1
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
3
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
4
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|
5
|
Bogetofte H, Ryan BJ, Jensen P, Schmidt SI, Vergoossen DLE, Barnkob MB, Kiani LN, Chughtai U, Heon-Roberts R, Caiazza MC, McGuinness W, Márquez-Gómez R, Vowles J, Bunn FS, Brandes J, Kilfeather P, Connor JP, Fernandes HJR, Caffrey TM, Meyer M, Cowley SA, Larsen MR, Wade-Martins R. Post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson's disease GBA-N370S dopamine neurons. Cell Rep 2023; 42:112180. [PMID: 36870058 DOI: 10.1016/j.celrep.2023.112180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Variants at the GBA locus, encoding glucocerebrosidase, are the strongest common genetic risk factor for Parkinson's disease (PD). To understand GBA-related disease mechanisms, we use a multi-part-enrichment proteomics and post-translational modification (PTM) workflow, identifying large numbers of dysregulated proteins and PTMs in heterozygous GBA-N370S PD patient induced pluripotent stem cell (iPSC) dopamine neurons. Alterations in glycosylation status show disturbances in the autophagy-lysosomal pathway, which concur with upstream perturbations in mammalian target of rapamycin (mTOR) activation in GBA-PD neurons. Several native and modified proteins encoded by PD-associated genes are dysregulated in GBA-PD neurons. Integrated pathway analysis reveals impaired neuritogenesis in GBA-PD neurons and identify tau as a key pathway mediator. Functional assays confirm neurite outgrowth deficits and identify impaired mitochondrial movement in GBA-PD neurons. Furthermore, pharmacological rescue of glucocerebrosidase activity in GBA-PD neurons improves the neurite outgrowth deficit. Overall, this study demonstrates the potential of PTMomics to elucidate neurodegeneration-associated pathways and potential drug targets in complex disease models.
Collapse
Affiliation(s)
- Helle Bogetofte
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brent J Ryan
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK.
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sissel I Schmidt
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Dana L E Vergoossen
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Mike B Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, 5000 Odense C, Denmark
| | - Lisa N Kiani
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Uroosa Chughtai
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - William McGuinness
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Ricardo Márquez-Gómez
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Vowles
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Fiona S Bunn
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Janine Brandes
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Peter Kilfeather
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Jack P Connor
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Hugo J R Fernandes
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Tara M Caffrey
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
6
|
Di Nisio A, Trevisan M, Dall’Acqua S, Pannella M, Pappalardo C, Ferlin A, Foresta C, De Toni L. Experimental evidence of a limited impact of new-generation perfluoroalkyl substance C6O4 on differentiating human dopaminergic neurons from induced pluripotent stem cells. Toxicol Rep 2022; 10:40-44. [PMID: 36578672 PMCID: PMC9791692 DOI: 10.1016/j.toxrep.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). In vitro exposure to 10 ng/mL PFOA for 24 h was also associated with an altered molecular and functional phenotype of DN differentiated from human induced pluripotent stem cells (hiPSCs). Acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)- 1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1), known as C6O4, is a new generation PFAS proposed to have a safer profile. Here we investigated the effect of C6O4 exposure on the molecular phenotype of hiPSC-derived DN. Cells were exposed to C6O4 for 24 h, at the concentration of 10 ng/mL, at neuronal commitment (DP1), neuronal precursor (DP2) and the mature dopaminergic (DP3) phases of differentiation. Liquid-chromatography/mass-spectrometry showed negligible cell accumulation of C6O4 at each differentiation stage and by staining with Merocyanine-540 we observed unaltered cell membrane fluidity. Immunofluorescence showed that the expression of tyrosine hydroxylase (TH) and βIII-Tubulin was unaffected by the exposure to C6O4 at each differentiation phase (respectively: DP1, p = 0.332; DP2, p = 0.623; DP3, p = 0.816, with respect to control unexposed conditions). Exposure to C6O4 is presumed to have minor effects on cell molecular/functional phenotype of developing human DN cells, requiring confirm on in vivo models.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Claudia Pappalardo
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- Corresponding author.
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Fonseca-Ornelas L, Stricker JMS, Soriano-Cruz S, Weykopf B, Dettmer U, Muratore CR, Scherzer CR, Selkoe DJ. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. NPJ Parkinsons Dis 2022; 8:118. [PMID: 36114228 PMCID: PMC9481630 DOI: 10.1038/s41531-022-00380-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
α-Synuclein (αSyn) aggregation in Lewy bodies and neurites defines both familial and 'sporadic' Parkinson's disease. We previously identified α-helically folded αSyn tetramers, in addition to the long-known unfolded monomers, in normal cells. PD-causing αSyn mutations decrease the tetramer:monomer (T:M) ratio, associated with αSyn hyperphosphorylation and cytotoxicity in neurons and a motor syndrome of tremor and gait deficits in transgenic mice that responds in part to L-DOPA. Here, we asked whether LRRK2 mutations, the most common genetic cause of cases previously considered sporadic PD, also alter tetramer homeostasis. Patient neurons carrying G2019S, the most prevalent LRRK2 mutation, or R1441C each had decreased T:M ratios and pSer129 hyperphosphorylation of their endogenous αSyn along with increased phosphorylation of Rab10, a widely reported substrate of LRRK2 kinase activity. Two LRRK2 kinase inhibitors normalized the T:M ratio and the hyperphosphorylation in the G2019S and R1441C patient neurons. An inhibitor of stearoyl-CoA desaturase, the rate-limiting enzyme for monounsaturated fatty acid synthesis, also restored the αSyn T:M ratio and reversed pSer129 hyperphosphorylation in both mutants. Coupled with the recent discovery that PD-causing mutations of glucocerebrosidase in Gaucher's neurons also decrease T:M ratios, our findings indicate that three dominant genetic forms of PD involve life-long destabilization of αSyn physiological tetramers as a common pathogenic mechanism that can occur upstream of progressive neuronal synucleinopathy. Based on αSyn's finely-tuned interaction with certain vesicles, we hypothesize that the fatty acid composition and fluidity of membranes regulate αSyn's correct binding to highly curved membranes and subsequent assembly into metastable tetramers.
Collapse
Affiliation(s)
- Luis Fonseca-Ornelas
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan M S Stricker
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Soriano-Cruz
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Beatrice Weykopf
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christina R Muratore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Clemens R Scherzer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Oun A, Sabogal-Guaqueta AM, Galuh S, Alexander A, Kortholt A, Dolga AM. The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiol Dis 2022; 173:105837. [PMID: 35963526 DOI: 10.1016/j.nbd.2022.105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting elderly people. Pathogenic mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are the most common cause of autosomal dominant PD. LRRK2 activity is enhanced in both familial and idiopathic PD, thereby studies on LRRK2-related PD research are essential for understanding PD pathology. Finding an appropriate model to mimic PD pathology is crucial for revealing the molecular mechanisms underlying disease progression, and aiding drug discovery. In the last few years, the use of human-induced pluripotent stem cells (hiPSCs) grew exponentially, especially in studying neurodegenerative diseases like PD, where working with brain neurons and glial cells was mainly possible using postmortem samples. In this review, we will discuss the use of hiPSCs as a model for PD pathology and research on the LRRK2 function in both neuronal and immune cells, together with reviewing the recent advances in 3D organoid models and microfluidics.
Collapse
Affiliation(s)
- Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands; Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Angelica Maria Sabogal-Guaqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Sekar Galuh
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Anastasia Alexander
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
Affiliation(s)
| | | | - Vladimir A. Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (D.A.G.); (E.V.K.)
