1
|
Rezende TMT, Menezes HSG, Rezende AM, Cavalcanti MP, Silva YMG, de-Melo-Neto OP, Romão TP, Silva-Filha MHNL. Culex quinquefasciatus Resistant to the Binary Toxin from Lysinibacillus sphaericus Displays a Consistent Downregulation of Pantetheinase Transcripts. Biomolecules 2023; 14:33. [PMID: 38254633 PMCID: PMC10813629 DOI: 10.3390/biom14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated.
Collapse
Affiliation(s)
- Tatiana M. T. Rezende
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Heverly S. G. Menezes
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Antonio M. Rezende
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Milena P. Cavalcanti
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Yuri M. G. Silva
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Osvaldo P. de-Melo-Neto
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Tatiany P. Romão
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Maria Helena N. L. Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
- National Institute for Molecular Entomology, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
2
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
3
|
Abstract
Insects are highly successful in colonizing a wide spectrum of ecological niches and in feeding on a wide diversity of diets. This is notably linked to their capacity to get from their microbiota any essential component lacking in the diet such as vitamins and amino acids. Over a century of research based on dietary analysis, antimicrobial treatment, gnotobiotic rearing, and culture-independent microbe detection progressively generated a wealth of information about the role of the microbiota in specific aspects of insect fitness. Thanks to the recent increase in sequencing capacities, whole-genome sequencing of a number of symbionts has facilitated tracing of biosynthesis pathways, validation of experimental data and evolutionary analyses. This field of research has generated a considerable set of data in a diversity of hosts harboring specific symbionts or nonspecific microbiota members. Here, we review the current knowledge on the involvement of the microbiota in insect and tick nutrition, with a particular focus on B vitamin provision. We specifically question if there is any specificity of B vitamin provision by symbionts compared to the redundant yet essential contribution of nonspecific microbes. We successively highlight the known aspects of microbial vitamin provision during three main life stages of invertebrates: postembryonic development, adulthood, and reproduction.
Collapse
|
4
|
Thakre N, Simão Gurge RM, Isoe J, Kivi H, Strickland J, Delacruz LR, Rodriguez AM, Haney R, Sadeghi R, Joy T, Chen M, Luckhart S, Riehle MA. Manipulation of pantothenate kinase in Anopheles stephensi suppresses pantothenate levels with minimal impacts on mosquito fitness. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103834. [PMID: 36087890 PMCID: PMC9595603 DOI: 10.1016/j.ibmb.2022.103834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Pantothenate (Pan) is an essential nutrient required by both the mosquito vector and malaria parasite. We previously demonstrated that increasing pantothenate kinase (PanK) activity and co-enzyme A (CoA) biosynthesis led to significantly decreased parasite infection prevalence and intensity in the malaria mosquito Anopheles stephensi. In this study, we demonstrate that Pan stores in A. stephensi are a limited resource and that manipulation of PanK levels or activity, via small molecule modulators of PanK or transgenic mosquitoes, leads to the conversion of Pan to CoA and an overall reduction in Pan levels with minimal to no effects on mosquito fitness. Transgenic A. stephensi lines with repressed insulin signaling due to PTEN overexpression or repressed c-Jun N-terminal kinase (JNK) signaling due to MAPK phosphatase 4 (MKP4) overexpression exhibited enhanced PanK levels and significant reductions in Pan relative to non-transgenic controls, with the PTEN line also exhibiting significantly increased CoA levels. Provisioning of the PTEN line with the small molecule PanK modulator PZ-2891 increased CoA levels while provisioning Compound 7 decreased CoA levels, affirming chemical manipulation of mosquito PanK. We assessed effects of these small molecules on A. stephensi lifespan, reproduction and metabolism under optimized laboratory conditions. PZ-2891 and Compound 7 had no impact on A. stephensi survival when delivered via bloodmeal throughout mosquito lifespan. Further, PZ-2891 provisioning had no impact on egg production over the first two reproductive cycles. Finally, PanK manipulation with small molecules was associated with minimal impacts on nutritional stores in A. stephensi mosquitoes under optimized rearing conditions. Together with our previous data demonstrating that PanK activation was associated with significantly increased A. stephensi resistance to Plasmodium falciparum infection, the studies herein demonstrate a lack of fitness costs of mosquito Pan depletion as a basis for a feasible, novel strategy to control parasite infection of anopheline mosquitoes.
