1
|
Chen K, Yang H, Cai R. Microfluidics for Nanomedicine Delivery. ACS Biomater Sci Eng 2025; 11:774-783. [PMID: 39772433 DOI: 10.1021/acsbiomaterials.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanomedicine is revolutionizing precision medicine, providing targeted, personalized treatment options. Lipid-based nanomedicines offer distinct benefits including high potency, targeted delivery, extended retention in the body, reduced toxicity, and lower required doses. These characteristics make lipid-based nanoparticles ideal for drug delivery in areas such as gene therapy, cancer treatment, and mRNA vaccines. However, traditional bulk synthesis methods for LNPs often produce larger particle sizes, significant polydispersity, and low encapsulation efficiency, which can reduce the therapeutic effectiveness. These issues primarily result from uneven mixing and limited control over particle formation during the synthesis. Microfluidic technology has emerged as a solution, providing precise control over particle size, uniformity, and encapsulation efficiency. In this mini review, we introduce the state-of-the-art microfluidic systems for lipid-based nanoparticle synthesis and functionalization. We include the working principles of different types of microfluidic systems, the use of microfluidic systems for LNP synthesis, cargo encapsulation, and nanomedicine delivery. In the end, we briefly discuss the clinical use of LNPs enabled by microfluidic devices.
Collapse
Affiliation(s)
- Kangfu Chen
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, United States
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Enyu X, Xinbo L, Xuelian C, Huimin C, Yin C, Yan C. Construction and performance evaluation of pH-responsive oxidized hyaluronic acid hollow mesoporous silica nanoparticles. Int J Biol Macromol 2024; 257:128656. [PMID: 38065461 DOI: 10.1016/j.ijbiomac.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
In this study, hollow mesoporous silica (HMSN) was created to facilitate drug distribution using the hard template method. The oxidized hyaluronic acid (oxiHA) was coated on the carrier surface by the Schiff base reaction, producing the pH-responsive nanoparticles HMSNs-DOX-oxiHA targeted by CD44 and preventing drug leakage from mesopores. The prepared nanoparticles had a size of 151.79 ± 13.52 nm and a surface potential of -8.42 ± 0.48 mV. The rich mesoporous structure and internal cavity of HMSNs-NH2 achieved the effective encapsulation and loading rates of doxorubicin (DOX) at 76.84 ± 0.24 % and 18.73 ± 0.05 %, respectively. Owing to the pH sensitivity of imine bonds, HMSNs-DOX-oxiHA has a good pH response and release performance. The in vitro experiments showed that the nanoparticles were not cytotoxic and could enhance HCT-116 uptake efficiency by hyaluronic acid/CD44 receptor-mediated endocytosis, effectively inhibiting tumor cell proliferation and reducing toxic side effects on normal cells. In summary, the polysaccharide-based nano-drug delivery system constructed in this experiment not only has the basic response properties of a carrier but also introduces the bioactive advantages of natural polysaccharides.
Collapse
Affiliation(s)
- Xu Enyu
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Liu Xinbo
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Xuelian
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Huimin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Chen Yan
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
4
|
Li H, Cheng S, Zhai J, Lei K, Zhou P, Cai K, Li J. Platinum based theranostics nanoplatforms for antitumor applications. J Mater Chem B 2023; 11:8387-8403. [PMID: 37581251 DOI: 10.1039/d3tb01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Platinum (Pt) based nanoplatforms are biocompatible nanoagents with photothermal antitumor performance, while exhibiting excellent radiotherapy sensitization properties. Pt-nanoplatforms have extensive research prospects in the realm of cancer treatment due to their highly selective and minimally invasive treatment mode with low damage, and integrated diagnosis and treatment with image monitoring and collaborative drug delivery. Platinum based anticancer chemotherapeutic drugs can kill tumor cells by damaging DNA through chemotherapy. Meanwhile, Pt-nanoplatforms also have good electrocatalytic activity, which can mediate novel electrodynamic therapy. Simultaneously, Pt(II) based compounds also have potential as photosensitizers in photodynamic therapy for malignant tumors. Pt-nanoplatforms can also modulate the immunosuppressive environment and synergistically ablate tumor cells in combination with immune checkpoint inhibitors. This article reviews the research progress of platinum based nanoplatforms in new technologies for cancer therapy, starting from widely representative examples of platinum based nanoplatforms in chemotherapy, electrodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Finally, multimodal imaging techniques of platinum based nanoplatforms for biomedical diagnosis are briefly discussed.