| |
Collapse
|
11
|
Anantha J, Goulding SR, Tuboly E, O'Mahony AG, Moloney GM, Lomansey G, McCarthy CM, Collins LM, Sullivan AM, O'Keeffe GW. NME1 Protects Against Neurotoxin-, α-Synuclein- and LRRK2-Induced Neurite Degeneration in Cell Models of Parkinson's Disease. Mol Neurobiol 2022; 59:61-76. [PMID: 34623600 PMCID: PMC8786793 DOI: 10.1007/s12035-021-02569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterised by the progressive degeneration of midbrain dopaminergic neurons, coupled with the intracellular accumulation of α-synuclein. Axonal degeneration is a central part of the pathology of PD. While the majority of PD cases are sporadic, some are genetic; the G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic form. The application of neurotrophic factors to protect dopaminergic neurons is a proposed experimental therapy. One such neurotrophic factor is growth differentiation factor (GDF)5. GDF5 is a dopaminergic neurotrophic factor that has been shown to upregulate the expression of a protein called nucleoside diphosphate kinase A (NME1). However, whether NME1 is neuroprotective in cell models of axonal degeneration of relevance to PD is unknown. Here we show that treatment with NME1 can promote neurite growth in SH-SY5Y cells, and in cultured dopaminergic neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA). Similar effects of NME1 were found in SH-SY5Y cells and dopaminergic neurons overexpressing human wild-type α-synuclein, and in stable SH-SY5Y cell lines carrying the G2019S LRRK2 mutation. We found that the effects of NME1 require the RORα/ROR2 receptors. Furthermore, increased NF-κB-dependent transcription was partially required for the neurite growth-promoting effects of NME1. Finally, a combined bioinformatics and biochemical analysis of the mitochondrial oxygen consumption rate revealed that NME1 enhanced mitochondrial function, which is known to be impaired in PD. These data show that recombinant NME1 is worthy of further study as a potential therapeutic agent for axonal protection in PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gareth Lomansey
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Di Nisio A, Pannella M, Vogiatzis S, Sut S, Dall'Acqua S, Rocca MS, Antonini A, Porzionato A, De Caro R, Bortolozzi M, Toni LD, Foresta C. Impairment of human dopaminergic neurons at different developmental stages by perfluoro-octanoic acid (PFOA) and differential human brain areas accumulation of perfluoroalkyl chemicals. ENVIRONMENT INTERNATIONAL 2022; 158:106982. [PMID: 34781208 DOI: 10.1016/j.envint.2021.106982] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl substances (PFASs) are synthetic chemicals widely used in industrial and consumer products. The environmental spreading of PFASs raises concerns for their impact on human health. In particular, the bioaccumulation in humans due to environmental exposure has been reported also in total brain samples and PFAS exposure has been associated with neurodevelopmental disorders. In this study we aimed to investigate the specific PFAS bioaccumulation in different brain areas. Our data reported major accumulation in the brainstem region, which is richly populated by dopaminergic neurons (DNs), in brain autopsy samples from people resident in a PFAS-polluted area of Italy. Since DNs are the main source of dopamine (DA) in the mammalian central nervous system (CNS), we evaluated the possible functional consequences of perfluoro-octanoic acid (PFOA) exposure in a human model of DNs obtained by differentiation of human induced pluripotent stem cells (hiPSCs). Particularly, we analyzed the specific effect of the exposure to PFOA for 24 h, at the concentration of 10 ng/ml, at 3 different steps of dopaminergic differentiation: the neuronal commitment phase (DP1), the neuronal precursor phase (DP2) and the mature dopaminergic differentiation phase (DP3). Interestingly, compared to untreated cells, exposure to PFOA was associated with a reduced expression of Tyrosine Hydroxylase (TH) and Neurofilament Heavy (NFH), both markers of dopaminergic maturation at DP2 phase. In addition, cells at DP3 phase exposed to PFOA showed a severe reduction in the expression of the Dopamine Transporter (DAT), functionally involved in pre-synaptic dopamine reuptake. In this proof-of-concept study we show a significant impact of PFOA exposure, mainly on the most sensitive stage of neural dopaminergic differentiation, prompting the way for further investigations more directly relevant to risk assessment of these chemicals.
Collapse
Affiliation(s)
| | | | - Stefania Vogiatzis
- Venetian Institute of Molecular Medicine - VIMM, Department of Physics and Astronomy, University of Padova, Italy
| | - Stefania Sut
- Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padova, Italy
| | | | | | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine - VIMM, Department of Physics and Astronomy, University of Padova, Italy
| | - Luca De Toni
- Department of Medicine, University of Padova, Padova, Italy.
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Vogiatzis S, Celestino M, Trevisan M, Magro G, Del Vecchio C, Erdengiz D, Palù G, Parolin C, Maguire-Zeiss K, Calistri A. Lentiviral Vectors Expressing Chimeric NEDD4 Ubiquitin Ligases: An Innovative Approach for Interfering with Alpha-Synuclein Accumulation. Cells 2021; 10:cells10113256. [PMID: 34831478 PMCID: PMC8624294 DOI: 10.3390/cells10113256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
One of the main pathological features of Parkinson’s disease (PD) is a diffuse accumulation of alpha-synuclein (aS) aggregates in neurons. The NEDD4 E3 Ub ligase promotes aS degradation by the endosomal–lysosomal route. Interestingly, NEDD4, as well as being a small molecule able to trigger its functions, is protective against human aS toxicity in evolutionary distant models. While pharmacological activation of E3 enzymes is not easy to achieve, their flexibility and the lack of “consensus” motifs for Ub-conjugation allow the development of engineered Ub-ligases, able to target proteins of interest. We developed lentiviral vectors, encoding well-characterized anti-human aS scFvs fused in frame to the NEDD4 catalytic domain (ubiquibodies), in order to target ubiquitinate aS. We demonstrate that, while all generated ubiquibodies bind to and ubiquitinate aS, the one directed against the non-amyloid component (NAC) of aS (Nac32HECT) affects aS’s intracellular levels. Furthermore, Nac32HECT expression partially rescues aS’s overexpression or mutation toxicity in neural stem cells. Overall, our data suggest that ubiquibodies, and Nac32HECT in particular, represent a valid platform for interfering with the effects of aS’s accumulation and aggregation in neurons.
Collapse
Affiliation(s)
- Stefania Vogiatzis
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Michele Celestino
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Gloria Magro
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Deran Erdengiz
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, NRB, EP04, Washington, DC 20057, USA; (D.E.); (K.M.-Z.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, NRB, EP04, Washington, DC 20057, USA; (D.E.); (K.M.-Z.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
- Correspondence: ; Tel.: +39-049-827-2341
| |
Collapse
|
14
|
Walter J, Bolognin S, Poovathingal SK, Magni S, Gérard D, Antony PMA, Nickels SL, Salamanca L, Berger E, Smits LM, Grzyb K, Perfeito R, Hoel F, Qing X, Ohnmacht J, Bertacchi M, Jarazo J, Ignac T, Monzel AS, Gonzalez-Cano L, Krüger R, Sauter T, Studer M, de Almeida LP, Tronstad KJ, Sinkkonen L, Skupin A, Schwamborn JC. The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Rep 2021; 37:109864. [PMID: 34686322 DOI: 10.1016/j.celrep.2021.109864] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.
Collapse
Affiliation(s)
- Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Deborah Gérard
- Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Paul M A Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Emanuel Berger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Lisa M Smits
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Xiaobing Qing
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | | | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Tomasz Ignac
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg; Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Thomas Sauter
- Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, 06108 Nice, France
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Lasse Sinkkonen
- Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Center for Research of Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg.