Collapse
Affiliation(s)
- Neha Thakre
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Raquel M Simão Gurge
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Jun Isoe
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Heather Kivi
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Jessica Strickland
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | | | - Anna M Rodriguez
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Reagan Haney
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Rohollah Sadeghi
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Teresa Joy
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Minhao Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Shirley Luckhart
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
de Vries LE, Jansen PAM, Barcelo C, Munro J, Verhoef JMJ, Pasaje CFA, Rubiano K, Striepen J, Abla N, Berning L, Bolscher JM, Demarta-Gatsi C, Henderson RWM, Huijs T, Koolen KMJ, Tumwebaze PK, Yeo T, Aguiar ACC, Angulo-Barturen I, Churchyard A, Baum J, Fernández BC, Fuchs A, Gamo FJ, Guido RVC, Jiménez-Diaz MB, Pereira DB, Rochford R, Roesch C, Sanz LM, Trevitt G, Witkowski B, Wittlin S, Cooper RA, Rosenthal PJ, Sauerwein RW, Schalkwijk J, Hermkens PHH, Bonnert RV, Campo B, Fidock DA, Llinás M, Niles JC, Kooij TWA, Dechering KJ. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat Commun 2022; 13:2158. [PMID: 35444200 PMCID: PMC9021288 DOI: 10.1038/s41467-022-29688-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission. Here, de Vries et al. perform a pre-clinical characterization of the antimalarial compound MMV693183: the compound targets acetyl-CoA synthetase, has efficacy in humanized mice against Plasmodium falciparum infection, blocks transmission to mosquito vectors, is safe in rats, and pharmacokinetic-pharmacodynamic modeling informs about a potential oral human dosing regimen.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josefine Striepen
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Luuk Berning
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | | | - Tonnie Huijs
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna C C Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Laura M Sanz
- Global Health, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,TropIQ Health Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
6
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
7
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Simão-Gurge RM, Thakre N, Strickland J, Isoe J, Delacruz LR, Torrevillas BK, Rodriguez AM, Riehle MA, Luckhart S. Activation of Anopheles stephensi Pantothenate Kinase and Coenzyme A Biosynthesis Reduces Infection with Diverse Plasmodium Species in the Mosquito Host. Biomolecules 2021; 11:807. [PMID: 34072373 PMCID: PMC8228300 DOI: 10.3390/biom11060807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites require pantothenate from both human and mosquito hosts to synthesize coenzyme A (CoA). Specifically, mosquito-stage parasites cannot synthesize pantothenate de novo or take up preformed CoA from the mosquito host, making it essential for the parasite to obtain pantothenate from mosquito stores. This makes pantothenate utilization an attractive target for controlling sexual stage malaria parasites in the mosquito. CoA is synthesized from pantothenate in a multi-step pathway initiated by the enzyme pantothenate kinase (PanK). In this work, we manipulated A. stephensi PanK activity and assessed the impact of mosquito PanK activity on the development of two malaria parasite species with distinct genetics and life cycles: the human parasite Plasmodium falciparum and the mouse parasite Plasmodium yoelii yoelii 17XNL. We identified two putative A. stephensi PanK isoforms encoded by a single gene and expressed in the mosquito midgut. Using both RNAi and small molecules with reported activity against human PanK, we confirmed that A. stephensi PanK manipulation was associated with corresponding changes in midgut CoA levels. Based on these findings, we used two small molecule modulators of human PanK activity (PZ-2891, compound 7) at reported and ten-fold EC50 doses to examine the effects of manipulating A. stephensi PanK on malaria parasite infection success. Our data showed that oral provisioning of 1.3 nM and 13 nM PZ-2891 increased midgut CoA levels and significantly decreased infection success for both Plasmodium species. In contrast, oral provisioning of 62 nM and 620 nM compound 7 decreased CoA levels and significantly increased infection success for both Plasmodium species. This work establishes the A. stephensi CoA biosynthesis pathway as a potential target for broadly blocking malaria parasite development in anopheline hosts. We envision this strategy, with small molecule PanK modulators delivered to mosquitoes via attractive bait stations, working in concert with deployment of parasite-directed novel pantothenamide drugs to block parasite infection in the human host. In mosquitoes, depletion of pantothenate through manipulation to increase CoA biosynthesis is expected to negatively impact Plasmodium survival by starving the parasite of this essential nutrient. This has the potential to kill both wild type parasites and pantothenamide-resistant parasites that could develop under pantothenamide drug pressure if these compounds are used as future therapeutics for human malaria.