Collapse
Affiliation(s)
- Heying Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Shaowen Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jingming Zhai
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Kun Lei
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Ping Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Zhang Y, Ouyang Z, Zhan M, Yang R, Gao Y, Li L, Guo R, Shi X, Cao X. An Intelligent Vascular Disrupting Dendritic Nanodevice Incorporating Copper Sulfide Nanoparticles for Immune Modulation-Mediated Combination Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301914. [PMID: 37259269 DOI: 10.1002/smll.202301914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Development of intelligent nanoplatforms that can simultaneously target multiple factors associated with tumor growth and metastasis remains an extreme challenge. Here, an intelligent dendritic nanodevice incorporating both copper sulfide nanoparticles (CuS NPs) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a vascular disrupting agent) within the dendrimer internal cavities and surface modified with a targeting agent LyP-1 peptide is reported. The resulting generation 5 (G5) dendrimer-based nanodevice, known as G5-PEG-LyP-1-CuS-DMXAA NPs (GLCD NPs), possess good colloidal stability, pH-sensitive drug release kinetics, and high photothermal conversion efficiency (59.3%). These functional GLCD NPs exert a LyP-1-targeted killing effect on breast tumors by combining CuS-mediated photothermal therapy (PTT) and DMXAA-induced vascular disruption, while also triggering antitumor immune responses through PTT-induced immunogenic cell death and DMXAA-mediated immune regulation via M1 polarization of tumor-associated macrophages and dendritic cell maturation. In addition, with the LyP-1-mediated proapoptotic activity, the GLCD NPs can specifically kill tumor lymphatic endothelial cells. The simultaneous disruption of tumor blood vessels and lymphatic vessels cuts off the two main pathways of tumor metastasis, which plays a two-pronged role in inhibiting lung metastasis of the breast cancer model. Thus, the developed GLCD NPs represent an advanced intelligent nanoformulation for immune modulation-mediated combination tumor therapy with potential for clinical translations.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, Pagliuca M, Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. LAB ON A CHIP 2023; 23:1389-1409. [PMID: 36647782 DOI: 10.1039/d2lc00933a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticle systems are functional carriers that can be used in the cancer therapy field for the delivery of a variety of hydrophobic and/or hydrophilic drugs. Recently, the advent of microfluidic platforms represents an advanced approach to the development of new nanoparticle-based drug delivery systems. Particularly, microfluidics can simplify the design of new nanoparticle-based systems with tunable physicochemical properties such as size, size distribution and morphology, ensuring high batch-to-batch reproducibility and consequently, an enhanced therapeutic effect in vitro and in vivo. In this perspective, we present accurate state-of-the-art microfluidic platforms focusing on the fabrication of polymer-based, lipid-based, lipid/polymer-based, inorganic-based and metal-based nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Antonio Fabozzi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Marco Barretta
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Gennaro Longobardo
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| |
Collapse
|
7
|
Xu X, Xiao T, Zhang C, Wang Z, Li G, Chen J, Ouyang Z, Wang H, Shi X, Shen M. Multifunctional Low-Generation Dendrimer Nanogels as an Emerging Probe for Tumor-Specific CT/MR Dual-Modal Imaging. Biomacromolecules 2023; 24:967-976. [PMID: 36607255 DOI: 10.1021/acs.biomac.2c01403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development of nanoprobes that have amplified enhanced permeability and retention (EPR) effect is crucial for their precise cancer diagnosis performance. Here, we present the development of functional dendrimer-based nanogels (DNGs) with the generation three primary amine-terminated poly(amidoamine) (PAMAM) dendrimers (G3·NH2) cross-linked by N,N'-bis(acryloyl) cystamine (BAC). The DNGs were prepared through a Michael addition reaction between G3·NH2 dendrimers and BAC via an inverse microemulsion method and entrapped with gold nanoparticles (Au NPs) to form Au-DNGs. The Au-DNGs were sequentially modified with diethylenetriamine penta-acetic acid (DTPA)-gadolinium (Gd) complex, poly(ethylene glycol) (PEG)-linked arginine-glycine-aspartic (RGD) peptide, and 1,3-propanesultone (1,3-PS). The formed multifunctional RGD-Gd@Au-DNGs-PS (R-G@ADP) possessing an average diameter of 122 nm are colloidally stable and display a high X-ray attenuation coefficient, excellent r1 relaxivity (9.13 mM-1 s-1), desired protein resistance rendered by the zwitterionic modification, and cytocompatibility. With the targeting specificity mediated by RGD and the much better tumor penetration capability than the counterpart material of single dendrimer-entrapped Au NPs, the developed multifunctional R-G@ADP enable targeted and enhanced computed tomography (CT)/magnetic resonance (MR) dual-modal imaging of a pancreatic tumor model in vivo. The current work demonstrates a unique design of targeted and zwitterionic DNGs with prolonged blood circulation time as an emerging nanoprobe for specific tumor CT/MR imaging through amplified passive EPR effect.
