, Heděnec P, Li H. Gut diazotrophs in lagomorphs are associated with season but not altitude and host phylogeny. FEMS Microbiol Lett 2024; 371:fnad135. [PMID: 38124623 DOI: 10.1093/femsle/fnad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Invertebrates such as termites feeding on nutrient-poor substrate receive essential nitrogen by biological nitrogen fixation of gut diazotrophs. However, the diversity and composition of gut diazotrophs of vertebrates such as Plateau pikas living in nutrient-poor Qinghai-Tibet Plateau remain unknown. To fill this knowledge gap, we studied gut diazotrophs of Plateau pikas (Ochotona curzoniae) and its related species, Daurian pikas (Ochotona daurica), Hares (Lepus europaeus) and Rabbits (Oryctolagus cuniculus) by high-throughput amplicon sequencing methods. We analyzed whether the gut diazotrophs of Plateau pikas are affected by season, altitude, and species, and explored the relationship between gut diazotrophs and whole gut microbiomes. Our study showed that Firmicutes, Spirochaetes, and Euryarchaeota were the dominant gut diazotrophs of Plateau pikas. The beta diversity of gut diazotrophs of Plateau pikas was significantly different from the other three lagomorphs, but the alpha diversity did not show a significant difference among the four lagomorphs. The gut diazotrophs of Plateau pikas were the most similarly to that of Rabbits, followed by Daurian pikas and Hares, which was inconsistent with gut microbiomes or animal phylogeny. The dominant gut diazotrophs of the four lagomorphs may reflect their living environment and dietary habits. Season significantly affected the alpha diversity and abundance of dominant gut diazotrophs. Altitude had no significant effect on the gut diazotrophs of Plateau pikas. In addition, the congruence between gut microbiomes and gut diazotrophs was low. Our results proved that the gut of Plateau pikas was rich in gut diazotrophs, which is of great significance for the study of ecology and evolution of lagomorphs.
Collapse
Affiliation(s)
- Sijie Wang
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Ming Su
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, 143 Xiangzhang East Road, Changsha, Hunan Province 410014, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou, Gansu Province 730020, China
| | - Petr Heděnec
- Institute for Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Huan Li
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou, Gansu Province 730020, China
| |
Collapse
|
6
|
Wu Y, Wang H, Gao Z, Wang H, Zou H. Comparison of the Intestinal Bacterial Communities between Captive and Semi-Free-Range Red-Crowned Cranes ( Grus japonensis) before Reintroduction in Zhalong National Nature Reserve, China. Animals (Basel) 2023; 14:3. [PMID: 38200734 PMCID: PMC10778468 DOI: 10.3390/ani14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The wild populations of red-crowned cranes (Grus japonensis) in west China are gradually decreasing, necessitating the optimization of reintroduction measures. This study used 16S rRNA high-throughput sequencing technology to compare the gut microbiota communities of cranes living in two modes (captive and semi-free-range) before their reintroduction in Zhalong National Nature Reserve, Heilongjiang Province, China. The results showed that Proteobacteria (74.39%) and Firmicutes (25.29%) were the dominant gut bacterial phyla inhabiting these cranes. Significant differences were found in the gut microbiota community composition between semi-free-range and captive cranes (p < 0.01). Psychrobacter, Sporosarcina, and Lactococcus were significantly enriched in captive cranes (p < 0.05), while Pseudomonadaceae_Pseudomonas, Pantoea, Lysobacter, and Enterobacteriaceae_Pseudomonas were more abundant in semi-free-range cranes (p < 0.05). The functions and community structure of gut microbiota were affected by feeding patterns (p < 0.05). The metabolic pathways of ethylbenzene degradation, PPAR signaling pathway, betalain biosynthesis, systemic lupus erythematosus, and shigellosis were up-regulated in semi-free-range cranes (p < 0.05).
Collapse
Affiliation(s)
- Yining Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| | - Huan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| | - Zhongyan Gao
- Management Bureau of Heilongjiang Zhalong National Reserve, Qiqihar 161005, China;
| | - He Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| |
Collapse
|
7
|
Sakda P, Xiang X, Song Z, Wu Y, Zhou L. Impact of Season on Intestinal Bacterial Communities and Pathogenic Diversity in Two Captive Duck Species. Animals (Basel) 2023; 13:3879. [PMID: 38136916 PMCID: PMC10740475 DOI: 10.3390/ani13243879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Vertebrates and their gut bacteria interact in complex and mutually beneficial ways. The intestinal microbial composition is influenced by several external influences. In addition to food, the abiotic elements of the environment, such as temperature, humidity, and seasonal fluctuation are also important determinants. Fecal samples were collected from two captive duck species, Baikal teal (Sibirionetta formosa) and common teal (Anas crecca) across four seasons (summer, autumn, winter, and spring). These ducks were consistently fed the same diet throughout the entire experiment. High throughput sequencing (Illumina Mi-seq) was employed to analyze the V4-V5 region of the 16sRNA gene. The dominant phyla in all seasons were Proteobacteria and Firmicutes. Interestingly, the alpha diversity was higher in winter for both species. The NMDS, PCoA, and ANOSIM analysis showed the distinct clustering of bacterial composition between different seasons, while no significant differences were discovered between duck species within the same season. In addition, LefSe analysis demonstrated specific biomarkers in different seasons, with the highest number revealed in winter. The co-occurrence network analysis also showed that during winter, the network illustrated a more intricate structure with the greatest number of nodes and edges. However, this study identified ten potentially pathogenic bacterial species, which showed significantly enhanced diversity and abundance throughout the summer. Overall, our results revealed that season mainly regulated the intestinal bacterial community composition and pathogenic bacteria of captive ducks under the instant diet. This study provides an important new understanding of the seasonal variations in captive wild ducks' intestinal bacterial community structure. The information available here may be essential data for preventing and controlling infections caused by pathogenic bacteria in captive waterbirds.
Collapse
Affiliation(s)
- Patthanan Sakda
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhongqiao Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| |
Collapse
|
8
|
Fu Y, Zhang K, Shan F, Li J, Wang Y, Li X, Xu H, Qin Z, Zhang L. Metagenomic analysis of gut microbiome and resistome of Whooper and Black Swans: a one health perspective. BMC Genomics 2023; 24:635. [PMID: 37875797 PMCID: PMC10594901 DOI: 10.1186/s12864-023-09742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND With the promotion of "One Health," the health of animals and their impact on the environment have become major concerns recently. Widely distributed in China, the whooper swans (Cygnus cygnus) and black swans (Cygnus atratus) are not only important to the ecological environment, but they may also potentially influence public health security. The metagenomic approach was adopted to uncover the impacts of the gut microbiota of swans on host and public health. RESULTS In this study, the intestinal microbiome and resistome of migratory whooper swans and captive-bred black swans were identified. The results revealed similar gut microbes and functional compositions in whooper and black swans. Interestingly, different bacteria and probiotics were enriched by overwintering whooper swans. We also found that Acinetobacter and Escherichia were significantly enriched in early wintering period swans and that clinically important pathogens were more abundant in black swans. Whooper swans and black swans are potential reservoirs of antibiotic resistance genes (ARGs) and novel ARGs, and the abundance of novel ARGs in whooper swans was significantly higher than that in black swans. Metagenomic assembly-based host tracking revealed that most ARG-carrying contigs originated from Proteobacteria (mainly Gammaproteobacteria). CONCLUSIONS The results revealed spatiotemporal changes in microbiome and resistome in swans, providing a reference for safeguarding public health security and preventing animal epidemics.
Collapse
Affiliation(s)
- Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Fa Shan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Yilin Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Ziyang Qin
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450046, China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China.
- Ministry of Agriculture and Rural Areas Key Laboratory for Quality and Safety Control of Poultry Products, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Wang Y, Long Z, Zhang Y, Li X, Zhang X, Su H. Host genetic background rather than diet-induced gut microbiota shifts of sympatric black-necked crane, common crane and bar-headed goose. Front Microbiol 2023; 14:1270716. [PMID: 37933251 PMCID: PMC10625752 DOI: 10.3389/fmicb.2023.1270716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023] Open
Abstract
Introduction Gut microbiota of wild birds are affected by many factors, and host genetic background and diet are considered to be two important factors affecting their structure and function. Methods In order to clarify how these two factors influence the gut microbiota, this study selected the sympatric and closely related and similar-sized Black-necked Crane (Grus nigricollis) and Common Crane (Grus grus), as well as the distantly related and significantly different-sized Bar-headed Goose (Anser indicus). The fecal samples identified using sanger sequencing as the above three bird species were subjected to high-throughput sequencing of rbcL gene and 16S rRNA gene to identify the feeding types phytophagous food and gut microbiota. Results The results showed significant differences in food diversity between black-necked cranes and Common Cranes, but no significant differences in gut microbiota, Potatoes accounted for approximately 50% of their diets. Bar-headed Geese mainly feed on medicinal plants such as Angelica sinensis, Alternanthera philoxeroides, and Ranunculus repens. Black-necked cranes and Common Cranes, which have a high-starch diet, have a similar degree of enrichment in metabolism and synthesis functions, which is significantly different from Bar-headed Geese with a high-fiber diet. The differences in metabolic pathways among the three bird species are driven by food. The feeding of medicinal plants promotes the health of Bar-headed Geese, indicating that food influences the functional pathways of gut microbiota. Spearman analysis showed that there were few gut microbiota related to food, but almost all metabolic pathways were related to food. Conclusion The host genetic background is the dominant factor determining the composition of the microbiota. Monitoring the changes in gut microbiota and feeding types of wild birds through bird feces is of great reference value for the conservation of other endangered species.
