1
|
Apostolos A, Karanasos A, Ktenopoulos N, Tsalamandris S, Vlachakis PK, Kachrimanidis I, Skalidis I, Sagris M, Koliastasis L, Drakopoulou M, Synetos A, Tsioufis K, Toutouzas K. Unlocking the Secrets of Acute Coronary Syndromes Using Intravascular Imaging: From Pathophysiology to Improving Outcomes. J Clin Med 2024; 13:7087. [PMID: 39685545 DOI: 10.3390/jcm13237087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Acute coronary syndrome (ACS) represents the most severe manifestation of coronary artery disease. Intravascular imaging, both intravascular ultrasound (IVUS) and optical coherence tomography (OCT), have played crucial roles for the impressive reduction in mortality of ACS. Intravascular imaging is useful for the detection of atherosclerotic mechanism (plaque rupture, calcified nodules, or plaque erosions) and for the evaluation of nonatherosclerotic and nonobstructive types of ACS. In addition, IVUS and OCT play a crucial role in the optimization of the PCI. The aim of the current review is to present the role of intravascular imaging in identifying the mechanisms of ACS and its prognostic role in future events, to review the current guidelines suggesting intravascular imaging use in ACS, to summarize its role in PCI in patients with ACS, and to compare IVUS and OCT.
Collapse
Affiliation(s)
- Anastasios Apostolos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Antonios Karanasos
- Department of Cardiology, Faculty of Medicine, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Nikolaos Ktenopoulos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Sotirios Tsalamandris
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Panayotis K Vlachakis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Ioannis Kachrimanidis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Ioannis Skalidis
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Marios Sagris
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Leonidas Koliastasis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Maria Drakopoulou
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Andreas Synetos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Schulz-Hildebrandt H, Spasic S, Hou F, Ting KC, Batts S, Tearney G, Stankovic KM. Dynamic micro-optical coherence tomography enables structural and metabolic imaging of the mammalian cochlea. Front Mol Neurosci 2024; 17:1436837. [PMID: 39449964 PMCID: PMC11499234 DOI: 10.3389/fnmol.2024.1436837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging. Previously, we developed micro-optical coherence tomography (μOCT) as a platform for otologic imaging in animal models and human cochleae. Here we report on advancing μOCT technology to obtain simultaneously acquired and co-localized images of cell viability/metabolic activity through dynamic μOCT (DμOCT) imaging of intracellular motion. DμOCT obtains cross-sectional images of ATP-dependent movement of intracellular organelles and cytoskeletal polymerization by acquiring sequential μOCT images and computing intensity fluctuation frequency metrics on a pixel-wise basis. Using a customized benchtop DμOCT system, we demonstrate the detailed resolution of anatomical and metabolic features of cells within the organ of Corti, via an apical cochleostomy, in freshly-excised adult mouse cochleae. Further, we show that DμOCT is capable of capturing rapid changes in cochlear cell metabolism following an ototoxic insult to induce cell death and actin stabilization. Notably, as few as 6 frames can be used to reconstruct cochlear DμOCT images with sufficient detail to discern individual cells and their metabolic state. Taken together, these results motivate future development of a DμOCT imaging probe for cellular and metabolic diagnosis of SNHL in humans.
Collapse
Affiliation(s)
- Hinnerk Schulz-Hildebrandt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Svetolik Spasic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Fang Hou
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kuan-Chung Ting
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region. J Clin Med 2022; 12:jcm12010238. [PMID: 36615042 PMCID: PMC9820872 DOI: 10.3390/jcm12010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely challenging. Current imaging techniques used in clinical practice, such as MRI and CT, fall short in their resolution to visualize important intracochlear landmarks, and histological analysis of the cochlea cannot be performed on living patients without compromising their hearing. Recently, optical coherence tomography (OCT) has been shown to be a promising tool for nondestructive micrometer resolution imaging of the mammalian inner ear. Various studies performed on human cadaveric tissue and living animals demonstrated the ability of OCT to visualize important cochlear microstructures (scalae, organ of Corti, spiral ligament, and osseous spiral lamina) at micrometer resolution. However, the interpretation of human intracochlear OCT images is non-trivial for researchers and clinicians who are not yet familiar with this novel technology. In this study, we present an atlas of intracochlear OCT images, which were acquired in a series of 7 fresh and 10 fresh-frozen human cadaveric cochleae through the round window membrane and describe the qualitative characteristics of visualized intracochlear structures. Likewise, we describe several intracochlear abnormalities, which could be detected with OCT and are relevant for clinical practice.
Collapse
|
5
|
Bommakanti KK, Iyer JS, Sagi V, Brown A, Ma X, Gonzales M, Stankovic KM. Reversible contrast enhancement for visualization of human temporal bones using micro computed tomography. Front Surg 2022; 9:952348. [PMID: 36268215 PMCID: PMC9577409 DOI: 10.3389/fsurg.2022.952348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorineural hearing loss (SNHL), which typically arises from the inner ear, is the most common sensory deficit worldwide. The traditional method for studying pathophysiology underlying human SNHL involves histological processing of the inner ear from temporal bones collected during autopsy. Histopathological analysis is destructive and limits future use of a given specimen. Non-destructive strategies for the study of the inner ear are urgently needed to fully leverage the utility of each specimen because access to human temporal bones is increasingly difficult and these precious specimens are required to uncover disease mechanisms and to enable development of new devices. We highlight the potential of reversible iodine staining for micro-computed tomography imaging of the human inner ear. This approach provides reversible, high-resolution visualization of intracochlear structures and is becoming more rapid and accessible.