Collapse
Affiliation(s)
- Raquel M. Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Neha Thakre
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Jessica Strickland
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Jun Isoe
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Lillian R. Delacruz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Brandi K. Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Anna M. Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
9
|
Swift RP, Rajaram K, Liu HB, Prigge ST. Dephospho-CoA kinase, a nuclear-encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption. EMBO J 2021; 40:e107247. [PMID: 34031901 PMCID: PMC8365264 DOI: 10.15252/embj.2020107247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron–sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood‐stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood‐stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
10
|
Nurkanto A, Jeelani G, Santos HJ, Rahmawati Y, Mori M, Nakamura Y, Goto K, Saikawa Y, Annoura T, Tozawa Y, Sakura T, Inaoka DK, Shiomi K, Nozaki T. Characterization of Plasmodium falciparum Pantothenate Kinase and Identification of Its Inhibitors From Natural Products. Front Cell Infect Microbiol 2021; 11:639065. [PMID: 33768012 PMCID: PMC7985445 DOI: 10.3389/fcimb.2021.639065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme A (CoA) is a well-known cofactor that plays an essential role in many metabolic reactions in all organisms. In Plasmodium falciparum, the most deadly among Plasmodium species that cause malaria, CoA and its biosynthetic pathway have been proven to be indispensable. The first and rate-limiting reaction in the CoA biosynthetic pathway is catalyzed by two putative pantothenate kinases (PfPanK1 and 2) in this parasite. Here we produced, purified, and biochemically characterized recombinant PfPanK1 for the first time. PfPanK1 showed activity using pantetheine besides pantothenate, as the primary substrate, indicating that CoA biosynthesis in the blood stage of P. falciparum can bypass pantothenate. We further developed a robust and reliable screening system to identify inhibitors using recombinant PfPanK1 and identified four PfPanK inhibitors from natural compounds.
Collapse
Affiliation(s)
- Arif Nurkanto
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yulia Rahmawati
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.,Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Yumi Nakamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kana Goto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yoko Saikawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Reeder SM, Reuschel EL, Bah MA, Yun K, Tursi NJ, Kim KY, Chu J, Zaidi FI, Yilmaz I, Hart RJ, Perrin B, Xu Z, Humeau L, Weiner DB, Aly ASI. Synthetic DNA Vaccines Adjuvanted with pIL-33 Drive Liver-Localized T Cells and Provide Protection from Plasmodium Challenge in a Mouse Model. Vaccines (Basel) 2020; 8:vaccines8010021. [PMID: 31936739 PMCID: PMC7157753 DOI: 10.3390/vaccines8010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%–88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.
Collapse
Affiliation(s)
- Sophia M. Reeder
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma L. Reuschel
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Mamadou A. Bah
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Kun Yun
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kevin Y. Kim
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacqueline Chu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Faraz I. Zaidi
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ilknur Yilmaz
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
| | - Robert J. Hart
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Benjamin Perrin
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Ziyang Xu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - David B. Weiner
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| | - Ahmed S. I. Aly
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| |
Collapse
|
12
|
Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathog 2018; 14:e1007418. [PMID: 30496310 PMCID: PMC6264519 DOI: 10.1371/journal.ppat.1007418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development. Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies. One strategy is to develop a Plasmodium-resistant mosquito through the manipulation of key signaling pathways and processes in the mosquito midgut, a critical tissue for parasite development. MAPK signaling pathways are highly conserved among eukaryotes and regulate development of the human malaria parasite Plasmodium falciparum in the mosquito vector. Here, we investigated how manipulation of Anopheles stephensi JNK signaling affects development of P. falciparum and key mosquito life history traits. We used multiple, complementary approaches to demonstrate that malaria parasite infection activates mosquito JNK signaling for its own benefit at a cost to host lifespan. Notably, these combined effects derive from networked signaling with other transduction pathways and alterations to intermediary metabolism in the mosquito host.
