1
|
Jamali MC, Mohamed AH, Jamal A, Kamal MA, Al Abdulmonem W, Saeed BA, Mansuri N, Ahmad F, Mudhafar M, Shafie A, Hattiwale HM. Biological mechanisms and therapeutic prospects of interleukin-33 in pathogenesis and treatment of allergic disease. J Inflamm (Lond) 2025; 22:17. [PMID: 40355878 PMCID: PMC12070619 DOI: 10.1186/s12950-025-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/15/2025] [Indexed: 05/15/2025] Open
Abstract
Allergic diseases significantly impact the quality of life of people around the world. Cytokines play a crucial role in regulating the immune system. Due to their importance in pro-inflammatory mechanisms, cytokines are used to understand pathogenesis and serve as biomarkers in many diseases. One such cytokine is interleukin-33, a member of the IL-1 family, including IL- 1α, IL-1β, and IL-18. The IL-33 receptor is a heterodimer of IL-1 receptor-like 1 and IL-1 receptor accessory protein. IL-33 plays a critical role in regulating innate and adaptive immune responses. The primary targets of IL-33 in vivo are tissue-resident immune cells, including mast cells, group 2 innate lymphoid cells, regulatory T cells, T helper 2 cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils, and macrophages. However, IL-33 appears to act as an alarm signal that is promptly released by producing cells under cellular damage or stress conditions. IL-33 regulates signaling and various biological functions, including induction of pro-inflammatory cytokines, regulation of cell proliferation, and involvement in tissue remodeling. IL-33 is fundamental in immune-related diseases and plays a critical role in the control of inflammation. Recently, IL-33 has been shown to significantly impact allergic diseases, primarily by inducing Th2 immune responses. IL-33 is a key regulator of mast cell function and a promising therapeutic target for treating allergic diseases. This review provides an overview of the current understanding of the role of IL-33 in allergy pathogenesis and potential clinical approaches.
Collapse
Affiliation(s)
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Al-Majmaah 11952,, Saudi Arabia
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952 , Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Nasrin Mansuri
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713 , Saudi Arabia
| | - Mustafa Mudhafar
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, 56001, Karbala, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff university college, 56001, Kerbala, Iraq
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952 , Saudi Arabia.
| |
Collapse
|
2
|
Scott IC, Zuydam NV, Cann JA, Negri VA, Tsafou K, Killick H, Liu Z, McCrae C, Rees DG, England E, Guscott MA, Houslay K, McCormick D, Freeman A, Schofield D, Freeman A, Cohen ES, Thwaites R, Brohawn Z, Platt A, Openshaw PJM, Semple MG, Baillie JK, Wilkinson T. IL-33 is associated with alveolar dysfunction in patients with viral lower respiratory tract disease. Mucosal Immunol 2025; 18:312-325. [PMID: 39662674 PMCID: PMC11982439 DOI: 10.1016/j.mucimm.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Interleukin (IL)-33 is released following tissue damage, causing airway inflammation and remodelling via reduced IL-33 (IL-33red)/serum stimulation-2 (ST2) and oxidised IL-33 (IL-33ox)/receptor for advanced glycation end products (RAGE)/epidermal growth factor receptor (EGFR) pathways. This study aimed to identify associations of IL-33 with clinical outcomes and pathological mechanisms during viral lower respiratory tract disease (LRTD). Ultra-sensitive immunoassays were developed to measure IL-33red, IL-33ox and IL-33/sST2 complexes in samples from patients hospitalised with COVID-19. Immunohistochemistry and multiomics were used to characterise lung samples. Elevated IL-33 in the airway and IL-33/sST2 complex in the circulation correlated with poor clinical outcomes (death, need for intensive care or mechanical ventilation). IL-33 was localised to airway epithelial and endothelial barriers, whereas IL1RL1 was expressed on aerocytes, alveolar endothelial cells specialised for gaseous exchange. IL-33 increased expression of mediators of neutrophilic inflammation, immune cell infiltration, interferon signalling and coagulation in endothelial cell cultures. Endothelial IL-33 signatures were strongly related with signatures associated with viral LRTD. Increased IL-33 release following respiratory viral infections is associated with poor clinical outcomes and might contribute to alveolar dysfunction. Although this does not show a causal relationship with disease, these results provide a rationale to evaluate pathological roles for IL-33 in viral LRTD.
Collapse
Affiliation(s)
- Ian C Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Natalie van Zuydam
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jennifer A Cann
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victor Augusti Negri
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kalliopi Tsafou
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Helen Killick
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Zhi Liu
- Translational Sciences and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher McCrae
- Translational Sciences and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - D Gareth Rees
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth England
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Molly A Guscott
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kirsty Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dominique McCormick
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anna Freeman
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Darren Schofield
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Adrian Freeman
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zach Brohawn
- Translational Sciences and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Adam Platt
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Malcolm G Semple
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, University of Edinburgh, Edinburgh, UK
| | - Tom Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
3
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
4
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
5
|
Canè L, Poto R, Palestra F, Pirozzi M, Parashuraman S, Iacobucci I, Ferrara AL, La Rocca A, Mercadante E, Pucci P, Marone G, Monti M, Loffredo S, Varricchi G. TSLP is localized in and released from human lung macrophages activated by T2-high and T2-low stimuli: relevance in asthma and COPD. Eur J Intern Med 2024; 124:89-98. [PMID: 38402021 DOI: 10.1016/j.ejim.2024.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Antonello La Rocca
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Edoardo Mercadante
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Piero Pucci
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
6
|
Reid F, Singh D, Albayaty M, Moate R, Jimenez E, Sadiq MW, Howe D, Gavala M, Killick H, Williams A, Krishnan S, Godwood A, Shukla A, Hewitt L, Lei A, Kell C, Pandya H, Newcombe P, White N, Scott IC, Cohen ES. A Randomized Phase I Study of the Anti-Interleukin-33 Antibody Tozorakimab in Healthy Adults and Patients With Chronic Obstructive Pulmonary Disease. Clin Pharmacol Ther 2024; 115:565-575. [PMID: 38115209 DOI: 10.1002/cpt.3147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Tozorakimab is a human monoclonal antibody that neutralizes interleukin (IL)-33. IL-33 is a broad-acting epithelial "alarmin" cytokine upregulated in lung tissue of patients with chronic obstructive pulmonary disease (COPD). This first-in-human, phase I, randomized, double-blind, placebo-controlled study (NCT03096795) evaluated the safety, tolerability, pharmacokinetics (PKs), immunogenicity, target engagement, and pharmacodynamics (PDs) of tozorakimab. This was a 3-part study. In part 1, 56 healthy participants with a history of mild atopy received single escalating doses of either intravenous or subcutaneous tozorakimab or placebo. In part 2, 24 patients with mild COPD received multiple ascending doses of subcutaneous tozorakimab or placebo. In part 3, 8 healthy Japanese participants received a single intravenous dose of tozorakimab or placebo. The safety data collected included treatment-emergent adverse events (TEAEs), vital signs, and clinical laboratory parameters. Biological samples for PKs, immunogenicity, target engagement, and PD biomarker analyses were collected. No meaningful differences in the frequencies of TEAEs were observed between the tozorakimab and placebo arms. Three tozorakimab-treated participants with COPD experienced treatment-emergent serious adverse events. Subcutaneous or intravenous tozorakimab demonstrated linear, time-independent PKs with a mean half-life of 11.7-17.3 days. Treatment-emergent anti-drug antibody frequency was low. Engagement of tozorakimab with endogenous IL-33 in serum and nasal airways was demonstrated. Tozorakimab significantly reduced serum IL-5 and IL-13 levels in patients with COPD compared with placebo. Overall, tozorakimab was well tolerated, with a linear, time-independent serum PK profile. Additionally, biomarker studies demonstrated proof of mechanism. Overall, these data support the further clinical development of tozorakimab in COPD and other inflammatory diseases.