Collapse
Affiliation(s)
- Xu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Tingting Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.,College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Changchang Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhiqiang Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jingwen Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhijun Ouyang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangyang Shi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Huang T, Li G, Guo Y, Zhang G, Shchabin D, Shi X, Shen M. Recent advances in PAMAM dendrimer-based CT contrast agents for molecular imaging and theranostics of cancer. SENSORS & DIAGNOSTICS 2023; 2:1145-1157. [DOI: 10.1039/d3sd00101f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Recent advances and some key developments in the construction of PAMAM dendrimer-based nanoplatforms for tumor CT imaging and theranostics have been reviewed.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Dzmitry Shchabin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Wang R, Du N, Jin L, Chen W, Ma Z, Zhang T, Xu J, Zhang W, Wang X, Li M. Hyaluronic Acid Modified Au@SiO2@Au Nanoparticles for Photothermal Therapy of Genitourinary Tumors. Polymers (Basel) 2022; 14:polym14214772. [PMID: 36365766 PMCID: PMC9654671 DOI: 10.3390/polym14214772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Bladder cancer and prostate cancer are the most common malignant tumors of the genitourinary system. Conventional strategies still face great challenges of high recurrence rate and severe trauma. Therefore, minimally invasive photothermal therapy (PTT) has been extensively explored to address these challenges. Herein, fluorescent Au nanoparticles (NPs) were first prepared using glutathione as template, which were then capped with SiO2 shell to improve the biocompatibility. Next, Au nanoclusters were deposited on the NPs surface to obtain Au@SiO2@Au NPs for photothermal conversion. The gaps between Au nanoparticles on their surface could enhance their photothermal conversion efficiency. Finally, hyaluronic acid (HA), which targets cancer cells overexpressing CD44 receptors, was attached on the NPs surface via 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) chemistry to improve the accumulation of NPs in tumor tissues. Photothermal experiments showed that NPs with an average size of 37.5 nm have a high photothermal conversion efficiency (47.6%) and excellent photostability, thus exhibiting potential application as a PTT agent. The temperature of the NPs (100 μg·mL−1) could rapidly increase to 38.5 °C within 200 s and reach the peak of 57.6 °C with the laser power density of 1.5 W·cm−2 and irradiation time of 600 s. In vivo and in vitro PTT experiments showed that the NPs have high biocompatibility and excellent targeted photothermal ablation capability of cancer cells. Both bladder and prostate tumors disappeared at 15 and 18 d post-treatment with HA-Au@SiO2@Au NPs, respectively, and did not recur. In summary, HA-Au@SiO2@Au NPs can be used a powerful PTT agent for minimally invasive treatment of genitourinary tumors.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Nan Du
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wufei Chen
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhuangxuan Ma
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Tianyu Zhang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Jie Xu
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Correspondence: (W.Z.); (X.W.); (M.L.)