Collapse
Affiliation(s)
- Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
- Department of Pathobiology, St. George's University, School of Veterinary Medicine, True Blue, St. George, Grenada, West Indies
| | - Lewis Vibul Hun
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Heather Baker
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - John M. Klyver
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Jordan M. Bridgewater
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
- M.I.N.D. Institute, Sacramento, CA, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
13
|
Tjhin ET, Spry C, Sewell AL, Hoegl A, Barnard L, Sexton AE, Siddiqui G, Howieson VM, Maier AG, Creek DJ, Strauss E, Marquez R, Auclair K, Saliba KJ. Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. PLoS Pathog 2018; 14:e1006918. [PMID: 29614109 PMCID: PMC5882169 DOI: 10.1371/journal.ppat.1006918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes. The coenzyme A (CoA) biosynthetic pathway is under investigation as a target for the development of drugs aimed at several infectious agents, including malaria parasites. To synthesise CoA, the parasite scavenges the essential precursor pantothenate (vitamin B5). Several pantothenate analogues possess potent (nM) activity against the parasite, but their exact mechanism of action is unknown. We have generated mutant parasites that are resistant or hypersensitive to various pantothenate analogues. These parasites harbour mutations in a gene we now show codes for the first enzyme in the CoA biosynthesis pathway. This enzyme is not the target of the analogues, but instead converts them into antimetabolites that, depending on the analogue, either inhibit a CoA biosynthesis enzyme or downstream CoA-utilising enzymes.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Alan L. Sewell
- Department of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Annabelle Hoegl
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Anna E. Sexton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Ghizal Siddiqui
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Rodolfo Marquez
- Department of Chemistry, University of Glasgow, Glasgow, United Kingdom
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
14
|
Nurkanto A, Jeelani G, Yamamoto T, Naito Y, Hishiki T, Mori M, Suematsu M, Shiomi K, Hashimoto T, Nozaki T. Characterization and validation of Entamoeba histolytica pantothenate kinase as a novel anti-amebic drug target. Int J Parasitol Drugs Drug Resist 2018; 8:125-136. [PMID: 29518650 PMCID: PMC6114107 DOI: 10.1016/j.ijpddr.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/02/2022]
Abstract
The Coenzyme A (CoA), as a cofactor involved in >100 metabolic reactions, is essential to the basic biochemistry of life. Here, we investigated the CoA biosynthetic pathway of Entamoeba histolytica (E. histolytica), an enteric protozoan parasite responsible for human amebiasis. We identified four key enzymes involved in the CoA pathway: pantothenate kinase (PanK, EC 2.7.1.33), bifunctional phosphopantothenate-cysteine ligase/decarboxylase (PPCS-PPCDC), phosphopantetheine adenylyltransferase (PPAT) and dephospho-CoA kinase (DPCK). Cytosolic enzyme PanK, was selected for further biochemical, genetic, and phylogenetic characterization. Since E. histolytica PanK (EhPanK) is physiologically important and sufficiently divergent from its human orthologs, this enzyme represents an attractive target for the development of novel anti-amebic chemotherapies. Epigenetic gene silencing of PanK resulted in a significant reduction of PanK activity, intracellular CoA concentrations, and growth retardation in vitro, reinforcing the importance of this gene in E. histolytica. Furthermore, we screened the Kitasato Natural Products Library for inhibitors of recombinant EhPanK, and identified 14 such compounds. One compound demonstrated moderate inhibition of PanK activity and cell growth at a low concentration, as well as differential toxicity towards E. histolytica and human cells.
