1
|
Hsu CW, Fang YC, Li JF, Cheng CA. Decoding Complex Biological Milieus: SHINER's Approach to Profiling and Functioning of Extracellular Vesicle Subpopulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503638. [PMID: 40255212 DOI: 10.1002/smll.202503638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs) are celebrated for their pivotal roles in cellular communication and their potential in disease diagnosis and therapeutic applications. However, their inherent heterogeneity acts as a double-edged sword, complicating the isolation of specific EV subpopulations. Conventional EV isolation methods often fall short, relying on biophysical properties, while affinity-based techniques may compromise EV integrity and utility with harsh recovery conditions. To address these limitations, the SHINER (subpopulation homogeneous isolation and nondestructive EV release) workflow is introduced, which redefines how EVs are isolated and recoverd, featuring the innovative SWITCHER (switchable extracellular vesicle releaser) tool. The SHINER workflow facilitates the precise purification and gentle recovery of target EV subpopulations from complex biological mixtures, preserving their structural integrity and biological functionality. Importantly, SHINER demonstrates exceptional adaptability to multiple markers and clinical applications. It not only enhances the ability to trace EV origins for accurate disease diagnosis but also advances fundamental EV research and provides standardized EV materials for therapeutic innovations. By improving the understanding of EVs and enabling the development of personalized diagnostics and treatments, SHINER propels EV-based science into new frontiers of advanced medicine, offering transformative potential for healthcare.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Yao-Ching Fang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Jhih-Fong Li
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| |
Collapse
|
2
|
Vistain L, Keisham B, Xia J, Phan HV, Tay S. Proximity sequencing for the detection of mRNA, extracellular proteins and extracellular protein complexes in single cells. Nat Protoc 2024; 19:3568-3589. [PMID: 39147984 PMCID: PMC11715295 DOI: 10.1038/s41596-024-01030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/24/2024] [Indexed: 08/17/2024]
Abstract
Complex cellular functions occur via the coordinated formation and dissociation of protein complexes. Functions such as the response to a signaling ligand can incorporate dozens of proteins and hundreds of complexes. Until recently, it has been difficult to measure multiple protein complexes at the single-cell level. Here, we present a step-by-step procedure for proximity sequencing, which enables the simultaneous measurement of proteins, mRNA and hundreds of protein complexes located on the outer membrane of cells. We guide the user through probe creation, sample preparation, staining, sequencing and computational quantification of protein complexes. This protocol empowers researchers to study, for example, the interplay between transcriptional states and cellular functions by coupling measurements of transcription to measurements of linked effector molecules, yet could be generalizable to other paired events. The protocol requires roughly 16 h spread over several days to complete by users with expertise in basic molecular biology and single-cell sequencing.
Collapse
Affiliation(s)
- Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Junjie Xia
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Division of Infectious Disease, University of California, San Francisco, San Francisco, CA, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Wang T, Huang W, Gao X, Deng Y, Huang J. Single extracellular vesicle research: From cell population to a single cell. Biochem Biophys Res Commun 2024; 734:150439. [PMID: 39083971 DOI: 10.1016/j.bbrc.2024.150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Extracellular vesicles (EVs) are secreted by cells with a membrane structure and complex components such as DNA, RNA and proteins. These biomolecules play an important role in cell communication, cell proliferation, cell migration, vascularization, immune response and other physiological and pathological processes. Most current research on EVs focused on populations of EVs. Heterogeneity of EVs is neglected. Considering the heterogeneity of single EVs may offer critical molecular insights into cell-cell interactions, it is necessary to enhance our understanding about molecular characteristics from EVs derived from cell population to a single EV of derived from a single cell. This transformation is expected to provide a new insight into the understanding of cellular biology and the accurate description of the law of disease progress. In this article, we review the current research progress of single EV analysis technology for single EVs derived from cell population (SECP) and discuss its main applications in biological and clinical medicine research. After that, we propose the development direction, main difficulties and application prospect of single EV analysis technology for single EVs derived from single cells (SESC) according to our own research work, to provide new perspectives for the field of EV research.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Gao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Burgy O, Mayr CH, Schenesse D, Fousekis Papakonstantinou E, Ballester B, Sengupta A, She Y, Hu Q, Melo-Narvaéz MC, Jain E, Pestoni JC, Mozurak M, Estrada-Bernal A, Onwuka U, Coughlan C, Parimon T, Chen P, Heimerl T, Bange G, Schmeck BT, Lindner M, Hilgendorff A, Ruppert C, Güenther A, Mann M, Yildirim AÖ, Eickelberg O, Jung AL, Schiller HB, Lehmann M, Burgstaller G, Königshoff M. Fibroblast-derived extracellular vesicles contain SFRP1 and mediate pulmonary fibrosis. JCI Insight 2024; 9:e168889. [PMID: 39315549 PMCID: PMC11457858 DOI: 10.1172/jci.insight.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/β-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivier Burgy
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
| | - Christoph H. Mayr
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Déborah Schenesse
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
| | | | - Beatriz Ballester
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Arunima Sengupta
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Yixin She
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Camila Melo-Narvaéz
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Eshita Jain
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Jeanine C. Pestoni
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Molly Mozurak
