1
|
Mok CC. Targeting the ubiquitin-proteasome pathway in systemic lupus erythematosus. Expert Rev Clin Immunol 2025:1-12. [PMID: 40266558 DOI: 10.1080/1744666x.2025.2497845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION The ubiquitin-proteasome system (UPS) is the major non-lysosomal mechanism for selective degradation of intracellular proteins that is essential for the regulation of cellular functions and survival. Modulation of the proteasomes and cereblon E3 ligase promotes degradation of polyubiquitin-tagged transcription factors and oncoproteins, leading to depletion of long-lived plasma cells, diminished autoantibody and interferon-α production, reduced T-cell polarization to the proinflammatory phenotypes and increased regulatory T-cell activity that are relevant to the therapy of systemic lupus erythematosus (SLE). AREAS COVERED Selective immunoproteasome inhibitors and newer generation cereblon modulators have improved safety profiles compared to conventional compounds. This article summarizes the literature regarding the modulation of the UPS in murine and human SLE. EXPERT OPINION Bortezomib and the selective immunoproteasome inhibitors, ONX-0914 and zetomipzomib, ameliorate renal disease in murine lupus models. While clinically effective in refractory SLE, bortezomib is limited by its toxicities. Zetomipzomib shows promising data in phase Ib/II studies of SLE and lupus nephritis. Thalidomide and lenalidomide are effective in refractory cutaneous lupus but again limited by their off-target effects. A phase II RCT of iberdomide shows favorable results in SLE, especially chronic and subacute cutaneous lesions. These molecules should be further explored in larger clinical trials of renal and cutaneous SLE.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, SAR, China
| |
Collapse
|
2
|
Mattern S, Hollfoth V, Bag E, Ali A, Riemenschneider P, Jarboui MA, Boldt K, Sulyok M, Dickemann A, Luibrand J, Fusco S, Franz-Wachtel M, Singer K, Goeppert B, Schilling O, Malek N, Fend F, Macek B, Ueffing M, Singer S. An AI-assisted morphoproteomic approach is a supportive tool in esophagitis-related precision medicine. EMBO Mol Med 2025; 17:441-468. [PMID: 39901020 PMCID: PMC11903792 DOI: 10.1038/s44321-025-00194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
Esophagitis is a frequent, but at the molecular level poorly characterized condition with diverse underlying etiologies and treatments. Correct diagnosis can be challenging due to partially overlapping histological features. By proteomic profiling of routine diagnostic FFPE biopsy specimens (n = 55) representing controls, Reflux- (GERD), Eosinophilic-(EoE), Crohn's-(CD), Herpes simplex (HSV) and Candida (CA)-esophagitis by LC-MS/MS (DIA), we identified distinct signatures and functional networks (e.g. mitochondrial translation (EoE), immunoproteasome, complement and coagulations system (CD), ribosomal biogenesis (GERD)), and pathogen-specific proteins for HSV and CA. Moreover, combining these signatures with histological parameters in a machine learning model achieved high diagnostic accuracy (100% training set, 93.8% test set), and supported diagnostic decisions in borderline/challenging cases. Applied to a young patient representing a use case, the external GERD diagnosis could be revised to CD and ICAM1 was identified as highly abundant therapeutic target. This resulted in CyclosporinA as a personalized treatment recommendation by the local multidisciplinary molecular inflammation board. Our integrated AI-assisted morphoproteomic approach allows deeper insights in disease-specific molecular alterations and represents a promising tool in esophagitis-related precision medicine.
Collapse
Affiliation(s)
- Sven Mattern
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
- Center for Personalized Medicine (ZPM), Tübingen, Germany
| | - Vanessa Hollfoth
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Eyyub Bag
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Arslan Ali
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | | | - Mohamed A Jarboui
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Mihaly Sulyok
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Anabel Dickemann
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Julia Luibrand
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Stefano Fusco
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | | | - Kerstin Singer
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Hospital RKH Kliniken Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Oliver Schilling
- Institute of Pathology, University Medical Center Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
- Center for Personalized Medicine (ZPM), Freiburg, Germany
| | - Nisar Malek
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Falko Fend
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stephan Singer
- Department of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany.
- Center for Personalized Medicine (ZPM), Tübingen, Germany.
| |
Collapse
|
3
|
Mancuso F, Di Chio C, Di Matteo F, Smaldone G, Iraci N, Giofrè SV. Recent Advances in the Development of Immunoproteasome Inhibitors as Anti-Cancer Agents: The Past 5 Years. Molecules 2025; 30:755. [PMID: 39942858 PMCID: PMC11819894 DOI: 10.3390/molecules30030755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed in response to cellular stress or inflammatory stimuli. The primary role of the iCP is to hydrolyze proteins into peptides that can be loaded into the MHC-I complex. Beyond its primary role in the adaptive immune response, it is also involved in the pathogenic mechanism of numerous disease states such as inflammatory conditions and cancer. In the last decade, a huge number of immunoproteasome-specific inhibitors have been described, allowing researchers to elucidate the role of the immunoproteasome as a potential therapeutic target for these diseases. The present manuscript summarizes the latest advances regarding immunoproteasome inhibitors tested against different cancer models. Specifically, it will focus on peptide and non-peptide analogs that have been reported in the last five years, together with their structure-activity relationship (SAR) studies. It aims to provide structural insights into this class of compounds pertaining to their favorable applicability as selective iCP inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| |
Collapse
|
4
|
Sundararajan R, Hegde SR, Panda AK, Christie J, Gadewal N, Venkatraman P. Loss of correlated proteasomal subunit expression selectively promotes the 20S High state which underlies luminal breast tumorigenicity. Commun Biol 2025; 8:55. [PMID: 39814910 PMCID: PMC11735796 DOI: 10.1038/s42003-024-07432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity. As seen in luminal BrCa cell lines, this imbalance limits the number of double-capped 19S-20S-19S holocomplexes (30S) formed and promotes free 20S catalytic core accumulation that is widely-believed to confer survival advantage to tumors. By retaining connectivity with key tumor 19S:20S interface nodes, the PSMD9 19S subunit chaperone emerges as a crucial regulator of 26S/30S:20S ratios sustaining tumor cell proteasome function. Disrupting this connectivity by depleting PSMD9 in MCF7 cells introduces structural anomalies in the proteasome, and shifts dependence from 20SHigh to a deregulated 26SHigh state invoking anti-tumor responses which opens up clinically-relevant therapeutic possibilities.
Collapse
Affiliation(s)
- Rangapriya Sundararajan
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.
- Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, Mumbai, India.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- School of Biosciences, Chanakya University, Bangalore, India
| | - Ashish Kumar Panda
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Joel Christie
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
5
|
Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A, Spirin P, Prassolov V, Lebedev T, Morozov A, Karpov V. Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer. Cancers (Basel) 2025; 17:159. [PMID: 39796785 PMCID: PMC11720674 DOI: 10.3390/cancers17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed. Breast cancer (BC) therapy depends on the subtype of the tumor, determined by the expression level of Ki67, HER-2, estrogen and progesterone receptors. Relationships between the presence of specific proteasome forms and proteins that determine the BC subtype remain unclear. Here, using gene expression data in 19,145 tumor samples from 144 datasets and tissues from 159 patients with different subtypes of BC, we investigated the association between the activity and expression of proteasomes and levels of BC subtype markers. METHODS Bioinformatic analysis of proteasome subunit (PSMB1-10) gene expression in BC was performed. Proteasome heterogeneity in BC cell lines was investigated by qPCR. By Western blotting, proteasome composition was assessed in cells and patient tissue lysates. Proteasome activities were studied using fluorogenic substrates. BC molecular subtypes were determined by immunohistochemistry. RESULTS BC subtypes demonstrate differing proteasome subunit expression pattern and strong PSMB8-10 co-correlation in tumors. A significant increase in chymotrypsin- and caspase-like proteasome activities in BC compared to adjacent tissues was revealed. The subunit composition of proteasomes in tumor tissues of BC subtypes varied. Regression analysis demonstrated a positive correlation between proteasome activities and the expression of Ki67, estrogen receptors and progesterone receptors. CONCLUSION BC subtypes demonstrate differences within the proteasome pool. Correlations between the proteasome activity, hormone receptors and Ki67 indicate possible mutual influence. Obtained results facilitate development of novel drug combinations for BC therapy.