Collapse
Affiliation(s)
- Yeying Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, Guizhou, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, National Forestry and Grassland Administration, Bijie, Guizhou, China
| | - Zhengmin Long
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yu Zhang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xianyu Li
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xu Zhang
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, Guizhou, China
| | - Haijun Su
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, Guizhou, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, National Forestry and Grassland Administration, Bijie, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
He Y, Zhang M, Dai C, Yu L. Comparison of the Gut Microbial Communities of Domestic and Wild Mallards ( Anas platyrhynchos) Based on High-Throughput Sequencing Technology. Animals (Basel) 2023; 13:2956. [PMID: 37760356 PMCID: PMC10525502 DOI: 10.3390/ani13182956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mallards (Anas platyrhynchos) are currently one of the most popular species in rare bird breeding in several southern provinces of China, but there have been no studies comparing the gut microbial communities of domestic and wild mallards. In this study, 16S rRNA gene high-throughput sequencing technology was used to compare the composition and diversity of gut microbial communities in domestic and wild mallards. Alpha diversity analysis showed significant differences in gut microbial communities between the two groups of mallards, and the diversity and richness of gut microbial communities were significantly higher in wild mallards than in domestic mallards. Beta diversity analysis showed that the two groups of stool samples were mostly separated on the principal coordinate analysis (PCoA) plot. In domestic mallards, Firmicutes (68.0% ± 26.5%) was the most abundant bacterial phylum, followed by Proteobacteria (24.5% ± 22.9%), Bacteroidetes (3.1% ± 3.2%), Fusobacteria (2.2% ± 5.9%), and Actinobacteria (1.1% ± 1.8%). The dominant bacterial phyla in wild mallards were Firmicutes (79.0% ± 10.2%), Proteobacteria (12.9% ± 9.5%), Fusobacteria (3.4% ± 2.5%), and Bacteroidetes (2.8% ± 2.4%). At the genus level, a total of 10 dominant genera (Streptococcus, Enterococcus, Clostridium, Lactobacillus, Soilbacillus, Bacillus, Acinetobacter, Comamonas, Shigella, and Cetobacterium) with an average relative abundance greater than 1% were detected in the fecal samples of both groups. The average relative abundance of five potential pathogenic genera (Streptococcus, Enterococcus, Acinetobacter, Comamonas, and Shigella) was higher in domestic mallards than in wild mallards. The enrichment of pathogenic bacteria in the intestinal tract of domestic mallards should be of sufficient concern.
Collapse
Affiliation(s)
- Yaoyin He
- Animal Science and Technology College, Guangxi University, Nanning 530004, China; (Y.H.); (M.Z.)
| | - Minghui Zhang
- Animal Science and Technology College, Guangxi University, Nanning 530004, China; (Y.H.); (M.Z.)
| | - Chuanyin Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China;
| | - Lijiang Yu
- Animal Science and Technology College, Guangxi University, Nanning 530004, China; (Y.H.); (M.Z.)
| |
Collapse
|
11
|
Zhai J, Sun X, Lu R, Hu X, Huang Z. Bibliometric Analysis of Global Trends in Research on Seasonal Variations in Gut Microbiota from 2012 to 2022. Microorganisms 2023; 11:2125. [PMID: 37630685 PMCID: PMC10458723 DOI: 10.3390/microorganisms11082125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Seasons are the important influencing factor for gut microbiota, which in turn affects the ecology and evolution of the host. The seasonal variation in gut microbiota has increasingly attracted the attention of researchers and professionals worldwide. However, studies of seasonal variations in gut microbiota have not been systematically analyzed by bibliometrics or visual analysis. This study is based on 271 publications from 2012 to 2022 in the Web of Science Core Collection database (WOSCC) to analyze hot spots and trends in this field. The collaborations between different countries, institutions, authors, journals, and keywords were bibliometrically analyzed using Excel, CiteSpace (Version 6.2. R4), and VOSviewer (version 1.6.19) software. The number of publications has been increasing rapidly and shows a general upward trend. China and the Chinese Academy of Sciences are the country and institution contributing the most, respectively. The research hotspots and trends mainly include the diversity of gut microbiota communities in different seasons, the relationship between diet and gut microbiota in seasonal changes, and the relationship between gut microbiota and evolutionary adaptation in seasonal changes. This is the first bibliometric and visualization analysis of seasonal variations in gut microbiota, which may advance this field and lay the foundation for future research.
Collapse
Affiliation(s)
- Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xiao Sun
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Rui Lu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xueqin Hu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Zhiqiang Huang
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
12
|
Hu Y, Liu H, Xing X, Lian J, Liu F. Occurrence and exposure risk assessment of organochlorine pesticides in two waterbird species from Honghu Lake Wetland, Central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1919-1931. [PMID: 35748971 DOI: 10.1007/s10653-022-01316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Monitoring and evaluating bird exposure to hazardous pollutants in wetlands are receiving considerable attention. In this study, the occurrence of 18 organochlorine pesticides (OCPs) in the muscle of bean geese (Anser fabalis) and common teals (Anas crecca) collected from Honghu Lake Wetland (HLW), Central China was studied. Additionally, an exposure risk assessment model was applied to obtain risk levels of OCPs to these birds through three oral routes (food intake, water drinking and soil ingestion). The results suggested that the most abundant OCPs detected in the muscle of waterbirds were DDTs (7.68-602 ng/g lipid weight), followed by HCHs (1.39-89.8 ng/g lipid weight). A significant difference (p < 0.05) existed between two species, but most of OCPs exhibited no statistically relationship with age or gender (p > 0.05). The compositional patterns of OCPs combined with ratios of certain metabolites to their parent compounds indicated that all OCPs in the HLW were largely from historical usage except heptachlor. The exposure risk assessment revealed that common teals with lighter weight had greater exposure risks than bean geese. Of the OCPs analyzed, DDTs could probably cause harm to target birds studied here. Exposure via food intake was identified to be significant while soil ingestion and water drinking contributed least, but they should still be concerned.
Collapse
Affiliation(s)
- Ying Hu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China.
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Wuhan, 430100, People's Republic of China.
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, People's Republic of China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Jingjing Lian
- College of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Feixiang Liu
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710027, People's Republic of China
| |
Collapse
|
13
|
García-Amado MA, Rudolf CA, Fuentes-Fuentes MDM, Chorna N, Martínez LM, Godoy-Vitorino F. Bacterial composition along the digestive tract of the Horned Screamer ( Anhima cornuta), a tropical herbivorous bird. PeerJ 2023; 11:e14805. [PMID: 36815987 PMCID: PMC9933741 DOI: 10.7717/peerj.14805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Background The Horned Screamer (Anhima cornuta) is an herbivorous bird that inhabits wetlands of the South American tropical region. We hypothesize that due to its herbivorous niche, its digestive tract compartments may have bacteria specialized in fermenting complex plant carbohydrates. To test this hypothesis, we compared the bacterial communities along the gastrointestinal tract (GIT) of a Horned Screamer captured in Venezuela. Methods Samples were taken from tissues and content of the proventriculus and the small intestine (considered for this study as upper GIT), and the large intestine and cecum (lower GIT). The bacterial community was characterized by sequencing the V4 region of the 16S rRNA gene. Bioinformatic analysis was performed using QIIME, QIITA and Microbiome Analyst. The association between microbial taxonomy and function was analyzed using their Greengenes OTU IDs and a custom KEGG BRITE hierarchical tree and visualized with BURRITO. Results The Screamer's gastrointestinal microbiota was composed by seven phyla being Firmicutes and Bacteroidetes the most predominant. The dominant taxa in the upper GIT were Helicobacter, Vibrio, Enterobacter, Acinetobacter and Staphylococcus. The dominant taxa in the lower GIT were Oribacterium, Blautia, Roseburia, Ruminococcus, Desulfovibrio, Intestinimonas, Marvinbryantia and Parabacteroides. Complete degradation of cellulose to the end-products acetate, propanoate, butanoate and acetoacetate was found in the upper and lower GIT without significant differences. Conclusion Our study confirmed changes in bacterial community composition throughout the GIT of the Horned Screamer primarily associated with the production of metabolic end-products of carbohydrate digestion essential for the fermentation of the herbivorous diet.