Collapse
Affiliation(s)
- Fred Reid
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Muna Albayaty
- Parexel International, Early Phase Clinical Unit, Northwick Park Hospital, Harrow, UK
| | - Rachel Moate
- Early Biostatistics and Statistical Innovation, Data Science and AI, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eulalia Jimenez
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Barcelona, Spain
| | - Muhammad Waqas Sadiq
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Howe
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Monica Gavala
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Helen Killick
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Adam Williams
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Surekha Krishnan
- GxP Testing Lab, Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Alex Godwood
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Animesh Shukla
- GxP Testing Lab, Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lisa Hewitt
- GxP Testing Lab, Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Alejhandra Lei
- Patient Safety BioPharma, Chief Medical Office, R&D, AstraZeneca, Barcelona, Spain
| | - Chris Kell
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hitesh Pandya
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Paul Newcombe
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Nicholas White
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ian C Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
7
|
Wang Y, He C, Xin S, Liu X, Zhang S, Qiao B, Shang H, Gao L, Xu J. A Deep View of the Biological Property of Interleukin-33 and Its Dysfunction in the Gut. Int J Mol Sci 2023; 24:13504. [PMID: 37686309 PMCID: PMC10487440 DOI: 10.3390/ijms241713504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intestinal diseases have always posed a serious threat to human health, with inflammatory bowel disease (IBD) being one of them. IBD is an autoimmune disease characterized by chronic inflammation, including ulcerative colitis (UC) and Crohn's disease (CD). The "alarm" cytokine IL-33, which is intimately associated with Th2 immunity, is a highly potent inflammatory factor that is considered to have dual functions-operating as both a pro-inflammatory cytokine and a transcriptional regulator. IL-33 has been shown to play a crucial role in both the onset and development of IBD. Therefore, this review focuses on the pathogenesis of IBD, the major receptor cell types, and the activities of IL-33 in innate and adaptive immunity, as well as its underlying mechanisms and conflicting conclusions in IBD. We have also summarized different medicines targeted to IL-33-associated diseases. Furthermore, we have emphasized the role of IL-33 in gastrointestinal cancer and parasitic infections, giving novel prospective therapeutic utility in the future application of IL-33.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Boya Qiao
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China;
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| |
Collapse
|
8
|
Stephenson KE, Porte J, Kelly A, Wallace WA, Huntington CE, Overed-Sayer CL, Cohen ES, Jenkins RG, John AE. The IL-33:ST2 axis is unlikely to play a central fibrogenic role in idiopathic pulmonary fibrosis. Respir Res 2023; 24:89. [PMID: 36949463 PMCID: PMC10035257 DOI: 10.1186/s12931-023-02334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease (ILD) with limited treatment options. Interleukin-33 (IL-33) is proposed to play a role in the development of IPF however the exclusive use of prophylactic dosing regimens means that the therapeutic benefit of targeting this cytokine in IPF is unclear. METHODS IL-33 expression was assessed in ILD lung sections and human lung fibroblasts (HLFs) by immunohistochemistry and gene/protein expression and responses of HLFs to IL-33 stimulation measured by qPCR. In vivo, the fibrotic potential of IL-33:ST2 signalling was assessed using a murine model of bleomycin (BLM)-induced pulmonary fibrosis and therapeutic dosing with an ST2-Fc fusion protein. Lung and bronchoalveolar lavage fluid were collected for measurement of inflammatory and fibrotic endpoints. Human precision-cut lung slices (PCLS) were stimulated with transforming growth factor-β (TGFβ) or IL-33 and fibrotic readouts assessed. RESULTS IL-33 was expressed by fibrotic fibroblasts in situ and was increased by TGFβ treatment in vitro. IL-33 treatment of HLFs did not induce IL6, CXCL8, ACTA2 and COL1A1 mRNA expression with these cells found to lack the IL-33 receptor ST2. Similarly, IL-33 stimulation had no effect on ACTA2, COL1A1, FN1 and fibronectin expression by PCLS. Despite having effects on inflammation suggestive of target engagement, therapeutic dosing with the ST2-Fc fusion protein failed to reduce BLM-induced fibrosis measured by hydroxyproline content or Ashcroft score. CONCLUSIONS Together these findings suggest the IL-33:ST2 axis does not play a central fibrogenic role in the lungs with therapeutic blockade of this pathway unlikely to surpass the current standard of care for IPF.
Collapse
Affiliation(s)
- Katherine E Stephenson
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK.
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Joanne Porte
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
| | - Aoife Kelly
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Catherine L Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, Imperial College London, London, UK
- Interstitial lung disease unit, Royal Brompton Hospital, London, UK
| | - Alison E John
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, Imperial College London, London, UK
| |
Collapse
|
9
|
Burganova G, Schonblum A, Sakhneny L, Epshtein A, Wald T, Tzaig M, Landsman L. Pericytes modulate islet immune cells and insulin secretion through Interleukin-33 production in mice. Front Endocrinol (Lausanne) 2023; 14:1142988. [PMID: 36967785 PMCID: PMC10034381 DOI: 10.3389/fendo.2023.1142988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Immune cells were recently shown to support β-cells and insulin secretion. However, little is known about how islet immune cells are regulated to maintain glucose homeostasis. Administration of various cytokines, including Interleukin-33 (IL-33), was shown to influence β-cell function. However, the role of endogenous, locally produced IL-33 in pancreatic function remains unknown. Here, we show that IL-33, produced by pancreatic pericytes, is required for glucose homeostasis. Methods To characterize pancreatic IL-33 production, we employed gene expression, flow cytometry, and immunofluorescence analyses. To define the role of this cytokine, we employed transgenic mouse systems to delete the Il33 gene selectively in pancreatic pericytes, in combination with the administration of recombinant IL-33. Glucose response was measured in vivo and in vitro, and morphometric and molecular analyses were used to measure β-cell mass and gene expression. Immune cells were analyzed by flow cytometry. Resuts Our results show that pericytes are the primary source of IL-33 in the pancreas. Mice lacking pericytic IL-33 were glucose intolerant due to impaired insulin secretion. Selective loss of pericytic IL-33 was further associated with reduced T and dendritic cell numbers in the islets and lower retinoic acid production by islet macrophages. Discussion Our study demonstrates the importance of local, pericytic IL-33 production for glucose regulation. Additionally, it proposes that pericytes regulate islet immune cells to support β-cell function in an IL-33-dependent manner. Our study reveals an intricate cellular network within the islet niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Kuwabara R, Qin T, Alberto Llacua L, Hu S, Boekschoten MV, de Haan BJ, Smink AM, de Vos P. Extracellular matrix inclusion in immunoisolating alginate-based microcapsules promotes longevity, reduces fibrosis, and supports function of islet allografts in vivo. Acta Biomater 2023; 158:151-162. [PMID: 36610609 DOI: 10.1016/j.actbio.2022.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Immunoisolation of pancreatic-islets in alginate-microcapsules is applied to treat diabetes. However, long-term islet function is limited, which might be due to damaged and lack of contact with pancreatic extracellular matrix (ECM) components. Herein we investigated the impact of collagen IV combined with laminin sequences, either RGD, LRE, or PDSGR, on graft-survival of microencapsulated bioluminescent islets in vivo. Collagen IV with RGD had the most pronounced effect. It enhanced after 8-week implantation in immune-incompetent mice the bioluminescence of allogeneic islets by 3.2-fold, oxygen consumption rate by 14.3-fold and glucose-induced insulin release by 9.6-fold. Transcriptomics demonstrated that ECM enhanced canonical pathways involving insulin-secretion and that it suppressed pathways related to inflammation and hypoxic stress. Also, 5.8-fold fewer capsules were affected by fibrosis. In a subsequent longevity study in immune-competent mice, microencapsulated allografts containing collagen IV and RGD had a 2.4-fold higher functionality in the first week after implantation and remained at least 2.1-fold higher during the study. Islets in microcapsules containing collagen IV and RGD survived 211 ± 24.1 days while controls survived 125 ± 19.7 days. Our findings provide in vivo evidence for the efficacy of supplementing immunoisolating devices with specific ECM components to enhance functionality and longevity of islet-grafts in vivo. STATEMENT OF SIGNIFICANCE: Limitations in duration of survival of immunoisolated pancreatic islet grafts is a major obstacle for application of the technology to treat diabetes. Accumulating evidence supports that incorporation of extracellular matrix (ECM) molecules in the capsules enhances longevity of pancreatic islets. After selection of the most efficacious laminin sequence in vitro, we show in vivo that inclusion of collagen IV and RGD in alginate-based microcapsules enhances survival, insulin secretion function, and mitochondrial function. It also suppresses fibrosis by lowering proinflammatory cytokines secretion. Moreover, transcriptomic analysis shows that ECM-inclusion promotes insulin-secretion related pathways and attenuates inflammation and hypoxic stress related pathways in islets. We show that inclusion of ECM in immunoisolating devices is a promising strategy to promote long-term survival of islet-grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands; Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tian Qin
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands.