| |
Collapse
|
15
|
Chang KH, Huang CY, Ou-Yang CH, Ho CH, Lin HY, Hsu CL, Chen YT, Chou YC, Chen YJ, Chen Y, Lin JL, Wang JK, Lin PW, Lin YR, Lin MH, Tseng CK, Lin CH. In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation. Stem Cell Res Ther 2021; 12:508. [PMID: 34551822 PMCID: PMC8456557 DOI: 10.1186/s13287-021-02585-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background The c.G6055A (p.G2019S) mutation in leucine-rich repeat kinase 2 (LRRK2) is the most prevalent genetic cause of Parkinson’s disease (PD). CRISPR/Cas9-mediated genome editing by homology-directed repair (HDR) has been applied to correct the mutation but may create small insertions and deletions (indels) due to double-strand DNA breaks. Adenine base editors (ABEs) could convert targeted A·T to G·C in genomic DNA without double-strand breaks. However, the correction efficiency of ABE in LRRK2 c.G6055A (p.G2019S) mutation remains unknown yet. This study aimed to compare the mutation correction efficiencies and off-target effects between HDR and ABEs in induced pluripotent stem cells (iPSCs) carrying LRRK2 c.G6055A (p.G2019S) mutation. Methods A set of mutation-corrected isogenic lines by editing the LRRK2 c.G6055A (p.G2019S) mutation in a PD patient-derived iPSC line using HDR or ABE were established. The mutation correction efficacies, off-target effects, and indels between HDR and ABE were compared. Comparative transcriptomic and proteomic analyses between the LRRK2 p.G2019S iPSCs and isogenic control cells were performed to identify novel molecular targets involved in LRRK2-parkinsonism pathways. Results ABE had a higher correction rate (13/53 clones, 24.5%) than HDR (3/47 clones, 6.4%). Twenty-seven HDR clones (57.4%), but no ABE clones, had deletions, though 14 ABE clones (26.4%) had off-target mutations. The corrected isogenic iPSC-derived dopaminergic neurons exhibited reduced LRRK2 kinase activity, decreased phospho-α-synuclein expression, and mitigated neurite shrinkage and apoptosis. Comparative transcriptomic and proteomic analysis identified different gene expression patterns in energy metabolism, protein degradation, and peroxisome proliferator-activated receptor pathways between the mutant and isogenic control cells. Conclusions The results of this study envision that ABE could directly correct the pathogenic mutation in iPSCs for reversing disease-related phenotypes in neuropathology and exploring novel pathophysiological targets in PD.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Cheng-Yen Huang
- The First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsin Ou-Yang
- Department of Neurology, National Taiwan University Hospital and School of Medicine, Taipei, 100, Taiwan
| | - Chang-Han Ho
- Department of Neurology, National Taiwan University Hospital and School of Medicine, Taipei, 100, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital and School of Medicine, Taipei, 100, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Jing Chen
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Ying Chen
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Jia-Li Lin
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Ji-Kuan Wang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Ru Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Kang Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital and School of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
16
|
Seutin V. Electrophysiological Quality Control of Human Dopaminergic Neurons: Are We Doing Enough? Front Cell Neurosci 2021; 15:715273. [PMID: 34483841 PMCID: PMC8414165 DOI: 10.3389/fncel.2021.715273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincent Seutin
- Laboratory of Neurophysiology, GIGA Neurosciences, Liège University, Liège, Belgium
| |
Collapse
|
17
|
Calamini B, Geyer N, Huss-Braun N, Bernhardt A, Harsany V, Rival P, Cindhuchao M, Hoffmann D, Gratzer S. Development of a physiologically relevant and easily scalable LUHMES cell-based model of G2019S LRRK2-driven Parkinson's disease. Dis Model Mech 2021; 14:dmm048017. [PMID: 34114604 PMCID: PMC8214734 DOI: 10.1242/dmm.048017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is a fatal neurodegenerative disorder that is primarily caused by the degeneration and loss of dopaminergic neurons of the substantia nigra in the ventral midbrain. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset PD identified to date, with G2019S being the most frequent LRRK2 mutation, which is responsible for up to 1-2% of sporadic PD and up to 6% of familial PD cases. As no treatment is available for this devastating disease, developing new therapeutic strategies is of foremost importance. Cellular models are commonly used for testing novel potential neuroprotective compounds. However, current cellular PD models either lack physiological relevance to dopaminergic neurons or are too complex and costly for scaling up the production process and for screening purposes. In order to combine biological relevance and throughput, we have developed a PD model in Lund human mesencephalic (LUHMES) cell-derived dopaminergic neurons by overexpressing wild-type (WT) and G2019S LRRK2 proteins. We show that these cells can differentiate into dopaminergic-like neurons and that expression of mutant LRRK2 causes a range of different phenotypes, including reduced nuclear eccentricity, altered mitochondrial and lysosomal morphologies, and increased dopaminergic cell death. This model could be used to elucidate G2019S LRRK2-mediated dopaminergic neural dysfunction and to identify novel molecular targets for disease intervention. In addition, our model could be applied to high-throughput and phenotypic screenings for the identification of novel PD therapeutics.
Collapse
Affiliation(s)
- Barbara Calamini
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Nathalie Geyer
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Nathalie Huss-Braun
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Annie Bernhardt
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Véronique Harsany
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Pierrick Rival
- BioTherapeutics/e-Biology - Bioinformatics, Sanofi Biologics Research, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - May Cindhuchao
- Molecular Screening Technology, Sanofi Biologics Research, 270 Albany Street, Cambridge, MA 02139, USA
| | - Dietmar Hoffmann
- Molecular Screening Technology, Sanofi Biologics Research, 270 Albany Street, Cambridge, MA 02139, USA
| | - Sabine Gratzer
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| |
Collapse
|
18
|
Ma SX, Lim SB. Single-Cell RNA Sequencing in Parkinson's Disease. Biomedicines 2021; 9:368. [PMID: 33916045 PMCID: PMC8066089 DOI: 10.3390/biomedicines9040368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have enhanced the understanding of the molecular pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Nonetheless, their application in PD has been limited due mainly to the technical challenges resulting from the scarcity of postmortem brain tissue and low quality associated with RNA degradation. Despite such challenges, recent advances in animals and human in vitro models that recapitulate features of PD along with sequencing assays have fueled studies aiming to obtain an unbiased and global view of cellular composition and phenotype of PD at the single-cell resolution. Here, we reviewed recent sc/snRNA-seq efforts that have successfully characterized diverse cell-type populations and identified cell type-specific disease associations in PD. We also examined how these studies have employed computational and analytical tools to analyze and interpret the rich information derived from sc/snRNA-seq. Finally, we highlighted important limitations and emerging technologies for addressing key technical challenges currently limiting the integration of new findings into clinical practice.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
19
|
Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sci 2021; 11:brainsci11030373. [PMID: 33799491 PMCID: PMC8000082 DOI: 10.3390/brainsci11030373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s Disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms, among which are bradykinesia, rigidity, tremor as well as mental symptoms such as dementia. The underlying cause of Parkinson disease is degeneration of dopaminergic neurons. It has been challenging to develop an efficient animal model to accurately represent the complex phenotypes found with PD. However, it has become possible to recapitulate the myriad of phenotypes underlying the PD pathology by using human induced pluripotent stem cell (iPSC) technology. Patient-specific iPSC-derived dopaminergic neurons are available and present an opportunity to study many aspects of the PD phenotypes in a dish. In this review, we report the available data on iPSC-derived neurons derived from PD patients with identified gene mutations. Specifically, we will report on the key phenotypes of the generated iPSC-derived neurons from PD patients with different genetic background. Furthermore, we discuss the relationship these cellular phenotypes have to PD pathology and future challenges and prospects for iPSC modelling and understanding of the pathogenesis of PD.
Collapse
|
20
|
Bono F, Mutti V, Devoto P, Bolognin S, Schwamborn JC, Missale C, Fiorentini C. Impaired dopamine D3 and nicotinic acetylcholine receptor membrane localization in iPSCs-derived dopaminergic neurons from two Parkinson's disease patients carrying the LRRK2 G2019S mutation. Neurobiol Aging 2020; 99:65-78. [PMID: 33422895 DOI: 10.1016/j.neurobiolaging.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) are the most common genetic determinants of Parkinson's disease (PD), with the G2019S accounting for about 3% of PD cases. LRRK2 regulates various cellular processes, including vesicle trafficking that is crucial for receptor localization at the plasma membrane. In this study, induced pluripotent stem cells derived from 2 PD patients bearing the G2019S LRRK2 kinase activating mutation were used to generate neuronal cultures enriched in dopaminergic neurons. The results show that mutant LRRK2 prevents the membrane localization of both the dopamine D3 receptors (D3R) and the nicotinic acetylcholine receptors (nAChR) and the formation of the D3R-nAChR heteromer, a molecular unit crucial for promoting neuronal homeostasis and preserving dopaminergic neuron health. Interestingly, D3R and nAChR as well as the corresponding heteromer membrane localization were rescued by inhibiting the abnormally increased kinase activity. Thus, the altered membrane localization of the D3R-nAChR heteromer associated with mutation in LRRK2 might represent a pre-degenerative feature of dopaminergic neurons contributing to the special vulnerability of this neuronal population.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; "C. Golgi" Women Health Center, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
21
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
22
|
Luo F, Luo S, Qian W, Zhang L, Chen C, Xu M, Wang G, Wang Z, Wang J, Wang W. Developmental deficits and early signs of neurodegeneration revealed by PD patient derived dopamine neurons. Stem Cell Res 2020; 49:102027. [PMID: 33059129 DOI: 10.1016/j.scr.2020.102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting millions of elder people due to the degeneration of dopamine neurons in the striatum and substantia nigra. The clinical manifestations of PD include tremor, rigidity, bradykinesia and postural instability. Studying PD is challenging due to two obstacles: 1) disease models such as primary neurons or animal models usually couldn't recapitulate the disease phenotype, and 2) accessibility of human autopsied brain samples is very limited if not impossible. Induced pluripotent stem cells (iPSCs)-derived neuronal cells from patients emerge as an ideal in vitro model for disease modeling and drug development. Here we describe a cell density-dependent method for preparing functional hiPSC-derived dopamine neurons (iDAs) with ~90% purity (TH-positive cells). iDAs derived from PD patient exhibit the disease-related phenotypes, for example, slowed morphogenesis, reduced dopamine release, impaired mitochondrial function, and α-synuclein accumulation as early as 35 days after induction. Furthermore, we found that the effects of cell density are different between iDA development stages, whereas high cell density increases stress for early neural progenitor cells (NPCs), but are neural-protective for mature iDAs, high density also favors morphogenesis. Hence, using stage and density-dependent strategies we can obtain high quality iDAs, which are critical for disease modeling, drug development and cell replacement therapy.