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Correspondence: (W.Z.); (X.W.); (M.L.)
| | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (W.Z.); (X.W.); (M.L.)
| |
Collapse
|
10
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
11
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
12
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Caminade AM, Hameau A, Turrin CO, Laurent R, Majoral JP. Dendritic metal complexes for bioimaging. Recent advances. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Liu R, Guo H, Ouyang Z, Fan Y, Cao X, Xia J, Shi X, Guo R. Multifunctional Core–Shell Tecto Dendrimers Incorporated with Gold Nanoparticles for Targeted Dual Mode CT/MR Imaging of Tumors. ACS APPLIED BIO MATERIALS 2021; 4:1803-1812. [PMID: 35014526 DOI: 10.1021/acsabm.0c01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Renna Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, People’s Republic of China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
15
|
Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:E940. [PMID: 32290285 PMCID: PMC7226393 DOI: 10.3390/cancers12040940] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.
Collapse
Affiliation(s)
- So Yun Lee
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Woo Yeup Jeong
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
16
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
17
|
Bouché M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug Chem 2020; 31:303-314. [PMID: 31682405 PMCID: PMC7032998 DOI: 10.1021/acs.bioconjchem.9b00669] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C. Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kimberly Taing
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
19
|
Gianolio E, Bäckström S, Petoral RM, Olsson A, Aime S, Axelsson O. Characterization of a Manganese-Containing Nanoparticle as an MRI Contrast Agent. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eliana Gianolio
- Dep. of Molecular Biotechnologies and Health Science; University of Torino; Via Nizza 52 Torino Italy
| | | | | | - Anders Olsson
- Spago Nanomedical AB; Scheelevägen 22 22363 Lund Sweden
| | - Silvio Aime
- Dep. of Molecular Biotechnologies and Health Science; University of Torino; Via Nizza 52 Torino Italy
| | | |
Collapse
|
20
|
Xing Y, Zhu J, Zhao L, Xiong Z, Li Y, Wu S, Chand G, Shi X, Zhao J. SPECT/CT imaging of chemotherapy-induced tumor apoptosis using 99mTc-labeled dendrimer-entrapped gold nanoparticles. Drug Deliv 2018; 25:1384-1393. [PMID: 29869521 PMCID: PMC6058576 DOI: 10.1080/10717544.2018.1474968] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
Non-invasive imaging of apoptosis in tumors induced by chemotherapy is of great value in the evaluation of therapeutic efficiency. In this study, we report the synthesis, characterization, and utilization of radionuclide technetium-99m (99mTc)-labeled dendrimer-entrapped gold nanoparticles (Au DENPs) for targeted SPECT/CT imaging of chemotherapy-induced tumor apoptosis. Generation five poly(amidoamine) (PAMAM) dendrimers (G5.NH2) were sequentially conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), polyethylene glycol (PEG) modified duramycin, PEG monomethyl ether, and fluorescein isothiocyanate (FI) to form the multifunctional dendrimers, which were then utilized as templates to entrap gold nanoparticles. Followed by acetylation of the remaining dendrimer surface amines and radiolabeling of 99mTc, the SPECT/CT dual mode nanoprobe of tumor apoptosis was constructed. The developed multifunctional Au DENPs before and after 99mTc radiolabeling were well characterized. The results demonstrate that the multifunctional Au DENPs display favorable colloidal stability under different conditions, own good cytocompatibility in the given concentration range, and can be effectively labeled by 99mTc with high radiochemical stability. Furthermore, the multifunctional nanoprobe enables the targeted SPECT/CT imaging of apoptotic cancer cells in vitro and tumor apoptosis after doxorubicin (DOX) treatment in the established subcutaneous tumor model in vivo. The designed duramycin-functionalized Au DENPs might have the potential to be employed as a nanoplatform for the detection of apoptosis and early tumor response to chemotherapy.