| | - L Alberto Llacua
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Shuxian Hu
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| | - Bart J de Haan
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Alexandra M Smink
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Paul de Vos
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
11
|
Sun J, Xia Y, Zhang D, Yu Z, Ning Y, Tan Z. Knowledge mapping of interleukin-33: a bibliometric study. Am J Transl Res 2023; 15:914-931. [PMID: 36915735 PMCID: PMC10006773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/13/2022] [Indexed: 03/16/2023]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines. IL-33 is associated with the expression of tissue damage or necrosis after increasing and being released into the cell, it influences the suppression of tumorigenicity 2 (ST2) receptor expression of a variety of immune cells (including mast cells and type 2 congenital lymphocytes). Furthermore, during type 2 innate immune reactions and allergic inflammation IL-33 plays a central role in immune amplification and "alarming"; thus, regulating immune responeses. IL-33 is closely related to inflammation-related diseases such as allergic diseases, autoimmune diseases, infectious diseases, and tumors. It is essential in maintaining tissue homeostasis, eliminating inflammation, and repairing tissue damage. We searched the Web of Science Core Collection (WoSCC) database for relevant publications on IL-33 from 2005 to 2021 and screened them according to specific inclusion criteria. A total of 2626 articles were included in our analysis. Using Microsoft Excel 2019 (Redmond, WA), VOSviewer 1.6.11 (The Centre for Science and Technology Studies, CWTS), and Citespace5.8. R2 (Drexel University, Philadelphia, PA) were used for data processing and visualization. Countries/regions, journals, authors, co-cited references, and keywords were analyzed. We discovered that IL-33 plays an important role as a cytokine in numerous diseases, especially allergic diseases. Studying its mechanism of action is of great importance for developing novel drugs and therapeutics.
Collapse
Affiliation(s)
- Jingchao Sun
- Shandong University of Traditional Chinese Medicine Jinan 250000, Shandong, China
| | - Yu Xia
- Shandong University of Traditional Chinese Medicine Jinan 250000, Shandong, China
| | - Dandan Zhang
- Shandong University of Traditional Chinese Medicine Jinan 250000, Shandong, China
| | - Zhujun Yu
- Shandong University of Traditional Chinese Medicine Jinan 250000, Shandong, China
| | - Yunhong Ning
- Department of Otorhinolaryngology, The First Affiliated Hospital, Shandong University of Traditional Chinese Medicine Jinan 250000, Shandong, China
| | - Zhimin Tan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Shandong University of Traditional Chinese Medicine Jinan 250000, Shandong, China
| |
Collapse
|
12
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
13
|
The IL-33/ST2 Pathway in Cerebral Malaria. Int J Mol Sci 2022; 23:ijms232113457. [PMID: 36362246 PMCID: PMC9658244 DOI: 10.3390/ijms232113457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Interleukin-33 (IL-33) is an immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. IL-33 is abundant within the brain and spinal cord tissues where it acts as a key cytokine to coordinate the exchange between the immune and central nervous system (CNS). In this review, we report the recent advances to our knowledge regarding the role of IL-33 and of its receptor ST2 in cerebral malaria, and in particular, we highlight the pivotal role that IL-33/ST2 signaling pathway could play in brain and cerebrospinal barriers permeability. IL-33 serum levels are significantly higher in children with severe Plasmodium falciparum malaria than children without complications or noninfected children. IL-33 levels are correlated with parasite load and strongly decrease with parasite clearance. We postulate that sequestration of infected erythrocytes or merozoites liberation from schizonts could amplify IL-33 production in endothelial cells, contributing either to malaria pathogenesis or recovery.
Collapse
|
14
|
Akoto C, Willis A, Banas CF, Bell JA, Bryant D, Blume C, Davies DE, Swindle EJ. IL-33 Induces an Antiviral Signature in Mast Cells but Enhances Their Permissiveness for Human Rhinovirus Infection. Viruses 2022; 14:2430. [PMID: 36366528 PMCID: PMC9699625 DOI: 10.3390/v14112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) are classically associated with allergic asthma but their role in antiviral immunity is unclear. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and can infect and replicate within MCs. The primary site of HRV infection is the airway epithelium and MCs localise to this site with increasing asthma severity. The asthma susceptibility gene, IL-33, encodes an epithelial-derived cytokine released following HRV infection but its impact on MC antiviral responses has yet to be determined. In this study we investigated the global response of LAD2 MCs to IL-33 stimulation using RNA sequencing and identified genes involved in antiviral immunity. In spite of this, IL-33 treatment increased permissiveness of MCs to HRV16 infection which, from the RNA-Seq data, we attributed to upregulation of ICAM1. Flow cytometric analysis confirmed an IL-33-dependent increase in ICAM1 surface expression as well as LDLR, the receptors used by major and minor group HRVs for cellular entry. Neutralisation of ICAM1 reduced the IL-33-dependent enhancement in HRV16 replication and release in both LAD2 MCs and cord blood derived MCs. These findings demonstrate that although IL-33 induces an antiviral signature in MCs, it also upregulates the receptors for HRV entry to enhance infection. This highlights the potential for a gene-environment interaction involving IL33 and HRV in MCs to contribute to virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Charlene Akoto
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Anna Willis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Chiara F. Banas
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Joseph A. Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Cornelia Blume
- Human Development and Health, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Emily J. Swindle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
15
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
16
|
Cramer M, Pineda Molina C, Hussey G, Turnquist HR, Badylak SF. Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue Eng Part A 2022; 28:867-878. [PMID: 35770892 PMCID: PMC9634988 DOI: 10.1089/ten.tea.2022.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Chen L, Song Z, Cao X, Fan M, Zhou Y, Zhang G. Interleukin-33 regulates the endoplasmic reticulum stress of human myometrium via an influx of calcium during initiation of labor. eLife 2022; 11:75072. [PMID: 35998104 PMCID: PMC9398448 DOI: 10.7554/elife.75072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Inflammation is currently recognized as one of the major causes of premature delivery. As a member of the interleukin-1β (IL-1β) family, interleukin-33 (IL-33) has been shown to be involved in normal pregnancy as well as a variety of pregnancy-related disorder. This study aims to investigate the potential function of IL-33 in uterine smooth muscle cells during labor. Methods: Myometrium samples from term pregnant (≥37 weeks gestation) women were either frozen or cells were isolated and cultured. Immunohistochemistry and western blotting were used to assess the distribution of IL-33. Cultured cells were incubated with lipopolysaccharide (LPS) to mimic inflammation as well as in the presence of 4μ8C (IRE1 inhibitor III) to block endoplasmic reticulum (ER) stress and BAPTA-AM, a calcium chelator. Results: LPS reduced the expression of nuclear IL-33 in a time-limited manner and induced ER stress. However, knockdown of IL-33 increased LPS-induced calcium concentration, ER stress and phosphorylation of nuclear factor kappa-B (NF-κB), and P38 mitogen-activated protein kinase (P38 MAPK). In addition, siRNA IL-33 further stimulates LPS enhanced cyclooxygenase-2 (COX-2) expression via NF-κB and p38 pathways. IL-33 expression was decreased in the nucleus with the onset of labor. LPS-induced ER stress and increased expression of the labor-associated gene, COX-2, as well as IL-6 and IL-8 in cultured myometrial cells. IL-33 also increased COX-2 expression, but after it was knocked down, the stimulating effect of LPS on calcium was enhanced. 4μ8C also inhibited the expression of COX-2 markedly. The expression of calcium channels on the membrane and intracellular free calcium ion were both increased which was accompanied by phosphorylated NF-κB and p38. Conclusions: These data suggest that IL-33 may be involved in the initiation of labor by leading to stress of the ER via an influx of calcium ions in human uterine smooth muscle cells. Funding: This study was supported by grants from the National Natural Science Foundation of China (No. 81300507).
