1
|
Tang G, Wang Z, Geng W, Yu Y, Zhang Y. Exploration of crucial stromal risk genes associated with prognostic significance and chemotherapeutic opportunities in invasive ductal breast carcinoma. J Genet Eng Biotechnol 2025; 23:100448. [PMID: 40074422 PMCID: PMC11732444 DOI: 10.1016/j.jgeb.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Few studies revealed that stromal genes regulate the tumor microenvironment (TME). However, identification of key-risk genes in the invasive ductal breast carcinoma-associated stroma (IDBCS) and their associations with the prediction of risk group remains lacking. METHODS This study used the GSE9014, GSE10797, GSE8977, GSE33692, and TGGA BRCA datasets. We explored the differentially expressed transcriptional markers, hub genes, gene modules, and enriched KEGG pathways. We employed a variety of algorithms, such as the log-rank test, the LASSO-cox model, the univariate regression model, and the multivariate regression model, to predict prognostic-risk genes and the prognostic-risk model. Finally, we employed a molecular docking-based study to explore the interaction of sensitive drugs with prognostic-risk genes. RESULTS In comparing IDBCS and normal stroma, we discovered 1472 upregulated genes and 1400 downregulated genes (combined ES > 0585 and adjusted p-value < 0.05). The hub genes enrich cancer, immunity, and cellular signaling pathways. We explored the 12 key risk genes (ADAM8, CD86, CSRP1, DCTN2, EPHA1, GALNT10, IGFBP6, MIA, MMP11, RBM22, SLC39A4, and SYT2) in the IDBCS to identify the high-risk group and low-risk group patients. The high-risk group had a lower survival rate, and the constructed ROC curves evaluated the validity of the risk model. Expression validation and diagnostic efficacy revealed that the key stromal risk genes are consistently deregulated in the high-risk group and high stromal samples of the TCGA BRCA cohort. The expression of crucial risk genes, including CD86, CSRP1, EPHA1, GALNT10, IGFBP6, MIA, and RBM22 are associated with drug resistance and drug sensitivity. Finally, a molecular docking study explored several sensitive drugs (such as QL-XII-61, THZ-2-49, AZ628, NG-25, lapatinib, dasatinib, SB590885, and dabrafenib) interacted with these essential risk genes through hydrogen bonds and other chemical interactions. CONCLUSIONS Exploring essential prognostic-risk genes and their association with the prognosis, diagnostic efficacy, and risk-group prediction may provide substantial clues for targeting the breast cancer stromal key-risk genes.
Collapse
Affiliation(s)
- Guohua Tang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zhi Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Wei Geng
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Yu
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Department of Hepatobiliary and Echinococcosis Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Benedik NS, Proj M, Steinebach C, Sova M, Sosič I. Targeting TAK1: Evolution of inhibitors, challenges, and future directions. Pharmacol Ther 2025; 267:108810. [PMID: 39909209 DOI: 10.1016/j.pharmthera.2025.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The increasing incidence of inflammatory and malignant diseases signifies the need to develop first-in-class drugs with novel mechanisms of action. In this respect, the transforming growth factor (TGF)-β-activated kinase 1 (TAK1), an essential part of several signaling pathways, is considered relevant and promising. This manuscript provides a brief overview of the signal transduction orchestrated by TAK1 within these pathways, followed by an in-depth and thorough analysis of the chemical matter demonstrated to inhibit this kinase. Special attention is given to the selectivity profiling of inhibitors, as well as to the outcomes of their biological characterization. Because published TAK1 inhibitors differ significantly in their kinome selectivity, active-site binding, and biological activity, we hope that this review will allow a judicial estimation of their quality and usefulness for TAK1-addressing assays. Our thoughts on the perspectives and possible developments of the field are also provided to assist scientists who are involved in the design and development of TAK1-targeting modulators.