Collapse
Affiliation(s)
- Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Sushan Luo
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjing Qian
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Meimei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangling Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhongfeng Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
23
|
Sonninen TM, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, Puttonen K, Naumenko N, Goldsteins G, Laham-Karam N, Lehtonen M, Tavi P, Koistinaho J, Lehtonen Š. Metabolic alterations in Parkinson's disease astrocytes. Sci Rep 2020; 10:14474. [PMID: 32879386 PMCID: PMC7468111 DOI: 10.1038/s41598-020-71329-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
In Parkinson`s disease (PD), the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta is associated with Lewy bodies arising from the accumulation of alpha-synuclein protein which leads ultimately to movement impairment. While PD has been considered a disease of the DA neurons, a glial contribution, in particular that of astrocytes, in PD pathogenesis is starting to be uncovered. Here, we report findings from astrocytes derived from induced pluripotent stem cells of LRRK2 G2019S mutant patients, with one patient also carrying a GBA N370S mutation, as well as healthy individuals. The PD patient astrocytes manifest the hallmarks of the disease pathology including increased expression of alpha-synuclein. This has detrimental consequences, resulting in altered metabolism, disturbed Ca2+ homeostasis and increased release of cytokines upon inflammatory stimulation. Furthermore, PD astroglial cells manifest increased levels of polyamines and polyamine precursors while lysophosphatidylethanolamine levels are decreased, both of these changes have been reported also in PD brain. Collectively, these data reveal an important role for astrocytes in PD pathology and highlight the potential of iPSC-derived cells in disease modeling and drug discovery.
Collapse
Affiliation(s)
- Tuuli-Maria Sonninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Marja Koskuvi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Anastasia Shakirzyanova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Katja Puttonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nikolay Naumenko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Pasi Tavi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland.
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
24
|
Rideout HJ, Chartier-Harlin MC, Fell MJ, Hirst WD, Huntwork-Rodriguez S, Leyns CEG, Mabrouk OS, Taymans JM. The Current State-of-the Art of LRRK2-Based Biomarker Assay Development in Parkinson's Disease. Front Neurosci 2020; 14:865. [PMID: 33013290 PMCID: PMC7461933 DOI: 10.3389/fnins.2020.00865] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the LRRK2 gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement. Among these are levels of LRRK2, phosphorylation of LRRK2 itself, either by other kinases or via auto-phosphorylation, its in vitro kinase activity, or phosphorylation of downstream substrates. This is advantageous on many levels, in that multiple indices of elevated kinase activity clearly strengthen the rationale for targeting this kinase with novel therapeutic candidates, and provide alternate markers of activation in certain tissues or biofluids for which specific measures are not detectable. However, this can also complicate interpretation of findings from different studies using disparate measures. In this review we discuss the current state of LRRK2-focused biomarkers, the advantages and disadvantages of the current pallet of outcome measures, the gaps that need to be addressed, and the priorities that the field has defined.
Collapse
Affiliation(s)
- Hardy J. Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | | | | | | | | | | | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
25
|
Zhao Y, Keshiya S, Perera G, Schramko L, Halliday GM, Dzamko N. LRRK2 kinase inhibitors reduce alpha-synuclein in human neuronal cell lines with the G2019S mutation. Neurobiol Dis 2020; 144:105049. [PMID: 32800998 DOI: 10.1016/j.nbd.2020.105049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022] Open
Abstract
Kinase activating missense mutations in leucine-rich repeat kinase 2 (LRRK2) predispose to Parkinson's disease. Consequently, there is much interest in delineating LRRK2 biology, both in terms of gaining further insight into disease causes, and also determining whether or not LRRK2 is a potential Parkinson's disease therapeutic target. Indeed, many potent and selective small molecule inhibitors of LRRK2 have been developed and are currently being used for pre-clinical testing in cell and animal models. In the current study, we have obtained fibroblasts from four subjects with the common LRRK2 mutation, G2019S. Fibroblasts were reprogrammed to induced pluripotent stem cells and then to neural stem cells and ultimately neurons. Two clones for each of the human neural cell lines were then chronically treated with and without either of two distinct inhibitors of LRRK2 and effects on toxicity and Parkinson's disease related phenotypes were assessed. Cells with the G2019S mutation had a propensity to accumulate the pathological Parkinson's disease protein α-synuclein. Moreover, α-synuclein accumulation in the G2019S cells was significantly reduced with both LRRK2 inhibitors in seven of the eight cell lines studied. LRRK2 inhibitors also improved the nuclear morphology of G2019S cells and impacted on measures of autophagy and endoplasmic reticulum stress. Lastly, we did not find evidence of inhibitor toxicity under the chronic treatment conditions. These results add to evidence that LRRK2 inhibitors may have utility in the treatment of Parkinson's disease via reducing α-synuclein.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Shikara Keshiya
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Gayathri Perera
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Lauren Schramko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Nicolas Dzamko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
26
|
Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells. NPJ PARKINSONS DISEASE 2020; 6:8. [PMID: 32352027 PMCID: PMC7181694 DOI: 10.1038/s41531-020-0110-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurological disorder and has been the focus of intense investigations to understand its etiology and progression, but it still lacks a cure. Modeling diseases of the central nervous system in vitro with human induced pluripotent stem cells (hiPSC) is still in its infancy but has the potential to expedite the discovery and validation of new treatments. Here, we discuss the interplay between genetic predispositions and midbrain neuronal impairments in people living with PD. We first summarize the prevalence of causal Parkinson's genes and risk factors reported in 74 epidemiological and genomic studies. We then present a meta-analysis of 385 hiPSC-derived neuronal lines from 67 recent independent original research articles, which point towards specific impairments in neurons from Parkinson's patients, within the context of genetic predispositions. Despite the heterogeneous nature of the disease, current iPSC models reveal converging molecular pathways underlying neurodegeneration in a range of familial and sporadic forms of Parkinson's disease. Altogether, consolidating our understanding of robust cellular phenotypes across genetic cohorts of Parkinson's patients may guide future personalized drug screens in preclinical research.
Collapse
|
27
|
Hu X, Mao C, Fan L, Luo H, Hu Z, Zhang S, Yang Z, Zheng H, Sun H, Fan Y, Yang J, Shi C, Xu Y. Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Stem Cells Int 2020; 2020:1061470. [PMID: 32256606 PMCID: PMC7091557 DOI: 10.1155/2020/1061470] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The molecular mechanisms of PD at the cellular level involve oxidative stress, mitochondrial dysfunction, autophagy, axonal transport, and neuroinflammation. Induced pluripotent stem cells (iPSCs) with patient-specific genetic background are capable of directed differentiation into dopaminergic neurons. Cell models based on iPSCs are powerful tools for studying the molecular mechanisms of PD. The iPSCs used for PD studies were mainly from patients carrying mutations in synuclein alpha (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PARK2), cytoplasmic protein sorting 35 (VPS35), and variants in glucosidase beta acid (GBA). In this review, we summarized the advances in molecular mechanisms of Parkinson's disease using iPSC models.