Collapse
Affiliation(s)
- Irina Kondakova
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
| | - Elena Sereda
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya Sidenko
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sergey Vtorushin
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Moscow Center for Advanced Studies, Kulakova 20, 123592 Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| |
Collapse
|
6
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310308. [PMID: 39482885 PMCID: PMC11714253 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haiqi Zhu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ka Man So
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Naresh Singh
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jia Wang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Division of Hematology/Oncology, Department of MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Chi Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biomedical Engineering and Knight Cancer InstituteOregon Health & Science UniversityPortlandOR97239USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
7
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Sheng G, Tao J, Jin P, Li Y, Jin W, Wang K. The Proteasome-Family-Members-Based Prognostic Model Improves the Risk Classification for Adult Acute Myeloid Leukemia. Biomedicines 2024; 12:2147. [PMID: 39335660 PMCID: PMC11429122 DOI: 10.3390/biomedicines12092147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The accumulation of diverse molecular and cytogenetic variations contributes to the heterogeneity of acute myeloid leukemia (AML), a cluster of hematologic malignancies that necessitates enhanced risk evaluation for prognostic prediction and therapeutic guidance. The ubiquitin-proteasome system plays a crucial role in AML; however, the specific contributions of 49 core proteasome family members (PSMs) in this context remain largely unexplored. Methods: The expression and survival significance of 49 PSMs in AML were evaluated using the data from BeatAML2.0, TCGA, and the GEO database, mainly through the K-M plots, differential genes enrichment analysis, and candidate compounds screening via R language and statistical software. Results: we employed LASSO and Cox regression analyses and developed a model comprising three PSMs (PSMB8, PSMG1, and PSMG4) aimed at predicting OS in adult AML patients, utilizing expression profiles from the BeatAML2.0 training datasets. Patients with higher risk scores were predominantly found in the AML-M2 subtype, exhibited poorer ELN stratification, showed no complete remission following induction therapies, and had a higher mortality status. Consistently, significantly worse OS was observed in high-risk patients across both the training and three validation datasets, underscoring the robust predictive capability of the three-PSMs model for AML outcomes. This model elucidated the distinct genetic abnormalities landscape between high- and low-risk groups and enhanced the ELN risk stratification system. Ultimately, the three-PSMs risk score captured AML-specific gene expression signatures, providing a molecular basis for selecting potential therapeutic agents. Conclusions: In summary, these findings manifested the significant potential of the PSM model for predicting AML survival and informed treatment strategies.
Collapse
Affiliation(s)
- Guangying Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Jingfen Tao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
| | - Yilu Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Ito M, Koido S, Iwamoto T, Morimoto S, Fujiki F, Sugiyama H, Matsumoto S, Effenberger C, Kiyotani K, Shiba K. Enhancing the immunogenicity of Wilms tumor 1 epitope in mesothelioma cells with immunoproteasome inhibitors. PLoS One 2024; 19:e0308330. [PMID: 39116074 PMCID: PMC11309442 DOI: 10.1371/journal.pone.0308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
The immunogenicity of cancer cells is influenced by several factors, including the expression of the major histocompatibility complex class I (MHC-I), antigen expression, and the repertoire of proteasome-produced epitope peptides. The malignant pleural mesothelioma cell line ACC-MEOS-4 (MESO-4) expresses high levels of MHC-I and Wilms tumor 1 (WT1) tumor antigens. Using a functional T cell reporter assay specific for the HLA-A*24:02 restricted WT1 epitope (WT1235, CMTWNQMNL), we searched for factors that augmented the immunogenicity of MESO-4, focusing on proteasomes, which have a central role in the antigen processing machinery. ONX-0914, a selective inhibitor of the immunoproteasome subunit β5i, enhanced immunogenicity dose-dependently at low concentrations without cytotoxicity. In addition, CD8+ T lymphocytes recognizing WT1 showed greater cytotoxicity against MESO-4 pre-treated with ONX-0914. MESO-4 expresses a standard proteasome (SP) and immunoproteasome (IP). Notably, IP has distinct catalytic activity from SP, favoring the generation of antigenic peptides with high affinity for MHC-I in antigen-presenting cells and cancer cells. In vitro, immunoproteasome digestion assay and mass spectrometry analysis showed that IP cleaved WT1235 internally after the hydrophobic residues. Importantly, this internal cleavage of the WT1235 epitope was mitigated by ONX-0914. These results suggest that ONX-0914 prevents the internal destructive cleavage of WT1235 by IP, thereby promoting the specific presentation of the WT1 epitope by MESO-4. In conclusion, selective IP inhibitors might offer a means to modulate cancer cell immunogenicity by directing the presentation of particular tumor epitopes.
Collapse
Affiliation(s)
- Masaki Ito
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Koido
- The Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Takeo Iwamoto
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Saki Matsumoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Clara Effenberger
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kiyotaka Shiba
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
10
|
Qian L, Zhu J, Xue Z, Zhou Y, Xiang N, Xu H, Sun R, Gong W, Cai X, Sun L, Ge W, Liu Y, Su Y, Lin W, Zhan Y, Wang J, Song S, Yi X, Ni M, Zhu Y, Hua Y, Zheng Z, Guo T. Proteomic landscape of epithelial ovarian cancer. Nat Commun 2024; 15:6462. [PMID: 39085232 PMCID: PMC11291745 DOI: 10.1038/s41467-024-50786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is a deadly disease with limited diagnostic biomarkers and therapeutic targets. Here we conduct a comprehensive proteomic profiling of ovarian tissue and plasma samples from 813 patients with different histotypes and therapeutic regimens, covering the expression of 10,715 proteins. We identify eight proteins associated with tumor malignancy in the tissue specimens, which are further validated as potential circulating biomarkers in plasma. Targeted proteomics assays are developed for 12 tissue proteins and 7 blood proteins, and machine learning models are constructed to predict one-year recurrence, which are validated in an independent cohort. These findings contribute to the understanding of EOC pathogenesis and provide potential biomarkers for early detection and monitoring of the disease. Additionally, by integrating mutation analysis with proteomic data, we identify multiple proteins related to DNA damage in recurrent resistant tumors, shedding light on the molecular mechanisms underlying treatment resistance. This study provides a multi-histotype proteomic landscape of EOC, advancing our knowledge for improved diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jianqing Zhu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhangzhi Xue
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Xiang
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Wangang Gong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue Cai
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lu Sun
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ying Su
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wangmin Lin
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yuecheng Zhan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Junjian Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiao Yi
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yi Zhu
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García MDC. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep 2024; 14:12350. [PMID: 38811600 PMCID: PMC11137066 DOI: 10.1038/s41598-024-61908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
Collapse
Affiliation(s)
- María Daniela Mares-Quiñones
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - D Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Yang J, Ouedraogo SY, Wang J, Li Z, Feng X, Ye Z, Zheng S, Li N, Zhan X. Clinically relevant stratification of lung squamous carcinoma patients based on ubiquitinated proteasome genes for 3P medical approach. EPMA J 2024; 15:67-97. [PMID: 38463626 PMCID: PMC10923771 DOI: 10.1007/s13167-024-00352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Relevance The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome's regulatory function is closely associated with the disease's pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan-Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters. Results This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin-proteasome system for degradation. Conclusions Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00352-w.