Collapse
Affiliation(s)
- Nika Strašek Benedik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zhan Z, Liang H, Zhao Z, Pan L, Li J, Chen Y, Xie Z, Yan Z, Xiang Y, Liu W, Hong L. The Trim32-DPEP2 axis is an inflammatory switch in macrophages during intestinal inflammation. Cell Death Differ 2025:10.1038/s41418-025-01468-w. [PMID: 40021897 DOI: 10.1038/s41418-025-01468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
The mechanisms via which inflammatory macrophages mediate intestinal inflammation are not completely understood. Herein, using merged analysis of RNA sequencing and mass spectrometry-based quantitative proteomics, we detected differences between proteomic and transcriptomic data in activated macrophages. Dipeptidase-2 (DPEP2), a member of the DPEP family, was highly expressed and then downregulated sharply at the protein level but not at the mRNA level in macrophages in response to inflammatory stimulation. Suppression of DPEP2 not only enhanced macrophage-mediated intestinal inflammation in vivo but also promoted the transduction of inflammatory pathways in macrophages in vitro. Mechanistically, overexpressed DPEP2 inhibited the transduction of inflammatory signals by resisting MAK3K7 in inactivated macrophages, whereas DPEP2 degradation by activated Trim32 resulted in strong activation of NF-κB and p38 MAPK signaling via the release of MAK3K7 in proinflammatory macrophages during the development of intestinal inflammation. The Trim32-DPEP2 axis accumulates the potential energy of inflammation in macrophages. These results identify DPEP2 as a key regulator of macrophage-mediated intestinal inflammation. Thus, the Trim32-DPEP2 axis may be a potential therapeutic target for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Zhiyan Zhan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Clinical Research Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Huisheng Liang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Gynecology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China
| | - Zhuoqi Zhao
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liya Pan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jing Li
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuyun Chen
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhoulonglong Xie
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhilong Yan
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Ying Xiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wenxue Liu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
4
|
Sun EG, Vijayan V, Park MR, Yoo KH, Cho SH, Bae WK, Shim HJ, Hwang JE, Park IK, Chung IJ. Suppression of triple-negative breast cancer aggressiveness by LGALS3BP via inhibition of the TNF-α-TAK1-MMP9 axis. Cell Death Discov 2023; 9:122. [PMID: 37041137 PMCID: PMC10090165 DOI: 10.1038/s41420-023-01419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1), which is highly expressed and aberrantly activated in triple-negative breast cancer (TNBC), plays a pivotal role in metastasis and progression. This makes it a potential therapeutic target for TNBC. Previously, we reported lectin galactoside-binding soluble 3 binding protein (LGALS3BP) as a negative regulator of TAK1 signaling in the inflammatory response and inflammation-associated cancer progression. However, the role of LGALS3BP and its molecular interaction with TAK1 in TNBC remain unclear. This study aimed to investigate the function and underlying mechanism of action of LGALS3BP in TNBC progression and determine the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC. We found that LGALS3BP overexpression suppressed the overall aggressive phenotype of TNBC cells in vitro and in vivo. LGALS3BP inhibited TNF-α-mediated gene expression of matrix metalloproteinase 9 (MMP9), which encodes a protein crucial for lung metastasis in TNBC patients. Mechanistically, LGALS3BP suppressed TNF-α-mediated activation of TAK1, a key kinase linking TNF-α stimulation and MMP9 expression in TNBC. Nanoparticle-mediated delivery enabled tumor-specific targeting and inhibited TAK1 phosphorylation and MMP9 expression in tumor tissues, suppressing primary tumor growth and lung metastasis in vivo. Our findings reveal a novel role of LGALS3BP in TNBC progression and demonstrate the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC.
Collapse
Affiliation(s)
- Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
5
|
Al Subeh ZY, Li T, Ustoyev A, Obike JC, West PM, Khin M, Burdette JE, Pearce CJ, Oberlies NH, Croatt MP. Semisynthesis of Hypothemycin Analogues Targeting the C8-C9 Diol. JOURNAL OF NATURAL PRODUCTS 2022; 85:2018-2025. [PMID: 35834411 PMCID: PMC9677340 DOI: 10.1021/acs.jnatprod.2c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypothemycin, an epoxide derivative of (5Z)-7-oxozeaenol, was used in the semisynthesis of a series of C8-C9 diol derivatives, with many inhibiting TAK1 at submicromolar concentrations. A step-economical approach was chosen, whereby nonselective reactions functionalized the diol to generate multiple analogues in a single reaction. Using this approach, 35 analogues were synthesized using 12 reactions, providing a wealth of information about the role that the C8-C9 diol plays in TAK1 inhibition and cytotoxicity in ovarian and breast cancer cell lines. Monofunctionalized analogues exhibited strong inhibition of TAK1, showing potential for modification of this section of the molecule to assist with solubility, formulation, and other desirable properties. Most analogues were cytotoxic, and three compounds had similar or slightly increased potency with >100-fold improvement in solubility profiles.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tian Li
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Abraham Ustoyev
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jennifer C Obike
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Philip M West
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
6
|
Tenshin H, Teramachi J, Ashtar M, Hiasa M, Inoue Y, Oda A, Tanimoto K, Shimizu S, Higa Y, Harada T, Oura M, Sogabe K, Hara T, Sumitani R, Maruhashi T, Sebe M, Tsutsumi R, Sakaue H, Endo I, Matsumoto T, Tanaka E, Abe M. TGF‐β‐activated kinase‐1 inhibitor LL‐Z1640‐2 reduces joint inflammation and bone destruction in mouse models of rheumatoid arthritis by inhibiting NLRP3 inflammasome, TACE, TNF‐α and RANKL expression. Clin Transl Immunology 2022; 11:e1371. [PMID: 35079379 PMCID: PMC8770968 DOI: 10.1002/cti2.1371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/29/2021] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Mohannad Ashtar