Collapse
Affiliation(s)
- Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| |
Collapse
|
28
|
Vermilyea SC, Babinski A, Tran N, To S, Guthrie S, Kluss JH, Schmidt JK, Wiepz GJ, Meyer MG, Murphy ME, Cookson MR, Emborg ME, Golos TG. In Vitro CRISPR/Cas9-Directed Gene Editing to Model LRRK2 G2019S Parkinson's Disease in Common Marmosets. Sci Rep 2020; 10:3447. [PMID: 32103062 PMCID: PMC7044232 DOI: 10.1038/s41598-020-60273-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) G2019S is a relatively common mutation, associated with 1-3% of Parkinson's disease (PD) cases worldwide. G2019S is hypothesized to increase LRRK2 kinase activity. Dopaminergic neurons derived from induced pluripotent stem cells of PD patients carrying LRRK2 G2019S are reported to have several phenotypes compared to wild type controls, including increased activated caspase-3 and reactive oxygen species (ROS), autophagy dysfunction, and simplification of neurites. The common marmoset is envisioned as a candidate nonhuman primate species for comprehensive modeling of genetic mutations. Here, we report our successful use of CRISPR/Cas9 with repair template-mediated homology directed repair to introduce the LRRK2 G2019S mutation, as well as a truncation of the LRRK2 kinase domain, into marmoset embryonic and induced pluripotent stem cells. We found that, similar to humans, marmoset LRRK2 G2019S resulted in elevated kinase activity. Phenotypic evaluation after dopaminergic differentiation demonstrated LRRK2 G2019S-mediated increased intracellular ROS, decreased neuronal viability, and reduced neurite complexity. Importantly, these phenotypes were not observed in clones with LRRK2 truncation. These results demonstrate the feasibility of inducing monogenic mutations in common marmosets and support the use of this species for generating a novel genetic-based model of PD that expresses physiological levels of LRRK2 G2019S.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Alexander Babinski
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nina Tran
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha To
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott Guthrie
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan E Murphy
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Departments of Comparative Biosciences and Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Calogero AM, Mazzetti S, Pezzoli G, Cappelletti G. Neuronal microtubules and proteins linked to Parkinson's disease: a relevant interaction? Biol Chem 2020; 400:1099-1112. [PMID: 31256059 DOI: 10.1515/hsz-2019-0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Neuronal microtubules are key determinants of cell morphology, differentiation, migration and polarity, and contribute to intracellular trafficking along axons and dendrites. Microtubules are strictly regulated and alterations in their dynamics can lead to catastrophic effects in the neuron. Indeed, the importance of the microtubule cytoskeleton in many human diseases is emerging. Remarkably, a growing body of evidence indicates that microtubule defects could be linked to Parkinson's disease pathogenesis. Only a few of the causes of the progressive neuronal loss underlying this disorder have been identified. They include gene mutations and toxin exposure, but the trigger leading to neurodegeneration is still unknown. In this scenario, the evidence showing that mutated proteins in Parkinson's disease are involved in the regulation of the microtubule cytoskeleton is intriguing. Here, we focus on α-Synuclein, Parkin and Leucine-rich repeat kinase 2 (LRRK2), the three main proteins linked to the familial forms of the disease. The aim is to dissect their interaction with tubulin and microtubules in both physiological and pathological conditions, in which these proteins are overexpressed, mutated or absent. We highlight the relevance of such an interaction and suggest that these proteins could trigger neurodegeneration via defective regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Alessandra M Calogero
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO", via Bignami 1, I-20133 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, via Balzaretti, I-20133 Milan, Italy
| |
Collapse
|
30
|
Simmnacher K, Lanfer J, Rizo T, Kaindl J, Winner B. Modeling Cell-Cell Interactions in Parkinson's Disease Using Human Stem Cell-Based Models. Front Cell Neurosci 2020; 13:571. [PMID: 32009903 PMCID: PMC6978672 DOI: 10.3389/fncel.2019.00571] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is the most frequently occurring movement disorder, with an increasing incidence due to an aging population. For many years, the post-mortem brain was regarded as the gold standard for the analysis of the human pathology of this disease. However, modern stem cell technologies, including the analysis of patient-specific neurons and glial cells, have opened up new avenues for dissecting the pathologic mechanisms of PD. Most data on morphological changes, such as cell death or changes in neurite complexity, or functional deficits were acquired in 2D and few in 3D models. This review will examine the prerequisites for human disease modeling in PD, covering the generation of midbrain neurons, 3D organoid midbrain models, the selection of controls including genetically engineered lines, and the study of cell-cell interactions. We will present major disease phenotypes in human in vitro models of PD, focusing on those phenotypes that have been detected in genetic and sporadic PD models. An additional point covered in this review will be the use of induced pluripotent stem cell (iPSC)-derived technologies to model cell-cell interactions in PD.
Collapse
Affiliation(s)
- Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Lanfer
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Marotta N, Kim S, Krainc D. Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to drug discovery. Expert Opin Drug Discov 2020; 15:427-441. [PMID: 31899983 DOI: 10.1080/17460441.2020.1703671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Parkinson's disease is a devastating neurodegenerative disorder preferentially involving loss of dopaminergic neurons in the substantia nigra, leading to typical motor symptoms. While there are still no therapeutics to modify disease course, recent work using induced pluripotent stem cell (iPSC) and 3D brain organoid models have provided further insight into Parkinson's disease pathogenesis and potential therapeutic targets.Areas covered: This review highlights the generation of iPSC neurons and neural organoids as models for studying Parkinson's disease. It further discusses the recent work using patient-derived neurons from both familial and sporadic forms of Parkinson's to study disease pathogenic phenotypes and pathways. It additionally provides an evaluation of iPSC neurons and organoid models for therapeutic development in Parkinson's.Expert opinion: The use of Parkinson's disease patient-derived neurons and organoids provides us with the exciting opportunity to directly investigate pathogenic mechanisms and test drug compounds in human neurons. Future studies will involve generating more sophisticated models of brain organoids, studying neuronal pathways using larger patient cohorts, and routinely assessing therapeutics in these models.
Collapse
Affiliation(s)
- Nick Marotta
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
32
|
Bogetofte H, Jensen P, Okarmus J, Schmidt SI, Agger M, Ryding M, Nørregaard P, Fenger C, Zeng X, Graakjær J, Ryan BJ, Wade-Martins R, Larsen MR, Meyer M. Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiol Dis 2019; 132:104581. [DOI: 10.1016/j.nbd.2019.104581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
|
33
|
Ren C, Wang F, Guan LN, Cheng XY, Zhang CY, Geng DQ, Liu CF. A compendious summary of Parkinson's disease patient-derived iPSCs in the first decade. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:685. [PMID: 31930086 PMCID: PMC6944564 DOI: 10.21037/atm.2019.11.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
The number of Parkinson's disease (PD) patients increases with aging, which brings heavy burden to families and society. The emergence of patient-derived induced pluripotent stem cells (iPSCs) has brought hope to the current situation of lacking new breakthroughs in diagnosis and treatment of PD. In this article, we reviewed and analyzed the current researches related to PD patient-derived iPSCs, in order to provide solid theoretical basis for future study of PD. In 2008, successful iPSCs derived from PD patients were reported. The current iPSCs research in PD mostly focused on the establishment of specific iPSCs models of PD patients carrying susceptible genes. The main source of PD patient-derived iPSCs is skin fibroblasts and the mainstream reprogramming methodology is the mature "four-factor" method, which introduces four totipotent correlation factors Oct4, Sox2, Klf4 and c-Myc into somatic cells. The main sources of iPSCs are patients with non-pedigrees and there have been no studies involving both PD patients and unaffected carriers within the same family. Most of the existing studies of PD patient-derived iPSCs started with the induction method for obtaining dopaminergic neurons in the first instance, but therapeutic applications are being increased. Although it is not the ultimate panacea, and there are still some unsolved problems (e.g., whether the mutated genes should be corrected or not), a better understanding of iPSCs may be a good gift for both PD patients and doctors due to their advantages in diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Li-Na Guan
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Neurosurgical Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Xiao-Yu Cheng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Cai-Yi Zhang
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - De-Qin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Kim J, Daadi MM. Non-cell autonomous mechanism of Parkinson's disease pathology caused by G2019S LRRK2 mutation in Ashkenazi Jewish patient: Single cell analysis. Brain Res 2019; 1722:146342. [PMID: 31330122 PMCID: PMC8152577 DOI: 10.1016/j.brainres.2019.146342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the loss of the midbrain dopaminergic neurons, which leads to impaired motor and cognitive functions. PD is predominantly an idiopathic disease, however about 5% of cases are linked to hereditary mutations. The most common mutation in both familial and sporadic PD is the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2) with high prevalence in Ashkenazi Jewish patients and in North African Berber and Arab patients. It is still not fully understood how this mutation leads to PD pathology. In this study, we derived induced pluripotent stem cells (iPSCs) from an Ashkenazi Jewish patient with G2019S LRRK2 mutation to isolate self-renewable multipotent neural stem cells (NSCs) and to model this form of PD in vitro. To investigate the cellular diversity and disease pathology in the NSCs, we used single cell RNA-seq transcriptomic profiling. The evidence suggests there are three subpopulations within the NSCs: a committed neuronal population, intermediate stage population and undifferentiated stage population. Unbiased single-cell transcriptomic analysis revealed differential expression and dysregulation of genes involved in PD pathology. The significantly affected genes were involved in mitochondrial function, DNA repair, protein degradation, oxidative stress, lysosome biogenesis, ubiquitination, endosome function, autophagy and mitochondrial quality control. The results suggest that G2019S LRRK2 mutation may affect multiple cell types in a non-cell autonomous mechanism of PD pathology and that unbiased single-cell transcriptomics holds promise for personalized medicine.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Department of Cell Systems & Anatomy, TX, United States
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Department of Cell Systems & Anatomy, TX, United States; Department of Radiology, University of Texas Health Science Center at San Antonio, TX, United States.