Collapse
Affiliation(s)
- Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhijun Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Feng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- School of Basic Medicine, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Shu Zheng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
14
|
Jiang L, Xu C, Bai Y, Liu A, Gong Y, Wang YP, Deng HW. Autosurv: interpretable deep learning framework for cancer survival analysis incorporating clinical and multi-omics data. NPJ Precis Oncol 2024; 8:4. [PMID: 38182734 PMCID: PMC10770412 DOI: 10.1038/s41698-023-00494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Accurate prognosis for cancer patients can provide critical information for optimizing treatment plans and improving life quality. Combining omics data and demographic/clinical information can offer a more comprehensive view of cancer prognosis than using omics or clinical data alone and can also reveal the underlying disease mechanisms at the molecular level. In this study, we developed and validated a deep learning framework to extract information from high-dimensional gene expression and miRNA expression data and conduct prognosis prediction for breast cancer and ovarian-cancer patients using multiple independent multi-omics datasets. Our model achieved significantly better prognosis prediction than the current machine learning and deep learning approaches in various settings. Moreover, an interpretation method was applied to tackle the "black-box" nature of deep neural networks and we identified features (i.e., genes, miRNA, demographic/clinical variables) that were important to distinguish predicted high- and low-risk patients. The significance of the identified features was partially supported by previous studies.
Collapse
Affiliation(s)
- Lindong Jiang
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yuntong Bai
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Tubío-Santamaría N, Jayavelu AK, Schnoeder TM, Eifert T, Hsu CJ, Perner F, Zhang Q, Wenge DV, Hansen FM, Kirkpatrick JM, Jyotsana N, Lane SW, von Eyss B, Deshpande AJ, Kühn MWM, Schwaller J, Cammann C, Seifert U, Ebstein F, Krüger E, Hochhaus A, Heuser M, Ori A, Mann M, Armstrong SA, Heidel FH. Immunoproteasome function maintains oncogenic gene expression in KMT2A-complex driven leukemia. Mol Cancer 2023; 22:196. [PMID: 38049829 PMCID: PMC10694946 DOI: 10.1186/s12943-023-01907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.
Collapse
Affiliation(s)
- Nuria Tubío-Santamaría
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Ashok Kumar Jayavelu
- Max-Planck-Institute of Biochemistry, Munich, Germany
- Proteomics and Cancer Cell Signaling Group, DKFZ, Heidelberg, Germany
| | - Tina M Schnoeder
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Theresa Eifert
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Chen-Jen Hsu
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Florian Perner
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Qirui Zhang
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Daniela V Wenge
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, 02215, USA
| | - Fynn M Hansen
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | | | - Nidhi Jyotsana
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Steven W Lane
- Queensland Institute for Medical Research (QIMR), Brisbane, Australia
| | - Björn von Eyss
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | | | - Michael W M Kühn
- Medizinische Klinik 3, Hämatologie, Onkologie und Pneumologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Clemens Cammann
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie - Virologie, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie - Virologie, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Frédéric Ebstein
- Department of Biochemistry, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Elke Krüger
- Department of Biochemistry, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | | | - Michael Heuser
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Alessandro Ori
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, 02215, USA
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany.
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany.
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
16
|
Yan M, Cao H, Tao K, Xiao B, Chu Y, Ma D, Huang X, Han Y, Ji T. HDACs alters negatively to the tumor immune microenvironment in gynecologic cancers. Gene 2023; 885:147704. [PMID: 37572797 DOI: 10.1016/j.gene.2023.147704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The role of histone deacetylases (HDACs) in the tumor immune microenvironment of gynecologic tumors remains unexplored. We integrated data from The Cancer Genome Atlas and Human Protein Atlas to examine HDAC expression in breast, cervical, ovarian, and endometrial cancers. Elevated HDAC expression correlated with poor prognosis and highly malignant cancer subtypes. Gene Set Enrichment Analysis revealed positive associations between HDAC expression and tumor proliferation signature, while negative associations were found with tumor inflammation signature. Increased HDAC expression was linked to reduced infiltration of natural killer (NK), NKT, and CD8+ T cells, along with negative associations with the expression of PSMB10, NKG7, CCL5, CD27, HLA-DQA1, and HLA-DQB1. In a murine 4T1 breast cancer model, treatment with suberoylanilide hydroxamic acid (SAHA; HDAC inhibitor) and PD-1 antibody significantly inhibited tumor growth and infiltration of CD3+ and CD8+ T cells. Real-time polymerase chain reaction revealed upregulated expressions of Psmb10, Nkg7, Ccl5, Cd8a, Cxcr6, and Cxcl9 genes, while Ctnnb1 and Myc genes were inhibited, indicating tumor suppression and immune microenvironment activation. Our study revealed that HDACs play tumor-promoting and immunosuppressive roles in gynecologic cancers, suggesting HDAC inhibitors as potential therapeutic agents for these cancers.
Collapse
Affiliation(s)
- Miao Yan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Cao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangjia Tao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Chu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Ji
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Monittola F, Bianchi M, Nasoni MG, Luchetti F, Magnani M, Crinelli R. Gastric cancer cell types display distinct proteasome/immunoproteasome patterns associated with migration and resistance to proteasome inhibitors. J Cancer Res Clin Oncol 2023; 149:10085-10097. [PMID: 37261527 PMCID: PMC10423134 DOI: 10.1007/s00432-023-04948-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE Gastric cancers (GC) display histological and molecular differences. This heterogeneity has limited the development of new therapeutic strategies which requires the identification of the molecular players involved in GC pathogenesis and the investigation of their responsiveness to drugs. Several proteasome subunits have been identified as prognostic markers in GC and their role studied by gene knockdown. However, proteasomes are multi-subunit protein complexes co-existing in multiple forms with distinct activity/specificity and ability to change in response to inhibitors. Information on the role of different proteasome particles in cancer and their relevance as therapeutic targets is limited. METHODS Based on this evidence, subunit assembly into proteasome complexes and activity were investigated by native PAGE followed by immunoblotting, and by using fluorogenic substrates, respectively. RESULTS Here we show that GC cell lines with epithelial and/or diffuse Lauren's histotype express different levels of immunoproteasome subunits and equal amounts of constitutive counterparts. Immunoproteasome subunits were highly expressed and preferentially assembled into 19S capped complexes in diffuse-type cells, where most of the activity was catalyzed by the 26S and 30S particles. In epithelial cells, activity appeared equally distributed between 19S- and 11S-capped proteolytic particles. This proteasome pattern was associated with higher resistance of diffuse-type cells to proteasome inhibition. Immunoproteasome inhibition by ONX 0914 did not influence cell viability but affected metastatic cell migration. CONCLUSIONS These results suggest that pharmacological inhibition of the immunoproteasome may be useful in treating metastatic gastric cancers.
Collapse
Affiliation(s)
- Francesca Monittola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| |
Collapse
|
18
|
Lee MH, Ratanachan D, Wang Z, Hack J, Abdulrahman L, Shamlin NP, Kalayjian M, Nesseler JP, Ganapathy E, Nguyen C, Ratikan JA, Cacalano NA, Austin D, Damoiseaux R, DiPardo B, Graham DS, Kalbasi A, Sayer JW, McBride WH, Schaue D. Adaptation of the Tumor Antigen Presentation Machinery to Ionizing Radiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:693-705. [PMID: 37395687 PMCID: PMC10435044 DOI: 10.4049/jimmunol.2100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/18/2022] [Indexed: 07/04/2023]
Abstract
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Collapse
Affiliation(s)
- Mi-Heon Lee
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Duang Ratanachan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zitian Wang
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Hack
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lobna Abdulrahman
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas P. Shamlin
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mirna Kalayjian
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jean Philippe Nesseler
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Josephine A. Ratikan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicolas A. Cacalano
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - David Austin
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of CNSI, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Benjamin DiPardo
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danielle S. Graham
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James W. Sayer
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- School of Public Health, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William H. McBride
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
19
|
Jiang L, Xu C, Bai Y, Liu A, Gong Y, Wang YP, Deng HW. AUTOSURV: INTERPRETABLE DEEP LEARNING FRAMEWORK FOR CANCER SURVIVAL ANALYSIS INCORPORATING CLINICAL AND MULTI-OMICS DATA. RESEARCH SQUARE 2023:rs.3.rs-2486756. [PMID: 37609286 PMCID: PMC10441464 DOI: 10.21203/rs.3.rs-2486756/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Accurate prognosis for cancer patients can provide critical information for optimizing treatment plans and improving life quality. Combining omics data and demographic/clinical information can offer a more comprehensive view of cancer prognosis than using omics or clinical data alone and can reveal the underlying disease mechanisms at the molecular level. In this study, we developed a novel deep learning framework to extract information from high-dimensional gene expression and miRNA expression data and conduct prognosis prediction for breast cancer and ovarian cancer patients. Our model achieved significantly better prognosis prediction than the conventional Cox Proportional Hazard model and other competitive deep learning approaches in various settings. Moreover, an interpretation approach was applied to tackle the "black-box" nature of deep neural networks and we identified features (i.e., genes, miRNA, demographic/clinical variables) that made important contributions to distinguishing predicted high- and low-risk patients. The identified associations were partially supported by previous studies.