Collapse
Affiliation(s)
- Krishna K. Bommakanti
- Department of Head / Neck Surgery, University of California Los Angeles, Los Angeles, CA, United States,Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
| | - Janani S. Iyer
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States,Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, Cambridge, MA, United States
| | - Varun Sagi
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alyssa Brown
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
| | - Xiaojie Ma
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Marissa Gonzales
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States,Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States,Correspondence: Konstantina M. Stankovic
| |
Collapse
|
6
|
Wan H, Zhang Y, Hua Q. Cellular autophagy, the compelling roles in hearing function and dysfunction. Front Cell Neurosci 2022; 16:966202. [PMID: 36246522 PMCID: PMC9561951 DOI: 10.3389/fncel.2022.966202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is currently a major health issue. As one of the most common neurodegenerative diseases, SNHL is associated with the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria vascularis, supporting cells and central auditory system cells. Autophagy is a highly integrated cellular system that eliminates impaired components and replenishes energy to benefit cellular homeostasis. Etiological links between autophagy alterations and neurodegenerative diseases, such as SNHL, have been established. The hearing pathway is complex and depends on the comprehensive functions of many types of tissues and cells in auditory system. In this review, we discuss the roles of autophagy in promoting and inhibiting hearing, paying particular attention to specific cells in the auditory system, as discerned through research. Hence, our review provides enlightening ideas for the role of autophagy in hearing development and impairment.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanyuan Zhang,
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qingquan Hua,
| |
Collapse
|
7
|
Toward Personalized Diagnosis and Therapy for Hearing Loss: Insights From Cochlear Implants. Otol Neurotol 2022; 43:e903-e909. [PMID: 35970169 DOI: 10.1097/mao.0000000000003624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Sensorineural hearing loss (SNHL) is the most common sensory deficit, disabling nearly half a billion people worldwide. The cochlear implant (CI) has transformed the treatment of patients with SNHL, having restored hearing to more than 800,000 people. The success of CIs has inspired multidisciplinary efforts to address the unmet need for personalized, cellular-level diagnosis, and treatment of patients with SNHL. Current limitations include an inability to safely and accurately image at high resolution and biopsy the inner ear, precluding the use of key structural and molecular information during diagnostic and treatment decisions. Furthermore, there remains a lack of pharmacological therapies for hearing loss, which can partially be attributed to challenges associated with new drug development. We highlight advances in diagnostic and therapeutic strategies for SNHL that will help accelerate the push toward precision medicine. In addition, we discuss technological improvements for the CI that will further enhance its functionality for future patients. This report highlights work that was originally presented by Dr. Stankovic as part of the Dr. John Niparko Memorial Lecture during the 2021 American Cochlear Implant Alliance annual meeting.
Collapse
|
8
|
Cho NH, Wang H, Puria S. Cochlear Fluid Spaces and Structures of the Gerbil High-Frequency Region Measured Using Optical Coherence Tomography (OCT). J Assoc Res Otolaryngol 2022; 23:195-211. [PMID: 35194695 PMCID: PMC8964889 DOI: 10.1007/s10162-022-00836-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022] Open
Abstract
Since it has been difficult to directly observe the morphology of the living cochlea, our ability to infer the mechanical functioning of the living ear has been limited. Nearly all our knowledge about cochlear morphology comes from postmortem tissue that was fixed and processed using procedures that possibly distort the structures and fluid spaces of the organ of Corti. In this study, optical coherence tomography was employed to obtain volumetric images of the high-frequency hook region of the gerbil cochlea, as viewed through the round window, with far better resolution capability than had been possible before. The anatomical structures and fluid spaces of the organ of Corti were segmented and quantified in vivo and over a 90-min postmortem period. We find that the arcuate-zone and pectinate-zone widths change very little postmortem. The volume of the scala tympani between the round-window membrane and basilar membrane and the volume of the inner spiral sulcus decrease in the first 60-min postmortem. While textbook drawings of the mammalian organ of Corti and cortilymph prominently depict the tunnel of Corti, the outer tunnel is typically missing. This is likely because textbook drawings are typically made from images obtained by histological methods. Here, we show that the outer tunnel is nearly twice as big as the tunnel of Corti or the space of Nuel. This larger outer tunnel fluid space could have a substantial, little-appreciated effect on cochlear micromechanics. We speculate that the outer tunnel forms a resonant structure that may affect reticular-lamina motion.