| |
Collapse
|
35
|
Sommer A, Marxreiter F, Krach F, Fadler T, Grosch J, Maroni M, Graef D, Eberhardt E, Riemenschneider MJ, Yeo GW, Kohl Z, Xiang W, Gage FH, Winkler J, Prots I, Winner B. Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson's Disease. Cell Stem Cell 2019; 23:123-131.e6. [PMID: 29979986 DOI: 10.1016/j.stem.2018.06.015] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of midbrain neurons (MBNs). Recent evidence suggests contribution of the adaptive immune system in PD. Here, we show a role for human T lymphocytes as cell death inducers of induced pluripotent stem cell (iPSC)-derived MBNs in sporadic PD. Higher Th17 frequencies were found in the blood of PD patients and increased numbers of T lymphocytes were detected in postmortem PD brain tissues. We modeled this finding using autologous co-cultures of activated T lymphocytes and iPSC-derived MBNs of sporadic PD patients and controls. After co-culture with T lymphocytes or the addition of IL-17, PD iPSC-derived MBNs underwent increased neuronal death driven by upregulation of IL-17 receptor (IL-17R) and NFκB activation. Blockage of IL-17 or IL-17R, or the addition of the FDA-approved anti-IL-17 antibody, secukinumab, rescued the neuronal death. Our findings indicate a critical role for IL-17-producing T lymphocytes in sporadic PD.
Collapse
Affiliation(s)
- Annika Sommer
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; IZKF Junior Research Group 3 and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Tanja Fadler
- IZKF Junior Research Group 3 and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Janina Grosch
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michele Maroni
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Anesthesiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Daniela Graef
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; IZKF Junior Research Group 3 and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Esther Eberhardt
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Anesthesiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Zacharias Kohl
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wei Xiang
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jürgen Winkler
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; IZKF Junior Research Group 3 and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; IZKF Junior Research Group 3 and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
36
|
Raina A, Mahajani S, Bähr M, Kügler S. Neuronal Trans-differentiation by Transcription Factors Ascl1 and Nurr1: Induction of a Dopaminergic Neurotransmitter Phenotype in Cortical GABAergic Neurons. Mol Neurobiol 2019; 57:249-260. [PMID: 31317490 DOI: 10.1007/s12035-019-01701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Neurons with a desired neurotransmitter phenotype can be differentiated from induced pluripotent stem cells or from somatic cells only through tedious protocols with relatively low yield. Readily available cortical neurons isolated from embryonic rat brain, which have already undergone a complete neuronal differentiation process, might serve as alternative template source. These cultures consist of 85% glutamatergic and 15% GABAergic neurons, and we attempted to trans-differentiate them into dopaminergic neurons. Transcription factors Nurr1, Lmx1A and Pitx3, essential determinants of a dopaminergic cell fate during CNS development, were not sufficient to induce tyrosine hydroxylase expression in a significant number of cells. Combining Nurr1 with the generic neuronal differentiator and re-programming factor Ascl1, however, resulted in generation of neurons which express dopaminergic markers TH, AADC, VMAT2 and DAT. Only neurons of GABAergic phenotype could be trans-differentiated towards a dopaminergic neurotransmitter phenotype, while for glutamatergic neurons, this process proved to be neurotoxic. Intriguingly, GABAergic neurons isolated from embryonal midbrain could not be trans-differentiated into dopaminergic neurons by Ascl1 and Nurr1. Thus, in principle, post-mitotic embryonal neurons can serve as templates for neurons with a desired neurotransmitter phenotype. However, neurotransmitter phenotype plasticity critically depends on the differentiation history of the template neurons, which can result in relatively low yields of dopaminergic neurons.
Collapse
Affiliation(s)
- Anupam Raina
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sameehan Mahajani
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany. .,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
37
|
Connor-Robson N, Booth H, Martin JG, Gao B, Li K, Doig N, Vowles J, Browne C, Klinger L, Juhasz P, Klein C, Cowley SA, Bolam P, Hirst W, Wade-Martins R. An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2. Neurobiol Dis 2019; 127:512-526. [PMID: 30954703 PMCID: PMC6597903 DOI: 10.1016/j.nbd.2019.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Mutations in LRRK2 are the most common cause of autosomal dominant Parkinson's disease, and the relevance of LRRK2 to the sporadic form of the disease is becoming ever more apparent. It is therefore essential that studies are conducted to improve our understanding of the cellular role of this protein. Here we use multiple models and techniques to identify the pathways through which LRRK2 mutations may lead to the development of Parkinson's disease. METHODS A novel integrated transcriptomics and proteomics approach was used to identify pathways that were significantly altered in iPSC-derived dopaminergic neurons carrying the LRRK2-G2019S mutation. Western blotting, immunostaining and functional assays including FM1-43 analysis of synaptic vesicle endocytosis were performed to confirm these findings in iPSC-derived dopaminergic neuronal cultures carrying either the LRRK2-G2019S or the LRRK2-R1441C mutation, and LRRK2 BAC transgenic rats, and post-mortem human brain tissue from LRRK2-G2019S patients. RESULTS Our integrated -omics analysis revealed highly significant dysregulation of the endocytic pathway in iPSC-derived dopaminergic neurons carrying the LRRK2-G2019S mutation. Western blot analysis confirmed that key endocytic proteins including endophilin I-III, dynamin-1, and various RAB proteins were downregulated in these cultures and in cultures carrying the LRRK2-R1441C mutation, compared with controls. We also found changes in expression of 25 RAB proteins. Changes in endocytic protein expression led to a functional impairment in clathrin-mediated synaptic vesicle endocytosis. Further to this, we found that the endocytic pathway was also perturbed in striatal tissue of aged LRRK2 BAC transgenic rats overexpressing either the LRRK2 wildtype, LRRK2-R1441C or LRRK2-G2019S transgenes. Finally, we found that clathrin heavy chain and endophilin I-III levels are increased in human post-mortem tissue from LRRK2-G2019S patients compared with controls. CONCLUSIONS Our study demonstrates extensive alterations across the endocytic pathway associated with LRRK2 mutations in iPSC-derived dopaminergic neurons and BAC transgenic rats, as well as in post-mortem brain tissue from PD patients carrying a LRRK2 mutation. In particular, we find evidence of disrupted clathrin-mediated endocytosis and suggest that LRRK2-mediated PD pathogenesis may arise through dysregulation of this process.
Collapse
Affiliation(s)
- Natalie Connor-Robson
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Heather Booth
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | - Natalie Doig
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.
| | - Jane Vowles
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.; Oxford Parkinson's Disease Centre (OPDC), Oxford, UK.
| | - Cathy Browne
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK..
| | - Laura Klinger
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | - Christine Klein
- Institute of Neurogenetics, University of Leubeck, Maria-Goeppert-Str. 1, 23562 Luebeck, Germany..
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.; Oxford Parkinson's Disease Centre (OPDC), Oxford, UK.
| | - Paul Bolam
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre (OPDC), Oxford, UK.
| | | | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Bomkamp C, Tripathy SJ, Bengtsson Gonzales C, Hjerling-Leffler J, Craig AM, Pavlidis P. Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes. PLoS Comput Biol 2019; 15:e1007113. [PMID: 31211786 PMCID: PMC6599125 DOI: 10.1371/journal.pcbi.1007113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 05/18/2019] [Indexed: 12/31/2022] Open
Abstract
In order to further our understanding of how gene expression contributes to key functional properties of neurons, we combined publicly accessible gene expression, electrophysiology, and morphology measurements to identify cross-cell type correlations between these data modalities. Building on our previous work using a similar approach, we distinguished between correlations which were "class-driven," meaning those that could be explained by differences between excitatory and inhibitory cell classes, and those that reflected graded phenotypic differences within classes. Taking cell class identity into account increased the degree to which our results replicated in an independent dataset as well as their correspondence with known modes of ion channel function based on the literature. We also found a smaller set of genes whose relationships to electrophysiological or morphological properties appear to be specific to either excitatory or inhibitory cell types. Next, using data from PatchSeq experiments, allowing simultaneous single-cell characterization of gene expression and electrophysiology, we found that some of the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. In summary, we have identified a number of relationships between gene expression, electrophysiology, and morphology that provide testable hypotheses for future studies.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver BC, Canada
| | - Shreejoy J. Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, Canada
| | - Carolina Bengtsson Gonzales
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann Marie Craig
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
39
|
Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Med Chem 2019; 11:1305-1322. [DOI: 10.4155/fmc-2018-0520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most neurodegenerative diseases are characterized by a complex and mostly still unresolved pathology. This fact, together with the lack of reliable disease models, has precluded the development of effective therapies counteracting the disease progression. The advent of human pluripotent stem cells has revolutionized the field allowing the generation of disease-relevant neural cell types that can be used for disease modeling, drug screening and, possibly, cell transplantation purposes. In this Review, we discuss the applications of human pluripotent stem cells, the development of efficient protocols for the derivation of the different neural cells and their applicability for robust in vitro disease modeling and drug screening platforms for most common neurodegenerative conditions.