Collapse
Affiliation(s)
- María Alexandra García-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
| | - Carla A. Rudolf
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
| | | | - Nataliya Chorna
- Biochemistry Department, University of Puerto Rico School of Medicine, San Juan, PR, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
14
|
Gil JC, Hird SM. Multiomics Characterization of the Canada Goose Fecal Microbiome Reveals Selective Efficacy of Simulated Metagenomes. Microbiol Spectr 2022; 10:e0238422. [PMID: 36318011 PMCID: PMC9769641 DOI: 10.1128/spectrum.02384-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
16S rRNA amplicon sequences are predominantly used to identify the taxonomic composition of a microbiome, but they can also be used to generate simulated metagenomes to circumvent costly empirical shotgun sequencing. The effectiveness of using "simulated metagenomes" (shotgun metagenomes simulated from 16S rRNA amplicons using a database of full genomes closely related to the amplicons) in nonmodel systems is poorly known. We sought to determine the accuracy of simulated metagenomes in a nonmodel organism, the Canada goose (Branta canadensis), by comparing metagenomes and metatranscriptomes to simulated metagenomes derived from 16S amplicon sequencing. We found significant differences between the metagenomes, metatranscriptomes, and simulated metagenomes when comparing enzymes, KEGG orthologies (KO), and metabolic pathways. The simulated metagenomes accurately identified the majority (>70%) of the total enzymes, KOs, and pathways. The simulated metagenomes accurately identified the majority of the short-chain fatty acid metabolic pathways crucial to folivores. When narrowed in scope to specific genes of interest, the simulated metagenomes overestimated the number of antimicrobial resistance genes and underestimated the number of genes related to the breakdown of plant matter. Our results suggest that simulated metagenomes should not be used in lieu of empirical sequencing when studying the functional potential of a nonmodel organism's microbiome. Regarding the function of the Canada goose microbiome, we found unexpected amounts of fermentation pathways, and we found that a few taxa are responsible for large portions of the functional potential of the microbiome. IMPORTANCE The taxonomic composition of a microbiome is predominately identified using amplicon sequencing of 16S rRNA genes, but as a single marker, it cannot identify functions (genes). Metagenome and metatranscriptome sequencing can determine microbiome function but can be cost prohibitive. Therefore, computational methods have been developed to generate simulated metagenomes derived from 16S rRNA sequences and databases of full-length genomes. Simulated metagenomes can be an effective alternative to empirical sequencing, but accuracy depends on the genomic database used and whether the database contains organisms closely related to the 16S sequences. These tools are effective in well-studied systems, but the accuracy of these predictions in a nonmodel system is less known. Using a nonmodel bird species, we characterized the function of the microbiome and compared the accuracy of 16S-derived simulated metagenomes to sequenced metagenomes. We found that the simulated metagenomes reflect most but not all functions of empirical metagenome sequencing.
Collapse
Affiliation(s)
- Joshua C. Gil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
Gao Z, Song H, Dong H, Ji X, Lei Z, Tian Y, Wu Y, Zou H. Comparative analysis of intestinal flora between rare wild red-crowned crane and white-naped crane. Front Microbiol 2022; 13:1007884. [PMID: 36532425 PMCID: PMC9752901 DOI: 10.3389/fmicb.2022.1007884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 10/17/2024] Open
Abstract
INTRODUCTION Animal intestines are extremely rich in microbial ecosystems. Numerous studies in different fields, such as epidemiology and histology, have revealed that gut microorganisms considerably mediate the survival and reproduction of animals. However, gut microbiology studies of homogeneously distributed wild cranes are still rare. This study aimed to understand the structural composition of the gut microbial community of wild cranes and elucidate the potential roles of the microorganisms. METHODS We used high-throughput sequencing to analyze the gut microbial community structure of wild cranes in the Zhalong Nature Reserve. RESULTS A total of 1,965,683 valid tags and 5248 OTUs were obtained from 32 fecal samples. Twenty-six bacteria phyla and 523 genera were annotated from the intestinal tract of the red-crowned crane. Twenty-five bacteria phyla and 625 genera were annotated from the intestine of the white-naped crane. Firmicutes, Proteobacteria, and Bacteroidetes are the dominant bacterial phyla in the intestinal tract of red-crowned cranes, while Catellicoccus, Lactobacillus, Neisseria, and Streptococcus were the dominant genera. The dominant bacterial phyla in the intestinal tract of white-naped cranes were Firmicutes, Proteobacteria, Bacteroidetes, Epsilonbacteraeota, Actinobacteria, and Fusobacteria. However, the dominant genera were Catellicoccus, Lactobacillus, Neisseria, Campylobacter, Streptococcus, Anaerobiospirillum, Romboutsia, Turicibacter, Haemophilus, and Lautropia. Firmicutes had significantly higher relative abundance in the intestine of the red-crowned than white-naped cranes (P < 0.05). However, the relative abundance of Actinobacteria and Bacteroidetes was significantly higher (P < 0.05) in the intestines of white-naped than red-crowned cranes. The diversity of the intestinal flora between the two crane species was significantly different (P < 0.05). Besides, the alpha diversity of the intestinal flora was higher for white-naped than red-crowned cranes. Eight of the 41 functional pathways differed in the gut of both crane species (P < 0.05). DISCUSSION Both species live in the same area and have similar feeding and behavioral characteristics. Therefore, host differences are possibly the main factors influencing the structural and functional differences in the composition of the gut microbial community. This study provides important reference data for constructing a crane gut microbial assessment system. The findings have implications for studying deeper relationships between crane gut microbes and genetics, nutrition, immunity, and disease.
Collapse
Affiliation(s)
- Zhongsi Gao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hongwei Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Haiyan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiaolong Ji
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Zefeng Lei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ye Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yining Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Effect of diet on gut microbiota diversity in mandarin ducks (Aix galericulata) revealed by Illumina high-throughput sequencing. Arch Microbiol 2022; 204:725. [DOI: 10.1007/s00203-022-03333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
|
17
|
Dunislawska A, Pietrzak E, Bełdowska A, Siwek M. Health in poultry- immunity and microbiome with regard to a concept of one health. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
The overall concept of OneHealth focuses on health and infectious disease in the context of the relationship between humans, animals, and the environment. In poultry production, there are many opportunities to implement OneHealth by organizing work and introducing appropriate engineering solutions. It is recommended that future research directions include designing and testing solutions to improve air quality and the elimination of antibiotics in the poultry industry. For this to be possible, it is essential to understand the indigenous microbiota of poultry, which plays a crucial role in nutrients, but also restricts the growth of pathogenic organisms. In poultry production, the most important thing is disease control in the herd, high product quality, and product efficiency. Food safety is key for consumers, as some zoonoses are transmitted through the food chain. Moreover, antibiotic resistance of bacteria is becoming a growing threat. For this reason, it is essential to maintain the proper immune status in the herd. Virus disease control in poultry is based on vaccination programs and the maintenance of biosecurity. This chapter aims to present the current state of knowledge in the field of immunity and microbiome of poultry in the context of the OneHealth concept.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Elżbieta Pietrzak
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Bełdowska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
18
|
Wang B, Zhong H, Liu Y, Ruan L, Kong Z, Mou X, Wu L. Diet drives the gut microbiome composition and assembly processes in winter migratory birds in the Poyang Lake wetland, China. Front Microbiol 2022; 13:973469. [PMID: 36212828 PMCID: PMC9537367 DOI: 10.3389/fmicb.2022.973469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The complex gut bacterial communities may facilitate the function, distribution, and diversity of birds. For migratory birds, long-distance traveling poses selection pressures on their gut microbiota, ultimately affecting the birds’ health, fitness, ecology, and evolution. However, our understanding of mechanisms that underlie the assembly of the gut microbiome of migratory birds is limited. In this study, the gut microbiota of winter migratory birds in the Poyang Lake wetland was characterized using MiSeq sequencing of 16S rRNA genes. The sampled bird included herbivorous, carnivorous, and omnivorous birds from a total of 17 species of 8 families. Our results showed that the gut microbiota of migratory birds was dominated by four major bacterial phyla: Firmicutes (47.8%), Proteobacteria (18.2%), Fusobacteria (12.6%), and Bacteroidetes (9.1%). Dietary specialization outweighed the phylogeny of birds as an important factor governing the gut microbiome, mainly through regulating the deterministic processes of homogeneous selection and stochastic processes of homogeneous dispersal balance. Moreover, the omnivorous had more bacterial diversity than the herbivorous and carnivorous. Microbial networks for the gut microbiome of the herbivorous and carnivorous were less integrated, i.e., had lower average node degree and greater decreased network stability upon node attack removal than those of the omnivorous birds. Our findings advance the understanding of host-microbiota interactions and the evolution of migratory bird dietary flexibility and diversification.
Collapse
Affiliation(s)
- Binhua Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Hui Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Yajun Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Luzhang Ruan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Zhaoyu Kong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, OH, United States
- *Correspondence: Xiaozhen Mou,
| | - Lan Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
- Lan Wu,
| |
Collapse
|
19
|
Wang J, Hong M, Long J, Yin Y, Xie J. Differences in intestinal microflora of birds among different ecological types. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.920869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intestinal microflora of animals plays a key role in metabolism, immunity, and development. Birds distributed across multiple ecological habitats. However, little is known about the differences in the intestinal microflora of birds among different ecological types. In this study, bird feces from different ecological types and orders were collected in Chongqing Zoo, China. In this study, high throughput sequencing of the 16S ribosomal RNA (rRNA) gene (amplicon sequencing) and metagenomics were used to analyze the composition and function differences of gut microbiota communities among different ecological types/orders. Firmicutes and Proteobacteria were the dominant bacteria phyla for all samples but there were significant differences in the α-diversity, community structure and microbial interactions between birds of different ecological types. The function differences involve most aspects of the body functions, especially for environmental information processing, organismal systems, human diseases, genetic information processing, and metabolism. These results suggest that diet and habitat are potential drivers of avian gut microbial aggregation. This preliminary study is of great significance for further research on the intestinal microflora of different ecological types of birds.