Collapse
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Haobing Wang
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Sunil Puria
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Iyer JS, Yin B, Stankovic KM, Tearney GJ. Endomicroscopy of the human cochlea using a micro-optical coherence tomography catheter. Sci Rep 2021; 11:17932. [PMID: 34504113 PMCID: PMC8429662 DOI: 10.1038/s41598-021-95991-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most profound public health concerns of the modern era, affecting 466 million people today, and projected to affect 900 million by the year 2050. Advances in both diagnostics and therapeutics for SNHL have been impeded by the human cochlea’s inaccessibility for in vivo imaging, resulting from its extremely small size, convoluted coiled configuration, fragility, and deep encasement in dense bone. Here, we develop and demonstrate the ability of a sub-millimeter-diameter, flexible endoscopic probe interfaced with a micro-optical coherence tomography (μOCT) imaging system to enable micron-scale imaging of the inner ear’s sensory epithelium in cadaveric human inner ears.
Collapse
Affiliation(s)
- Janani S Iyer
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, 02138, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Biwei Yin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA. .,Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, 02138, USA. .,Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94503, USA. .,Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 801 Welch Road, Stanford, CA, 94305, USA.
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Ali Z, Karimi Galougahi K, Mintz GS, Maehara A, Shlofmitz R, Mattesini A. Intracoronary optical coherence tomography: state of the art and future directions. EUROINTERVENTION 2021; 17:e105-e123. [PMID: 34110288 PMCID: PMC9725016 DOI: 10.4244/eij-d-21-00089] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Optical coherence tomography (OCT) has been increasingly utilised to guide percutaneous coronary intervention (PCI). Despite the diagnostic utility of OCT, facilitated by its high resolution, the impact of intracoronary OCT on clinical practice has thus far been limited. Difficulty in transitioning from intravascular ultrasound (IVUS), complex image interpretation, lack of a standardised algorithm for PCI guidance, and paucity of data from prospective clinical trials have contributed to the modest adoption. Herein, we provide a comprehensive up-do-date overview on the utility of OCT in coronary artery disease, including technical details, device set-up, simplified OCT image interpretation, recognition of the imaging artefacts, and an algorithmic approach for using OCT in PCI guidance. We discuss the utility of OCT in acute coronary syndromes, provide a summary of the clinical trial data, list the work in progress, and discuss the future directions.
Collapse
Affiliation(s)
- Ziad Ali
- St. Francis Hospital and Heart Center 100 Port Washington Blvd., Roslyn, NY 11576, USA
| | | | - Gary S. Mintz
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY, USA
| | - Akiko Maehara
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY, USA,Center for Interventional Vascular Therapy, Division of Cardiology, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Shlofmitz
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - Alessio Mattesini
- Structural Interventional Cardiology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
11
|
Tsai TY, Chen TH, Chen HC, Chueh CB, Huang YP, Hung YP, Tsai MT, Baumann B, Wang CH, Lee HC. Quantitative spectroscopic comparison of the optical properties of mouse cochlea microstructures using optical coherence tomography at 1.06 µm and 1.3 µm wavelengths. BIOMEDICAL OPTICS EXPRESS 2021; 12:2339-2352. [PMID: 33996233 PMCID: PMC8086459 DOI: 10.1364/boe.419378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Currently, the cochlear implantation procedure mainly relies on using a hand lens or surgical microscope, where the success rate and surgery time strongly depend on the surgeon's experience. Therefore, a real-time image guidance tool may facilitate the implantation procedure. In this study, we performed a systematic and quantitative analysis on the optical characterization of ex vivo mouse cochlear samples using two swept-source optical coherence tomography (OCT) systems operating at the 1.06-µm and 1.3-µm wavelengths. The analysis results demonstrated that the 1.06-µm OCT imaging system performed better than the 1.3-µm OCT imaging system in terms of the image contrast between the cochlear conduits and the neighboring cochlear bony wall structure. However, the 1.3-µm OCT imaging system allowed for greater imaging depth of the cochlear samples because of decreased tissue scattering. In addition, we have investigated the feasibility of identifying the electrode of the cochlear implant within the ex vivo cochlear sample with the 1.06-µm OCT imaging. The study results demonstrated the potential of developing an image guidance tool for the cochlea implantation procedure as well as other otorhinolaryngology applications.