Collapse
|
40
|
Calatayud C, Carola G, Fernández-Carasa I, Valtorta M, Jiménez-Delgado S, Díaz M, Soriano-Fradera J, Cappelletti G, García-Sancho J, Raya Á, Consiglio A. CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons. Sci Rep 2019; 9:6811. [PMID: 31048719 PMCID: PMC6497635 DOI: 10.1038/s41598-019-43080-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/10/2019] [Indexed: 01/03/2023] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are a powerful tool to investigate the molecular mechanisms underlying Parkinson’s disease (PD), and might provide novel platforms for systematic drug screening. Several strategies have been developed to generate iPSC-derived tyrosine hydroxylase (TH)-positive dopaminergic neurons (DAn), the clinically relevant cell type in PD; however, they often result in mixed neuronal cultures containing only a small proportion of TH-positive DAn. To overcome this limitation, we used CRISPR/Cas9-based editing to generate a human iPSC line expressing a fluorescent protein (mOrange) knocked-in at the last exon of the TH locus. After differentiation of the TH-mOrange reporter iPSC line, we confirmed that mOrange expression faithfully mimicked endogenous TH expression in iPSC-derived DAn. We also employed calcium imaging techniques to determine the intrinsic functional differences between dopaminergic and non-dopaminergic ventral midbrain neurons. Crucially, the brightness of mOrange allowed direct visualization of TH-expressing cells in heterogeneous cultures, and enabled us to isolate live mOrange-positive cells through fluorescence-activated cell sorting, for further differentiation. This technique, coupled to refined imaging and data processing tools, could advance the investigation of PD pathogenesis and might offer a platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Giulia Carola
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Marco Valtorta
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.,Department of Bioscience, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain
| | - Mònica Díaz
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain
| | - Jordi Soriano-Fradera
- Department of Condensed Matter Physics, University of Barcelona, Avinguda de la Diagonal 645, 08028, Barcelona, Spain
| | - Graziella Cappelletti
- Department of Bioscience, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid, Calle Sanz y Forés 3, 47003, Valladolid, Spain
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain. .,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain. .,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain. .,Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy.
| |
Collapse
|
41
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
42
|
Xue Y, Zhan X, Sun S, Karuppagounder SS, Xia S, Dawson VL, Dawson TM, Laterra J, Zhang J, Ying M. Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Stem Cells Transl Med 2019; 8:112-123. [PMID: 30387318 PMCID: PMC6344911 DOI: 10.1002/sctm.18-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Proneural transcription factors (TFs) drive highly efficient differentiation of pluripotent stem cells to lineage-specific neurons. However, current strategies mainly rely on genome-integrating viruses. Here, we used synthetic mRNAs coding two proneural TFs (Atoh1 and Ngn2) to differentiate induced pluripotent stem cells (iPSCs) into midbrain dopaminergic (mDA) neurons. mRNAs coding Atoh1 and Ngn2 with defined phosphosite modifications led to higher and more stable protein expression, and induced more efficient neuron conversion, as compared to mRNAs coding wild-type proteins. Using these two modified mRNAs with morphogens, we established a 5-day protocol that can rapidly generate mDA neurons with >90% purity from normal and Parkinson's disease iPSCs. After in vitro maturation, these mRNA-induced mDA (miDA) neurons recapitulate key biochemical and electrophysiological features of primary mDA neurons and can provide high-content neuron cultures for drug discovery. Proteomic analysis of Atoh1-binding proteins identified the nonmuscle myosin II (NM-II) complex as a new binding partner of nuclear Atoh1. The NM-II complex, commonly known as an ATP-dependent molecular motor, binds more strongly to phosphosite-modified Atoh1 than the wild type. Blebbistatin, an NM-II complex antagonist, and bradykinin, an NM-II complex agonist, inhibited and promoted, respectively, the transcriptional activity of Atoh1 and the efficiency of miDA neuron generation. These findings established the first mRNA-driven strategy for efficient iPSC differentiation to mDA neurons. We further identified the NM-II complex as a positive modulator of Atoh1-driven neuron differentiation. The methodology described here will facilitate the development of mRNA-driven differentiation strategies for generating iPSC-derived progenies widely applicable to disease modeling and cell replacement therapy. Stem Cells Translational Medicine 2019;8:112&12.
Collapse
Affiliation(s)
- Yingchao Xue
- Department of Immunology, Research Center on Pediatric Development and DiseasesInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular BiologyBeijingPeople's Republic of China
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
| | - Xiping Zhan
- Department of Physiology and BiophysicsHoward UniversityWashingtonDistrict of ColumbiaUSA
| | - Shisheng Sun
- College of Life Sciences, Northwest UniversityXi'anPeople's Republic of China
| | - Senthilkumar S. Karuppagounder
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Adrienne Helis Malvin Medical Research FoundationNew OrleansLouisianaUSA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Valina L. Dawson
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Adrienne Helis Malvin Medical Research FoundationNew OrleansLouisianaUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ted M. Dawson
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Adrienne Helis Malvin Medical Research FoundationNew OrleansLouisianaUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and DiseasesInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular BiologyBeijingPeople's Republic of China
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
43
|
Weykopf B, Haupt S, Jungverdorben J, Flitsch LJ, Hebisch M, Liu G, Suzuki K, Belmonte JCI, Peitz M, Blaess S, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson's disease. Eur J Neurosci 2019; 49:561-589. [PMID: 30656775 PMCID: PMC7114274 DOI: 10.1111/ejn.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in cell reprogramming have enabled assessment of disease-related cellular traits in patient-derived somatic cells, thus providing a versatile platform for disease modeling and drug development. Given the limited access to vital human brain cells, this technology is especially relevant for neurodegenerative disorders such as Parkinson's disease (PD) as a tool to decipher underlying pathomechanisms. Importantly, recent progress in genome-editing technologies has provided an ability to analyze isogenic induced pluripotent stem cell (iPSC) pairs that differ only in a single genetic change, thus allowing a thorough assessment of the molecular and cellular phenotypes that result from monogenetic risk factors. In this review, we summarize the current state of iPSC-based modeling of PD with a focus on leucine-rich repeat kinase 2 (LRRK2), one of the most prominent monogenetic risk factors for PD linked to both familial and idiopathic forms. The LRRK2 protein is a primarily cytosolic multi-domain protein contributing to regulation of several pathways including autophagy, mitochondrial function, vesicle transport, nuclear architecture and cell morphology. We summarize iPSC-based studies that contributed to improving our understanding of the function of LRRK2 and its variants in the context of PD etiopathology. These data, along with results obtained in our own studies, underscore the multifaceted role of LRRK2 in regulating cellular homeostasis on several levels, including proteostasis, mitochondrial dynamics and regulation of the cytoskeleton. Finally, we expound advantages and limitations of reprogramming technologies for disease modeling and drug development and provide an outlook on future challenges and expectations offered by this exciting technology.
Collapse
Affiliation(s)
- Beatrice Weykopf
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
- Precision Neurology Program & Advanced Center for Parkinson's Disease ResearchHarvard Medical School and Brigham & Women's HospitalBostonMassachusetts
| | | | - Johannes Jungverdorben
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Memorial Sloan Kettering Cancer CenterNew York CityNew York
| | - Lea Jessica Flitsch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Matthias Hebisch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Guang‐Hui Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Keiichiro Suzuki
- Gene Expression LaboratoryThe Salk Institute for Biological StudiesLa JollaCalifornia
| | | | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Sandra Blaess
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Andreas Till
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| |
Collapse
|
44
|
The role of LRRK2 in cytoskeletal dynamics. Biochem Soc Trans 2018; 46:1653-1663. [PMID: 30467120 DOI: 10.1042/bst20180469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2), a complex kinase/GTPase mutated in Parkinson's disease, has been shown to physically and functionally interact with cytoskeletal-related components in different brain cells. Neurons greatly rely on a functional cytoskeleton for many homeostatic processes such as local and long-distance vesicle transport, synaptic plasticity, and dendrites/axons growth and remodeling. Here, we will review the available data linking LRRK2 and the cytoskeleton, and discuss how this may be functionally relevant for the well-established roles of LRRK2 in intracellular trafficking pathways and outgrowth of neuronal processes in health and disease conditions.