Collapse
Affiliation(s)
- Li Chen
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Song
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowan Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Mingsong Fan
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoying Zhang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
19
|
Badrani JH, Strohm AN, Lacasa L, Civello B, Cavagnero K, Haung YA, Amadeo M, Naji LH, Lund SJ, Leng A, Kim H, Baum RE, Khorram N, Mondal M, Seumois G, Pilotte J, Vanderklish PW, McGee HM, Doherty TA. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13:4435. [PMID: 35908044 PMCID: PMC9338970 DOI: 10.1038/s41467-022-32176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.
Collapse
Affiliation(s)
- Jana H. Badrani
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Allyssa N. Strohm
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| | - Lee Lacasa
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Blake Civello
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kellen Cavagnero
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Yung-An Haung
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.145695.a0000 0004 1798 0922Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael Amadeo
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Luay H. Naji
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Sean J. Lund
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthea Leng
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hyojoung Kim
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Rachel E. Baum
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Naseem Khorram
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Monalisa Mondal
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Grégory Seumois
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Julie Pilotte
- grid.214007.00000000122199231The Scripps Research Institute, La Jolla, CA USA
| | | | - Heather M. McGee
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.250671.70000 0001 0662 7144NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA USA ,grid.410425.60000 0004 0421 8357Departments of Radiation Oncology and Immuno-Oncology, City of Hope, Duarte, CA USA ,Department of Molecular Medicine, La Jolla, CA USA
| | - Taylor A. Doherty
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| |
Collapse
|
20
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Cho CH, Son SY, Bang JK, Jeon YH, Park JP. Biophysical and electrochemical approaches for studying molecular recognition of IL-33 binding peptides identified via phage display. Anal Chim Acta 2022; 1197:339522. [DOI: 10.1016/j.aca.2022.339522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023]
|
22
|
Langston JC, Rossi MT, Yang Q, Ohley W, Perez E, Kilpatrick LE, Prabhakarpandian B, Kiani MF. Omics of endothelial cell dysfunction in sepsis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R15-R34. [PMID: 35515704 PMCID: PMC9066943 DOI: 10.1530/vb-22-0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
During sepsis, defined as life-threatening organ dysfunction due to dysregulated host response to infection, systemic inflammation activates endothelial cells and initiates a multifaceted cascade of pro-inflammatory signaling events, resulting in increased permeability and excessive recruitment of leukocytes. Vascular endothelial cells share many common properties but have organ-specific phenotypes with unique structure and function. Thus, therapies directed against endothelial cell phenotypes are needed to address organ-specific endothelial cell dysfunction. Omics allow for the study of expressed genes, proteins and/or metabolites in biological systems and provide insight on temporal and spatial evolution of signals during normal and diseased conditions. Proteomics quantifies protein expression, identifies protein-protein interactions and can reveal mechanistic changes in endothelial cells that would not be possible to study via reductionist methods alone. In this review, we provide an overview of how sepsis pathophysiology impacts omics with a focus on proteomic analysis of mouse endothelial cells during sepsis/inflammation and its relationship with the more clinically relevant omics of human endothelial cells. We discuss how omics has been used to define septic endotype signatures in different populations with a focus on proteomic analysis in organ-specific microvascular endothelial cells during sepsis or septic-like inflammation. We believe that studies defining septic endotypes based on proteomic expression in endothelial cell phenotypes are urgently needed to complement omic profiling of whole blood and better define sepsis subphenotypes. Lastly, we provide a discussion of how in silico modeling can be used to leverage the large volume of omics data to map response pathways in sepsis.
Collapse
Affiliation(s)
- Jordan C Langston
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Qingliang Yang
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - William Ohley
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Edwin Perez
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Laurie E Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Balabhaskar Prabhakarpandian
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mohammad F Kiani
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Abstract
Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gaelen K. Dwyer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Louise M. D'Cruz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
25
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
26
|
Demyanets S, Stojkovic S, Huber K, Wojta J. The Paradigm Change of IL-33 in Vascular Biology. Int J Mol Sci 2021; 22:ijms222413288. [PMID: 34948083 PMCID: PMC8707059 DOI: 10.3390/ijms222413288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we focus on the actual understanding of the role of IL-33 in vascular biology in the context of the historical development since the description of IL-33 as a member of IL-1 superfamily and the ligand for ST2 receptor in 2005. We summarize recent data on the biology, structure and signaling of this dual-function factor with both nuclear and extracellular cytokine properties. We describe cellular sources of IL-33, particularly within vascular wall, changes in its expression in different cardio-vascular conditions and mechanisms of IL-33 release. Additionally, we summarize the regulators of IL-33 expression as well as the effects of IL-33 itself in cells of the vasculature and in monocytes/macrophages in vitro combined with the consequences of IL-33 modulation in models of vascular diseases in vivo. Described in murine atherosclerosis models as well as in macrophages as an atheroprotective cytokine, extracellular IL-33 induces proinflammatory, prothrombotic and proangiogenic activation of human endothelial cells, which are processes known to be involved in the development and progression of atherosclerosis. We, therefore, discuss that IL-33 can possess both protective and harmful effects in experimental models of vascular pathologies depending on experimental conditions, type and dose of administration or method of modulation.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Clinic Ottakring, 1160 Vienna, Austria;
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500; Fax: +43-1-40400-73586
| |
Collapse
|
27
|
IL-33: A central cytokine in helminth infections. Semin Immunol 2021; 53:101532. [PMID: 34823996 DOI: 10.1016/j.smim.2021.101532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
IL-33 is an alarmin cytokine which has been implicated in allergy, fibrosis, inflammation, tumorigenesis, metabolism, and homeostasis. However, amongst its strongest roles are in helminth infections, where IL-33 usually (but not always) is central to induction of an effective anti-parasitic immune response. In this review, we will summarise the literature around this fascinating cytokine, its activity on immune and non-immune cells, the unique (and sometimes counterintuitive) responses it induces, and how it can coordinate the immune response during infections by parasitic helminths. Finally, we will summarise some of the ways that parasites have developed to modulate the IL-33 pathway for their own benefit.