Collapse
Affiliation(s)
- Ting-Yen Tsai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Ting-Hao Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Bor Chueh
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Yin-Peng Huang
- Graduate Institute of Networking and Multimedia, National Taiwan University, No 1, Sec. 4 Roosevelt Rd., Taipei, Taiwan
| | - Yi-Ping Hung
- Graduate Institute of Networking and Multimedia, National Taiwan University, No 1, Sec. 4 Roosevelt Rd., Taipei, Taiwan
| | - Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Nishimiya K, Tearney G. Micro Optical Coherence Tomography for Coronary Imaging. Front Cardiovasc Med 2021; 8:613400. [PMID: 33842560 PMCID: PMC8032864 DOI: 10.3389/fcvm.2021.613400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/23/2021] [Indexed: 01/11/2023] Open
Abstract
Intravascular optical coherence tomography (IVOCT) that produces images with 10 μm resolution has emerged as a significant technology for evaluating coronary architectural morphology. Yet, many features that are relevant to coronary plaque pathogenesis can only be seen at the cellular level. This issue has motivated the development of a next-generation form of OCT imaging that offers higher resolution. One such technology that we review here is termed micro-OCT (μOCT) that enables the assessment of the cellular and subcellular morphology of human coronary atherosclerotic plaques. This chapter reviews recent advances and ongoing works regarding μOCT in the field of cardiology. This new technology has the potential to provide researchers and clinicians with a tool to better understand the natural history of coronary atherosclerosis, increase plaque progression prediction capabilities, and better assess the vessel healing process after revascularization therapy.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Pathology, Massachusetts General Hospital, Boston, MA, United States.,Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology Division, Cambridge, MA, United States
| |
Collapse
|
13
|
Choi SW, Kang J, Lee S, Oh SJ, Kim H, Kong SK. Mammalian Cochlear Hair Cell Imaging Using Optical Coherence Tomography (OCT): A Preliminary Study. J Int Adv Otol 2021; 17:46-51. [PMID: 33605221 DOI: 10.5152/iao.2020.8377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the feasibility of using optical coherence tomography (OCT) to provide information about cochlear microanatomy at a cellular level, specifically of cochlear hair cells in mammals. MATERIALS AND METHODS A total of 10 Sprague-Dawley rats were divided into 2 experimental groups for comparing the arrangement of normal and damaged hair cells. Postnatal day 3 Sprague-Dawley rats were used to test the swept-source OCT system, and the images recorded were compared with fluorescence microscope images. RESULTS Intracochlear structures (the inner hair cells, outer hair cells, and auditory nerve fibers) were clearly visualized at the individual cellular level. CONCLUSION These images reflect the ability of OCT to provide images of the inner hair cells, outer hair cells, and auditory nerve fibers (ex vivo). OCT is a promising technology, and these findings could be used to encourage research in the area of cochlear microstructure imaging in the future.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jieun Kang
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seokhwan Lee
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Se-Joon Oh
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hongki Kim
- Koh Young Technology Inc., Geumcheon-gu, Seoul, Republic of Korea
| | - Soo-Keun Kong
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
14
|
Di Stadio A, Volpe AD, Ralli M, Korsch F, Greco A, Ricci G. Spiral Ganglions and Speech Perception in the Elderly. Which Turn of the Cochlea is the More Relevant? A Preliminary Study on Human Temporal Bones. J Int Adv Otol 2020; 16:318-322. [PMID: 33136010 DOI: 10.5152/iao.2020.8481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To identify the cochlear segment in which spiral ganglion neuron (SGN) loss may more severely impact discrimination thresholds. MATERIALS AND METHODS Thirteen temporal bones from 13 subjects between 55 and 77 years of age were analyzed. The organ of corti was analyzed to identify the loss of hair cells, and the number of SGNs in each cochlear segment were counted. The results of the speech perception test (SPT) and pure tone audiometry (PTA) tests were collected. PTA averages for low and high frequencies were calculated. One-way analysis of variance (ANOVA), Pearson, Spearman, and multilinear regression tests were performed. RESULTS No statistically significant correlation was identified between the patient's age and number of SGNs. Statistically significant differences were observed between the number of SGNs in the different cochlear segments (one-way ANOVA: p<0.0001) and between poor PTA average and SPT scores (negative correlation) (p=0.03). A statistically significant correlation was identified between the overall number of cochlear SGNs and SPT scores (p=0.02) and between the number of SGNs in cochlear segments I (p=0.04) and II and the SPT score (p=0.03). CONCLUSIONS We identified that residual SGNs in the basal and middle turns of the cochlea might be determinants of speech perception.
Collapse
Affiliation(s)
| | - Antonio Della Volpe
- Otology and Cochlear Implant Unit, Regional Referral Centre Children's Hospital "Santobono-Pausilipon", Naples, Italy
| | - Massimo Ralli
- Department of Organ of Sense, University La Sapienza, Rome, Italy
| | - Fiammetta Korsch
- Department of Otolaryngology, Santobono Posilipon Hospital, Naples, Italy
| | - Antonio Greco
- Department of Organ of Sense, University La Sapienza, Rome, Italy
| | - Giampietro Ricci
- Department of Otolaryngology, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Hutson KA, Pulver SH, Ariel P, Naso C, Fitzpatrick DC. Light sheet microscopy of the gerbil cochlea. J Comp Neurol 2020; 529:757-785. [PMID: 32632959 DOI: 10.1002/cne.24977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 01/19/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) provides a rapid and complete three-dimensional image of the cochlea. The method retains anatomical relationships-on a micrometer scale-between internal structures such as hair cells, basilar membrane (BM), and modiolus with external surface structures such as the round and oval windows. Immunolabeled hair cells were used to visualize the spiraling BM in the intact cochlea without time intensive dissections or additional histological processing; yet material prepared for LSFM could be rehydrated, the BM dissected out and reimaged at higher resolution with the confocal microscope. In immersion-fixed material, details of the cochlear vasculature were seen throughout the cochlea. Hair cell counts (both inner and outer) as well as frequency maps of the BM were comparable to those obtained by other methods, but with the added dimension of depth. The material provided measures of angular, linear, and vector distance between characteristic frequency regions along the BM. Thus, LSFM provides a unique ability to rapidly image the entire cochlea in a manner applicable to model and interpret physiological results. Furthermore, the three-dimensional organization of the cochlea can be studied at the organ and cellular level with LSFM, and this same material can be taken to the confocal microscope for detailed analysis at the subcellular level.