Collapse
Affiliation(s)
- Lindong Jiang
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
| | - Yuntong Bai
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118
| | - Anqi Liu
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112
| | - Yu-Ping Wang
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112
| |
Collapse
|
20
|
Geoffroy K, Araripe Saraiva B, Viens M, Béland D, Bourgeois-Daigneault MC. Increased expression of the immunoproteasome subunits PSMB8 and PSMB9 by cancer cells correlate with better outcomes for triple-negative breast cancers. Sci Rep 2023; 13:2129. [PMID: 36746983 PMCID: PMC9902398 DOI: 10.1038/s41598-023-28940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Proteasome dependency is a feature of many cancers that can be targeted by proteasome inhibitors. For some cancer types, notably breast cancer and triple-negative breast cancer (TNBC), high mRNA expression of a modified form of the proteasome, called the immunoproteasome (ImP), correlates with better outcomes and higher expression of one ImP subunit was associated with slower tumor growth in a small patient cohort. While these findings are in line with an anti-tumoral role of the ImP in breast cancer, studies investigating ImP expression at the protein level in large patient cohorts are lacking. Furthermore, while ImPs can be found in both immune and non-immune cells, the cellular source is often ignored in correlative studies. In order to determine the impact of ImP expression on breast cancer outcomes, we assessed the protein expression and cellular source of the ImP subunits PSMB8 and PSMB9 in a cohort of 2070 patients. Our data show a clear correlation between high ImP expression and better outcomes, most notably for TNBC patients and when tumor cells rather than stromal or immune cells express PSMB8 or PSMB9. Our results therefore suggest that ImP expression by tumor cells could be used as prognostic markers of TNBC outcomes.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Bruna Araripe Saraiva
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Melissa Viens
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Delphine Béland
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada. .,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada. .,Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
21
|
Azzarito G, Henry M, Rotshteyn T, Leeners B, Dubey RK. Transcriptomic and Functional Evidence That miRNA193a-3p Inhibits Lymphatic Endothelial Cell (LEC) and LEC + MCF-7 Spheroid Growth Directly and by Altering MCF-7 Secretome. Cells 2023; 12:cells12030389. [PMID: 36766731 PMCID: PMC9913637 DOI: 10.3390/cells12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Margit Henry
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
22
|
Xu K, Diaz AA, Duan F, Lee M, Xiao X, Liu H, Liu G, Cho MH, Gower AC, Alekseyev YO, Spira A, Aberle DR, Washko GR, Billatos E, Lenburg ME. Bronchial gene expression alterations associated with radiological bronchiectasis. Eur Respir J 2023; 61:2200120. [PMID: 36229050 PMCID: PMC9881226 DOI: 10.1183/13993003.00120-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Discovering airway gene expression alterations associated with radiological bronchiectasis may improve the understanding of the pathobiology of early-stage bronchiectasis. METHODS Presence of radiological bronchiectasis in 173 individuals without a clinical diagnosis of bronchiectasis was evaluated. Bronchial brushings from these individuals were transcriptomically profiled and analysed. Single-cell deconvolution was performed to estimate changes in cellular landscape that may be associated with early disease progression. RESULTS 20 participants have widespread radiological bronchiectasis (three or more lobes). Transcriptomic analysis reflects biological processes associated with bronchiectasis including decreased expression of genes involved in cell adhesion and increased expression of genes involved in inflammatory pathways (655 genes, false discovery rate <0.1, log2 fold-change >0.25). Deconvolution analysis suggests that radiological bronchiectasis is associated with an increased proportion of ciliated and deuterosomal cells, and a decreased proportion of basal cells. Gene expression patterns separated participants into three clusters: normal, intermediate and bronchiectatic. The bronchiectatic cluster was enriched by participants with more lobes of radiological bronchiectasis (p<0.0001), more symptoms (p=0.002), higher SERPINA1 mutation rates (p=0.03) and higher computed tomography derived bronchiectasis scores (p<0.0001). CONCLUSIONS Genes involved in cell adhesion, Wnt signalling, ciliogenesis and interferon-γ pathways had altered expression in the bronchus of participants with widespread radiological bronchiectasis, possibly associated with decreased basal and increased ciliated cells. This gene expression pattern is not only highly enriched among individuals with radiological bronchiectasis, but also associated with airway-related symptoms in those without discernible radiological bronchiectasis, suggesting that it reflects a bronchiectasis-associated, but non-bronchiectasis-specific lung pathophysiological process.
Collapse
Affiliation(s)
- Ke Xu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- K. Xu and A.A. Diaz contributed equally to this work
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- K. Xu and A.A. Diaz contributed equally to this work
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Minyi Lee
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaohui Xiao
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanqiao Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael H Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Denise R Aberle
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- E. Billatos and M.E. Lenburg contributed equally to this article as lead authors and supervised the work
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- E. Billatos and M.E. Lenburg contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
23
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
24
|
Larsson P, Pettersson D, Engqvist H, Werner Rönnerman E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types. BMC Cancer 2022; 22:993. [PMID: 36123629 PMCID: PMC9484138 DOI: 10.1186/s12885-022-10079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer proteostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome in different cancer forms. Methods Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer cohort and KM plotter with four cancer types. Results The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocarcinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were predominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. Conclusion These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel therapeutic targets for different cancer forms. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10079-4.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniella Pettersson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Mejía-Hernández JO, Keam SP, Saleh R, Muntz F, Fox SB, Byrne D, Kogan A, Pang L, Huynh J, Litchfield C, Caramia F, Lozano G, He H, You JM, Sandhu S, Williams SG, Haupt Y, Haupt S. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis 2022; 13:777. [PMID: 36075907 PMCID: PMC9465983 DOI: 10.1038/s41419-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Telix Pharmaceuticals Ltd, Melbourne, VIC 3051 Australia
| | - Simon P. Keam
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1135.60000 0001 1512 2287Present Address: CSL Innovation, CSL Ltd, Melbourne, VIC 3052 Australia
| | - Reem Saleh
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Fenella Muntz
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Stephen B. Fox
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - David Byrne
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Arielle Kogan
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Lokman Pang
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Jennifer Huynh
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Cassandra Litchfield
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Franco Caramia
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Guillermina Lozano
- grid.240145.60000 0001 2291 4776Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA
| | - Hua He
- grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - James M. You
- grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Shahneen Sandhu
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000 Australia
| | - Scott G. Williams
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Ygal Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Vittail Ltd, Melbourne, VIC 3146 Australia
| | - Sue Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| |
Collapse
|
26
|
High-Throughput Profiling of Colorectal Cancer Liver Metastases Reveals Intra- and Inter-Patient Heterogeneity in the EGFR and WNT Pathways Associated with Clinical Outcome. Cancers (Basel) 2022; 14:cancers14092084. [PMID: 35565214 PMCID: PMC9104154 DOI: 10.3390/cancers14092084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor heterogeneity can greatly influence therapy outcome and patient survival. In this study, we aimed at unraveling inter- and intra-patient heterogeneity of colorectal cancer liver metastases (CRLM). To this end, we comprehensively characterized CRLM using state-of-the-art high-throughput technologies combined with bioinformatics analyses. We found a high degree of inter- and intra-patient heterogeneity among the metastases, in particular in genes of the WNT and EGFR pathways. Through analyzing the master regulators and effectors associated with the regulation of these genes, we identified a specific gene signature that was highly expressed in a large cohort of colorectal cancer patients and associated with clinical outcome. Abstract Seventy percent of patients with colorectal cancer develop liver metastases (CRLM), which are a decisive factor in cancer progression. Therapy outcome is largely influenced by tumor heterogeneity, but the intra- and inter-patient heterogeneity of CRLM has been poorly studied. In particular, the contribution of the WNT and EGFR pathways, which are both frequently deregulated in colorectal cancer, has not yet been addressed in this context. To this end, we comprehensively characterized normal liver tissue and eight CRLM from two patients by standardized histopathological, molecular, and proteomic subtyping. Suitable fresh-frozen tissue samples were profiled by transcriptome sequencing (RNA-Seq) and proteomic profiling with reverse phase protein arrays (RPPA) combined with bioinformatic analyses to assess tumor heterogeneity and identify WNT- and EGFR-related master regulators and metastatic effectors. A standardized data analysis pipeline for integrating RNA-Seq with clinical, proteomic, and genetic data was established. Dimensionality reduction of the transcriptome data revealed a distinct signature for CRLM differing from normal liver tissue and indicated a high degree of tumor heterogeneity. WNT and EGFR signaling were highly active in CRLM and the genes of both pathways were heterogeneously expressed between the two patients as well as between the synchronous metastases of a single patient. An analysis of the master regulators and metastatic effectors implicated in the regulation of these genes revealed a set of four genes (SFN, IGF2BP1, STAT1, PIK3CG) that were differentially expressed in CRLM and were associated with clinical outcome in a large cohort of colorectal cancer patients as well as CRLM samples. In conclusion, high-throughput profiling enabled us to define a CRLM-specific signature and revealed the genes of the WNT and EGFR pathways associated with inter- and intra-patient heterogeneity, which were validated as prognostic biomarkers in CRC primary tumors as well as liver metastases.