Collapse
|
28
|
IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 2021; 150:155773. [PMID: 34844039 DOI: 10.1016/j.cyto.2021.155773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.
Collapse
|
29
|
Sun Y, Pavey H, Wilkinson I, Fisk M. Role of the IL-33/ST2 axis in cardiovascular disease: A systematic review and meta-analysis. PLoS One 2021; 16:e0259026. [PMID: 34723980 PMCID: PMC8559957 DOI: 10.1371/journal.pone.0259026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 and its unique receptor, ST2, play a pivotal role in the immune response to infection and stress. However, there have been conflicting reports of the role of IL-33 in cardiovascular disease (CVD) and the potential of this axis in differentiating CVD patients and controls and with CVD disease severity, remains unclear. AIMS 1) To quantify differences in circulating IL-33 and/or sST2 levels between CVD patients versus controls. 2) Determine association of these biomarkers with mortality in CVD and community cohorts. METHODS AND RESULTS Using Pubmed/MEDLINE, Web of Science, Prospero and Cochrane databases, systematic review of studies published on IL-33 and/or sST2 levels in patients with CVD (heart failure, acute coronary syndrome, atrial fibrillation, stroke, coronary artery disease and hypertension) vs controls, and in cohorts of each CVD subtype was performed. Pooled standardised mean difference (SMD) of biomarker levels between CVD-cases versus controls and hazard ratios (HRs) for risk of mortality during follow-up in CVD patients, were assessed by random effects meta-analyses. Heterogeneity was evaluated with random-effects meta-regressions. From 1071 studies screened, 77 were meta-analysed. IL-33 levels were lower in HF and CAD patients vs controls, however levels were higher in stroke patients compared controls [Meta-SMD 1.455, 95% CI 0.372-2.537; p = 0.008, I2 = 97.645]. Soluble ST2 had a stronger association with risk of all-cause mortality in ACS (Meta-multivariate HR 2.207, 95% CI 1.160-4.198; p = 0.016, I2 = 95.661) than risk of all-cause mortality in HF (Meta-multivariate HR 1.425, 95% CI 1.268-1.601; p<0.0001, I2 = 92.276). There were insufficient data to examine the association of IL-33 with clinical outcomes in CVD. CONCLUSIONS IL-33 and sST2 levels differ between CVD patients and controls. Higher levels of sST2 are associated with increased mortality in individuals with CVD. Further study of IL-33/ST2 in cardiovascular studies is essential to progress diagnostic and therapeutic advances related to IL-33/ST2 signalling.
Collapse
Affiliation(s)
- Yuan Sun
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Holly Pavey
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marie Fisk
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Wu K, Kamimoto K, Zhang Y, Yang K, Keeler SP, Gerovac BJ, Agapov EV, Austin SP, Yantis J, Gissy KA, Byers DE, Alexander-Brett J, Hoffmann CM, Wallace M, Hughes ME, Crouch EC, Morris SA, Holtzman MJ. Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease. J Clin Invest 2021; 131:e149336. [PMID: 34343135 PMCID: PMC8483760 DOI: 10.1172/jci149336] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kenji Kamimoto
- Department of Genetics
- Department of Developmental Biology
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kuangying Yang
- Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Biostatistics
| | | | | | | | | | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kelly A. Gissy
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jennifer Alexander-Brett
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Pathology and Immunology
| | | | - Matthew Wallace
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Michael E. Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Genetics
| | | | | | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
31
|
Liang Y, Wang X, Wang H, Yang W, Yi P, Soong L, Cong Y, Cai J, Fan X, Sun J. IL-33 activates mTORC1 and modulates glycolytic metabolism in CD8 + T cells. Immunology 2021; 165:61-73. [PMID: 34411293 DOI: 10.1111/imm.13404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
32
|
Chade AR, Engel JE, Hall ME, Eirin A, Bidwell GL. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis. Am J Physiol Renal Physiol 2021; 321:F411-F423. [PMID: 34396789 DOI: 10.1152/ajprenal.00158.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a high cardiovascular mortality. CKD and heart failure (HF) coexist in up to 50% of patients, and both associate with inflammation. We aimed to define the cardiac phenotype of a novel swine model of CKD and test the hypothesis that inflammation of renal origin propels the development of precursors of HF in CKD. CKD was induced in 14 pigs, which were followed for 14 wk. Renal (multidetector computed tomography) and cardiac (echocardiography) hemodynamics were quantified before and 8 wk after single intrarenal administration of placebo or a biopolymer-fused peptide inhibitor of NF-κB that blocks NF-κB activity and decreases inflammatory activity (SynB1-ELP-p50i). Blood was collected to quantify cytokines (TNF-α, monocyte chemoattractant protein-1, and interleukins), markers of inflammation (C-reactive protein), and biomarkers of HF (atrial and brain natriuretic peptides). Pigs were then euthanized, and kidneys and hearts were studied ex vivo. Normal pigs were used as time-matched controls. Renal dysfunction in CKD was accompanied by cardiac hypertrophy and fibrosis, diastolic dysfunction, increased renal and cardiac expression of TNF-α, monocyte chemoattractant protein-1, and interleukins, canonical and noncanonical mediators of NF-κB signaling, circulating inflammatory factors, and biomarkers of HF. Notably, most of these changes were improved after intrarenal SynB1-SynB1-ELP-p50i, although cardiac inflammatory signaling remained unaltered. The translational traits of this model support its use as a platform to test novel technologies to protect the kidney and heart in CKD. A targeted inhibition of renal NF-κB signaling improves renal and cardiac function, suggesting an inflammatory renal-cardio axis underlying early HF pathophysiology in CKD.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a progressive disorder with high cardiovascular morbidity and mortality. This work supports the role of inflammatory cytokines of renal origin in renal-cardio pathophysiology in CKD and that the heart may be a target. Furthermore, it supports the feasibility of a new strategy in a translational fashion, using targeted inhibition of renal NF-κB signaling to offset the development of cardiac injury in CKD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael E Hall
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
33
|
Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. Int J Mol Sci 2021; 22:ijms22157770. [PMID: 34360536 PMCID: PMC8346165 DOI: 10.3390/ijms22157770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive leukocyte trafficking, and reactive oxygen species production, leading to organ damage. Therapeutics targeting endothelium inflammation are urgently needed, but strong concerns regarding the level of phenotypic heterogeneity of microvascular endothelial cells between different organs and species have been expressed. Microvascular endothelial cell heterogeneity in different organs and organ-specific variations in endothelial cell structure and function are regulated by intrinsic signals that are differentially expressed across organs and species; a result of this is that neutrophil recruitment to discrete organs may be regulated differently. In this review, we will discuss the morphological and functional variations in differently originated microvascular endothelia and discuss how these variances affect systemic function in response to inflammation. We will review emerging in vivo and in vitro models and techniques, including microphysiological devices, proteomics, and RNA sequencing used to study the cellular and molecular heterogeneity of endothelia from different organs. A better understanding of microvascular endothelial cell heterogeneity will provide a roadmap for developing novel therapeutics to target the endothelium.