Collapse
Affiliation(s)
- Yan Xing
- a Department of Nuclear Medicine , Shanghai General Hospital of Nanjing Medical University , Shanghai , People's Republic of China
- b Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Jingyi Zhu
- c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , People's Republic of China
- d School of Pharmaceutical Science , Nanjing Tech University , Nanjing , People's Republic of China
| | - Lingzhou Zhao
- b Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Zhijuan Xiong
- c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , People's Republic of China
| | - Yujie Li
- b Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - San Wu
- b Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Gitasha Chand
- b Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Xiangyang Shi
- c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , People's Republic of China
| | - Jinhua Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital of Nanjing Medical University , Shanghai , People's Republic of China
- b Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
21
|
McMahon MT, Bulte JWM. Two decades of dendrimers as versatile MRI agents: a tale with and without metals. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1496. [PMID: 28895298 PMCID: PMC5989322 DOI: 10.1002/wnan.1496] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Dendrimers or dendritic polymers are a class of compounds with great potential for nanomedical use. Some of their properties, including their rigidity, low polydispersity and the ease with which their surfaces can be modified make them particularly well suited for use as MRI diagnostic or theranostic agents. For the past 20 years, researchers have recognized this potential and refined dendrimer formulations to optimize these nanocarriers for a host of MRI applications, including blood pool imaging agents, lymph node imaging agents, tumor-targeted theranostic agents and cell tracking agents. This review summarizes the various types of dendrimers according to the type of MR contrast they can provide. This includes the metallic T1 , T2 and paraCEST imaging agents, and the non-metallic diaCEST and fluorinated (19 F) heteronuclear imaging agents. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
22
|
Zhou B, Wang R, Chen F, Zhao L, Wang P, Li X, Bányai I, Ouyang Q, Shi X, Shen M. 99mTc-Labeled RGD-Polyethylenimine Conjugates with Entrapped Gold Nanoparticles in the Cavities for Dual-Mode SPECT/CT Imaging of Hepatic Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6146-6154. [PMID: 29380596 DOI: 10.1021/acsami.7b17107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the construction and characterization of 99mTc-labeled arginine-glycine-aspartic acid (RGD)-polyethylenimine (PEI) conjugates with entrapped gold nanoparticles in the cavities (RGD-99mTc-Au PENPs) for dual-mode single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of an orthotopic hepatic carcinoma model. In this study, PEI was successively decorated with diethylenetriaminepentaacetic acid, poly(ethylene glycol) (PEG), and PEGylated RGD segments, and was utilized as an effective nanoplatform to entrap Au NPs and to be labeled with 99mTc. We showed that the designed RGD-99mTc-Au PENPs displayed desirable colloidal stability and radiostability, and cytocompatibility in the investigated concentration range, and could be specifically uptaken by αvβ3 integrin-overexpressing liver cancer cells in vitro. In vivo CT and SPECT imaging results indicated that the particles were able to be accumulated within an orthotopic hepatic carcinoma and displayed both CT and SPECT contrast enhancement in the tumor tissue. With the proven biocompatibility in vivo via histological examinations, the designed RGD-99mTc-Au PENPs may be potentially employed as an effective nanoprobe for a highly efficient dual-mode SPECT/CT imaging of various αvβ3 integrin-overexpressing tumors.