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Yusuke Inoue
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - So Shimizu
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Mayu Sebe
- Department of Nutrition and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences Tokushima University Tokushima Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| |
Collapse
|
7
|
Wang C, Hu L, Guo S, Yao Q, Liu X, Zhang B, Meng X, Yang X. Phosphocreatine attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and activating TAK1 to promote myocardial survival in vivo and in vitro. Toxicology 2021; 460:152881. [PMID: 34358621 DOI: 10.1016/j.tox.2021.152881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022]
Abstract
Myocardial apoptosis and necroptosis are the major etiological factor during doxorubicin (DOX) induced cardiotoxicity, and one of the important reasons that limit the drug's clinical application. Up to date, its mechanism has not been fully elucidated. The protective role of phosphocreatine (PCr) in heart surgery and medical cardiology has been observed in numerous clinical trials. This study aimed to evaluate cardioprotective actions of PCr against DOX-induced cardiotoxicity and investigate the underlying mechanism involving in transforming growth factor β-activated kinase 1 (TAK1) mediated myocardial survive signaling pathway. Male Sprague-Dawleyrats were intraperitoneally (ip) injected with normal saline (NS) or DOX (2 mg/kg) alone or DOX with PCr (200 mg/kg) used as animal model. The data showed that DOX significantly impaired cardiac function and structure, induced oxidative stress, myocardial apoptosis and necroptosis, and dramatically down-regulated the expression level of TAK1, while the intervention of PCr obviously attenuated cardiac dysfunction, oxidative stress, myocardial apoptosis and necroptosis, especially alleviated the decrease of TAK1 expression. In vitro analysis, after H9c2 cells were pretreated with or without PCr (0.5 mM) or N-Acetyl-L-cysteine (NAC, 0.5 mM) or 5Z-7-oxozeaenol (5z-7-Ox, 1 μM) for 1 h, subsequently treated with DOX (1 μM) for 24 h. The results revealed that inhibition of TAK1 further deteriorated apoptotic and necroptotic cell death induced by DOX in H9c2 cells, but didn't affect oxidative stress. While the pretreatment of PCr or NAC enhanced antioxidant activity to reduce oxidative stress, significantly alleviated apoptotic and necroptotic cell death induced by DOX in H9c2 cells. Consistent with the results in vivo, PCr or NAC significantly inhibited the decrease of TAK1 expression induced by DOX. In conclusion, oxidative stress induced by DOX inhibits the expression of TAK1, and leads to myocardial apoptotic and necroptotic death, while the intervention of PCr increases antioxidant activity to alleviate oxidative stress, which in turn activates TAK1 signaling pathway to promote myocardial survival, and finally attenuate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chun Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Hubei University of Science and Technology, Xianning, 437100, China; College of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ling Hu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Hubei University of Science and Technology, Xianning, 437100, China
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Hubei University of Science and Technology, Xianning, 437100, China
| | - Bo Zhang
- The Second People's Hospital, China Three Gorges University, Yichang, 443000, China
| | - Xiangwen Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Hubei University of Science and Technology, Xianning, 437100, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, China, 430062.
| |
Collapse
|
8
|
Wang L, Zhang Q, Wang Z, Zhu W, Tan N. Design, synthesis, docking, molecular dynamics and bioevaluation studies on novel N-methylpicolinamide and thienopyrimidine derivatives with inhibiting NF-κB and TAK1 activities: Cheminformatics tools RDKit applied in drug design. Eur J Med Chem 2021; 223:113576. [PMID: 34153577 DOI: 10.1016/j.ejmech.2021.113576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Using cheminformatics tools RDKit and literature investigation, four series of 24 thienopyrimidine/N-methylpicolinamide derivatives substituted with pyrimidine were designed, synthesized and evaluated for activities against three cancer cell lines (MDA-MB-231, HCT116 and A549), TAK1 kinase and NF-κB signaling pathway. Almost all compounds showed selectivity toward the A549 cell lines and the most promising compound 38 could inhibit TAK1 kinase and NF-κB signaling pathway with the IC50 values of 0.58 and 0.84 μM. Moreover, 38 can induce cell cycle arrest of A549 cells at the G2/M checkpoint with 30.57% and induce apoptosis (34.94%) in a concentration-dependent manner. And western blot showed that compound 38 could inhibit TNF-α-induced IκBα phosphorylation, IκBα degradation, p65 phosphorylation and TAK1 phosphorylation, and reduce the expression of p65. What's more, the studies of docking, molecular dynamics, MM/PBSA and frequency analysis theoretically supported the conclusions of the bioevaluation.
Collapse
Affiliation(s)
- Linxiao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qian Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis 2021; 24:453-470. [PMID: 33973075 DOI: 10.1007/s10456-021-09787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Angiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell survival and death. TAK1 is activated in response to various stimuli such as proinflammatory cytokines, hypoxia, and oxidative stress. Emerging evidence has recently suggested that TAK1 is intimately involved in angiogenesis and mediates pathogenic processes related to angiogenesis. Several detailed mechanisms by which TAK1 regulates pathological angiogenesis have been clarified, and potential therapeutics targeting TAK1 have emerged. In this review, we summarize recent studies of TAK1 in angiogenesis and discuss the crosstalk between TAK1 and signaling pathways involved in pathological angiogenesis. We also discuss the approaches for selectively targeting TAK1 and highlight the rationales of therapeutic strategies based on TAK1 inhibition for the treatment of pathological angiogenesis.
Collapse
|
10
|
Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein. Oncogene 2021; 40:3460-3469. [PMID: 33767435 DOI: 10.1038/s41388-021-01746-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023]
Abstract
In solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance.