Collapse
Affiliation(s)
- Kendall A Hutson
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen H Pulver
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Ariel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline Naso
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Douglas C Fitzpatrick
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Li J, Thiele S, Quirk BC, Kirk RW, Verjans JW, Akers E, Bursill CA, Nicholls SJ, Herkommer AM, Giessen H, McLaughlin RA. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. LIGHT, SCIENCE & APPLICATIONS 2020; 9:124. [PMID: 32704357 PMCID: PMC7371638 DOI: 10.1038/s41377-020-00365-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 05/03/2023]
Abstract
Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes. Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue. However, current fabrication methods limit the imaging performance of highly miniaturized probes, restricting their widespread application. To overcome this limitation, we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics (<130 µm diameter) on single-mode fibers. Using this technique, we built a fully functional ultrathin aberration-corrected optical coherence tomography probe. This is the smallest freeform 3D imaging probe yet reported, with a diameter of 0.457 mm, including the catheter sheath. We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries. The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.
Collapse
Affiliation(s)
- Jiawen Li
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Simon Thiele
- Institute of Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Bryden C. Quirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Rodney W. Kirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Johan W. Verjans
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
- Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| | - Emma Akers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
| | - Christina A. Bursill
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC 3168 Australia
| | - Alois M. Herkommer
- Institute of Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Robert A. McLaughlin
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
17
|
Cho NH, Jang JH. Future Directions of Optical Coherence Tomography in Otology: A Morphological and Functional Approach. Clin Exp Otorhinolaryngol 2020; 13:85-86. [PMID: 32434305 PMCID: PMC7248606 DOI: 10.21053/ceo.2020.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology and Head-Neck Surgery, Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
Min E, Ban S, Lee J, Vavilin A, Baek S, Jung S, Ahn Y, Park K, Shin S, Han S, Cho H, Lee-Kwon W, Kim J, Lee CJ, Jung W. Serial optical coherence microscopy for label-free volumetric histopathology. Sci Rep 2020; 10:6711. [PMID: 32317719 PMCID: PMC7174280 DOI: 10.1038/s41598-020-63460-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/18/2020] [Indexed: 11/09/2022] Open
Abstract
The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents.
Collapse
Affiliation(s)
- Eunjung Min
- Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Sungbea Ban
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Junwon Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Andrey Vavilin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Songyee Baek
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sunwoo Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yujin Ahn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kibeom Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungwon Shin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - SoHyun Han
- Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, United States
| | - Hyungjoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Whaseon Lee-Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeehyun Kim
- School of Electronics Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
19
|
Almog IF, Chen F, Senova S, Fomenko A, Gondard E, Sacher WD, Lozano AM, Poon JKS. Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960083. [PMID: 31710771 PMCID: PMC7065632 DOI: 10.1002/jbio.201960083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/19/2019] [Accepted: 11/06/2019] [Indexed: 05/28/2023]
Abstract
Optical coherence tomography can differentiate brain regions with intrinsic contrast and at a micron scale resolution. Such a device can be particularly useful as a real-time neurosurgical guidance tool. We present, to our knowledge, the first full-field swept-source optical coherence tomography system operating near a wavelength of 1310 nm. The proof-of-concept system was integrated with an endoscopic probe tip, which is compatible with deep brain stimulation keyhole neurosurgery. Neuroimaging experiments were performed on ex vivo brain tissues and in vivo in rat brains. Using classification algorithms involving texture features and optical attenuation, images were successfully classified into three brain tissue types.
Collapse
Affiliation(s)
- Ilan Felts Almog
- Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
| | - Fu‐Der Chen
- Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
| | - Suhan Senova
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
- Department of NeurosurgeryCentre Hospitalier Universitaire Henri‐Mondor, APHPCréteilFrance
- INSERM Unit 955, Institut Mondor de Recherche Biomédicale, Université Paris‐EstCréteilFrance
| | - Anton Fomenko
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
| | - Elise Gondard
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
| | - Wesley D. Sacher
- Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoOntarioCanada
- Max Planck Institute of Microstructure PhysicsHalleGermany
| | - Andres M. Lozano
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
- Division of Neurosurgery, Department of SurgeryToronto Western HospitalTorontoOntarioCanada
| | - Joyce K. S. Poon
- Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteToronto Western HospitalTorontoOntarioCanada
- Max Planck Institute of Microstructure PhysicsHalleGermany
| |
Collapse
|
20
|
High-resolution Imaging of the Human Cochlea through the Round Window by means of Optical Coherence Tomography. Sci Rep 2019; 9:14271. [PMID: 31582808 PMCID: PMC6776619 DOI: 10.1038/s41598-019-50727-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
The human cochlea is deeply embedded in the temporal bone and surrounded by a thick otic capsule, rendering its internal structure inaccessible for direct visualization. Clinical imaging techniques fall short of their resolution for imaging of the intracochlear structures with sufficient detail. As a result, there is a lack of knowledge concerning best practice for intracochlear therapy placement, such as cochlear implantation. In the past decades, optical coherence tomography (OCT) has proven valuable for non-invasive, high-resolution, cross-sectional imaging of tissue microstructure in various fields of medicine, including ophthalmology, cardiology and dermatology. There is an upcoming interest for OCT imaging of the cochlea, which so far was mostly carried out in small animals. In this temporal bone study, we focused on high-resolution imaging of the human cochlea. The cochlea was approached through mastoidectomy and posterior tympanotomy, both standard surgical procedures. A commercially available spectral-domain OCT imaging system was used to obtain high-resolution images of the cochlear hook region through the intact round window membrane in four cadaveric human temporal bones. We discuss the qualitative and quantitative characteristics of intracochlear structures on OCT images and their importance for cochlear implant surgery.