Collapse
|
20
|
Cheon JY, Cho H, Kim M, Park HJ, Park TYS, Lee WY. Fecal microbiota and diets of muskox female adults and calves. Ecol Evol 2022; 12:e8879. [PMID: 35516419 PMCID: PMC9064827 DOI: 10.1002/ece3.8879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
In mammals, the gut microbiome is vertically transmitted during maternal lactation at birth. In this study, we investigated the gut microbiome and diets of muskox, a large herbivore inhabiting in the high Arctic. We compared the microbiota composition using bacterial 16S rRNA gene sequencing and diets using stable isotope analysis of muskox feces of six female adults and four calves on Ella Island, East Greenland. Firmicutes were the most abundant bacterial phylum in both the adults and calves, comprising 94.36% and 94.03%, respectively. Significant differences were observed in the relative abundance of the two Firmicutes families. The adults were primarily dominated by Ruminococcaceae (73.90%), and the calves were dominated by both Ruminococcaceae (56.25%) and Lachnospiraceae (24.00%). Stable isotope analysis of the feces in the study area revealed that both adults and calves had similar ranges of 13C and 15N, likely derived from the dominant diet plants. Despite their similar diets, the different gut microbiome compositions in muskox adults and calves indicate that the gut microbiome of the calves may not be fully colonized to the extent of that of the adults.
Collapse
Affiliation(s)
- Ji-Yeon Cheon
- Division of Life Sciences Korea Polar Research Institute Incheon Korea.,Department of Environmental Science and Ecological Engineering Korea University Seoul Korea
| | - Hyunjun Cho
- Division of Life Sciences Korea Polar Research Institute Incheon Korea
| | - Mincheol Kim
- Division of Life Sciences Korea Polar Research Institute Incheon Korea
| | - Hyun Je Park
- Department of Marine Bioscience Gangneung-Wonju National University Gangneung Korea
| | - Tae-Yoon S Park
- Division of Earth Sciences Korea Polar Research Institute Incheon Korea.,Polar Science University of Science & Technology Daejeon Korea
| | - Won Young Lee
- Division of Life Sciences Korea Polar Research Institute Incheon Korea.,Polar Science University of Science & Technology Daejeon Korea
| |
Collapse
|
21
|
Zhao L, Wang WQ, Xu SQ, Guan DL. The Comparison of Gut Bacteria Communities and the Functions Among the Sympatric Grasshopper Species From the Loess Plateau. Front Microbiol 2022; 13:806927. [PMID: 35479627 PMCID: PMC9037097 DOI: 10.3389/fmicb.2022.806927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Gut bacteria exert effects on the health and fitness of their insect hosts. Grasshoppers are an important part of the grassland ecosystem and provide important ecosystem services. As the most valuable feature in grassland ecosystem, the compositions and potential influences of gut bacterial in herbivorous grasshoppers in the same ecological environment are essential but undetermined. To facilitate such studies, we collected nine species of grasshoppers (n = 110) from a rebuild grassland on the Loess Plateau in northern Shaanxi, China, which is a representative area of ecosystem restoration model. We characterized the composition and function of the gut bacteria. We found that 326 OTUs were exhibited in all grasshoppers in which Enterobacter, Pantoea, Bacillus, and Spiroplsma are dominant. Among them, 18 OTUs were shared across all nine species of grasshoppers. The predicted function showed that the majority function of those OTUs were involved in survival dependent processes including membrane transport, carbohydrate metabolism, amino acid metabolism, and DNA replication and repair. The composition of gut bacteria is specific to each grasshopper species, and the bacteria community is most various in Trilophidia annulata. These results highlight the gut bacterial community diversity in different grasshopper species. Our findings are necessary for better understanding the relationships between this important herbivorous insect and their microbiomes and have the potential contribution of evaluating the revegetation and ecosystem management in this area.
Collapse
Affiliation(s)
- Lu Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Wen-Qiang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Sheng-Quan Xu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - De-Long Guan
- College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
22
|
Shao C, Zhao W, Li N, Li Y, Zhang H, Li J, Xu Z, Wang J, Gao T. Gut Microbiome Succession in Chinese Mitten Crab Eriocheir sinensis During Seawater-Freshwater Migration. Front Microbiol 2022; 13:858508. [PMID: 35432227 PMCID: PMC9005979 DOI: 10.3389/fmicb.2022.858508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Biological migration is usually associated with disturbances and environmental changes that are key drivers in determining the diversity, community compositions, and function of gut microbiome. However, little is known about how gut microbiome is affected by disturbance such as salinity changes during migration from seawater to freshwater. Here, we tracked the gut microbiome succession of Chinese mitten crabs (Eriocheir sinensis) during their migrations from seawater to freshwater and afterward using 16S rDNA sequencing for 127 days, and explored the temporal patterns in microbial diversity and the underlying environmental factors. The species richness of gut microbiome showed a hump-shaped trend over time during seawater–freshwater migration. The community dissimilarities of gut microbiome increased significantly with day change. The turnover rate of gut microbiome community was higher during seawater–freshwater transition (1–5 days) than that in later freshwater conditions. Salinity was the major factor leading to the alpha diversity and community dissimilarity of gut microbiome during seawater–freshwater transition, while the host selection showed dominant effects during freshwater stage. The transitivity, connectivity, and average clustering coefficient of gut microbial co-occurrence networks showed decreased trends, while modularity increased during seawater–freshwater migration. For metabolic pathways, “Amino Acid Metabolism” and “Lipid Metabolism” were higher during seawater–freshwater transition than in freshwater. This study advances our mechanistic understanding of the assembly and succession of gut microbiota, which provides new insights into the gut ecology of other aquatic animals.
Collapse
Affiliation(s)
- Chenxi Shao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Wenqian Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nannan Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Yinkang Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Huiming Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jingjing Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Tianheng Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
23
|
Yang Y, Zhan A, Yuan Z. Differed biotic interactions influenced by anthropogenic disturbances among trophic levels in fragmented wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151179. [PMID: 34742954 DOI: 10.1016/j.scitotenv.2021.151179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Environmental changes derived from various human activities have largely disturbed the structure and functioning of various biological communities. However, little is known on how such disturbance impacts species interactions in biological communities. This study aims to elucidate the variation of species interactions across multiple trophic levels and further determine crucial factor(s) in regulating observed variation. We collected plankton samples from Sanjiang Wetlands in Northeastern China and used random matrix theory (MRT)-based approach to construct species interaction networks for bacterioplanktons, protozoans, and metazoans, respectively. We found that biotic interactions were more complex at lower trophic levels. Network key species (e.g., module hubs and connectors) were detected only in the bacterioplankton network. More inter- and intra-module connections, particularly negative connections, were detected in the bacterioplankton network. Across all three trophic levels, the element sodium (Na) was the most important factor influencing the network structure, while at each trophic level, physicochemical factors, nutrients, and organic pollutants were identified as crucial determinants but their relative importance differed. In particular, no correlation was detected between the metazoan network and any environmental factor. After separating protozoan and metazoan communities into subgroups in relatively poor and good water environments, we found community interaction networks were more complex in good conditions than in poor conditions. A simple network structure (e.g., no inter-module connectors or intra-module hubs, and less competitive links) and less association with environmental factors in the higher trophic levels clearly illustrate that metazoan and protozoan communities in the fragmented wetlands are unstable and vulnerable. Therefore, further environmental changes may greatly influence species interactions in these communities. Collectively, our findings provide new insights into dynamics of influence of environmental changes on biotic interactions in aquatic biological communities, highlighting the necessity to use a multi-trophic strategy when assessing negative effects of environmental changes in aquatic ecosystems.
Collapse
Affiliation(s)
- Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Zhilin Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
24
|
Fu H, Zhang L, Fan C, Liu C, Li W, Cheng Q, Zhao X, Jia S, Zhang Y. Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microb Biotechnol 2021; 14:1300-1315. [PMID: 33369229 PMCID: PMC8313255 DOI: 10.1111/1751-7915.13687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/07/2020] [Indexed: 02/01/2023] Open
Abstract
The previous studies have reported that the mammalian gut microbiota is a physiological consequence; nonetheless, the factors influencing its composition and function remain unclear. In this study, to evaluate the contributions of the host and environment to the gut microbiota, we conducted a sequencing analysis of 16S rDNA and shotgun metagenomic DNA from plateau pikas and yaks, two sympatric herbivorous mammals, and further compared the sequences in summer and winter. The results revealed that both pikas and yaks harboured considerably more distinct communities between summer and winter. We detected the over-representation of Verrucomicrobia and Proteobacteria in pikas, and Archaea and Bacteroidetes in yaks. Firmicutes and Actinobacteria, associated with energy-efficient acquisition, significantly enriched in winter. The diversity of the microbial community was determined by the interactive effects between the host and season. Metagenomic analysis revealed that methane-metabolism-related pathway of yaks was significantly enriched in summer, while some pathogenic pathways were more abundant in pikas. Both pikas and yaks had a higher capacity for lipid degradation in winter. Pika and yak shared more OTUs when food shortage occurred in winter, and this caused a convergence in gut microbial composition and function. From winter to summer, the network module number increased from one to five in pikas, which was different in yaks. Our study demonstrates that the host is a dominant factor in shaping the microbial communities and that seasonality promotes divergence or convergence based on dietary quality across host species identity.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Shangang Jia
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| |
Collapse
|
25
|
Intestinal Microbes of Hooded Cranes ( Grus monacha) Wintering in Three Lakes of the Middle and Lower Yangtze River Floodplain. Animals (Basel) 2021; 11:ani11051390. [PMID: 34068189 PMCID: PMC8153004 DOI: 10.3390/ani11051390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Intestinal microbes are critical to host health, and are affected by environmental factors. In this study, we investigated the intestinal microbes of Hooded Cranes wintering at three lakes with different environmental characteristics in the middle and lower Yangtze River floodplain in China, aiming to provide insights into the effects of habitat size and protection status of birds on their intestinal microbes. We found that the Hooded Cranes at the smaller lake had higher intestinal bacterial and fungal diversity than those at the larger lake. In addition, more diverse and abundant pathogens were found in the gut of Hooded Cranes that lived in the relatively poorly protected habitat than those that lived in well-protected habitat. This study contributes a new perspective for understanding the intestinal microbes of wintering migratory waterbirds at different habitats, and will help to understand the survival status of the vulnerable waterbirds at different habitats for their better conservation. Abstract Intestinal microbes participate in life activities of the host, and are affected by external environmental factors. Different habitat sizes and protection status provide different external environmental selection pressures for the same wintering waterbirds, which may be reflected in their intestinal microbes. Hooded Cranes are vulnerable migratory waterbirds with similar numbers wintering at three different lakes in the middle and lower Yangtze River floodplain, Poyang, Caizi, and Shengjin Lakes. Here, we analyzed the characteristics of intestinal bacterial and fungal communities of Hooded Cranes wintering at the three lakes to clarify the effect of habitat size and protection status on intestinal microbes, using high-throughput sequencing technology. Our results showed that community composition and diversity of intestinal microbes were significantly different among lakes with different habitat size and protection status. The Hooded Cranes at Shengjin Lake (small) had higher intestinal microbial alpha-diversity (for both bacteria and fungi) than those at Poyang Lake (large), which might be induced by social behavior of more waterbirds per unit area. The Hooded Cranes at Caizi Lake (relatively poorly protected habitat) had more diverse and abundant intestinal potential pathogens than Shengjin Lake (well-protected habitat). Our results indicated that the environmental pressure of a habitat might affect intestinal microorganisms and more attention might be needed for the vulnerable waterbirds at the habitat of poor protection status.