Collapse
|
11
|
Veerman JJN, Bruseker YB, Damen E, Heijne EH, van Bruggen W, Hekking KFW, Winkel R, Hupp CD, Keefe AD, Liu J, Thomson HA, Zhang Y, Cuozzo JW, McRiner AJ, Mulvihill MJ, van Rijnsbergen P, Zech B, Renzetti LM, Babiss L, Müller G. Discovery of 2,4-1 H-Imidazole Carboxamides as Potent and Selective TAK1 Inhibitors. ACS Med Chem Lett 2021; 12:555-562. [PMID: 33859795 DOI: 10.1021/acsmedchemlett.0c00547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
Herein we report the discovery of 2,4-1H-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor β-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1H-dicarboxamide scaffold, showing remarkable kinome selectivity. A scaffold-hop to the corresponding imidazole resulted in increased biochemical potency. Next, X-ray crystallography revealed a distinct binding mode compared to other TAK1 inhibitors. A benzylamide was found in a perpendicular orientation with respect to the core hinge-binding imidazole. Additionally, an unusual amide flip was observed in the kinase hinge region. Using structure-based drug design (SBDD), key substitutions at the pyrrolidine amide and the glycine resulted in a significant increase in biochemical potency.
Collapse
Affiliation(s)
| | - Yorik B. Bruseker
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Eddy Damen
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Erik H. Heijne
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Wendy van Bruggen
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Koen F. W. Hekking
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Rob Winkel
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Christopher D. Hupp
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anthony D. Keefe
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Julie Liu
- Civetta Therapeutics, 10 Wilson Road, Cambridge, Massachusetts 02138, United States
| | - Heather A. Thomson
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W. Cuozzo
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew J. McRiner
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Peter van Rijnsbergen
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Birgit Zech
- AnavoTherapeutics BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | | | - Lee Babiss
- Wilmington, North Carolina 28405, United States
| | - Gerhard Müller
- AnavoTherapeutics BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| |
Collapse
|
12
|
Han D, Wang L, Chen B, Zhao W, Liang Y, Li Y, Zhang H, Liu Y, Wang X, Chen T, Li C, Song X, Luo D, Li Z, Yang Q. USP1-WDR48 deubiquitinase complex enhances TGF-β induced epithelial-mesenchymal transition of TNBC cells via stabilizing TAK1. Cell Cycle 2021; 20:320-331. [PMID: 33461373 PMCID: PMC7889205 DOI: 10.1080/15384101.2021.1874695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive histological subtype of breast cancer and is characterized by poor outcomes and a lack of specific-targeted therapies. Transforming growth factor-β (TGF-β) acts as the key cytokine in the epithelial-mesenchymal transition (EMT) and the metastasis of TNBC. However, the regulatory mechanisms of the TGF-β signaling pathway remain largely unknown. In this study, we identified that the USP1/WDR48 complex could effectively enhance TGF-β-mediated EMT and migration of TNBC cells. Furthermore, lower phosphorylation of Smad2/3, Erk, Jnk, and p38 was noted on the suppression of the expression of endogenous USP1 or WDR48. Moreover, the USP1-WDR48 complex was found to downregulate the polyubiquitination of TAK1 and mediate its in vitro stability. Therefore, our findings have shed a light on the novel role of the USP1/WDR48 complex in promoting TGF-β-induced EMT and migration in TNBC via in vitro stabilization of TAK1.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tong Chen
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Luo
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zheng Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Breast Cancer, Shandong University, Jinan, China
| |
Collapse
|
13
|
Zhang X, Kong Z, Xu X, Yun X, Chao J, Ding D, Li T, Gao Y, Guan N, Zhu C, Qin X. ARRB1 Drives Gallbladder Cancer Progression by Facilitating TAK1/MAPK Signaling Activation. J Cancer 2021; 12:1926-1935. [PMID: 33753990 PMCID: PMC7974532 DOI: 10.7150/jca.53325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, with a dismal 5-year survival of 5%. Recently, ARRB1, as a molecular scaffold, has been proposed to participate in the progression of multiple malignancies. However, the effect and regulatory mechanisms of ARRB1 in GBC have not been investigated. Our study aimed to explore the biological functional status and the possible molecular mechanisms of ARRB1 with respect to GBC progression. The survey showed that human GBC tissues exhibited increased levels of ARRB1 compared with normal tissues, and the high expression of ARRB1 was associated with poor prognosis of GBC patients. A series of in vitro and in vivo functional experiments based on knockdown of ARRB1 uncovered that ARRB1 enhanced GBC cell proliferation, migration, and invasion. Furthermore, we reported that TAK1, a component of the TNF /MAPK pathway, is a vital downstream effector of ARRB1. In addition, siTAK1 could abolish the functional changes between ARRB1 overexpression GBC cells and control ones. Our data revealed that ARRB1 facilitated the carcinogenesis and development of GBC through TNF/TAK1/MAPK axis, suggesting that ARRB1 may be a promising biomarker and treatment target for GBC patients.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China.,Nanjing Medical University, Jiangsu 210000, P.R. China
| | - Zhijun Kong
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China.,Nanjing Medical University, Jiangsu 210000, P.R. China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Nanjing Medical University, Jiangsu 210000, China
| | - Xiao Yun
- Nanjing Medical University, Jiangsu 210000, P.R. China
| | - Jiadeng Chao
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Dong Ding
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Tao Li
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan Gao