Collapse
|
45
|
Sison SL, Vermilyea SC, Emborg ME, Ebert AD. Using Patient-Derived Induced Pluripotent Stem Cells to Identify Parkinson's Disease-Relevant Phenotypes. Curr Neurol Neurosci Rep 2018; 18:84. [PMID: 30284665 DOI: 10.1007/s11910-018-0893-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting older individuals. The specific cause underlying dopaminergic (DA) neuron loss in the substantia nigra, a pathological hallmark of PD, remains elusive. Here, we highlight peer-reviewed reports using induced pluripotent stem cells (iPSCs) to model PD in vitro and discuss the potential disease-relevant phenotypes that may lead to a better understanding of PD etiology. Benefits of iPSCs are that they retain the genetic background of the donor individual and can be differentiated into specialized neurons to facilitate disease modeling. RECENT FINDINGS Mitochondrial dysfunction, oxidative stress, ER stress, and alpha-synuclein accumulation are common phenotypes observed in PD iPSC-derived neurons. New culturing technologies, such as directed reprogramming and midbrain organoids, offer innovative ways of investigating intraneuronal mechanisms of PD pathology. PD patient-derived iPSCs are an evolving resource to understand PD pathology and identify therapeutic targets.
Collapse
Affiliation(s)
- S L Sison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, BSB 409, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - S C Vermilyea
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - M E Emborg
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - A D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, BSB 409, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
46
|
Cobb MM, Ravisankar A, Skibinski G, Finkbeiner S. iPS cells in the study of PD molecular pathogenesis. Cell Tissue Res 2018; 373:61-77. [PMID: 29234887 PMCID: PMC5997490 DOI: 10.1007/s00441-017-2749-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and its pathogenic mechanisms are poorly understood. The majority of PD cases are sporadic but a number of genes are associated with familial PD. Sporadic and familial PD have many molecular and cellular features in common, suggesting some shared pathogenic mechanisms. Induced pluripotent stem cells (iPSCs) have been derived from patients harboring a range of different mutations of PD-associated genes. PD patient-derived iPSCs have been differentiated into relevant cell types, in particular dopaminergic neurons and used as a model to study PD. In this review, we describe how iPSCs have been used to improve our understanding of the pathogenesis of PD. We describe what cellular and molecular phenotypes have been observed in neurons derived from iPSCs harboring known PD-associated mutations and what common pathways may be involved.
Collapse
Affiliation(s)
- Melanie M Cobb
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Abinaya Ravisankar
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Gaia Skibinski
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department Physiology, University of California, San Francisco, CA, 94143, USA.
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
47
|
Sequential Application of Discrete Topographical Patterns Enhances Derivation of Functional Mesencephalic Dopaminergic Neurons from Human Induced Pluripotent Stem Cells. Sci Rep 2018; 8:9567. [PMID: 29934644 PMCID: PMC6014983 DOI: 10.1038/s41598-018-27653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s Disease is a progressive neurodegenerative disorder attributed to death of mesencephalic dopaminergic (DA) neurons. Pluripotent stem cells have great potential in the study for this late-onset disease, but acquirement of cells that are robust in quantity and quality is still technically demanding. Biophysical cues have been shown to direct stem cell fate, but the effect of different topographies in the lineage commitment and subsequent maturation stages of cells have been less examined. Using human induced pluripotent stem cells (iPSCs), we applied topographical patterns sequentially during differentiation stages and examined their ability to influence derivation yield and functionality of regionalized subtype-specific DA neurons. Gratings showed higher yield of DA neurons and may be beneficial for initial lineage commitment. Cells derived on pillars in the terminal differentiation stage have increased neuronal complexity, and were more capable of firing repetitive action potentials, showing that pillars yielded better network formation and functionality. Our topography platform can be applied to patient-derived iPSCs as well, and that cells harbouring LRRK2 mutation were more functionally mature when optimal topographies were applied sequentially. This will hopefully accelerate development of robust cell models that will provide novel insights into discovering new therapeutic approaches for Parkinson’s Disease.
Collapse
|
48
|
Vermilyea SC, Emborg ME. In Vitro Modeling of Leucine-Rich Repeat Kinase 2 G2019S-Mediated Parkinson's Disease Pathology. Stem Cells Dev 2018; 27:960-967. [PMID: 29402177 DOI: 10.1089/scd.2017.0286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) G2019S (glycine to serine) is the most common mutation associated with sporadic and familial Parkinson's disease (PD) with 80% penetrance by age 70. This mutation is found worldwide, with up to 40% of individuals in the North African Arab population carrying the mutation. Induced pluripotent stem cells derived from fibroblasts of patients carrying the LRRK2 G2019S mutation have been a critical source of cells for generating dopaminergic neurons and studying G2019S-related pathology. These studies have elucidated LRRK2-related mechanisms of mitochondrial dysregulation, increased reactive oxygen species, truncated and simplified neurites, and cell death. These phenotypes are thought to result from the G2019S mutation increasing substrate access and therefore increasing the catalytic rate of the serine/threonine kinase. In this article, we critically review the contributions of in vitro modeling to the current knowledge on LRRK2 G2019S. We also analyze the role of patient-derived cell lines for the identification and validation of therapeutic targets, emphasizing their importance as part of a 3R approach to translational research and personalized medicine.
Collapse
Affiliation(s)
- Scott C Vermilyea
- 1 Neuroscience Training Program, University of Wisconsin , Madison, Wisconsin.,2 Wisconsin National Primate Research Center, University of Wisconsin , Madison, Wisconsin
| | - Marina E Emborg
- 1 Neuroscience Training Program, University of Wisconsin , Madison, Wisconsin.,2 Wisconsin National Primate Research Center, University of Wisconsin , Madison, Wisconsin.,3 Department of Medical Physics, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
49
|
Gladwyn-Ng I, Cordón-Barris L, Alfano C, Creppe C, Couderc T, Morelli G, Thelen N, America M, Bessières B, Encha-Razavi F, Bonnière M, Suzuki IK, Flamand M, Vanderhaeghen P, Thiry M, Lecuit M, Nguyen L. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly. Nat Neurosci 2017; 21:63-71. [PMID: 29230053 DOI: 10.1038/s41593-017-0038-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023]
Abstract
Accumulating evidence support a causal link between Zika virus (ZIKV) infection during gestation and congenital microcephaly. However, the mechanism of ZIKV-associated microcephaly remains unclear. We combined analyses of ZIKV-infected human fetuses, cultured human neural stem cells and mouse embryos to understand how ZIKV induces microcephaly. We show that ZIKV triggers endoplasmic reticulum stress and unfolded protein response in the cerebral cortex of infected postmortem human fetuses as well as in cultured human neural stem cells. After intracerebral and intraplacental inoculation of ZIKV in mouse embryos, we show that it triggers endoplasmic reticulum stress in embryonic brains in vivo. This perturbs a physiological unfolded protein response within cortical progenitors that controls neurogenesis. Thus, ZIKV-infected progenitors generate fewer projection neurons that eventually settle in the cerebral cortex, whereupon sustained endoplasmic reticulum stress leads to apoptosis. Furthermore, we demonstrate that administration of pharmacological inhibitors of unfolded protein response counteracts these pathophysiological mechanisms and prevents microcephaly in ZIKV-infected mouse embryos. Such defects are specific to ZIKV, as they are not observed upon intraplacental injection of other related flaviviruses in mice.
Collapse
Affiliation(s)
- Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Lluís Cordón-Barris
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Christian Alfano
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Catherine Creppe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France
| | - Giovanni Morelli
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium.,BIOMED - Hasselt University, Hasselt, Belgium
| | - Nicolas Thelen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Michelle America
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Bettina Bessières
- Département d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfant Malades, Paris, France.,Inserm U 1163 Institut Imagine, Paris, France
| | - Férechté Encha-Razavi
- Département d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfant Malades, Paris, France
| | - Maryse Bonnière
- Département d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfant Malades, Paris, France
| | - Ikuo K Suzuki
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research in Human Biology (IRIBHM), and ULB Institute of Neuroscience (UNI), Brussels, Belgium
| | - Marie Flamand
- Institut Pasteur, Structural Virology Unit, Paris, France
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research in Human Biology (IRIBHM), and ULB Institute of Neuroscience (UNI), Brussels, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France. .,Inserm U1117, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France.
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium.
| |
Collapse
|
50
|
A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 2017; 12:54. [PMID: 28697798 PMCID: PMC5505151 DOI: 10.1186/s13024-017-0193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. METHODS Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. RESULTS Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. CONCLUSIONS Our study shows for the first time that LRRK2 activates the WNT/PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.
Collapse
|