Collapse
|
27
|
Identification of N, C-capped di- and tripeptides as selective immunoproteasome inhibitors. Eur J Med Chem 2022; 234:114252. [DOI: 10.1016/j.ejmech.2022.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
28
|
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol 2022; 13:828875. [PMID: 35211123 PMCID: PMC8861358 DOI: 10.3389/fimmu.2022.828875] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bilal Azakir
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Stéphane Terry
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
29
|
Dong X, Yang Y, Xu G, Tian Z, Yang Q, Gong Y, Wu G. The initial expression alterations occurring to transcription factors during the formation of breast cancer: Evidence from bioinformatics. Cancer Med 2022; 11:1371-1395. [PMID: 35037412 PMCID: PMC8894706 DOI: 10.1002/cam4.4545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading malignancy among women worldwide. AIM This work aimed to present a comprehensively bioinformatic analysis of gene expression profiles and to identify the hub genes during BC tumorigenesis, providing potential biomarkers and targets for the diagnosis and therapy of BC. MATERIALS & METHODS In this study, multiple public databases, bioinformatics approaches, and online analytical tools were employed and the real-time reverse transcription polymerase chain reaction was implemented. RESULTS First, we identified 10, 107, and 3869 differentially expressed genes (DEGs) from three gene expression datasets (GSE9574, GSE15852, and GSE42568, covering normal, para-cancerous, and BC samples, respectively), and investigated different biological functions and pathways involved. Then, we screened out 8, 16, and 29 module genes from these DEGs, respectively. Next, 10 candidate genes were determined through expression and survival analyses. We noted that seven candidate genes JUN, FOS, FOSB, EGR1, ZFP36, CFD, and PPARG were downregulated in BC compared to normal tissues and lower expressed in aggressive types of BC (basal, HER2+ , and luminal B), TP53 mutation group, younger patients, higher stage BC, and lymph node metastasis BC, while CD27, PSMB9, and SELL were upregulated. The present study discovered that the expression levels of these candidate genes were correlated with the infiltration of immune cells (CD8+ T cell, macrophage, natural killer [NK] cell, and cancer-associated fibroblast) in BC, as well as biomarkers of immune cells and immune checkpoints. We also revealed that promoter methylation, amplification, and deep deletion might contribute to the abnormal expressions of candidate genes. Moreover, we illustrated downstream-targeted genes of JUN, FOS, FOSB, EGR1, and ZFP36 and demonstrated that these targeted genes were involved in "positive regulation of cell death", "pathways in cancer", "PI3K-Akt signaling pathway", and so on. DISCUSSION & CONCLUSION We presented differential gene expression profiles among normal, para-cancerous, and BC tissues and further identified candidate genes that might contribute to tumorigenesis and progression of BC, as potential diagnostic and prognostic targets for BC patients.
Collapse
Affiliation(s)
- Xingxing Dong
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yalong Yang
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gaoran Xu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zelin Tian
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qian Yang
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational MedicineHubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gaosong Wu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
30
|
Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D, Wagener FD, Voillet V, Martin L, Gottardo R, Bielas J, McElrath JM, Stirewalt DL, Pogosova-Agadjanyan EL, Yeung CC, Pierce RH, Egan DN, Bar M, Hendrie PC, Kinsella S, Vakil A, Butler J, Chaffee M, Linton J, McAfee MS, Hunter DS, Bleakley M, Rongvaux A, Van den Eynde BJ, Chapuis AG, Greenberg PD. Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med 2022; 14:eabg8070. [PMID: 35138909 DOI: 10.1126/scitranslmed.abg8070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (β1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing β1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.