Collapse
|
21
|
Bommakanti K, Iyer JS, Stankovic KM. Cochlear histopathology in human genetic hearing loss: State of the science and future prospects. Hear Res 2019; 382:107785. [PMID: 31493568 PMCID: PMC6778517 DOI: 10.1016/j.heares.2019.107785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
Sensorineural hearing loss (SNHL) is an extraordinarily common disability, affecting 466 million people across the globe. Half of these incidents are attributed to genetic mutations that disrupt the structure and function of the cochlea. The human cochlea's interior cannot be imaged or biopsied without damaging hearing; thus, everything known about the morphologic correlates of hereditary human deafness comes from histopathologic studies conducted in either cadaveric human temporal bone specimens or animal models of genetic deafness. The purpose of the present review is to a) summarize the findings from all published histopathologic studies conducted in human temporal bones with known SNHL-causing genetic mutations, and b) compare the reported phenotypes of human vs. mouse SNHL caused by the same genetic mutation. The fact that human temporal bone histopathologic analysis has been reported for only 22 of the nearly 200 identified deafness-causing genes suggests a great need for alternative and improved techniques for studying human hereditary deafness; in light of this, the present review concludes with a summary of promising future directions, specifically in the fields of high resolution cochlear imaging, intracochlear fluid biopsy, and gene therapy.
Collapse
Affiliation(s)
- Krishna Bommakanti
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; University of California San Diego School of Medicine, San Diego, CA, USA
| | - Janani S Iyer
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA; Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Landegger LD, Vasilijic S, Fujita T, Soares VY, Seist R, Xu L, Stankovic KM. Cytokine Levels in Inner Ear Fluid of Young and Aged Mice as Molecular Biomarkers of Noise-Induced Hearing Loss. Front Neurol 2019; 10:977. [PMID: 31632328 PMCID: PMC6749100 DOI: 10.3389/fneur.2019.00977] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide, frequently caused by noise trauma and aging, with inflammation being implicated in both pathologies. Here, we provide the first direct measurements of proinflammatory cytokines in inner ear fluid, perilymph, of adolescent and 2-year-old mice. The perilymph of adolescent mice exposed to the noise intensity resulting in permanent auditory threshold elevations had significantly increased levels of IL-6, TNF-α, and CXCL1 6 h after exposure, with CXCL1 levels being most elevated (19.3 ± 6.2 fold). We next provide the first immunohistochemical localization of CXCL1 in specific cochlear supporting cells, and its presumed receptor, Duffy antigen receptor for chemokines (DARC), in hair cells and spiral ganglion neurons. Our results demonstrate the feasibility of molecular diagnostics of SNHL using only 0.5 μL of perilymph, and motivate future sub-μL based diagnostics of human SNHL based on liquid biopsy of the inner ear to guide therapy, promote hearing protection, and monitor response to treatment.
Collapse
Affiliation(s)
- Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Takeshi Fujita
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Vitor Y Soares
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Richard Seist
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Measurement of Vibrating Tympanic Membrane in an In Vivo Mouse Model Using Doppler Optical Coherence Tomography. J Imaging 2019; 5:jimaging5090074. [PMID: 34460668 PMCID: PMC8320936 DOI: 10.3390/jimaging5090074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/17/2022] Open
Abstract
Optical coherence tomography (OCT) has a micro-resolution with a penetration depth of about 2 mm and field of view of about 10 mm. This makes OCT well suited for analyzing the anatomical and internal structural assessment of the middle ear. To study the vibratory motion of the tympanic membrane (TM) and its internal structure, we developed a phase-resolved Doppler OCT system using Kasai’s autocorrelation algorithm. Doppler optical coherence tomography is a powerful imaging tool which can offer the micro-vibratory measurement of the tympanic membrane and obtain the micrometer-resolved cross-sectional images of the sample in real-time. To observe the relative vibratory motion of individual sections (malleus, thick regions, and the thin regions of the tympanic membrane) of the tympanic membrane in respect to auditory signals, we designed an experimental study for measuring the difference in Doppler phase shift for frequencies varying from 1 to 8 kHz which were given as external stimuli to the middle ear of a small animal model. Malleus is the very first interconnecting region between the TM and cochlea. In our proposed study, we observed that the maximum change in Doppler phase shift was seen for the 4 kHz acoustic stimulus in the malleus, the thick regions, and in the thin regions of the tympanic membrane. In particular, the vibration signals were higher in the malleus in comparison to the tympanic membrane.