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Naifu Guan
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Chunfu Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Xihu Qin
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China.,Nanjing Medical University, Jiangsu 210000, P.R. China
| |
Collapse
|
14
|
Evaluating the In vitro anti-cancer potential of estragole from the essential oil of Agastache foeniculum [Pursh.] Kuntze. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Guo W, Fang H, Cao S, Chen S, Li J, Shi J, Tang H, Zhang Y, Wen P, Zhang J, Wang Z, Shi X, Pang C, Yang H, Hu B, Zhang S. Six-Transmembrane Epithelial Antigen of the Prostate 3 Deficiency in Hepatocytes Protects the Liver Against Ischemia-Reperfusion Injury by Suppressing Transforming Growth Factor-β-Activated Kinase 1. Hepatology 2020; 71:1037-1054. [PMID: 31393024 PMCID: PMC7155030 DOI: 10.1002/hep.30882] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (I/R) injury remains a major challenge affecting the morbidity and mortality of liver transplantation. Effective strategies to improve liver function after hepatic I/R injury are limited. Six-transmembrane epithelial antigen of the prostate 3 (Steap3), a key regulator of iron uptake, was reported to be involved in immunity and apoptotic processes in various cell types. However, the role of Steap3 in hepatic I/R-induced liver damage remains largely unclear. APPROACH AND RESULTS In the present study, we found that Steap3 expression was significantly up-regulated in liver tissue from mice subjected to hepatic I/R surgery and primary hepatocytes challenged with hypoxia/reoxygenation insult. Subsequently, global Steap3 knockout (Steap3-KO) mice, hepatocyte-specific Steap3 transgenic (Steap3-HTG) mice, and their corresponding controls were subjected to partial hepatic warm I/R injury. Hepatic histology, the inflammatory response, and apoptosis were monitored to assess liver damage. The molecular mechanisms of Steap3 function were explored in vivo and in vitro. The results demonstrated that, compared with control mice, Steap3-KO mice exhibited alleviated liver damage after hepatic I/R injury, as shown by smaller necrotic areas, lower serum transaminase levels, decreased apoptosis rates, and reduced inflammatory cell infiltration, whereas Steap3-HTG mice had the opposite phenotype. Further molecular experiments showed that Steap3 deficiency could inhibit transforming growth factor-β-activated kinase 1 (TAK1) activation and downstream c-Jun N-terminal kinase (JNK) and p38 signaling during hepatic I/R injury. CONCLUSIONS Steap3 is a mediator of hepatic I/R injury that functions by regulating inflammatory responses as well as apoptosis through TAK1-dependent activation of the JNK/p38 pathways. Targeting hepatocytes, Steap3 may be a promising approach to protect the liver against I/R injury.
Collapse
Affiliation(s)
- Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Bo Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - San‐Yang Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jie Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Wei Tang
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Chun Pang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Han Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Bo‐Wen Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| |
Collapse
|
16
|
Li B, Wan Z, Wang Z, Zuo J, Xu Y, Han X, Phouthapane V, Miao J. TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production. Cells 2020; 9:cells9020494. [PMID: 32098158 PMCID: PMC7072855 DOI: 10.3390/cells9020494] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2−/− and TLR4−/− mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host in controlling the secretion of inflammatory factors and the elimination of intracellular S. uberis. Our results demonstrated that TLR2-mediated mROS has a significant effect on S. uberis-induced host defense responses in mammary glands as well as in MECs.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Zhixin Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Jiakun Zuo
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane 22797, Lao PDR;
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (B.L.); (Z.W.); (Z.W.); (J.Z.); (Y.X.)
- Correspondence: ; Fax: +86-25-8439-8669
| |
Collapse
|
17
|
Ma Q, Gu L, Liao S, Zheng Y, Zhang S, Cao Y, Zhang J, Wang Y. NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivo. Apoptosis 2018; 24:83-94. [DOI: 10.1007/s10495-018-1498-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Md Aksam VK, Chandrasekaran VM, Pandurangan S. Topological alternate centrality measure capturing drug targets in the network of MAPK pathways. IET Syst Biol 2018; 12:226-232. [PMID: 30259868 PMCID: PMC8687289 DOI: 10.1049/iet-syb.2017.0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
A new centrality of the nodes in the network is proposed called alternate centrality, which can isolate effective drug targets in the complex signalling network. Alternate centrality metric defined over the network substructure (four nodes - motifs). The nodes involving in alternative activation in the motifs gain in metric values. Targeting high alternative centrality nodes hypothesised to be destructive free to the network due to their alternative activation mechanism. Overlapping and crosstalk among the gene products in the conserved network of MAPK pathways selected for the study. In silico knock-out of high alternate centrality nodes causing rewiring in the network is investigated using MCF-7 breast cancer cell line-based data. Degree of top alternate centrality nodes lies between the degree of bridging and pagerank nodes. Node deletion of high alternate centrality on the centralities such as eccentricity, closeness, betweenness, stress, centroid and radiality causes low perturbation. The authors identified the following alternate centrality nodes ERK1, ERK2, MEKK2, MKK5, MKK4, MLK3, MLK2, MLK1, MEKK4, MEKK1, TAK1, P38alpha, ZAK, DLK, LZK, MLTKa/b and P38beta as efficient drug targets for breast cancer. Alternate centrality identifies effective drug targets and is free from intertwined biological processes and lethality.