Collapse
Affiliation(s)
- Arif Nurkanto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Research Center for Biology, Indonesia Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiko Naito
- Clinical and Translational Research Center, Keio University School of Medicine, Japan
| | - Takako Hishiki
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan; Clinical and Translational Research Center, Keio University School of Medicine, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan.
| |
Collapse
|
15
|
Abdel-Haleem AM, Hefzi H, Mineta K, Gao X, Gojobori T, Palsson BO, Lewis NE, Jamshidi N. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting. PLoS Comput Biol 2018; 14:e1005895. [PMID: 29300748 PMCID: PMC5771636 DOI: 10.1371/journal.pcbi.1005895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/17/2018] [Accepted: 11/24/2017] [Indexed: 12/17/2022] Open
Abstract
Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models. Malaria kills nearly one-half million people a year and over 1 billion people are at risk of becoming infected by the parasite. Plasmodial infections are difficult to treat for a myriad of reasons, but the ability of the organism to remain latent in hosts and the complex life cycles greatly contributed to the difficulty in treat malaria. Genome-scale metabolic models (GeMMs) enable hierarchical integration of disparate data types into a framework amenable to computational simulations enabling deeper mechanistic insights from high-throughput data measurements. In this study, GeMMs of multiple Plasmodium species are used to study metabolic similarities and differences across the Plasmodium genus. In silico gene-knock out simulations across species and stages uncovered functional metabolic differences between human- and rodent-infecting species as well as across the parasite’s life-cycle stages. These findings may help identify drug regimens that are more effective in targeting human-infecting species across multiple stages of the organism.
Collapse
Affiliation(s)
- Alyaa M. Abdel-Haleem
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE) division, Thuwal, Saudi Arabia
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, CA, United States of America
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Centre (CBRC), Thuwal, Saudi Arabia
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Nathan E. Lewis
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Neema Jamshidi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States of America
- Department of Radiological Sciences, University of California, Los Angeles, CA, United States of America
- * E-mail: ,
| |
Collapse
|
16
|
Chiu JE, Thekkiniath J, Choi JY, Perrin BA, Lawres L, Plummer M, Virji AZ, Abraham A, Toh JY, Zandt MV, Aly ASI, Voelker DR, Mamoun CB. The antimalarial activity of the pantothenamide α-PanAm is via inhibition of pantothenate phosphorylation. Sci Rep 2017; 7:14234. [PMID: 29079738 PMCID: PMC5660193 DOI: 10.1038/s41598-017-14074-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
The biosynthesis of the major acyl carrier Coenzyme A from pantothenic acid (PA) is critical for survival of Plasmodium falciparum within human erythrocytes. Accordingly, a PA analog α-PanAm showed potent activity against blood stage parasites in vitro; however, its efficacy in vivo and its mode of action remain unknown. We developed a new synthesis route for α-PanAm and showed that the compound is highly effective against blood stages of drug-sensitive and -resistant P. falciparum strains, inhibits development of P. berghei in hepatocytes, and at doses up to 100 mg/kg also inhibits blood stage development of P. chabaudi in mice. We used yeast and its pantothenate kinase Cab1 as models to characterize mode of action of α-PanAm and found that α-PanAm inhibits yeast growth in a PA-dependent manner, and its potency increases dramatically in a yeast mutant with defective pantothenate kinase activity. Biochemical analyses using 14C-PA as a substrate demonstrated that α-PanAm is a competitive inhibitor of Cab1. Interestingly, biochemical and mass spectrometry analyses also showed that the compound is phosphorylated by Cab1. Together, these data suggest that α-PanAm exerts its antimicrobial activity by direct competition with the natural substrate PA for phosphorylation by the pantothenate kinase.