Collapse
|
34
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
35
|
IL-33 Is Involved in the Anti-Inflammatory Effects of Butyrate and Propionate on TNFα-Activated Endothelial Cells. Int J Mol Sci 2021; 22:ijms22052447. [PMID: 33671042 PMCID: PMC7957702 DOI: 10.3390/ijms22052447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Short-chain fatty acids (e.g., butyrate and propionate) are able to diminish endothelial cell activation. The aim of this study was to investigate whether intracellular IL-33 mediates the effects of butyrate and propionate on TNFα-induced IL-8 production and vascular cell adhesion molecule-1 (VCAM-1) expression. In addition, it was investigated whether regulating NF-κB and MAPK signaling pathways are involved. Intracellular IL-33 was measured in human endothelial cells (HUVECs) pre-incubated for 24 h with butyrate (0.1 mM or 5 mM), propionate (0.3 mM or 10 mM), or trichostatin A (TSA, 0.5 μM) prior to TNFα (1 ng/mL) stimulation (24 h). The effects of butyrate, propionate, and TSA on TNFα-induced IL-8, vascular cell adhesion molecule-1 (VCAM-1), NF-κB, and MAPK signaling pathways in normal HUVECs and IL-33 siRNA (siIL-33)-transfected HUVECs were compared to study the role of IL-33 in the protective effects of butyrate and propionate. Endogenous IL-33 was highly expressed in the perinuclear in HUVECs, which was significantly reduced by TNFα stimulation. The TNFα-induced reduction in IL-33 was prevented by pre-incubation with butyrate or propionate. Butyrate (0.1 mM), propionate (0.3 mM), and TSA inhibited the IL-8 production and activation of NF-κB. Interestingly, this effect was not observed in siIL-33-transfected HUVECs. The effects of butyrate (5 mM), propionate (10 mM), and TSA (0.5 μM) on VCAM-1 expression and activation of MAPK signaling pathways were not affected by siIL-33 transfection. In conclusion, we showed that the inhibitory effects of butyrate and propionate on TNFα-induced IL-8 production were mediated by the HDACs/IL-33/NF-κB pathway, while their effects on VCAM-1 expression might be associated with the HDACs/MAPK signaling pathway, independently of IL-33.
Collapse
|
36
|
Liu Q, Lu D, Hu J, Liang J, Chen H. Dual role of interleukin-33 in tumors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:169-175. [PMID: 33678654 PMCID: PMC10929784 DOI: 10.11817/j.issn.1672-7347.2021.190678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 11/03/2022]
Abstract
Interleukin-33 (IL-33) is a new member of the IL-1 cytokine family which plays roles in the nucleus as a nuclear factor and is released by damaged or necrotic cells to act as a cytokine. It can be released via damaged or necrotic cells and functions as a cytokine. The released IL-33 activates the downstream NF-κB and MAPKs signaling pathways through the isomers of the specific receptor ST2 and the interleukin-1 receptor accessory protein (IL-1RAcP), resulting in danger signals and the activated multiple immune responses. IL-33 is abnormally expressed in various tumors and involves in tumorigenesis, development, and metastasis. Moreover, IL-33 can play both pro-tumor and anti-tumor roles in the same type of tumor.
Collapse
Affiliation(s)
- Qianqian Liu
- Lingui College of Clinical Medicine, Guilin Medical University, Guilin Guangxi 541100.
| | - Di Lu
- Lingui College of Clinical Medicine, Guilin Medical University, Guilin Guangxi 541100
| | - Jiahua Hu
- Lingui College of Clinical Medicine, Guilin Medical University, Guilin Guangxi 541100
| | - Junchao Liang
- Department of Traditional Chinese Medical Orthopedics, Eighth People's Hospital of Foshan, Foshan Guangdong 528200, China
| | - Huoying Chen
- Lingui College of Clinical Medicine, Guilin Medical University, Guilin Guangxi 541100.
| |
Collapse
|
37
|
Katz-Kiriakos E, Steinberg DF, Kluender CE, Osorio OA, Newsom-Stewart C, Baronia A, Byers DE, Holtzman MJ, Katafiasz D, Bailey KL, Brody SL, Miller MJ, Alexander-Brett J. Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease. JCI Insight 2021; 6:136166. [PMID: 33507882 PMCID: PMC7934940 DOI: 10.1172/jci.insight.136166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
IL-33 is a key mediator of chronic airway disease driven by type 2 immune pathways, yet the nonclassical secretory mechanism for this cytokine remains undefined. We performed a comprehensive analysis in human airway epithelial cells, which revealed that tonic IL-33 secretion is dependent on the ceramide biosynthetic enzyme neutral sphingomyelinase 2 (nSMase2). IL-33 is cosecreted with exosomes by the nSMase2-regulated multivesicular endosome (MVE) pathway as surface-bound cargo. In support of these findings, human chronic obstructive pulmonary disease (COPD) specimens exhibited increased epithelial expression of the abundantly secreted IL33Δ34 isoform and augmented nSMase2 expression compared with non-COPD specimens. Using an Alternaria-induced airway disease model, we found that the nSMase2 inhibitor GW4869 abrogated both IL-33 and exosome secretion as well as downstream inflammatory pathways. This work elucidates a potentially novel aspect of IL-33 biology that may be targeted for therapeutic benefit in chronic airway diseases driven by type 2 inflammation.
Collapse
Affiliation(s)
- Ella Katz-Kiriakos
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Deborah F Steinberg
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Colin E Kluender
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Omar A Osorio
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | | | - Arjun Baronia
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Derek E Byers
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Michael J Holtzman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dawn Katafiasz
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kristina L Bailey
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven L Brody
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Mark J Miller
- Department of Medicine, Division of Infectious Diseases, and
| | - Jennifer Alexander-Brett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
38
|
West PW, Bahri R, Garcia-Rodriguez KM, Sweetland G, Wileman G, Shah R, Montero A, Rapley L, Bulfone-Paus S. Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins. Front Immunol 2021; 11:615236. [PMID: 33597949 PMCID: PMC7882629 DOI: 10.3389/fimmu.2020.615236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Sweetland
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Wileman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Angeles Montero
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Laura Rapley
- Adaptive Immunity, GlaxoSmithKline, Stevenage, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Silvia Bulfone-Paus,
| |
Collapse
|
39
|
IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M. Mediators Inflamm 2020; 2020:4087315. [PMID: 33376451 PMCID: PMC7744230 DOI: 10.1155/2020/4087315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells.
Collapse
|
40
|
Duez C, Gross B, Marquillies P, Ledroit V, Ryffel B, Glineur C. Regulation of IL (Interleukin)-33 Production in Endothelial Cells via Kinase Activation and Fas/CD95 Upregulation. Arterioscler Thromb Vasc Biol 2020; 40:2619-2631. [PMID: 32907372 DOI: 10.1161/atvbaha.120.314832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The occurrence of new blood vessel formation in the lungs of asthmatic patients suggests a critical role for airway endothelial cells (ECs) in the disease. IL-33 (Interleukin-33)-a cytokine abundantly expressed in human lung ECs-recently emerged as a key factor in the development of allergic diseases, including asthma. In the present study, we evaluated whether mouse and human ECs exposed to the common Dermatophagoides farinae allergen produce IL-33 and characterized the activated signaling pathways. Approach and Results: Mouse primary lung ECs were exposed in vitro to D farinae extract or rmIL-33 (recombinant murine IL-33). Both D farinae and rmIL-33 induced Il-33 transcription without increasing the IL-33 production and upregulated the expression of its receptor, as well as genes involved in angiogenesis and the regulation of immune responses. In particular, D farinae and rmIL-33 upregulated Fas/Cd95 transcript level, yet without promoting apoptosis. Inhibition of caspases involved in the Fas signaling pathway, increased IL-33 protein level in ECs, suggesting that Fas may decrease IL-33 level through caspase-8-dependent mechanisms. Our data also showed that the NF-κB (nuclear factor-κB), PI3K/Akt, and Wnt/β-catenin pathways regulate Il-33 transcription in both mouse and human primary ECs. CONCLUSIONS Herein, we described a new mechanism involved in the control of IL-33 production in lung ECs exposed to allergens.