Collapse
Affiliation(s)
- V K Md Aksam
- School of Advanced Sciences, VIT University, Vellore 632014, India
| | | | | |
Collapse
|
19
|
Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep 2018; 8:13672. [PMID: 30209405 PMCID: PMC6135803 DOI: 10.1038/s41598-018-31939-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Doxorubicin is one of the most effective chemotherapy drugs used against solid tumors in the treatment of several cancer types. Two different mechanisms, (i) intercalation of doxorubicin into DNA and inhibition of topoisomerase II leading to changes in chromatin structure, (ii) generation of free radicals and oxidative damage to biomolecules, have been proposed to explain the mode of action of this drug in cancer cells. A genome-wide integrative systems biology approach used in the present study to investigate the long-term effect of doxorubicin in Saccharomyces cerevisiae cells indicated the up-regulation of genes involved in response to oxidative stress as well as in Rad53 checkpoint sensing and signaling pathway. Modular analysis of the active sub-network has also revealed the induction of the genes significantly associated with nucleosome assembly/disassembly and DNA repair in response to doxorubicin. Furthermore, an extensive re-wiring of the metabolism was observed. In addition to glycolysis, and sulfate assimilation, several pathways related to ribosome biogenesis/translation, amino acid biosynthesis, nucleotide biosynthesis, de novo IMP biosynthesis and one-carbon metabolism were significantly repressed. Pentose phosphate pathway, MAPK signaling pathway biological processes associated with meiosis and sporulation were found to be induced in response to long-term exposure to doxorubicin in yeast cells.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, 34060, Eyup, Istanbul, Turkey.
- Department of Chemical Engineering, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Muhammed Erkan Karabekmez
- Department of Chemical Engineering, Bogazici University, 34342, Bebek, Istanbul, Turkey
- Department of Bioengineering, Istanbul Medeniyet University, 34000, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, 34342, Bebek, Istanbul, Turkey
- Koç University Hospital, Diagnosis Centre for Genetic Disorders, Topkapı, Istanbul, Turkey
| | - Betül Kırdar
- Department of Chemical Engineering, Bogazici University, 34342, Bebek, Istanbul, Turkey
| |
Collapse
|
20
|
Iriondo O, Liu Y, Lee G, Elhodaky M, Jimenez C, Li L, Lang J, Wang P, Yu M. TAK1 mediates microenvironment-triggered autocrine signals and promotes triple-negative breast cancer lung metastasis. Nat Commun 2018; 9:1994. [PMID: 29777109 PMCID: PMC5959931 DOI: 10.1038/s41467-018-04460-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic subtype of breast cancer that has limited therapeutic options. Thus, developing novel treatments for metastatic TNBC is an urgent need. Here, we show that nanoparticle-mediated delivery of transforming growth factor-β1-activated kinase-1 (TAK1) inhibitor 5Z-7-Oxozeaenol can inhibit TNBC lung metastasis in most animals tested. P38 is a central signal downstream of TAK1 in TNBC cells in TAK1-mediated response to multiple cytokines. Following co-culturing with macrophages or fibroblasts, TNBC cells express interleukin-1 (IL1) or tumor necrosis factor-α (TNFα), respectively. Compared to TAK1 inhibition, suppressing IL1 signaling with recombinant IL1 receptor antagonist (IL1RA) is less efficient in reducing lung metastasis, possibly due to the additional TAK1 signals coming from distinct stromal cells. Together, these observations suggest that TAK1 may play a central role in promoting TNBC cell adaptation to the lung microenvironment by facilitating positive feedback signaling mediated by P38. Approaches targeting the key TAK1-P38 signal could offer a novel means for suppressing TNBC lung metastasis. Therapeutic options for triple-negative breast cancer (TNBC) metastasis are limited. Here they show nanoparticle-mediated delivery of TAK1 inhibitor 5Z-7-Oxozeaenol to inhibit TNBC lung metastasis in mice, and that TAK1 might promote TNBC cell adaptation in lung microenvironment by positive feedback mediated by P38 signaling.
Collapse
Affiliation(s)
- Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yarong Liu
- Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mostafa Elhodaky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Jimenez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lin Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Julie Lang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Shi Y, Bieerkehazhi S, Ma H. Next-generation proteasome inhibitor oprozomib enhances sensitivity to doxorubicin in triple-negative breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2347-2355. [PMID: 31938346 PMCID: PMC6958235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/14/2018] [Indexed: 06/10/2023]
Abstract
Doxorubicin (DOX) is the most common chemotherapeutic drug for treatment of breast cancer but intrinsic and acquired resistance frequently occurs and severe side effects occur at high doses. DOX might induce activation of NF-κB causing this resistance, in which case proteasome inhibitors could inhibit activation of NF-κB by blocking inhibitory factor κB-alpha degradation. Triple-negative breast cancer (TNBC) is highly progressive and there are no established therapeutic targets against TNBC. Although some proteasome inhibitors have been shown to have antitumor effects in breast cancer, the effect of orally bioavailable proteasome inhibitor oprozomib on TNBC proliferation remains unclear. In the present study, we investigated the role of oprozomib in two TNBC lines, MDA-MB-231 and BT-549. Oprozomib had cytotoxic effects on TNBC cells and increased DOX-induced cytotoxic effects and apoptosis by enhancing DOX-induced JNK/p38 MAPK phosphorylation and inhibiting DOX-induced inhibitory factor êB alpha degradation. These results suggest that oprozomib has potent antitumor effects on TNBC in vitro and can sensitize TNBC cells to DOX treatment. The combination of DOX and oprozomib may be an effective and feasible therapeutic option for TNBC.