Collapse
|
26
|
Ahasan MS, Waltzek TB, Owens L, Ariel E. Characterisation and comparison of the mucosa-associated bacterial communities across the gastrointestinal tract of stranded green turtles, Chelonia mydas. AIMS Microbiol 2020; 6:361-378. [PMID: 33364533 PMCID: PMC7755585 DOI: 10.3934/microbiol.2020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
Chelonia mydas are primarily herbivorous long-distance migratory sea turtles that contribute to marine ecosystems. Extensive research has been conducted to restore the populations of green turtles. Little is known about their gut microbiota which plays a vital role in their health. We investigated the mucosa-associated bacterial communities across the gastrointestinal (GI) tract of a total four (3, juvenile and 1, adult) stranded green turtles. Samples taken from four GI regions including oesophagus, stomach, small intestine and large intestine were analysed by high-throughput sequencing targeting hypervariable V1-V3 regions of the bacterial 16S rRNA gene. Bacterial diversity and richness decreased longitudinally along the GI tract from oesophagus to the small intestine of stranded turtles. The large intestine showed a higher bacterial diversity and richness compared to small intestine. The bacterial community of green turtles' GI tract was largely dominated by Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Aerobic and facultative anaerobic bacteria prevailed primarily in the oesophagus while anaerobes (Lachnospiraceae, Peptostreptococcaceae and Ruminococcaceae) constituted the bulk of large intestinal microbiota. Firmicutes dominated the GI tract except within the small intestine where Proteobacteria prevailed. At the OTU level, six percent of the total OTUs (>1% relative abundance) were common in all GI regions. This is a comprehensive characterisation of bacterial microbiota across the GI tract in green turtles which will provide a reference for future studies on turtle gut microbiome and their metabolism to improve their health and nutrition during rehabilitation.
Collapse
Affiliation(s)
- Mohammad Shamim Ahasan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia.,Faculty of Veterinary and Animal Sciences, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Rangpur, Bangladesh
| | - Thomas B Waltzek
- College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| |
Collapse
|
27
|
Fan C, Zhang L, Fu H, Liu C, Li W, Cheng Q, Zhang H, Jia S, Zhang Y. Enterotypes of the Gut Microbial Community and Their Response to Plant Secondary Compounds in Plateau Pikas. Microorganisms 2020; 8:microorganisms8091311. [PMID: 32872148 PMCID: PMC7563992 DOI: 10.3390/microorganisms8091311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Animal gut microbiomes can be clustered into “enterotypes” characterized by an abundance of signature genera. The characteristic determinants, stability, and resilience of these community clusters remain poorly understood. We used plateau pika (Ochotona curzoniae) as a model and identified three enterotypes by 16S rDNA sequencing. Among the top 15 genera, 13 showed significantly different levels of abundance between the enterotypes combined with different microbial functions and distinct fecal short-chain fatty acids. We monitored changes in the microbial community associated with the transfer of plateau pikas from field to laboratory and observed that feeding them a single diet reduced microbial diversity, resulting in a single enterotype with an altered composition of the dominant bacteria. However, microbial diversity, an abundance of some changed dominant genera, and enterotypes were partially restored after adding swainsonine (a plant secondary compound found in the natural diet of plateau pikas) to the feed. These results provide strong evidence that gut microbial diversity and enterotypes are directly related to specific diet, thereby indicating that the formation of different enterotypes can help animals adapt to complex food conditions. Additionally, natural plant secondary compounds can maintain dominant bacteria and inter-individual differences of gut microbiota and promote the resilience of enterotypes in small herbivorous mammals.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.J.); (Y.Z.)
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- Correspondence: (S.J.); (Y.Z.)
| |
Collapse
|
28
|
Cho H, Lee WY. Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecol Evol 2020; 10:5582-5594. [PMID: 32607176 PMCID: PMC7319242 DOI: 10.1002/ece3.6299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota of birds is known to be characterized for different species, although it may change with feeding items. In this study, we compared the gut microbiota of birds with different feeding behaviors in the same habitat. We collected fecal samples from three Arctic species, snow buntings Plectrophenax nivalis, sanderlings Calidris alba, and pink-footed geese Anser brachyrhynchus that are phylogenetically quite distant in different families to evaluate effects of diet on gut microbiota. Also, we characterized the prevalence of fecal bacteria using the Illumina MiSeq platform to sequence bacterial 16S rRNA genes. Our NMDS results showed that fecal bacteria of snow buntings and sanderlings were significantly distant from those of pink-footed geese. Although all three birds were occupied by three bacterial phyla, Proteobacteria, Firmicutes, and Bacteroidetes, dominant taxa still varied among the species. Our bacterial sequences showed that snow buntings and sanderlings were dominated by Firmicutes and Bacteroidetes, while pink-footed geese were dominated by Proteobacteria. In addition, the bacterial diversity in snow buntings and sanderlings was significantly higher than that in pink-footed geese. Our results suggest that insectivorous feeding diet of snow buntings and sanderlings could be responsible for the similar bacterial communities between the two species despite the distant phylogenetic relationship. The distinctive bacterial community in pink-footed geese was discussed to be related with their herbivorous diet.
Collapse
Affiliation(s)
- Hyunjun Cho
- Division of Polar Life Sciences Korea Polar Research Institute Incheon Korea
| | - Won Young Lee
- Division of Polar Life Sciences Korea Polar Research Institute Incheon Korea
| |
Collapse
|
29
|
Zhang P, Zou Y, Xie Y, Zhang S, Chen X, Li F, Deng Z, Zhang H, Tu W. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecol Evol 2020; 10:5281-5292. [PMID: 32607151 PMCID: PMC7319142 DOI: 10.1002/ece3.6272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 11/06/2022] Open
Abstract
East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian-Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white-fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high-quantity/low-quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low-quantity/high-quality food. Compared with the globally vulnerable Lesser white-fronted geese, the larger-sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality-quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.
Collapse
Affiliation(s)
- Pingyang Zhang
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ye‐ai Zou
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yonghong Xie
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Siqi Zhang
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinsheng Chen
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Feng Li
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Zhengmiao Deng
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionsChinese Academy of SciencesChangshaChina
- Dongting Lake Station for Wetland Ecosystem ResearchInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Hong Zhang
- Administrative Bureau of Hunan EastDongting Lake National Nature ReserveYueyangChina
| | - Wei Tu
- Administrative Bureau of Hunan EastDongting Lake National Nature ReserveYueyangChina
| |
Collapse
|
30
|
Zhang F, Xiang X, Dong Y, Yan S, Song Y, Zhou L. Significant Differences in the Gut Bacterial Communities of Hooded Crane ( Grus monacha) in Different Seasons at a Stopover Site on the Flyway. Animals (Basel) 2020; 10:E701. [PMID: 32316467 PMCID: PMC7222709 DOI: 10.3390/ani10040701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.