Collapse
Affiliation(s)
- Catherine Duez
- CNRS UMR 9017, Inserm U1019, CIIL-Center for Infection and Immunity of Lille (C.D., P.M., V.L., C.G.), CHU Lille, Institut Pasteur de Lille, University Lille, France
| | - Barbara Gross
- Inserm U1011-EGID (B.G.), CHU Lille, Institut Pasteur de Lille, University Lille, France
| | - Philippe Marquillies
- CNRS UMR 9017, Inserm U1019, CIIL-Center for Infection and Immunity of Lille (C.D., P.M., V.L., C.G.), CHU Lille, Institut Pasteur de Lille, University Lille, France
| | - Valérie Ledroit
- CNRS UMR 9017, Inserm U1019, CIIL-Center for Infection and Immunity of Lille (C.D., P.M., V.L., C.G.), CHU Lille, Institut Pasteur de Lille, University Lille, France
| | - Bernhard Ryffel
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, CNRS UMR 7355, University of Orleans, France (B.R.)
| | - Corine Glineur
- CNRS UMR 9017, Inserm U1019, CIIL-Center for Infection and Immunity of Lille (C.D., P.M., V.L., C.G.), CHU Lille, Institut Pasteur de Lille, University Lille, France
| |
Collapse
|
41
|
Still KM, Batista SJ, O’Brien CA, Oyesola OO, Früh SP, Webb LM, Smirnov I, Kovacs MA, Cowan MN, Hayes NW, Thompson JA, Tait Wojno ED, Harris TH. Astrocytes promote a protective immune response to brain Toxoplasma gondii infection via IL-33-ST2 signaling. PLoS Pathog 2020; 16:e1009027. [PMID: 33108405 PMCID: PMC7647122 DOI: 10.1371/journal.ppat.1009027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/06/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden-demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.
Collapse
Affiliation(s)
- Katherine M. Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samantha J. Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Oyebola O. Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Igor Smirnov
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nikolas W. Hayes
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeremy A. Thompson
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Elia D. Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
42
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
43
|
Drake LY, Prakash YS. Contributions of IL-33 in Non-hematopoietic Lung Cells to Obstructive Lung Disease. Front Immunol 2020; 11:1798. [PMID: 32903501 PMCID: PMC7438562 DOI: 10.3389/fimmu.2020.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 plays important roles in pulmonary immune responses and lung diseases including asthma and chronic obstructive pulmonary disease (COPD). There is substantial interest in identifying and characterizing cellular sources vs. targets of IL-33, and downstream signaling pathways involved in disease pathophysiology. While epithelial and immune cells have largely been the focus, in this review, we summarize current knowledge of expression, induction, and function of IL-33 and its receptor ST2 in non-hematopoietic lung cells in the context of health and disease. Under basal conditions, epithelial cells and endothelial cells are thought to be the primary resident cell types that express high levels of IL-33 and serve as ligand sources compared to mesenchymal cells (smooth muscle cells and fibroblasts). Under inflammatory conditions, IL-33 expression is increased in most non-hematopoietic lung cells, including epithelial, endothelial, and mesenchymal cells. In comparison to its ligand, the receptor ST2 shows low expression levels at baseline but similar to IL-33, ST2 expression is upregulated by inflammation in these non-hematopoietic lung cells which may then participate in chronic inflammation both as sources and autocrine/paracrine targets of IL-33. Downstream effects of IL-33 may occur via direct receptor activation or indirect interactions with the immune system, overall contributing to lung inflammation, airway hyper-responsiveness and remodeling (proliferation and fibrosis). Accordingly from a therapeutic perspective, targeting IL-33 and/or its receptor in non-hematopoietic lung cells becomes relevant.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
44
|
Aparicio-Domingo P, Cannelle H, Buechler MB, Nguyen S, Kallert SM, Favre S, Alouche N, Papazian N, Ludewig B, Cupedo T, Pinschewer DD, Turley SJ, Luther SA. Fibroblast-derived IL-33 is dispensable for lymph node homeostasis but critical for CD8 T-cell responses to acute and chronic viral infection. Eur J Immunol 2020; 51:76-90. [PMID: 32700362 DOI: 10.1002/eji.201948413] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/02/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Upon viral infection, stressed or damaged cells can release alarmins like IL-33 that act as endogenous danger signals alerting innate and adaptive immune cells. IL-33 coming from nonhematopoietic cells has been identified as important factor triggering the expansion of antiviral CD8+ T cells. In LN the critical cellular source of IL-33 is unknown, as is its potential cell-intrinsic function as a chromatin-associated factor. Using IL-33-GFP reporter mice, we identify fibroblastic reticular cells (FRC) and lymphatic endothelial cells (LEC) as the main IL-33 source. In homeostasis, IL-33 is dispensable as a transcriptional regulator in FRC, indicating it functions mainly as released cytokine. Early during infection with lymphocytic choriomeningitis virus (LCMV) clone 13, both FRC and LEC lose IL-33 protein expression suggesting cytokine release, correlating timewise with IL-33 receptor expression by reactive CD8+ T cells and their greatly augmented expansion in WT versus ll33-/- mice. Using mice lacking IL-33 selectively in FRC versus LEC, we identify FRC as key IL-33 source driving acute and chronic antiviral T-cell responses. Collectively, these findings show that LN T-zone FRC not only regulate the homeostasis of naïve T cells but also their expansion and differentiation several days into an antiviral response.
Collapse
Affiliation(s)
| | - Hélène Cannelle
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Sylvain Nguyen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Sandra M Kallert
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Stéphanie Favre
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nagham Alouche
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
45
|
Liu G, Liu F. [Advances of IL-33/ST2 signaling pathway in allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2020; 34:565-568. [PMID: 32842193 PMCID: PMC10128328 DOI: 10.13201/j.issn.2096-7993.2020.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/12/2022]
Abstract
Interleukin-33 that binds to the membrane receptor ST2L, can not only regulate mast cells, eosinophils, and group 2 innate lymphoid cells(ILC2s), but also affect the function of regulatory T cells(Treg) and Follicular helper T cells(Tfh). Interleukin-33 can activate the NF-κB and MAPK signaling pathways of the above cells, then participates in allergic immunity reaction. IL-33/ST2 signaling pathway is closely related to the allergic rhinitis(AR). IL-33 has been used as a new biomarker to evaluate the effect of AR treatment. At the same time, antagonizing IL-33 is also expected to become a new treatment. This article reviewed the latest research of IL-33/ST2 signaling pathway in the field of AR.
Collapse
|
46
|
A Phytocomplex Consisting of Tropaeolum majus L. and Salvia officinalis L. Extracts Alleviates the Inflammatory Response of Dermal Fibroblasts to Bacterial Lipopolysaccharides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8516153. [PMID: 32566105 PMCID: PMC7261326 DOI: 10.1155/2020/8516153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Background The antimicrobial activity and effects of a phytocomplex consisting of Tropaeolum flos (T) and Salviae folium (S) extracts on the cytokine levels and transcription factors on dermal fibroblast BJ exposed to bacterial lipopolysaccharides were examined. Methods In order to select the most optimal combination ratio of the two extracts for using in vitro, the physicochemical characterization of vegetal extract mixtures was performed and the antioxidant and antibacterial activities were evaluated on five different formulations of T : S, namely, 1 : 1, 1 : 2, 2 : 1, 3 : 1, and 1 : 3. The best combination of bioactive compounds with regard to antioxidant and antibacterial activities (T : S 1 : 2) was selected for in vitro evaluation of the anti-inflammatory effect. Human dermal fibroblast BJ cells were treated with two doses of the extract mixture and then exposed to bacterial lipopolysaccharides (LPS). The levels of the cytokines involved in inflammatory response, namely, interleukin- (IL-) 6, tumor necrosis factor- (TNF-) α, IL-31, and IL-33, were quantified by ELISA, and the expression of transcription factors, namely, signal transducer and activator of transcription (STAT) 3, nuclear factor kappa B (NFκB), and phosphorylated NFκB (pNFκB), were evaluated by western blot analysis. Results The results have shown that the mixture of T : S 1 : 2 exhibited significant antibacterial effects on Staphylococcus aureus ATCC 25923. LPS exposure increased the cytokine levels in BJ cells and enhanced the NFκB expression. The pretreatment of BF cells exposed to LPS with the two doses of the extract mixture markedly inhibited the increase of IL-33 and TNF-α levels and amplified the NFκB expression and its activation, especially with the high dose. The low doses of the extract reduced NFκB expression but increased its activation. Conclusions These experimental findings suggest that the mixture of T : S 1 : 2 can exert some protection against bacterial infections and inflammation induced by LPS in BJ cells being a good therapeutic option in related conditions associated with inflammation.