Collapse
Affiliation(s)
- Miranda C Lahman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelly G Paulson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, 1200 Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Denise Buenrostro
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Felecia D Wagener
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Lauren Martin
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason Bielas
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julie M McElrath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | | | - Cecilia C Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Robert H Pierce
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Daniel N Egan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Paul C Hendrie
- University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aesha Vakil
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonathan Linton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan S McAfee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel S Hunter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marie Bleakley
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Anthony Rongvaux
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| | - Benoit J Van den Eynde
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Aude G Chapuis
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| |
Collapse
|
31
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
32
|
Li N, Zhan X. Integrated genomic analysis of proteasome alterations across 11,057 patients with 33 cancer types: clinically relevant outcomes in framework of 3P medicine. EPMA J 2021; 12:605-627. [PMID: 34956426 DOI: 10.1007/s13167-021-00256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Relevance Proteasome, a cylindrical complex containing 19S regulatory particle lid, 19S regulatory particle base, and 20S core particle, acted as a major mechanism to regulate the levels of intracellular proteins and degrade misfolded proteins, which involved in many cellular processes, and played important roles in cancer biological processes. Elucidation of proteasome alterations across multiple cancer types will directly contribute to cancer medical services in the context of predictive, preventive, and personalized medicine (PPPM / 3P medicine). Purpose This study aimed to investigate proteasome gene alterations across 33 cancer types for discovery of effective biomarkers and therapeutic targets in the framework of PPPM practice in cancers. Methods Proteasome gene data, including gene expression RNAseq, somatic mutation, tumor mutation burden (TMB), copy number variant (CNV), microsatellite instability (MSI) score, clinical characteristics, immune phenotype, 22 immune cells, cancer stemness index, drug sensitivity, and related pathways, were systematically analyzed with publically available database and bioinformatics across 11,057 patients with 33 cancer types. Results Differentially expressed proteasome genes were extensively found between tumor and control tissues. PSMB4 occurred the top mutation event among proteasome genes, and those proteasome genes were significantly associated with TMB and MSI score. Most of proteasome genes were positively related to CNV among single deletion, control copy number, and single gain. Kaplan-Meier curves and COX regression survival analysis showed proteasome genes were significantly associated with patient survival rate across 33 cancer types. Furthermore, the expressions of proteasome genes were significantly different among different clinical stages and immune subtypes. The expressions of proteasome genes were correlated with immune-related scores (ImmuneScore, StromalScore, and ESTIMATEScore), 22 immune cells, and cancer stemness. The sensitivities of multiple drugs were closely related to proteasome gene expressions. The identified proteasome and proteasome-interacted proteins were significantly enriched in various cancer-related pathways. Conclusions This study provided the first landscape of proteasome alterations across 11,057 patients with 33 cancer types and revealed that proteasome played a significant and wide functional role in cancer biological processes. These findings are the precious scientific data to reveal the common and specific alterations of proteasome genes among 33 cancer types, which benefits the research and practice of PPPM in cancers. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-021-00256-z.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| |
Collapse
|
33
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
35
|
Zegallai HM, Abu-El-Rub E, Cole LK, Field J, Mejia EM, Gordon JW, Marshall AJ, Hatch GM. Tafazzin deficiency impairs mitochondrial metabolism and function of lipopolysaccharide activated B lymphocytes in mice. FASEB J 2021; 35:e22023. [PMID: 34767647 DOI: 10.1096/fj.202100811rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
B lymphocytes are responsible for humoral immunity and play a key role in the immune response. Optimal mitochondrial function is required to support B cell activity during activation. We examined how deficiency of tafazzin, a cardiolipin remodeling enzyme required for mitochondrial function, alters the metabolic activity of B cells and their response to activation by lipopolysaccharide in mice. B cells were isolated from 3-month-old wild type or tafazzin knockdown mice and incubated for up to 72 h with lipopolysaccharide and cell proliferation, expression of cell surface markers, secretion of antibodies and chemokines, proteasome and immunoproteasome activities, and metabolic function determined. In addition, proteomic analysis was performed to identify altered levels of proteins involved in survival, immunogenic, proteasomal and mitochondrial processes. Compared to wild type lipopolysaccharide activated B cells, lipopolysaccharide activated tafazzin knockdown B cells exhibited significantly reduced proliferation, lowered expression of cluster of differentiation 86 and cluster of differentiation 69 surface markers, reduced secretion of immunoglobulin M antibody, reduced secretion of keratinocytes-derived chemokine and macrophage-inflammatory protein-2, reduced proteasome and immunoproteasome activities, and reduced mitochondrial respiration and glycolysis. Proteomic analysis revealed significant alterations in key protein targets that regulate cell survival, immunogenicity, proteasomal processing and mitochondrial function consistent with the findings of the above functional studies. The results indicate that the cardiolipin transacylase enzyme tafazzin plays a key role in regulating mouse B cell function and metabolic activity during activation through modulation of mitochondrial function.
Collapse
Affiliation(s)
- Hana M Zegallai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid, Jordan.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Regenerative Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jared Field
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Edgard M Mejia
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph W Gordon
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.,College of Nursing, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Pan-cancer analysis of the prognostic and immunological role of PSMB8. Sci Rep 2021; 11:20492. [PMID: 34650125 PMCID: PMC8516870 DOI: 10.1038/s41598-021-99724-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Recently some evidence has demonstrated the significance of PSMB8 in various malignancies. Nevertheless, PSMB8 (proteasome subunit beta 8), more familiar in the field of immunology contributing to the process of antigen presentation, is indeterminate in the role as a survival predictor of human pan-cancer. Besides, how PSMB8 interacts with immune cell infiltration in the tumor microenvironment requires further research. We then penetrated into the analysis of the PSMB8 expression profile among 33 types of cancer in the TCGA database. The results show that overexpression of PSMB8 was associated with poor clinical outcomes in overall survival (Sartorius et al. in Oncogene 35(22):2881–2892, 2016), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in most cancer varieties. In addition, there existed distinctly positive correlations between PSMB8 and immunity, reflected straightforwardly in the form of immune scores, tumor-infiltrating immune cells (TIICs) abundance, microsatellite instability, tumor mutation burden, and neoantigen level. Notably, specific markers of dendrite cells exhibited the tightest association with PSMB8 expression in terms of tumor-related immune infiltration patterns. Moreover, gene enrichment analysis showed that elevated PSMB8 expression was related to multiple immune-related pathways. We finally validated the PSMB8 expression in our local breast samples via quantitative PCR assays and concluded that PSMB8 appeared to perform well in predicting the survival outcome of BRCA patients. These findings elucidate the pivotal role of the antigen presentation-related gene PSMB8, which could potentially serve as a robust biomarker for prognosis determination in multiple cancers.
Collapse
|
37
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
38
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
39
|
Immunoproteasome Activity and Content Determine Hematopoietic Cell Sensitivity to ONX-0914 and to the Infection of Cells with Lentiviruses. Cells 2021; 10:cells10051185. [PMID: 34066177 PMCID: PMC8150886 DOI: 10.3390/cells10051185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Proteasomes are intracellular structures responsible for protein degradation. The 20S proteasome is a core catalytic element of the proteasome assembly. Variations of catalytic subunits generate different forms of 20S proteasomes including immunoproteasomes (iPs), which are present mostly in the immune cells. Certain cells of the immune system are primary targets of retroviruses. It has been shown that several viral proteins directly affect proteasome functionality, while inhibition of proteasome activity with broad specificity proteasome inhibitors stimulates viral transduction. Here we specifically addressed the role of the immunoproteasomes during early stages of viral transduction and investigated the effects of specific immunoproteasome inhibition and activation prior to infection using a panel of cell lines. Inhibition of iPs in hematopoietic cells with immunoproteasome-specific inhibitor ONX-0914 resulted in increased infection by VSV-G pseudotyped lentiviruses. Moreover, a tendency for increased infection of cloned cells with endogenously decreased proteasome activity was revealed. Conversely, activation of iPs by IFN-γ markedly reduced the viral infectivity, which was rescued upon simultaneous immunoproteasome inhibition. Our results indicate that immunoproteasome activity might be determinative for the cellular antiretroviral resistance at least for the cells with high iP content. Finally, therapeutic application of immunoproteasome inhibitors might promote retroviral infection of cells in vivo.
Collapse
|
40
|
Fletcher E, Gordon PM. Obesity-induced alterations to the immunoproteasome: a potential link to intramuscular lipotoxicity. Appl Physiol Nutr Metab 2021; 46:485-493. [PMID: 33186056 DOI: 10.1139/apnm-2020-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the mechanisms are unclear, inflammation and/or lipotoxicity likely contribute to obese muscle pathology. The immunoproteasome is known to respond to inflammation and oxidative damage and may aid muscle regeneration. We sought to determine whether diet-induced obesity (DIO) influences the immunoproteasome subunits LMP7 and MECL-1 in mouse muscle with and without exercise-induced muscle damage (EIMD). Muscle mass, regeneration, macrophage content and lipid peroxidation (8-isoprostane) were also assessed. Sixty male, 4-week-old C57BL/6J mice were fed a high-fat (HFD) or low-fat diet for 12 weeks. Mice were then subdivided into EIMD or no muscle damage (NMD) groups. The gastrocnemius muscle was excised 1 or 5 days after EIMD, producing 6 groups (n = 10/group). Body mass was greater; however, relative gastrocnemius mass was lower in HFD-fed mice. Despite no macrophage or MECL-1 alterations, LMP7 and 8-isoprostane were increased in obese mice in the NMD and 1 day post-EIMD groups. However, 8-isoprostane was reduced in obese mice 5 days post-EIMD, and accompanied by increased muscle LMP7, MECL-1 and macrophage content. Consequently, DIO may impair the immunoproteasome's ability to control muscle lipid peroxidation but is reversed with eccentric exercise. Although muscle regeneration was unchanged, immunoproteasome dysregulation occurs in obese muscle and may contribute to muscle pathology. Novelty: DIO may impair the intramuscular immunoproteasome response to lipid peroxidation. Acute eccentric exercise may protect obese individuals from muscle lipotoxicity via immunoproteasome upregulation.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
| | - Paul M Gordon
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
41
|
Kuhara K, Kitagawa T, Baron B, Tokuda K, Sakamoto K, Nagano H, Nakamura K, Kobayashi M, Nagayasu H, Kuramitsu Y. Proteomic Analysis of Hepatocellular Carcinoma Tissues With Encapsulation Shows Up-regulation of Leucine Aminopeptidase 3 and Phosphoenolpyruvate Carboxykinase 2. Cancer Genomics Proteomics 2021; 18:307-316. [PMID: 33893083 DOI: 10.21873/cgp.20261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Cancer is the most fatal disease worldwide whose most lethal characteristics are invasion and metastasis. Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. HCC often shows encapsulation, which is related to better prognosis. In this study, proteomic analysis of HCC tissues with and without encapsulation was performed, in order to elucidate the factors which play important roles in encapsulation. MATERIALS AND METHODS Five HCC tissues surrounded by a capsule and five HCC tissues which broke the capsule were obtained from patients diagnosed with HCC who underwent surgical liver resection. Protein samples from these tissues were separated by two-dimensional gel electrophoresis (2-DE), and the protein spots whose expression was different between encapsulated and non-encapsulated HCC tissues were identified through gel imaging analysis software. The selected protein spots were analyzed and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two-DE analysis showed 14 spots whose expression was different between encapsulated and non-encapsulated HCC tissues. Of these, 9 were up-regulated and 5 were down-regulated in HCC tissues without encapsulation. The validation by Western blot confirmed that leucine aminopeptidase 3 (LAP3) and phosphoenolpyruvate carboxykinase mitochondrial (PCK2) were up-regulated significantly in HCC tissues with a capsule, compared to HCC tissues that broke the capsule. CONCLUSION These findings suggest that LAP3 and PCK2 could be factors responsible for the maintenance of encapsulation in HCC tissues.