Collapse
Affiliation(s)
- Fengling Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei 230601, China
| | - Yuanqiu Dong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei 230601, China
| | - Shaofei Yan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei 230601, China
| | - Yunwei Song
- Shengjin Lake National Nature Reserve of Anhui Province, Dongzhi 247200, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei 230601, China
| |
Collapse
|
31
|
Liu G, Gong Z, Li Q. Variations in gut bacterial communities between lesser white-fronted geese wintering at Caizi and Shengjin lakes in China. Microbiologyopen 2020; 9:e1037. [PMID: 32207252 PMCID: PMC7349169 DOI: 10.1002/mbo3.1037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023] Open
Abstract
The avian gut microbiota plays an important role in shaping the health of its host. However, knowledge of gut bacteria in birds lags behind that of other animals. In this study, we investigated the gut bacterial communities of lesser white‐fronted geese (Anser erythropus) wintering at Shengjin Lake and Caizi Lake, China, using high‐throughput sequencing (Illumina MiSeq). Altogether, 1,053,624 high‐quality sequences and 4,405 operational taxonomic units (OTUs) were acquired from 30 fecal samples (15 per lake). The OTUs represented eight phyla and 17 classes from the Caizi Lake samples and seven phyla and 16 classes from the Shengjin Lake samples. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. The spatial distance and the Chao1, Simpson, and Shannon indices showed that the alpha diversity differed significantly between the samples from both lakes. The phylogenetic tree and heatmap analyses showed that all the Caizi Lake samples were clustered together and all the Shengjin Lake samples were clustered together. These findings suggest that diet may be an important driver of gut microbial community structure in the birds from each lake, and the obvious differentiation in their gut microbial structures may indicate that the bacteria are highly sensitive to food sources at both lakes.
Collapse
Affiliation(s)
- Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhizhong Gong
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Qingyue Li
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Qin W, Song P, Lin G, Huang Y, Wang L, Zhou X, Li S, Zhang T. Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Front Microbiol 2020; 11:125. [PMID: 32117147 PMCID: PMC7018712 DOI: 10.3389/fmicb.2020.00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/20/2020] [Indexed: 12/23/2022] Open
Abstract
Due to the increased economic demand for livestock, the number of livestock is increasing. Because of human interference, the survival of wild animals is threatened in the face of competition, particularly in co-inhabited grazing pastures. This may lead to differences in the adaptability between wild and domestic animals, as well as nutritional deficiencies in wild animals. The gut microbiota is closely associated with host health, nutrition, and adaptability. However, the gut microbiota diversity and functions in domestic and wild animals in co-inhabited areas are unclear. To reveal the adaptability of wild and domestic animals in co-inhabited areas based on gut microbiota, we assessed the gut microbiota diversity. This study was based on the V3–V4 region of 16S rRNA and gut microbiota functions according to the metagenome analysis of fresh fecal samples in wild goitered gazelles (Gazella subgutturosa) and domestic sheep (Ovis aries) in the Qaidam Basin. The wild and domestic species showed significant differences in alpha- and beta-diversities. Specifically, the alpha-diversity was lower in goitered gazelles. We speculated that the nutritional and habitat status of the goitered gazelles were worse. The gut microbiota functions in the gazelles were enriched in metabolism and cellular processes based on the KEGG database. In summary, we reasoned that gut microbiota can improve the adaptability of goitered gazelles through energy maintenance by the functions of gut microbiota in the face of nutritional deficiencies. These findings highlight the importance of gut microbiota diversity to improve the adaptability of goitered gazelles, laying a foundation for the conservation of wild goitered gazelles. In addition, we further provide management suggestions for domestic sheep in co-inhabited grazing pastures.
Collapse
Affiliation(s)
- Wen Qin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji'an, China
| | - YanGan Huang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | | | - Shengqing Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
33
|
Yang Y, Hou Y, Ma M, Zhan A. Potential pathogen communities in highly polluted river ecosystems: Geographical distribution and environmental influence. AMBIO 2020; 49:197-207. [PMID: 31020611 PMCID: PMC6888796 DOI: 10.1007/s13280-019-01184-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 05/03/2023]
Abstract
Risks of pathogenic bacteria to the health of both human beings and water ecosystems have been widely acknowledged. However, traditional risk assessment methods based on fecal indicator bacteria and/or pure culture are not comprehensive at the community level, mainly owing to the limited taxonomic coverage. Here, we combined the technique of high-throughput sequencing and the concept of metacommunity to assess the potential pathogenic bacterial communities in an economically and ecologically crucial but highly polluted river-the North Canal River (NCR) in Haihe River Basin located in North China. NCR presented a significant environmental gradient, with the highest, moderate, and lowest levels of pollution in the up-, middle, and downstream. After multiple analyses, we successfully identified 48 genera, covering nine categories of potential pathogens (mainly human pathogens). The most abundant genus was Acinetobacter, which was rarely identified as a pathogen bacterium in previous studies of NCR. At the community level, we observed significant geographical variation of community composition and structure. Such a high level of geographical variation was mainly derived from differed abundance of species among sections along the river, especially the top seven Operational Taxonomic Units (OTUs). For example, relative abundance of OTU1 (Gammaproteobacteria/Acinetobacter) increased significantly from upstream towards downstream. Regarding the underlying mechanisms driving community geographical variation, environmental filtering was identified as the dominant ecological process and total nitrogen as the most influential environmental variable. Altogether, this study provided a comprehensive profile of potential pathogenic bacteria in NCR and revealed the underlying mechanisms of community succession. Owing to their high abundance and wide geographical distribution, we suggest that potential pathogens identified in this study should be incorporated into future monitoring and management programs in NCR. By revealing the correlation between environmental factors and community composition, the results obtained in this study have significant implications for early warning and risk assessment of potential pathogen bacteria, as well as management practices in highly polluted river ecosystems.
Collapse
Affiliation(s)
- Yuzhan Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085 China
| | - Yang Hou
- Beijing Dongcheng District Food and Drug Safety Monitoring Center, 12-14 Zhushikou Street East, Beijing, 100050 China
| | - Min Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085 China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049 China
| |
Collapse
|
34
|
Chen D, Xiao C, Jin H, Yang B, Niu J, Yan S, Sun Y, Zhou Y, Wang X. Exposure to atmospheric pollutants is associated with alterations of gut microbiota in spontaneously hypertensive rats. Exp Ther Med 2019; 18:3484-3492. [PMID: 31602224 PMCID: PMC6777218 DOI: 10.3892/etm.2019.7934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Atmospheric particulate matter with a diameter <2.5 µm (PM2.5) and pollution are worldwide environmental problems and may have negative effects on cardiovascular disease through the lung and gut. The dynamics of intestinal microflora in response to particulate pollutants is unclear. The present study investigated changes in the gut microbiota related to pollutant exposure using spontaneously hypertensive rats (SHR). DNA was extracted from fecal samples. Amplicon Generation and the quality control of PCR products were performed. PCR products was sequenced on an Illumina HiSeq 2500 platform. Data analysis included: operational taxonomic unit (OTU) clustering and species annotation, alpha diversity, beta diversity, principal coordinates analysis (PCoA), and the use of PICRUSt bioinformatics software. The microbial diversity of the SHR rats was inversely associated with exposure to pollutants. In terms of relative abundance, 24 bacterial genera and 2 genera in particular (Actinobacillus and Fusobacterium) significantly declined, and one genus (Treponema) increased. Moreover, pollutant exposure was associated with the accumulation of genes from the gut microbiota that are implicated in cardiovascular diseases. From the long-term exposure experiment, rats appeared to respond to pollutant injury. In conclusion, these results suggest that the effects of atmospheric pollutants on organisms are not limited to the respiratory tract, but also include the gastrointestinal tract. Pollutants are likely to influence the intestinal microbiota and promote the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunling Xiao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huanrong Jin
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Biao Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiayu Niu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siyuan Yan
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Sun
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuan Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangming Wang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Laviad-Shitrit S, Izhaki I, Halpern M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog 2019; 15:e1007814. [PMID: 31437258 PMCID: PMC6706228 DOI: 10.1371/journal.ppat.1007814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease. Cholera causes epidemics and pandemics, but the ways this disease spreads worldwide is still unclear. This review highlights a relatively new hypothesis regarding the way V. cholerae can be globally dispersed. Copepods and chironomids are natural reservoirs of V. cholerae and are part of different fish species’ diet. Furthermore, V. cholerae inhabits marine and freshwater fish species. Waterbird species feed on fish or on small invertebrates such as copepods and chironomids. Waterbirds have also been found to carry living copepods and/or chironomids internally or externally from one waterbody to another. All of the above points to the fact that some waterbird species might be vectors of V. cholerae. Indeed, we and others have found evidence for the presence of V. cholerae non-O1 as well as O1 in waterbird cloacal swabs, feces, and intestine samples. Moreover, hand-reared cormorants that were fed on tilapia, a fish that naturally carries V. cholerae, became infected with this bacterial species, demonstrating that V. cholerae can be transferred to cormorants from their fish prey. Great cormorants as well as other waterbird species can cover distances of up to 1,000 km/day and thus may potentially transfer V. cholerae in a short time across and between continents. We hope this review will inspire further studies regarding the understanding of the waterbirds' role in the global dissemination of V. cholerae.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel
- * E-mail:
| |
Collapse
|
36
|
Yang Y, Gao Y, Chen Y, Li S, Zhan A. Interactome‐based abiotic and biotic impacts on biodiversity of plankton communities in disturbed wetlands. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuzhan Yang
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
| | - Yangchun Gao
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yiyong Chen
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shiguo Li
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Aibin Zhan
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
37
|
Dong Y, Xiang X, Zhao G, Song Y, Zhou L. Variations in gut bacterial communities of hooded crane ( Grus monacha) over spatial-temporal scales. PeerJ 2019; 7:e7045. [PMID: 31218123 PMCID: PMC6563796 DOI: 10.7717/peerj.7045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/27/2019] [Indexed: 11/20/2022] Open
Abstract
Background Microbes have been recognized as important symbionts to regulate host life. The animal gut harbors abundance and diverse bacteria. Numerous internal and external factors influence intestinal bacterial communities, including diet, seasonal fluctuations and habitat sites. However, the factors that influence the gut bacterial communities of wild bird is poorly characterized. Methods By high-throughput sequencing and statistical analysis, we investigated the variations in gut bacterial communities of the hooded cranes at three wintering stages in Caizi (CZL) and Shengjin Lake (SJL), which are two shallow lakes in the middle and lower Yangtze River floodplain. Results Our results revealed significant differences in gut bacterial community structure and diversity among different sampling sites and wintering stages. Seasonal changes have a significant impact on the gut microbe composition of hooded cranes in the two lakes. ANOSIM analysis demonstrated that the samples in CZL had greater differences in the gut bacterial composition than that in SJL. Our data showed strong evidence that the host's gut filtering might be an important factor in shaping bacterial community according to mean nearest taxon distance (MNTD). The PICRUSt analysis showed that the predicted metagenomes associated with the gut microbiome were carbohydrate metabolism, amino acid metabolism and energy metabolism over the entire wintering period at the two lakes. Conclusions The results demonstrated that both seasonal changes and habitat sites have significant impact on the gut bacterial communities of hooded cranes. In addition, predictive function of gut microbes in hooded cranes varied over time. These results provide new insights into the gut microbial community of the cranes, which serves as a foundation for future studies.