Collapse
Affiliation(s)
- Benqing Zhou
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Ruizhi Wang
- Department of Interventional Radiology, Xinhua Hospital affiliated to Shanghai Jiaotong University , Shanghai 200080, P. R. China
| | - Feng Chen
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, P. R. China
| | - Peng Wang
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Xin Li
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - István Bányai
- Department of Physical Chemistry, University of Debrecen , H-4032 Debrecen, Hungary
| | - Qiang Ouyang
- Department of Interventional Radiology, Xinhua Hospital affiliated to Shanghai Jiaotong University , Shanghai 200080, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| |
Collapse
|
23
|
Wang R, Luo Y, Li X, Ji A, Guo R, Shi X, Wang X. Heat shock protein-guided dual-mode CT/MR imaging of orthotopic hepatocellular carcinoma tumor. J Mater Chem B 2018; 6:1342-1350. [DOI: 10.1039/c7tb03076b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Au@PEI-Gd-AAG NP nanoprobes hold enormous promise for highly efficient tumor diagnosis and dual-mode CT/T1 positive MR imaging.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Interventional
- Zhongshan Hospital
- Fudan University
- Shanghai Institute of Medical Imaging
- Shanghai 200032
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Xin Li
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Aihua Ji
- Department of Interventional
- Zhongshan Hospital
- Fudan University
- Shanghai Institute of Medical Imaging
- Shanghai 200032
| | - Rongfang Guo
- Department of Interventional
- Zhongshan Hospital
- Fudan University
- Shanghai Institute of Medical Imaging
- Shanghai 200032
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Xiaolin Wang
- Department of Interventional
- Zhongshan Hospital
- Fudan University
- Shanghai Institute of Medical Imaging
- Shanghai 200032
| |
Collapse
|
24
|
Abstract
Skin-mediated therapeutic delivery is a potential alternative to traditional drug delivery approaches. However, dermal drug delivery is limited to the molecules with optimal physico-chemical properties. To overcome this barrier for delivering ‘nonideal’ drug molecules across the skin, different drug carriers and penetration enhancement methods have been investigated. Conventional chemical and physical approaches for dermal drug delivery are limited by their skin irritation potential, complexity of application and poor patient compliance. In recent years, dendritic polymers have shown potential in improving the dermal delivery of various molecules. With minimal skin irritation potential and high drug loading capacity, dendrimers offer multiple advantages for improving delivery of drugs across the skin. The current review aims to provide an overview of dendritic polymers for dermal (topical and transdermal) drug delivery. [Formula: see text]
Collapse
|
25
|
Wang M, Wei C, Shi Z, Zhu J. Study on the diagnosis of small hepatocellular carcinoma caused by hepatitis B cirrhosis via multi-slice spiral CT and MRI. Oncol Lett 2017; 15:503-508. [PMID: 29375718 DOI: 10.3892/ol.2017.7313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
The present study compared the diagnostic accuracy of multi-slice spiral computed tomography (CT) and magnetic resonance imaging (MRI) on small hepatocellular carcinoma (SHCC) caused by hepatitis B cirrhosis. A total of 160 patients with hepatitis B cirrhosis were selected between January 2012 and April 2016, and 183 SHCC lesions were included in the present retrospective study. Patients were divided into the SHCC group (T stage) and the micro hepatocellular carcinoma (MHCC) group (T1 stage). There were a total of 129 SHCC lesions and 54 MHCC lesions identified. All patients underwent multiphasic CT and MRI imaging. The liver acquisition with volume acquisition (LAVA) technique was utilized for MRI. Furthermore, SPSS 20.0 was used for statistical analyses. LAVA in the arterial phase and CT in the arterial phase revealed significantly higher diagnostic rates for the diagnoses of 183 lesions. In addition, standard CT scan exhibited significantly reduced diagnostic rates in SHCC lesions. Results indicated that LAVA in the equilibrium phase had the lowest diagnostic rate in MHCC lesions, which was statistically significant (P<0.05). Overall, the diagnostic rate of CT (79.63%) for MHCC was significantly lower than that of MRI (96.29%) (P<0.05). However, the diagnostic rate of CT for SHCC (96.12%) was significantly higher than that for MHCC (79.63%) (P<0.05). MRI-LAVA in the arterial phase has the highest diagnostic rate for SHCC and MHCC. However, the diagnostic capability of MRI for MHCC lesions is superior to that of CT.
Collapse
Affiliation(s)
- Mei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Medical Imaging, The Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Congxin Wei
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhaojuan Shi
- Department of Medical Imaging, The Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Jianzhong Zhu
- Department of Medical Imaging, The Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| |
Collapse
|
26
|
Safdar MH, Hussain Z, Abourehab MAS, Hasan H, Afzal S, Thu HE. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1967-1980. [PMID: 29082766 DOI: 10.1080/21691401.2017.1397001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review aims to overview and critically analyses recent developments in achieving tumour-specific delivery of anticancer agents, maximizing anticancer efficacy, and mitigating tumour progression and off-target effects. Stemming from critical needs to develop target-specific delivery vehicles in cancer therapy, various hyaluronic acid (HA)-conjugated nanomedicines have been fabricated owing to their biocompatibility, safety, tumour-specific targetability of drugs and genes, and proficient interaction with cluster-determinant-44 (CD44) receptors over-expressed on the surface of tumour cells. HA-based conjugation or surface modulation of anticancer drugs encapsulated nanocarriers have shown promising efficacy against the various types of carcinomas of liver, breast, colorectal, pancreatic, lung, skin, ovarian, cervical, head and neck and gastric. The success of this emerging platform is assessed in achieving the rapid internalization of anticancer payloads into the tumour cells, impeding cancer cells division and proliferation, induction of cancer-specific apoptosis and prevention of metastasis (tumour progression). This review extends detailed insight into the engineering of HA-based nanomedicines, characterization, utilization for the diagnosis or treatment of CD44 over-expressing cancer subtypes and emphasizing the transition of nanomedicines to clinical cancer therapy.