Collapse
Affiliation(s)
- Yonghua Shi
- Department of Pathology, Basic Medicine College, Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | | | - Hong Ma
- Department of Pathology, Basic Medicine College, Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| |
Collapse
|
22
|
Chen KL, Li L, Yang FX, Li CM, Wang YR, Wang GL. SIRT7 depletion inhibits cell proliferation, migration, and increases drug sensitivity by activating p38MAPK in breast cancer cells. J Cell Physiol 2018; 233:6767-6778. [PMID: 29231244 DOI: 10.1002/jcp.26398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/10/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
SIRT7 is a member of the sirtuin family of proteins that are known to be associated with tumor development. However, the functional roles and molecular mechanisms underlying the function of SIRT7 in breast cancer cell survival and tumor development remain unclear. Recent studies demonstrated that SIRT7 is upregulated in breast cancer cells and tissues. In the present study, we systematically explored the roles of SIRT7 in the growth of breast cancer cells and tumors both in vitro and in vivo. Our results showed that SIRT7 plays a major role in facilitating cell survival by promoting cell proliferation and inhibiting apoptosis. SIRT7 depletion significantly inhibited cell invasion and wound healing by blocking cell cycle progression and inducing cell apoptosis. Meanwhile, SIRT7 depletion can increase the sensitivity of breast cancer cells to doxorubicin (DOX). Xenograft model studies showed that stable silencing of SIRT7 inhibited tumor growth and enhanced tumor sensitivity to DOX. Further research revealed that p38MAPK is involved in SIRT7-mediated regulation of breast cancer cell proliferation and tumor growth. Taken together, our results showed that SIRT7 plays a critical role in breast cancer cell survival, migration, and tumor growth, and increased the efficiency of DOX treatment both in vitro and in vivo. Therefore, SIRT7 is a promising therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fang-Xiao Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Min Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Ru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gen-Lin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Guan S, Lu J, Zhao Y, Woodfield SE, Zhang H, Xu X, Yu Y, Zhao J, Bieerkehazhi S, Liang H, Yang J, Zhang F, Sun S. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget 2018; 8:33666-33675. [PMID: 28430599 PMCID: PMC5464900 DOI: 10.18632/oncotarget.16895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aberrant activation of nuclear factor-κB (NF-κB) allows cancer cells to escape chemotherapy-induced cell death and acts as one of the major mechanisms of acquired chemoresistance in cervical cancer. TAK1, a crucial mediator that upregulates NF-κB activation in response to cellular genotoxic stress, is required for tumor cell viability and survival. Herein, we examined whether TAK1 inhibition is a potential therapeutic strategy for treating cervical cancer. We found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of Dox in a panel of cervical cancer cell lines. Treatment with 5Z-7-oxozeaenol hindered Dox-induced NF-κB activation and promoted Dox-induced apoptosis in cervical cancer cells. Moreover, 5Z-7-oxozeaenol showed similar effects in both positive and negative human papillomavirus-infected cervical cancer cells. Taken together, our results provide evidence that TAK1 inhibition significantly sensitizes cervical cancer cells to chemotherapy-induced cell death and supports the use of TAK1 inhibitor with current chemotherapies in the clinic for patients with refractory cervical cancer.
Collapse
Affiliation(s)
- Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Haoqian Liang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
24
|
Wang H, Chen Z, Li Y, Ji Q. NG25, an inhibitor of transforming growth factor‑β‑activated kinase 1, ameliorates neuronal apoptosis in neonatal hypoxic‑ischemic rats. Mol Med Rep 2018; 17:1710-1716. [PMID: 29138854 PMCID: PMC5780114 DOI: 10.3892/mmr.2017.8024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/29/2017] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor (TGF)‑β‑activated kinase 1 (TAK1) was found to be activated by TGF‑β and acts as a central regulator of cell death in various types of disease. However, the expression and function of TAK1 in the neonatal brain following hypoxia‑ischemia (HI) remains unclear. In the present study, western blotting and immunofluorescence were employed to determine the expression and distribution of TAK1 in the brain cortex of a perinatal HI rat model. In addition, the specific inhibitor of TAK1, NG25 was administered via intracerebroventricular injection, prior to insult of the neonatal rat brains, for neuroprotection. Western blotting and double immunofluorescence indicated that an increased expression level of phosphorylated‑TAK1 was observed, and was localized with neurons and astrocytes, compared with the sham group. Further study demonstrated that injection of NG25 prior to insult significantly inhibited TAK1/c‑Jun N‑terminal kinases activity and dramatically ameliorated acute hypoxic‑ischemic cerebral injury by inhibiting cell apoptosis in perinatal rats. Thus, NG25 ameliorates neuronal apoptosis in neonatal HI rats by inhibiting TAK1 expression and cell apoptosis. In addition, NG25 may serve as a promising novel neuroprotective inhibitor for perinatal cerebral injury.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhong Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Li
- Department of Ophthalmology, Fourth Affiliated Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiaoyun Ji
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
25
|
Santoro R, Carbone C, Piro G, Chiao PJ, Melisi D. TAK -ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat 2017; 33-35:36-42. [DOI: 10.1016/j.drup.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023]
|
26
|
Totzke J, Gurbani D, Raphemot R, Hughes PF, Bodoor K, Carlson DA, Loiselle DR, Bera AK, Eibschutz LS, Perkins MM, Eubanks AL, Campbell PL, Fox DA, Westover KD, Haystead TAJ, Derbyshire ER. Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease. Cell Chem Biol 2017; 24:1029-1039.e7. [PMID: 28820959 DOI: 10.1016/j.chembiol.2017.07.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/22/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.