Collapse
Affiliation(s)
- Joy E Chiu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose Thekkiniath
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, Colorado, 80206, USA
| | - Benjamin A Perrin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Lawres
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark Plummer
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Azan Z Virji
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amanah Abraham
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Justin Y Toh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Ahmed S I Aly
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, Colorado, 80206, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
17
|
de Villiers M, Spry C, Macuamule CJ, Barnard L, Wells G, Saliba KJ, Strauss E. Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target. ACS Infect Dis 2017; 3:527-541. [PMID: 28437604 DOI: 10.1021/acsinfecdis.7b00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-Substituted pantothenamides (PanAms) are pantothenate analogues with up to nanomolar potency against blood-stage Plasmodium falciparum (the most virulent species responsible for malaria). Although these compounds are known to target coenzyme A (CoA) biosynthesis and/or utilization, their exact mode of action (MoA) is still unknown. Importantly, PanAms that retain the natural β-alanine moiety are more potent than other variants, consistent with the involvement of processes that are selective for pantothenate (the precursor of CoA) or its derivatives. The transport of pantothenate and its phosphorylation by P. falciparum pantothenate kinase (PfPanK, the first enzyme of CoA biosynthesis) are two such processes previously highlighted as potential targets for the PanAms' antiplasmodial action. In this study, we investigated the effect of PanAms on these processes using their radiolabeled versions (synthesized here for the first time), which made possible the direct measurement of PanAm uptake by isolated blood-stage parasites and PanAm phosphorylation by PfPanK present in parasite lysates. We found that the MoA of PanAms does not involve interference with pantothenate transport and that inhibition of PfPanK-mediated pantothenate phosphorylation does not correlate with PanAm antiplasmodial activity. Instead, PanAms that retain the β-alanine moiety were found to be metabolically activated by PfPanK in a selective manner, forming phosphorylated products that likely inhibit other steps in CoA biosynthesis or are transformed into CoA antimetabolites that can interfere with CoA utilization. These findings provide direction for the ongoing development of CoA-targeted inhibitors as antiplasmodial agents with clinical potential.
Collapse
Affiliation(s)
- Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Gordon Wells
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
18
|
Hart RJ, Abraham A, Aly ASI. Genetic Characterization of Coenzyme A Biosynthesis Reveals Essential Distinctive Functions during Malaria Parasite Development in Blood and Mosquito. Front Cell Infect Microbiol 2017; 7:260. [PMID: 28676844 PMCID: PMC5476742 DOI: 10.3389/fcimb.2017.00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
Coenzyme A (CoA) is an essential universal cofactor for all prokaryotic and eukaryotic cells. In nearly all non-photosynthetic cells, CoA biosynthesis depends on the uptake and phosphorylation of vitamin B5 (pantothenic acid or pantothenate). Recently, putative pantothenate transporter (PAT) and pantothenate kinases (PanKs) were functionally characterized in P. yoelii. PAT and PanKs were shown to be dispensable for blood stage development, but they were essential for mosquito stages development. Yet, little is known about the cellular functions of the other enzymes of the CoA biosynthesis pathway in malaria parasite life cycle stages. All enzymes of this pathway were targeted for deletion or deletion/complementation analyses by knockout/knock-in plasmid constructs to reveal their essential roles in P. yoelii life cycle stages. The intermediate enzymes PPCS (Phosphopantothenylcysteine Synthase), PPCDC (Phosphopantothenylcysteine Decarboxylase) were shown to be dispensable for asexual and sexual blood stage development, but they were essential for oocyst development and the production of sporozoites. However, the last two enzymes of this pathway, PPAT (Phosphopantetheine Adenylyltransferase) and DPCK (Dephospho-CoA Kinase), were essential for blood stage development. These results indicate alternative first substrate requirement for the malaria parasite, other than the canonical pantothenate, for the synthesis of CoA in the blood but not inside the mosquito midgut. Collectively, our data shows that CoA de novo biosynthesis is essential for both blood and mosquito stages, and thus validates the enzymes of this pathway as potential antimalarial targets.
Collapse
Affiliation(s)
- Robert J Hart
- Department of Tropical Medicine, Tulane UniversityNew Orleans, LA, United States
| | - Amanah Abraham
- Department of Tropical Medicine, Tulane UniversityNew Orleans, LA, United States
| | - Ahmed S I Aly
- Department of Tropical Medicine, Tulane UniversityNew Orleans, LA, United States
| |
Collapse
|