Collapse
Affiliation(s)
- Keisuke Kuhara
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.,Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Takao Kitagawa
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Kazuhiro Tokuda
- Graduate School of Health and Welfare, Yamaguchi Prefectural University, Yamaguchi, Japan
| | - Kazuhiko Sakamoto
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuyuki Nakamura
- Centre of Clinical Laboratories in Tokuyama Medical Association Hospital, Shunan, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan;
| |
Collapse
|
42
|
Transcriptome Analysis Reveals Possible Immunomodulatory Activity Mechanism of Chlorella sp. Exopolysaccharides on RAW264.7 Macrophages. Mar Drugs 2021; 19:md19040217. [PMID: 33919822 PMCID: PMC8070752 DOI: 10.3390/md19040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, the exopolysaccharides of Chlorella sp. (CEP) were isolated to obtain the purified fraction CEP4. Characterization results showed that CEP4 was a sulfated heteropolysaccharide. The main monosaccharide components of CEP4 are glucosamine hydrochloride (40.8%) and glucuronic acid (21.0%). The impact of CEP4 on the immune activity of RAW264.7 macrophage cytokines was detected, and the results showed that CEP4 induced the production of nitric oxide (NO), TNF-α, and IL-6 in a dose-dependent pattern within a range of 6 μg/mL. A total of 4824 differentially expressed genes (DEGs) were obtained from the results of RNA-seq. Gene enrichment analysis showed that immune-related genes such as NFKB1, IL-6, and IL-1β were significantly upregulated, while the genes RIPK1 and TLR4 were significantly downregulated. KEGG pathway enrichment analysis showed that DEGs were significantly enriched in immune-related biological processes, including toll-like receptor (TLR) signaling pathway, cytosolic DNA-sensing pathway, and C-type lectin receptor signaling pathway. Protein–protein interaction (PPI) network analysis showed that HSP90AB1, Rbx1, ISG15, Psmb6, Psmb3, Psmb8, PSMA7, Polr2f, Rpsa, and NEDD8 were the hub genes with an essential role in the immune activity of CEP4. The preliminary results of the present study revealed the potential mechanism of CEP4 in the immune regulation of RAW264.7 macrophages, suggesting that CEP4 is a promising immunoregulatory agent.
Collapse
|
43
|
Bacteria-host transcriptional response during endothelial invasion by Staphylococcus aureus. Sci Rep 2021; 11:6037. [PMID: 33727596 PMCID: PMC7966777 DOI: 10.1038/s41598-021-84050-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is the cause of serious vascular infections such as sepsis and endocarditis. These infections are notoriously difficult to treat, and it is believed that the ability of S. aureus to invade endothelial cells and persist intracellularly is a key mechanism for persistence despite ongoing antibiotic treatment. Here, we used dual RNA sequencing to study the simultaneous transcriptional response of S. aureus and human endothelial cells during in vitro infections. We revealed discrete and shared differentially expressed genes for both host and pathogen at the different stages of infection. While the endothelial cells upregulated genes involved in interferon signalling and antigen presentation during late infection, S. aureus downregulated toxin expression while upregulating genes related to iron scavenging. In conclusion, the presented data provide an important resource to facilitate functional investigations into host–pathogen interaction during S. aureus invasive infection and a basis for identifying novel drug target sites.
Collapse
|
44
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
45
|
Breczko W, Lemancewicz D, Dzięcioł J, Kłoczko J, Bołkun Ł. High immunoproteasome concentration in the plasma of patients with newly diagnosed multiple myeloma treated with bortezomib is predictive of longer OS. Adv Med Sci 2021; 66:21-27. [PMID: 33246214 DOI: 10.1016/j.advms.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Proteasome inhibitors (PI) bortezomib or carfilzomib among them, play a crucial role in the modern standard therapy for multiple myeloma (MM). In this study, we intended to evaluate whether immunoproteasome (IMP) concentration could act as an effective biomarker which determines the probability of response to treatment with bortezomib, in order to detect groups of patients who are more likely to respond to treatment with PI. MATERIALS AND METHODS In our study, we evaluated IMP concentration in the plasma of 40 patients with monoclonal gammopathy of undetermined significance (MGUS) and 116 patients with newly diagnosed MM during treatment with or without PI. RESULTS The values of all the studied parameters after the applied chemotherapy in the responders' group of patients declined considerably during the consecutive cycles of chemotherapy compared to their initial levels. On the contrary, in the group of non-responders, we observed no change in the measured IMP parameters during the consecutive cycles of therapy. We also showed that higher baseline IMP concentration might indicate longer overall survival (OS) in all patients. CONCLUSIONS Our results indicate that assessing plasma IMP concentration can be applied as a strong biomarker for predicting clinical response to treatment and OS in patients with newly diagnosed MM.
Collapse
Affiliation(s)
- Wioletta Breczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Dorota Lemancewicz
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland; Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Kłoczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Łukasz Bołkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
46
|
Fejzo MS, Chen HW, Anderson L, McDermott MS, Karlan B, Konecny GE, Slamon DJ. Analysis in epithelial ovarian cancer identifies KANSL1 as a biomarker and target gene for immune response and HDAC inhibition. Gynecol Oncol 2020; 160:539-546. [PMID: 33229045 DOI: 10.1016/j.ygyno.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE There is an immunoreactive subtype of ovarian cancer with a favorable prognosis, but the majority of ovarian cancers have limited immune reactivity. The reason for this is poorly understood. This study aimed to approach this question by identifying prognostically relevant genes whose prognostic mRNA expression levels correlated with a genomic event. METHODS Expression microarray and 5-year survival data on 170 ovarian tumors and aCGH data on 45 ovarian cancer cell lines were used to identify amplified/deleted genes associated with prognosis. Three immune-response genes were identified mapping to epigenetically modified chromosome 6p21.3. Genes were searched for roles in epigenetic modification, identifying KANSL1. Genome-wide association studies were searched to identify genetic variants in KANSL1 associated with altered immune profile. Sensitivity to HDAC inhibition in cell lines with KANSL1 amplification/rearrangement was studied. RESULTS Expression of 196 genes was statistically significantly associated with survival, and expression levels correlated with copy number variations for 82 of them. Among these, 3 immune-response genes (HCP5, PSMB8, PSMB9) clustered together at epigenetically modified chromosome 6p21.3 and their expression was inversely correlated to epigenetic modification gene KANSL1. KANSL1 is amplified/rearranged in ovarian cancer, associated with lymphocyte profile, a biomarker for response to HDAC inhibition, and may drive expression of immune-response genes. CONCLUSION This study identifies 82 genes with prognostic relevance and genomic alteration in ovarian cancer. Among these, immune-response genes have correlated expression which is associated with 5-year survival. KANSL1 may be a master gene altering immune-response gene expression at 6p21.3 and drive response to HDAC inhibitors. Future research should investigate KANSL1 and determine whether targeting it alters the immune profile of ovarian cancer and improves survival, HDAC inhibition, and/or immunotherapy response.