Collapse
Affiliation(s)
- Juliane Totzke
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rene Raphemot
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Applied Biology, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Asim K Bera
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Liesl S Eibschutz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | - Amber L Eubanks
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Phillip L Campbell
- University of Michigan, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Ann Arbor, MI 48109, USA
| | - David A Fox
- University of Michigan, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Ann Arbor, MI 48109, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
27
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
28
|
Wang Y, Chen K, Cai Y, Cai Y, Yuan X, Wang L, Wu Z, Wu Y. Annexin A2 could enhance multidrug resistance by regulating NF-κB signaling pathway in pediatric neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:111. [PMID: 28814318 PMCID: PMC5559827 DOI: 10.1186/s13046-017-0581-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Background Chemotherapy is one of major therapeutic regimens for neuroblastoma (NB) in children. However, recurrence and metastasis associated with poor prognosis caused by acquired multidrug resistance remains a challenge. There is a great need to achieve new insight into the molecular mechanism of drug resistance in NB. The aim of this study is to identify novel drug sensitivity-related biomarkers as well as new therapeutic targets to overcome chemoresistance. Methods We proteome-wide quantitatively compared protein expression of two NB cell lines with different drug sensitivities, isolated from the same patient prior to and following chemotherapy. Annexin A2 (ANXA2) emerged as a key factor contributing to drug resistance in NB. Then, we assessed the correlation of ANXA2 expression and clinical characteristics using a tissue microarray. Further, the roles of ANXA2 in chemoresistance for NB and the underlying mechanisms were studied by using short hairpin RNA (shRNA) in vitro and vivo. Results First in total, over 6000 proteins were identified, and there were about 460 significantly regulated proteins which were up- or down-regulated by greater than two folds. We screened out ANXA2 which was upregulated by more than 12-fold in the chemoresistant NB cell line, and it might be involved in the drug resistance of NB. Then, using a tissue chip containing 42 clinical NB samples, we found that strong expression of ANXA2 was closely associated with advanced stage, greater number of chemotherapy cycles, tumor metastasis and poor prognosis. Following knockdown of ANXA2 in NB cell line SK-N-BE(2) using shRNA, we demonstrate enhanced drug sensitivity for doxorubicin (2.77-fold) and etoposide (7.87-fold) compared with control. Pro-apoptotic genes such as AIF and cleaved-PARP were upregulated. Inhibiting ANXA2 expression attenuated transcriptional activity of NF-κB via down-regulated nuclear translocation of subunit p50. Finally, simulated chemotherapy in a xenograft NB nude mouse model suggests that ANXA2 knockdown could improve clinical results in vivo. Conclusion Our profiling data provided a rich source for further study of the molecular mechanisms of acquired drug resistance in NB. Further study may determine the role of ANXA2 as a prognostic biomarker and a potential therapeutic target for patients with multidrug-resistant NB. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0581-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Yihong Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaojun Yuan
- Pediatric Hematology & Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Lifeng Wang
- Pathology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
29
|
Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Monitoring ZEO apoptotic potential in 2D and 3D cell cultures and associated spectroscopic evidence on mode of interaction with DNA. Sci Rep 2017; 7:2553. [PMID: 28566685 PMCID: PMC5451462 DOI: 10.1038/s41598-017-02633-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Recognizing new anticancer compounds to improve Breast cancer treatment seems crucial. Essential oil of Zataria Multiflora (ZEO) is a secondary metabolite with some biological properties, yet underlying cellular and molecular anticancer properties of ZEO is unclear. GC/MS analysis revealed that carvacrol is the major ingredient of the essential oil. ZEO increasingly suppressed viability in MDA-MB-231, MCF-7 and T47D Breast cancer cells while nontoxic to L929 normal cells in monolayer cell cultures (2D), whereas MDA-MB-231 multicellular spheroids (3D) were more resistant to inhibition. ZEO significantly induced cell apoptosis confirmed by fluorescent staining, flow cytometry analysis and DNA fragmentation in MDA-MB-231 2D and 3D cell cultures. ZEO increased ROS generation and subsequent loss of ΔΨm, caspase 3 activation and DNA damage which consequently caused G1 and G2/M cell cycle arrest in a dose- and time-dependent manner in 2D. S phase arrest occurred in cell spheroids therefore ZEO possible DNA interaction with gDNA was investigated and revealed ZEO binds DNA via intercalation. Altogether, these data corroborate anticancer properties of ZEO and suggest that cell culture format (2D monolayer vs. 3D spheroid) plays a critical role in drug response and provides new insights into the mechanisms underlying ZEO cytotoxicity effect on Breast cancer cells.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | | | - Sussan K Ardestani
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| |
Collapse
|
30
|
Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA. RSC Adv 2017. [DOI: 10.1039/c7ra06793c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chitosan (CS) is a semi-synthetic bio-based polysaccharide with promising biological and antitumor properties.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| | - Hossein Behboudi
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| | | | - Sussan K. Ardestani
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| |
Collapse
|