Collapse
|
24
|
Early S, Moon IS, Bommakanti K, Hunter I, Stankovic KM. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hear Res 2019; 381:107761. [DOI: 10.1016/j.heares.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
|
25
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
26
|
Abstract
BACKGROUND The field of otology is increasingly at the forefront of innovation in science and medicine. The inner ear, one of the most challenging systems to study, has been rendered much more open to inquiry by recent developments in research methodology. Promising advances of potential clinical impact have occurred in recent years in biological fields such as auditory genetics, ototoxic chemoprevention and organ of Corti regeneration. The interface of the ear with digital technology to remediate hearing loss, or as a consumer device within an intelligent ecosystem of connected devices, is receiving enormous creative energy. Automation and artificial intelligence can enhance otological medical and surgical practice. Otology is poised to enter a new renaissance period, in which many previously untreatable ear diseases will yield to newly introduced therapies. OBJECTIVE This paper speculates on the direction otology will take in the coming decades. CONCLUSION Making predictions about the future of otology is a risky endeavour. If the predictions are found wanting, it will likely be because of unforeseen revolutionary methods.
Collapse
|
27
|
Ren Y, Landegger LD, Stankovic KM. Gene Therapy for Human Sensorineural Hearing Loss. Front Cell Neurosci 2019; 13:323. [PMID: 31379508 PMCID: PMC6660246 DOI: 10.3389/fncel.2019.00323] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hearing loss is the most common sensory impairment in humans and currently disables 466 million people across the world. Congenital deafness affects at least 1 in 500 newborns, and over 50% are hereditary in nature. To date, existing pharmacologic therapies for genetic and acquired etiologies of deafness are severely limited. With the advent of modern sequencing technologies, there is a vast compendium of growing genetic alterations that underlie human hearing loss, which can be targeted by therapeutics such as gene therapy. Recently, there has been tremendous progress in the development of gene therapy vectors to treat sensorineural hearing loss (SNHL) in animal models in vivo. Nevertheless, significant hurdles remain before such technologies can be translated toward clinical use. These include addressing the blood-labyrinth barrier, engineering more specific and effective delivery vehicles, improving surgical access, and validating novel targets. In this review, we both highlight recent progress and outline challenges associated with in vivo gene therapy for human SNHL.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
| | - Lukas D. Landegger
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Harvard Program in Therapeutic Science, Harvard University, Boston, MA, United States
| |
Collapse
|
28
|
Burwood GWS, Fridberger A, Wang RK, Nuttall AL. Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quant Imaging Med Surg 2019; 9:858-881. [PMID: 31281781 PMCID: PMC6571188 DOI: 10.21037/qims.2019.05.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized physiological studies of the hearing organ, the vibration and morphology of which can now be measured without opening the surrounding bone. In this review, we provide an overview of OCT as used in the otological research, describing advances and different techniques in vibrometry, angiography, and structural imaging.
Collapse
Affiliation(s)
- George W. S. Burwood
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| | - Anders Fridberger
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
- Department of Clinical and Experimental Medicine, Section for Neurobiology, Linköping University, Linköping, Sweden
| | - Ruikang K. Wang
- Department of Bioengineering and Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfred L. Nuttall
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
29
|
Miao Y, Brenner M, Chen Z. Endoscopic Optical Coherence Tomography for Assessing Inhalation Airway Injury: A Technical Review. OTOLARYNGOLOGY (SUNNYVALE, CALIF.) 2019; 9:366. [PMID: 31497378 PMCID: PMC6731096 DOI: 10.4172/2161-119x.1000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diagnosis of inhalation injury has been clinically challenging. Currently, assessment of inhalation injury relies on subjective clinical exams and bronchoscopy, which provides little understanding of tissue conditions and results in limited prognostics. Endoscopic Optical coherence tomography (OCT) technology has been recently utilized in the airway for direct assessment of respiratory tract disorders and injuries. Endoscopic OCT is capable of capturing high-resolution images of tissue morphology 1-3 mm beneath the surface as well as the complex 3D anatomical shape. Previous studies indicate that changes in airway histopathology can be found in the OCT image almost immediately after inhalation of smoke and other toxic chemicals, which correlates well with histology and pulmonary function tests. This review summarizes the recent development of endoscopic OCT technology for airway imaging, current uses of OCT for inhalation injury, and possible future directions.
Collapse
Affiliation(s)
- Yusi Miao
- Beckman Laser Institute, University of California, Irvine, CA, USA
| | - Matthew Brenner
- Beckman Laser Institute, University of California, Irvine, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA
| |
Collapse
|
30
|
Multiple Wavelength Optical Coherence Tomography Assessments for Enhanced Ex Vivo Intra-Cochlear Microstructural Visualization. ELECTRONICS 2018. [DOI: 10.3390/electronics7080133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The precise identification of intra-cochlear microstructures is an essential otorhinolaryngological requirement to diagnose the progression of cochlea related diseases. Thus, we demonstrated an experimental procedure to investigate the most optimal wavelength range, which can enhance the visualization of ex vivo intra-cochlear microstructures using multiple wavelengths (i.e., 860 nm, 1060 nm, and 1300 nm) based optical coherence tomography (OCT) systems. The high-resolution tomograms, volumetric, and quantitative evaluations obtained from Basilar membrane, organ of Corti, and scala vestibule regions revealed complementary comparisons between the aforementioned three distinct wavelengths based OCT systems. Compared to 860 nm and 1300 nm wavelengths, 1060 nm wavelength OCT was discovered to be an appropriate wavelength range verifying the simultaneously obtainable high-resolution and reasonable depth range visualization of intra-cochlear microstructures. Therefore, the implementation of 1060 nm OCT can minimize the necessity of two distinct OCT systems. Moreover, the results suggest that the performed qualitative and quantitative analysis procedure can be used as a powerful tool to explore further anatomical structures of the cochlea for future studies in otorhinolaryngology.