Collapse
Affiliation(s)
- Muhammad Hassan Safdar
- a Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Zahid Hussain
- b Department of Pharmaceutics, Faculty of Pharmacy , Universiti Teknologi MARA , Puncak Alam , Malaysia
| | - Mohammed A S Abourehab
- c Department of Pharmaceutics, Faculty of Pharmacy , Umm Al-Qura University , Makkah , Saudi Arabia.,d Department of Pharmaceutics, Faculty of Pharmacy , Minia University , Minya , Egypt
| | - Humna Hasan
- a Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Sajal Afzal
- e Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba , Tsukuba , Japan
| | - Hnin Ei Thu
- f Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
27
|
Turato C, Balasso A, Carloni V, Tiribelli C, Mastrotto F, Mazzocca A, Pontisso P. New molecular targets for functionalized nanosized drug delivery systems in personalized therapy for hepatocellular carcinoma. J Control Release 2017; 268:184-197. [PMID: 29051062 DOI: 10.1016/j.jconrel.2017.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma, the most frequent solid tumor of the liver, has a very poor prognosis, being the second most common cause of death from cancer worldwide. The incidence and mortality of this liver tumor are increasing in most areas of the world as a consequence of aging and the emerging of new risk factors such as the metabolic syndrome, beside the recognized role of hepatitis B and C viral infections and alcohol abuse. Despite the increasing knowledge on the molecular mechanisms underlying hepatic carcinogenesis, effective therapeutic strategies are still an unmet clinical need. Efforts have been made to develop selective drugs as well as effective targeted drug delivery systems. The development of novel drug carriers for therapeutic molecules can indeed offer a valuable strategy to ameliorate the efficacy of HCC treatment. In this review, we discuss recent drug delivery strategies for HCC treatment based on the exploitation of targeted nanoparticles (NPs). Indeed, a few of these platforms have achieved an advanced stage of preclinical development. Here, we review the most promising drug nanovehicles based on both synthetic and natural polymers, including polysaccharides that have emerged for their biocompatibility and biodegradability. To maximize site-selectivity and therapeutic efficacy, drug delivery systems should be functionalized with ligands which can specifically recognize and bind targets expressed by HCC, namely cell membrane associated antigens, receptors or biotransporters. Cell surface and intracellular molecular targets are exploited either to selectively deliver drug-loaded nanovehicles or to design novel selective therapeutics. In conclusion, the combination of novel and safe drug delivery strategies based on site-specific targeted drug nanovehicles with therapeutic molecular targets may significantly improve the pharmacological efficacy for the treatment of HCC.
Collapse
Affiliation(s)
| | - Anna Balasso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Francesca Mastrotto
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy.