Collapse
Affiliation(s)
- Yuanqiu Dong
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.,Anhui Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.,Anhui Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, China
| | - Guanghong Zhao
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.,Anhui Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, China
| | - Yunwei Song
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.,Anhui Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, China.,Anhui Shengjin Lake National Nature Reserve, Chizhou, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.,Anhui Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, China
| |
Collapse
|
38
|
Liu H, Chen Z, Gao G, Sun C, Li Y, Zhu Y. Characterization and comparison of gut microbiomes in nine species of parrots in captivity. Symbiosis 2019. [DOI: 10.1007/s13199-019-00613-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Ricaud K, Even M, Lavigne F, Davail S, Arroyo J. Evolution of intestinal microbiota and body compartments during spontaneous hyperphagia in the Greylag goose. Poult Sci 2019; 98:1390-1402. [PMID: 30285149 DOI: 10.3382/ps/pey476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 01/15/2023] Open
Abstract
The aim of this work was to study the effects of spontaneous hyperphagia on the evolution of intestinal microbiota and body compartments in old goose. From October 25th to November 26th, 5-yr-old breeding Greylag Landaise geese (106 males and 106 females) were fed with grass during 1 mo (G period). From November 26th (0 d) the birds had ad libitum access to pellets (AMEn: 10.5 MJ/kg, CP: 18.9 g/kg; spontaneous fattening (SF) period). Some birds were killed at -31 d (n = 24; 50/50 sex ratio), 0 d (n = 48), 14 (n = 46), 22 d (n = 46), and 70 d (n = 48) after the start of G period to measure body traits. For microbial analysis, 10 of the samples per sex at 0 d, 14 d, and 70 d were selected to be representative of body traits. Between 0 and 22 d, liver weight increased from 98 g to 194 g in males and from 89 g to 199 g in females (P < 0.001). Liver weight decreased between 22 and 70 d from 194 to 174 g in males and from 199 to 163 g in females (P < 0.001). Irrespective of the diet (G or SF period) and the sex of the bird, the two major phyla were Proteobacteria (49%) and Firmicutes (48%). Bacteroidetes represented around 3.0% of the sequences. At order level, Firmicutes were dominated by Clostridiales (33% of total sequences) and Lactobacillales (13% of total sequences) and Proteobacteria were dominated by Campylobacteriales (34% of total sequences). Finally, Bacteroidetes were dominated by Bacteroidales. SF and sex did not change the microbial diversity but sparse partial least squares discriminant analysis allowed us to highlight discriminant operational taxonomic unit between experimental groups. In conclusion, our result showed that changes in the body compartments of old geese during spontaneous hyperphagia depend on the sex of the birds, but not so much in gut microbial composition. Further investigations are necessary to understand the functional microbiota and highlight the role of gut microbiota in hepatic steatosis induced with hyperphagia in geese.
Collapse
Affiliation(s)
- K Ricaud
- INRA, Univ Pau and Pays Adour, E2S UPPA, UMR 1419 Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle F-64310, France
| | - M Even
- INRA, Univ Pau and Pays Adour, E2S UPPA, UMR 1419 Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle F-64310, France.,ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, F-24420 Coulaures, France
| | - F Lavigne
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, F-24420 Coulaures, France
| | - S Davail
- INRA, Univ Pau and Pays Adour, E2S UPPA, UMR 1419 Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle F-64310, France
| | - J Arroyo
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, F-24420 Coulaures, France
| |
Collapse
|
40
|
Yang Y, Gao Y, Huang X, Ni P, Wu Y, Deng Y, Zhan A. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:290-299. [PMID: 30445416 DOI: 10.1016/j.envpol.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 05/07/2023]
Abstract
Anthropogenic activity-mediated nutrient pollution, especially nitrogen enrichment, poses one of the major threats to river ecosystems. However, it remains unclear how and to which extent it affects aquatic microbial communities, especially in heavily polluted rivers. In this study, a significant environmental gradient, particularly nitrogen gradient, was observed along a wastewater receiving river, the North Canal River (NCR). The pollution level was highest, moderate, and lowest in the up-, middle, and down-streams, respectively. The community composition of bacterioplankton transitioned from being Betaproteobacteria-dominated upstream to Gammaproteobacteria-dominated downstream. Copiotrophic groups, such as Polynucleobacter (Betaproteobacteria) and Hydrogenophaga (Betaproteobacteria), were dominant in the upstream. Multiple statistical analyses indicated that total nitrogen (TN) was the most important factor driving the adaptive shifts of community structure. Analyses of co-occurrence networks showed that the complexity of networks was disrupted in the up- and middle streams, while enhanced in the downstream. Our findings here suggested that microbial interactions were reduced in response to the aggravation of nutrient pollution. Similar to these changes, we observed significant dissimilarity of composition of functional groups, with highest abundance of nitrogen metabolism members under the highest level of nitrogen enrichment. Further analyses indicated that most of these functional groups belonged to Betaproteobacteria, suggesting the potential coupling of community composition and function diversity. In summary, adaptive shifts of bacterioplankton community composition, as well as species interactions, occurred in response to nutrient pollution in highly polluted water bodies.
Collapse
Affiliation(s)
- Yuzhan Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yueni Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
41
|
Wu Y, Yang Y, Cao L, Yin H, Xu M, Wang Z, Liu Y, Wang X, Deng Y. Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. Sci Rep 2018; 8:13314. [PMID: 30190564 PMCID: PMC6127342 DOI: 10.1038/s41598-018-31731-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
The gut microbime plays an important role in the health of wild animals. This microbial community could be altered by habitat pollution and other human activities that threaten the host organisms. Here, we satellite-tracked a flock of swan geese (Anser cygnoides) migrating from their breeding area (Khukh Lake, Mongolia), with low levels of human activity, to their wintering area (Poyang Lake, China) which has been heavily impacted by human activities. Twenty fecal samples were collected from each site. High-throughput sequencing of 16S and ITS was employed to explore bacterial and fungal composition and diversity of their gut microbiome. Although general composition, alpha-diversity, functional prediction, and the central taxa in the phylogenetic networks showed some similarities between the two habitats, significant divergences were detected in terms of beta-diversity, species abundances, and interaction network topologies. In addition, disease-related and xenobiotic biodegradation pathways, and pathogenic bacteria were significantly increased in bacterial communities from samples at Poyang Lake. Our results reveal that the gut microbiome of swan geese, while somewhat altered after long-distance migration, still maintained a core group of species. We also show that habitat environmental stress could impact these gut microbial communities, suggesting that habitat pollution could indirectly threaten wild animals by altering their gut microbiome.
Collapse
Affiliation(s)
- Yueni Wu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhan Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lei Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yangying Liu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Even M, Davail S, Rey M, Tavernier A, Houssier M, Bernadet MD, Gontier K, Pascal G, Ricaud K. Probiotics Strains Modulate Gut Microbiota and Lipid Metabolism in Mule Ducks. Open Microbiol J 2018; 12:71-93. [PMID: 29755604 PMCID: PMC5925865 DOI: 10.2174/1874285801812010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Livestock production should respond to societal, environmental and economic changes. Since 2006 and the ban on antibiotics as growth factors in European Union, the use of probiotics has become widespread and has demonstrated the effect of intestinal microbiota on the performance of farm animals. Objective: The aim of this study was to investigate the effect of supplementation with Lactobacillus salivarius (as a probiotics strain or combined with other strains) on zootechnical performance, metabolic and immune gene expression and intestinal microbiota diversity in mule ducks using high-throughput sequencing and real-time PCR. Method: The mule ducks were reared for 79 days and overfed for 12 days with or without probiotics. Samples were collected at 14 (starting period) and 91 days (end of overfeeding period), 3 hours post feeding. Results: Irrespective of digestive content, age, level of feed intake or supplementation with probiotics, Firmicutes, Proteobacteria and Bacteroidetes were the dominant phyla in the bacterial community in mule ducks. At 14 days, both the ileal and cecal samples were dominated by Firmicutes (in particular the Clostridiales order). Overfeeding induced a shift between Clostridiales and Lactobacillales in the ileal samples whereas in the cecal samples, the relative abundance of Firmicutes decreased. Overfeeding also induced hepatic over-expression of Fatty Acid Synthase (FAS) and of the lipid transporter gene Fatty Acid Binding Protein 4 (FABP4). This increase in lipid metabolism genes is associated with a decrease in inflammatory response. Conclusion: Finally, probiotic supplementation had only a slight impact on gene expression and microbiota diversity, both at 14 days and after overfeeding.