Collapse
|
31
|
Chen S, Liu X, Wang N, Wang X, Xiong Q, Bo E, Yu X, Chen S, Liu L. Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography. Sci Rep 2017; 7:10752. [PMID: 28883661 PMCID: PMC5589810 DOI: 10.1038/s41598-017-11380-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diagnosis of corneal disease and challenges in corneal transplantation require comprehensive understanding of corneal anatomy, particularly that of the posterior cornea. Micro-optical coherence tomography (µOCT) is a potentially suitable tool to meet this need, owing to its ultrahigh isotropic spatial resolution, high image acquisition rate and depth priority scanning mode. In this study, we explored the ability of µOCT to visualize micro-anatomical structures of the posterior cornea ex vivo and in vivo using small and large animals. µOCT clearly delineated cornea layers and revealed micro-anatomical structures, including not only polygonal endothelial cells, stellate keratocytes, collagen fibres and corneal nerve fibres but also new structures such as the dome-shaped basolateral side of endothelial cells and lattice structures at the interface between endothelium and Descemet’s membrane. Based on these observations, a short post-harvest longitudinal study was conducted on rat cornea to test the feasibility of using µOCT to monitor the quality of endothelial cells. This study successfully reveals a series of morphological features and pathological changes in the posterior cornea at the cellular level in situ and in real time with µOCT. These findings enrich knowledge of corneal anatomy and suggest that µOCT may be a promising imaging tool in corneal transplantation.
Collapse
Affiliation(s)
- Si Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xinyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nanshuo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiaozhou Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - En Bo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaojun Yu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Shufen Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.
| |
Collapse
|
32
|
Sagers JE, Landegger LD, Worthington S, Nadol JB, Stankovic KM. Human Cochlear Histopathology Reflects Clinical Signatures of Primary Neural Degeneration. Sci Rep 2017; 7:4884. [PMID: 28687782 PMCID: PMC5501826 DOI: 10.1038/s41598-017-04899-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
Auditory neuropathy is a significant and understudied cause of human hearing loss, diagnosed in patients who demonstrate abnormal function of the cochlear nerve despite typical function of sensory cells. Because the human inner ear cannot be visualized during life, histopathological analysis of autopsy specimens is critical to understanding the cellular mechanisms underlying this pathology. Here we present statistical models of severe primary neuronal degeneration and its relationship to pure tone audiometric thresholds and word recognition scores in comparison to age-matched control patients, spanning every decade of life. Analysis of 30 ears from 23 patients shows that severe neuronal loss correlates with elevated audiometric thresholds and poor word recognition. For each ten percent increase in total neuronal loss, average thresholds across patients at each audiometric test frequency increase by 6.0 dB hearing level (HL). As neuronal loss increases, threshold elevation proceeds more rapidly in low audiometric test frequencies than in high frequencies. Pure tone average closely agrees with word recognition scores in the case of severe neural pathology. Histopathologic study of the human inner ear continues to emphasize the need for non- or minimally invasive clinical tools capable of establishing cellular-level diagnoses.
Collapse
Affiliation(s)
- Jessica E Sagers
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02114, United States
| | - Lukas D Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States.,Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, 1090, Austria.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven Worthington
- Harvard Institute for Quantitative Social Science, Harvard University, Cambridge, MA, 02138, USA
| | - Joseph B Nadol
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, United States
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States. .,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02114, United States. .,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
33
|
Mohebbi S, Mirsalehi M, Kahrs LA, Ortmaier T, Lenarz T, Majdani O. Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography. IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY 2017; 29:5-9. [PMID: 28229056 PMCID: PMC5307298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones. MATERIALS AND METHODS Three fresh human explanted temporal bones were trimmed, chemically decalcified with ethylenediaminetetraacetic acid (EDTA), and mechanically drilled under visual control using OCT in order to reveal the remaining bone shell. After confirming decalcification with a computed tomography (CT) scan, the samples were scanned with OCT in different views. The oval window, round window, and remnant part of internal auditory canal and cochlear turn were investigated. RESULTS Preparation of the labyrinthine bone and visualization under OCT guidance was successfully performed to a remaining bony layer of 300µm thickness. OCT images of the specimen allowed a detailed view of the intra-cochlear anatomy. CONCLUSION OCT is applicable in the well-prepared human inner ear and allows visualization of soft tissue parts.
Collapse
Affiliation(s)
- Saleh Mohebbi
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran.,Corresponding Author: Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran. E-mail:
| | - Marjan Mirsalehi
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran.
| | | | - Tobias Ortmaier
- Institute of Mechatronic Systems, Leibniz University Hannover, Hannover, Germany.
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany.
| | - Omid Majdani
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|