| | | |
Collapse
|
28
|
Cai Z, Zhang H, Wei Y, Wei Y, Xie Y, Cong F. Reduction- and pH-Sensitive Hyaluronan Nanoparticles for Delivery of Iridium(III) Anticancer Drugs. Biomacromolecules 2017; 18:2102-2117. [DOI: 10.1021/acs.biomac.7b00445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhixiang Cai
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbin Zhang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Wei
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanping Xie
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengsong Cong
- Department
of Biochemistry and Molecular Biology, School of life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules 2017; 18:1677-1696. [PMID: 28485601 DOI: 10.1021/acs.biomac.7b00424] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomaterials, including gold, silver, and magnetic nanoparticles, carbon, and mesoporous materials, possess unique physiochemical and biological properties, thus offering promising applications in biomedicine, such as in drug delivery, biosensing, molecular imaging, and therapy. Recent advances in nanotechnology have improved the features and properties of nanomaterials. However, these nanomaterials are potentially cytotoxic and demonstrate a lack of cell-specific function. Thus, they have been functionalized with various polymers, especially polysaccharides, to reduce toxicity and improve biocompatibility and stability under physiological conditions. In particular, nanomaterials have been widely functionalized with hyaluronan (HA) to enhance their distribution in specific cells and tissues. This review highlights the most recent advances on HA-functionalized nanomaterials for biotechnological and biomedical applications, as nanocarriers in drug delivery, contrast agents in molecular imaging, and diagnostic agents in cancer therapy. A critical evaluation of barriers affecting the use of HA-functionalized nanomaterials is also discussed, and insights into the outlook of the field are explored.
Collapse
Affiliation(s)
- Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yue Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Fengsong Cong
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
30
|
Liang J, Zhang X, Miao Y, Li J, Gan Y. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int J Nanomedicine 2017; 12:2033-2044. [PMID: 28352173 PMCID: PMC5358985 DOI: 10.2147/ijn.s128525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of noninvasive imaging techniques for the accurate diagnosis of progressive hepatocellular carcinoma (HCC) is of great clinical significance and has always been desired. Herein, a hepatocellular carcinoma cell-targeting fluorescent magnetic nanoparticle (NP) was obtained by conjugating near-infrared fluorescence to the surface of Fe3O4 (NIRF-Fe3O4) NPs, followed by coating the lipids consisting of tumoral hepatocytes-targeting polymer (Gal-P123). This magnetic NP (GPC@NIRF-Fe3O4) with superparamagnetic behavior showed high stability and safety in physiological conditions. In addition, GPC@NIRF-Fe3O4 achieved more specific uptake of human liver cancer cells than free Fe3O4 NPs. Importantly, with superpara-magnetic iron oxide and strong NIR absorbance, GPC@NIRF-Fe3O4 NPs demonstrate prominent tumor-contrasted imaging performance both on fluorescent and T2-weighted magnetic resonance (MR) imaging modalities in a living body. The relative MR signal enhancement of GPC@NIRF-Fe3O4 NPs achieved 5.4-fold improvement compared with NIR-Fe3O4 NPs. Therefore, GPC@ NIRF-Fe3O4 NPs may be potentially used as a candidate for dual-modal imaging of tumors with information covalidated and directly compared by combining fluorescence and MR imaging.
Collapse
Affiliation(s)
- Jinying Liang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China; School of Pharmacy, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yunqiu Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Nano-Magnetic Resonance Imaging (Nano-MRI) Gives Personalized Medicine a New Perspective. Biomedicines 2017; 5:biomedicines5010007. [PMID: 28536350 PMCID: PMC5423496 DOI: 10.3390/biomedicines5010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/02/2017] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
This paper reviews some of the major and most recent advances in nanoscale-magnetic resonance imaging (nano-MRI) for personalized medicine (PM). Nano-MRI may drastically expand the capabilities of the traditional magnetic resonance images (MRI), down to the nanometer scale and possibly, in the near future, at the atomic scale. Nano-MRI is potentially able to observe structures which cannot be seen using today's molecular imaging, with sensitivities of many billions of times better than MRI as currently used in hospitals, for example. The paper briefly reports on the foremost research themes in nano-MRI.
Collapse
|
32
|
Wang TJ, Liu K, Shi X, Ye L, Gu W, Yan CX. Tuning of synthesis conditions by thermal decomposition towards gadolinium-doped manganese carbonate nanoparticles with uniform size and high relaxivity. NEW J CHEM 2017. [DOI: 10.1039/c6nj02739c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A low temperature thermal decomposition method has been developed to synthesize uniform-sized Gd-doped MnCO3 nanoparticles.
Collapse
Affiliation(s)
- Ting-jian Wang
- Department of Neurosurgery
- Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Kang Liu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Xin Shi
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ling Ye
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Wei Gu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Chang-xiang Yan
- Department of Neurosurgery
- Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| |
Collapse
|