Collapse
Affiliation(s)
- Maxime Even
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France.,UMR 1419 INRA UPPA NuMéA, Quartier Ibarron, 64310 Saint Pée sur Nivelle, France
| | - Stéphane Davail
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France.,UMR 1419 INRA UPPA NuMéA, Quartier Ibarron, 64310 Saint Pée sur Nivelle, France
| | - Mikael Rey
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France
| | - Annabelle Tavernier
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France.,UMR 1419 INRA UPPA NuMéA, Quartier Ibarron, 64310 Saint Pée sur Nivelle, France
| | - Marianne Houssier
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France.,UMR 1419 INRA UPPA NuMéA, Quartier Ibarron, 64310 Saint Pée sur Nivelle, France
| | - Marie Dominique Bernadet
- UEPFG INRA Bordeaux-Aquitaine, (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Karine Gontier
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France.,UMR 1419 INRA UPPA NuMéA, Quartier Ibarron, 64310 Saint Pée sur Nivelle, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Karine Ricaud
- UMR 1419 INRA UPPA NuMéA, 371 rue du ruisseau, 40000 Mont de Marsan, France.,UMR 1419 INRA UPPA NuMéA, Quartier Ibarron, 64310 Saint Pée sur Nivelle, France
| |
Collapse
|
43
|
Wang W, Liu Y, Yang Y, Wang A, Sharshov K, Li Y, Cao M, Mao P, Li L. Comparative analyses of the gut microbiota among three different wild geese species in the genus Anser. J Basic Microbiol 2018; 58:543-553. [PMID: 29668076 DOI: 10.1002/jobm.201800060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
Abstract
In this study, we characterized for the first time the gut microbiota of Greylag geese (Anser anser) using high-throughput 16S rRNA gene sequencing technology. The results showed that the phyla Firmicutes (78.55%), Fusobacteria (9.38%), Proteobacteria (7.55%), Bacteroidetes (1.82%), Cyanobacteria (1.44%), and Actinobacteria (0.61%) dominated the gut microbial communities in the Greylag geese. Then, the variations of gut microbial community structures and functions among the three geese species, Greylag geese, Bar-headed geese (Anser indicus), and Swan geese (Anser cygnoides), were explored. The greatest gut microbial diversity was found in Bar-headed geese group, while other two groups had the least. The dominant bacterial phyla across all samples were Firmicutes and Proteobacteria, but several characteristic bacterial phyla and genera associated with each group were also detected. At all taxonomic levels, the microbial community structure of Swan geese was different from those of Greylag geese and Bar-headed geese, whereas the latter two groups were less different. Functional KEGG categories and pathways associated with carbohydrate metabolism, energy metabolism, and amino acid metabolism were differentially expressed among different geese species. Taken together, this study could provide valuable information to the vast, and yet little explored, research field of wild birds gut microbiome.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei Province, China
| | - Yongsheng Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai Province, China
| | - Aizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai Province, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Yao Li
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai Province, China
| | - Mengyao Cao
- KunLun College of Qinghai University, Xi'ning, Qinghai Province, China
| | - Puzhen Mao
- KunLun College of Qinghai University, Xi'ning, Qinghai Province, China
| | - Laixing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai Province, China
| |
Collapse
|
44
|
Ahasan MS, Waltzek TB, Huerlimann R, Ariel E. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef. FEMS Microbiol Ecol 2018; 93:4562628. [PMID: 29069420 DOI: 10.1093/femsec/fix139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023] Open
Abstract
Green turtles (Chelonia mydas) are endangered marine herbivores that break down food particles, primarily sea grasses, through microbial fermentation. However, the microbial community and its role in health and disease is still largely unexplored. In this study, we investigated and compared the fecal bacterial communities of eight wild-captured green turtles to four stranded turtles in the central Great Barrier Reef regions that include Bowen and Townsville. We used high-throughput sequencing analysis targeting the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. At the phylum level, Firmicutes predominated among wild-captured green turtles, followed by Bacteroidetes and Proteobacteria. In contrast, Proteobacteria (Gammaproteobacteria) was the most significantly dominant phylum among all stranded turtles, followed by Bacteroidetes and Firmicutes. In addition, Fusobacteria was also significantly abundant in stranded turtles. No significant differences were found between the wild-captured turtles in Bowen and Townsville. At the family level, the core bacterial community consisted of 25 families that were identified in both the wild-captured and stranded green turtles, while two unique sets of 14 families each were only found in stranded or wild-captured turtles. The predominance of Bacteroides in all groups indicates the importance of these bacteria in turtle gut health. In terms of bacterial diversity and richness, wild-captured green turtles showed a higher bacterial diversity and richness compared with stranded turtles. The marked differences in the bacterial communities between wild-captured and stranded turtles suggest the possible dysbiosis in stranded turtles in addition to potential causal agents.
Collapse
Affiliation(s)
- Md Shamim Ahasan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| | - Thomas B Waltzek
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, 4811, Qld, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| |
Collapse
|
45
|
García-Amado MA, Shin H, Sanz V, Lentino M, Martínez LM, Contreras M, Michelangeli F, Domínguez-Bello MG. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS One 2018; 13:e0194857. [PMID: 29579092 PMCID: PMC5868825 DOI: 10.1371/journal.pone.0194857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/12/2018] [Indexed: 01/12/2023] Open
Abstract
Gut bacterial communities have been shown to be influenced by diet, host phylogeny and anatomy, but most of these studies have been done in captive animals. Here we compare the bacterial communities in the digestive tract of wild birds. We characterized the gizzard and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and compared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA gene-based sequencing data were examined using QIIME with linear discriminant analysis effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria. Beta diversity analyses indicated significant separation of gut communities by bird orders (Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine, PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was significantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test, p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest that the most important factor separating the bacterial community structure was bird taxonomy, followed by foraging guild. However, variation between localities is also likely to be important, but this could not been assessed with our study design.
Collapse
MESH Headings
- Algorithms
- Animals
- Animals, Wild/microbiology
- Bacteria/genetics
- Bacteria/isolation & purification
- Biodiversity
- Columbiformes/microbiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Bacterial/metabolism
- Discriminant Analysis
- Gastrointestinal Microbiome
- Gizzard, Avian/microbiology
- Gizzard, Avian/pathology
- Intestines/microbiology
- Passeriformes/microbiology
- Principal Component Analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, DNA
- Stomach Diseases/microbiology
- Stomach Diseases/pathology
- Stomach Diseases/veterinary
Collapse
Affiliation(s)
- M. Alexandra García-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
- * E-mail: (MGDB); (MAGA)
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Virginia Sanz
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Miguel Lentino
- Colección Ornitológica Phelps, Apartado, Caracas, Venezuela
| | | | - Monica Contreras
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Fabian Michelangeli
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | |
Collapse
|
46
|
Risely A, Waite D, Ujvari B, Klaassen M, Hoye B. Gut microbiota of a long-distance migrant demonstrates resistance against environmental microbe incursions. Mol Ecol 2017; 26:5842-5854. [PMID: 28815767 DOI: 10.1111/mec.14326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022]
Abstract
Migratory animals encounter suites of novel microbes as they move between disparate sites during their migrations, and are frequently implicated in the global spread of pathogens. Although wild animals have been shown to source a proportion of their gut microbiota from their environment, the susceptibility of migrants to enteric infections may be dependent upon the capacity of their gut microbiota to resist incorporating encountered microbes. To evaluate migrants' susceptibility to microbial invasion, we determined the extent of microbial sourcing from the foraging environment and examined how this influenced gut microbiota dynamics over time and space in a migratory shorebird, the Red-necked stint Calidris ruficollis. Contrary to previous studies on wild, nonmigratory hosts, we found that stint on their nonbreeding grounds obtained very little of their microbiota from their environment, with most individuals sourcing only 0.1% of gut microbes from foraging sediment. This microbial resistance was reflected at the population level by only weak compositional differences between stint flocks occupying ecologically distinct sites, and by our finding that stint that had recently migrated 10,000 km did not differ in diversity or taxonomy from those that had inhabited the same site for a full year. However, recent migrants had much greater abundances of the genus Corynebacterium, suggesting a potential microbial response to either migration or exposure to a novel environment. We conclude that the gut microbiota of stint is largely resistant to invasion from ingested microbes and that this may have implications for their susceptibility to enteric infections during migration.
Collapse
Affiliation(s)
- Alice Risely
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - David Waite
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - Bethany Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia.,School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
47
|
Kropáčková L, Těšický M, Albrecht T, Kubovčiak J, Čížková D, Tomášek O, Martin JF, Bobek L, Králová T, Procházka P, Kreisinger J. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol 2017; 26:5292-5304. [PMID: 28401612 DOI: 10.1111/mec.14144] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM.
Collapse
Affiliation(s)
- Lucie Kropáčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Kubovčiak
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Čížková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Lukáš Bobek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Tereza Králová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|