Collapse
|
47
|
Magat JM, Thomas JL, Dumouchel JP, Murray F, Li WX, Li J. Endogenous IL-33 and Its Autoamplification of IL-33/ST2 Pathway Play an Important Role in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1592-1597. [PMID: 31988179 PMCID: PMC7065953 DOI: 10.4049/jimmunol.1900690] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
IL-33 and its receptor ST2 are contributing factors to airway inflammation and asthma exacerbation. The IL-33/ST2 signaling pathway is involved in both the onset and the acute exacerbations of asthma. In this study, we address the role of endogenous IL-33 and its autoamplification of the IL-33/ST2 pathway in Ag-dependent and Ag-independent asthma-like models. Wild-type, IL-33 knockout, ST2 knockout mice were either intratracheally administrated with 500 ng of rIL-33 per day for four consecutive days or were sensitized and challenged with OVA over 21 d. In wild-type mice, IL-33 or OVA induced similar airway hyperresponsiveness and eosinophilic airway inflammation. IL-33 induced its own mRNA and ST2L mRNA expression in the lung. IL-33 autoamplified itself and ST2 protein expression in airway epithelial cells. OVA also induced IL-33 and ST2 protein expression. In IL-33 knockout mice, the IL-33- and OVA-induced airway hyperresponsiveness and eosinophilic airway inflammation were both significantly attenuated, whereas IL-33-induced ST2L mRNA expression was preserved, although no autoamplification of IL-33/ST2 pathway was observed. In ST2 knockout mice, IL-33 and OVA induced airway hyperresponsiveness and eosinophilic airway inflammation were both completely diminished, and no IL-33/ST2 autoamplification was observed. These results suggest that endogenous IL-33 and its autoamplification of IL-33/ST2 pathway play an important role in the induction of asthma-like phenotype. Thus an intact IL-33/ST2 pathway is necessary for both Ag-dependent and Ag-independent asthma-like mouse models.
Collapse
Affiliation(s)
- Jenna M Magat
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Joanna L Thomas
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92093
| | - Justin P Dumouchel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Fiona Murray
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Willis X Li
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Jinghong Li
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| |
Collapse
|
48
|
Emerging Roles of Interleukin-33-responsive Kidney Group 2 Innate Lymphoid Cells in Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21041544. [PMID: 32102434 PMCID: PMC7073188 DOI: 10.3390/ijms21041544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive immune responses. IL-33 triggers pleiotropic immune functions in multiple types of immune cells, which express the IL-33 receptor, ST2. Recent studies have revealed the potential applications of IL-33 for treating acute kidney injury in preclinical animal models. However, IL-33 and IL-33-responding immune cells are reported to exhibit both detrimental and beneficial roles. The IL-33-mediated immunomodulatory functions have been investigated using loss-of-function approaches, such as IL33-deficient mice, IL-33 antagonists, or administration of exogenous IL-33 recombinant protein. This review will discuss the key findings on IL-33-mediated activation of kidney resident group 2 innate lymphoid cells (ILC2s) and summarize the current understanding of the differential functions of endogenous IL-33 and exogenous IL-33 and their potential implications in treating acute kidney injury.
Collapse
|
49
|
Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat Commun 2020; 11:437. [PMID: 31974367 PMCID: PMC6978345 DOI: 10.1038/s41467-019-14218-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically modified the prognosis of several advanced cancers, however many patients still do not respond to treatment. Optimal results might be obtained by targeting cancer cell metabolism to modulate the immunosuppressive tumor microenvironment. Here, we identify sphingosine kinase-1 (SK1) as a key regulator of anti-tumor immunity. Increased expression of SK1 in tumor cells is significantly associated with shorter survival in metastatic melanoma patients treated with anti-PD-1. Targeting SK1 markedly enhances the responses to ICI in murine models of melanoma, breast and colon cancer. Mechanistically, SK1 silencing decreases the expression of various immunosuppressive factors in the tumor microenvironment to limit regulatory T cell (Treg) infiltration. Accordingly, a SK1-dependent immunosuppressive signature is also observed in human melanoma biopsies. Altogether, this study identifies SK1 as a checkpoint lipid kinase that could be targeted to enhance immunotherapy. There are many patients who do not respond to immune checkpoint inhibitor (ICI) immunotherapy. Here, the authors show a significant negative correlation between sphingosine kinase-1 (SK1) expression and survival for ICI-treated melanoma patients, and further show that targeting SK1 improves response to ICI in mouse cancer models.
Collapse
|
50
|
Stier MT, Mitra R, Nyhoff LE, Goleniewska K, Zhang J, Puccetti MV, Casanova HC, Seegmiller AC, Newcomb DC, Kendall PL, Eischen CM, Peebles RS. IL-33 Is a Cell-Intrinsic Regulator of Fitness during Early B Cell Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1457-1467. [PMID: 31391233 PMCID: PMC6736727 DOI: 10.4049/jimmunol.1900408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
IL-33 is an IL-1 family member protein that is a potent driver of inflammatory responses in both allergic and nonallergic disease. This proinflammatory effect is mediated primarily by extracellular release of IL-33 from stromal cells and binding of the C-terminal domain of IL-33 to its receptor ST2 on targets such as CD4+ Th2 cells, ILC2, and mast cells. Notably, IL-33 has a distinct N-terminal domain that mediates nuclear localization and chromatin binding. However, a defined in vivo cell-intrinsic role for IL-33 has not been established. We identified IL-33 expression in the nucleus of progenitor B (pro-B) and large precursor B cells in the bone marrow, an expression pattern unique to B cells among developing lymphocytes. The IL-33 receptor ST2 was not expressed within the developing B cell lineage at either the transcript or protein level. RNA sequencing analysis of wild-type and IL-33-deficient pro-B and large precursor B cells revealed a unique, IL-33-dependent transcriptional profile wherein IL-33 deficiency led to an increase in E2F targets, cell cycle genes, and DNA replication and a decrease in the p53 pathway. Using mixed bone marrow chimeric mice, we demonstrated that IL-33 deficiency resulted in an increased frequency of developing B cells via a cell-intrinsic mechanism starting at the pro-B cell stage paralleling IL-33 expression. Finally, IL-33 was detectable during early B cell development in humans and IL33 mRNA expression was decreased in B cell chronic lymphocytic leukemia samples compared with healthy controls. Collectively, these data establish a cell-intrinsic, ST2-independent role for IL-33 in early B cell development.
Collapse
Affiliation(s)
- Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ramkrishna Mitra
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Lindsay E Nyhoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jian Zhang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew V Puccetti
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Holly C Casanova
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dawn C Newcomb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Peggy L Kendall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Christine M Eischen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|