Collapse
Affiliation(s)
- Marlena S Fejzo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| | - Hsiao-Wang Chen
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Lee Anderson
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Beth Karlan
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Dennis J Slamon
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
47
|
Autoencoded DNA methylation data to predict breast cancer recurrence: Machine learning models and gene-weight significance. Artif Intell Med 2020; 110:101976. [PMID: 33250148 DOI: 10.1016/j.artmed.2020.101976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/05/2020] [Accepted: 10/18/2020] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most frequent cancer in women and the second most frequent overall after lung cancer. Although the 5-year survival rate of breast cancer is relatively high, recurrence is also common which often involves metastasis with its consequent threat for patients. DNA methylation-derived databases have become an interesting primary source for supervised knowledge extraction regarding breast cancer. Unfortunately, the study of DNA methylation involves the processing of hundreds of thousands of features for every patient. DNA methylation is featured by High Dimension Low Sample Size which has shown well-known issues regarding feature selection and generation. Autoencoders (AEs) appear as a specific technique for conducting nonlinear feature fusion. Our main objective in this work is to design a procedure to summarize DNA methylation by taking advantage of AEs. Our proposal is able to generate new features from the values of CpG sites of patients with and without recurrence. Then, a limited set of relevant genes to characterize breast cancer recurrence is proposed by the application of survival analysis and a pondered ranking of genes according to the distribution of their CpG sites. To test our proposal we have selected a dataset from The Cancer Genome Atlas data portal and an AE with a single-hidden layer. The literature and enrichment analysis (based on genomic context and functional annotation) conducted regarding the genes obtained with our experiment confirmed that all of these genes were related to breast cancer recurrence.
Collapse
|
48
|
Zhang L, Papachristou C, Choudhary PK, Biswas S. A Bayesian Hierarchical Framework for Pathway Analysis in Genome-Wide Association Studies. Hum Hered 2020; 84:240-255. [PMID: 32966977 DOI: 10.1159/000508664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pathway analysis allows joint consideration of multiple SNPs belonging to multiple genes, which in turn belong to a biologically defined pathway. This type of analysis is usually more powerful than single-SNP analyses for detecting joint effects of variants in a pathway. METHODS We develop a Bayesian hierarchical model by fully modeling the 3-level hierarchy, namely, SNP-gene-pathway that is naturally inherent in the structure of the pathways, unlike the currently used ad hoc ways of combining such information. We model the effects at each level conditional on the effects of the levels preceding them within the generalized linear model framework. To deal with the high dimensionality, we regularize the regression coefficients through an appropriate choice of priors. The model is fit using a combination of iteratively weighted least squares and expectation-maximization algorithms to estimate the posterior modes and their standard errors. A normal approximation is used for inference. RESULTS We conduct simulations to study the proposed method and find that our method has higher power than some standard approaches in several settings for identifying pathways with multiple modest-sized variants. We illustrate the method by analyzing data from two genome-wide association studies on breast and renal cancers. CONCLUSION Our method can be helpful in detecting pathway association.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Pankaj K Choudhary
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Swati Biswas
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA,
| |
Collapse
|
49
|
Kiuchi T, Tomaru U, Ishizu A, Imagawa M, Iwasaki S, Suzuki A, Otsuka N, Ohhara Y, Kinoshita I, Matsuno Y, Dosaka-Akita H, Kasahara M. Expression of the immunoproteasome subunit β5i in non-small cell lung carcinomas. J Clin Pathol 2020; 74:300-306. [PMID: 32943490 DOI: 10.1136/jclinpath-2020-206618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022]
Abstract
AIM The immunoproteasome is a specific proteasome isoform whose proteolytic activity enhances the generation of antigenic peptides to be presented by major histocompatibility complex class I molecules to CD8+ T cells. Physiologically, it is expressed abundantly in immune cells and is induced in somatic cells by cytokines, especially interferon-γ. Recently, variable expression of immunoproteasomes has been demonstrated in different types of cancers. However, the clinical significance of immunoproteasome expression in malignant tumours is poorly understood. In this study, we performed clinicopathological evaluation of immunoproteasome subunit β5i in non-small cell lung carcinomas (NSCLCs). METHODS Tumour tissues were collected from 155 patients with NSCLCs, and immunohistochemical analysis for β5i was performed in relation to the prognosis of patients. RESULTS High expression of β5i was found in about 20% of all NSCLCs and was found significantly more frequently (40%) in the adenocarcinoma subset. High expression of β5i was associated with a better 5-year relative survival rate in patients with pStage I to II adenocarcinoma and was also a significant and independent favourable prognostic factor in adenocarcinoma patients. In addition, when we performed in vitro analysis using NSCLC cell lines, combined treatment with the immunoproteasome-specific inhibitor ONX0914 and the proteasome inhibitor MG132 enhanced cell death in β5i-expressing NSCLC cell lines. CONCLUSION The expression of immunoproteasome can be explored as both a prognostic factor and a potential therapeutic target in NSCLCs. Since immunoproteasomes have crucial role in the antigen presentation, further studies may help to provide essential knowledge for therapeutic strategies in anticancer immunotherapy.
Collapse
Affiliation(s)
- Takayuki Kiuchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Makoto Imagawa
- Department of Diagnostic Pathology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Sari Iwasaki
- Department of Diagnostic Pathology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Akira Suzuki
- Department of Diagnostic Pathology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Noriyuki Otsuka
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihito Ohhara
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
50
|
Chang HH, Cheng YC, Tsai WC, Chen Y. PSMB8 inhibition decreases tumor angiogenesis in glioblastoma through vascular endothelial growth factor A reduction. Cancer Sci 2020; 111:4142-4153. [PMID: 32816328 PMCID: PMC7648028 DOI: 10.1111/cas.14625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is a fast‐growing tumor and the most aggressive brain malignancy. Proteasome subunit beta type‐8 (PSMB8) is one of the 17 essential subunits for the complete assembly of the 20S proteasome complex. The aim of the present study was to evaluate the role of PSMB8 expression in GBM progression and angiogenesis. PSMB8 expression in glioblastoma LN229 and U87MG was knocked down by siRNA or inducible shRNA both in vitro and in vivo. After PSMB8 reduction, cell survival, migration, invasion, angiogenesis, and the related signaling cascades were evaluated. An orthotopic mouse tumor model was also provided to examine the angiogenesis within tumors. A GEO profile analysis indicated that high expression of PSMB8 mRNA in GBM patients was correlated with a low survival rate. In immunohistochemistry analysis, PSMB8 expression was higher in high‐grade than in low‐grade brain tumors. The proliferation, migration, and angiogenesis of human GBM cells were decreased by PSMB8 knockdown in vitro. Furthermore, phosphorylated focal adhesion kinase (p‐FAK), p‐paxillin, MMP2, MMP9, and cathepsin B were significantly reduced in LN229 cells. Integrin β1 and β3 were reduced in HUVEC after incubation with LN229‐conditioned medium. In an orthotopic mouse tumor model, inducible knockdown of PSMB8 reduced the expression of vascular endothelial growth factor (VEGF), VEGF receptor, and CD31 as well as the progression of human glioblastoma. In this article, we demonstrated the role of PSMB8 in glioblastoma progression, especially neovascularization in vitro and in vivo. These results may provide a target for the anti–angiogenic effect of PSMB8 in glioblastoma therapy in the future.
Collapse
Affiliation(s)
- Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|