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Estrada-Bernal
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ugochi Onwuka
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Coughlan
- Division of Neurology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and
| | - Bernd T. Schmeck
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
- Center for Synthetic Microbiology (SYNMIKRO) and
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Andreas Güenther
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
- European IPF Registry (eurIPFreg), Center for Interstitial and Rare Lung Diseases, UGMLC, Justus-Liebig University Giessen, DZL, Giessen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Oliver Eickelberg
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Lena Jung
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Herbert B. Schiller
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
- Research Unit for Precision Regenerative Medicine, Helmholtz Munich, Munich, Germany
| | - Mareike Lehmann
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Cheng CA. Before Translating Extracellular Vesicles into Personalized Diagnostics and Therapeutics: What We Could Do. Mol Pharm 2024; 21:2625-2636. [PMID: 38771015 DOI: 10.1021/acs.molpharmaceut.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicle (EV) research is rapidly advancing from fundamental science to translational applications in EV-based personalized therapeutics and diagnostics. Yet, fundamental questions persist regarding EV biology and mechanisms, particularly concerning the heterogeneous interactions between EVs and cells. While we have made strides in understanding virus delivery and intracellular vesicle transport, our comprehension of EV trafficking remains limited. EVs are believed to mediate intercellular communication through cargo transfer, but uncertainties persist regarding the occurrence and quantification of EV-cargo delivery within acceptor cells. This ambiguity is crucial to address, given the significant translational impact of EVs on therapeutics and diagnostics. This perspective article does not seek to provide exhaustive recommendations and guidance on EV-related studies, as these are well-articulated in position papers and statements by the International Society for Extracellular Vesicles (ISEV), including the 'Minimum Information for Studies of Extracellular Vesicles' (MISEV) 2014, MISEV2018, and the recent MISEV2023. Instead, recognizing the multilayered heterogeneity of EVs as both a challenge and an opportunity, this perspective emphasizes novel approaches to facilitate our understanding of diverse EV biology, address uncertainties, and leverage this knowledge to advance EV-based personalized diagnostics and therapeutics. Specifically, this perspective synthesizes current insights, identifies opportunities, and highlights exciting technological advancements in ultrasensitive single EV or "digital" profiling developed within the author's multidisciplinary group. These newly developed technologies address technical gaps in dissecting the molecular contents of EV subsets, contributing to the evolution of EVs as next-generation liquid biopsies for diagnostics and providing better quality control for EV-based therapeutics.
Collapse
Affiliation(s)
- Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
6
|
Lee S, Verkhoturov DS, Eller MJ, Verkhoturov SV, Shaw MA, Gwon K, Kim Y, Lucien F, Malhi H, Revzin A, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry Enables Multiplexed Analysis of Individual Hepatic Extracellular Vesicles. ACS NANO 2023; 17:23584-23594. [PMID: 38033295 PMCID: PMC10985841 DOI: 10.1021/acsnano.3c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state, which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for statistical analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate and then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags colocalized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nanoenvironment where targeted moieties colocalized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.
Collapse
Affiliation(s)
- Seonhwa Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Michael J. Eller
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330, USA
| | | | - Michael A. Shaw
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330, USA
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yohan Kim
- Departments of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Departments of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emile A. Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
7
|
Han C, Yang J, Yin T, An J, Qiao A, Cao Y, Feng Y, Lu H, Wang Y, Yang L, Qin G. CD63-Snorkel tagging for isolation of exosomes. EXTRACELLULAR VESICLE 2023; 2:100031. [PMID: 40151378 PMCID: PMC11949438 DOI: 10.1016/j.vesic.2023.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Exosomes (Exo) are important mediators of inter-cellular communications; however, no effective method is available for isolating, thus characterizing, cellular-specific exosomes in vivo. Since CD63 is a reliable marker for exosomes, we have developed a tagging strategy, term "CD63-Snorkel (CD63-SNKL)", in which CD63 at its intracellular C-terminus was fused to a fragment of PDGFRB that contains the transmembrane domain tethered to multiple epitope tags (HA, His, and FLAG) displayed in tandem on surface. We found that the CD63-SNKL protein has similar subcellular localizations as endogenous CD63 and can be effectively sorted into Exo. Furthermore, Exo secreted from CD63-SNKL-transduced cells can be effectively captured on anti-HA magnetic beads and eluted with HA peptides. Thus, CD63-SNKL may be engineered for isolating and tracking endogenous tissue-specific Exo in vivo.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Junjie Yang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Tingting Yin
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Junqing An
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yangpo Cao
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yuliang Feng
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Haocheng Lu
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Ying Wang
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Guangdong 518055, P. R. China
| | - Gangjian Qin
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Department of Biomedical Engineering, The University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Reynolds DE, Pan M, Yang J, Galanis G, Roh YH, Morales RT, Kumar SS, Heo S, Xu X, Guo W, Ko J. Double Digital Assay for Single Extracellular Vesicle and Single Molecule Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303619. [PMID: 37802976 PMCID: PMC10667851 DOI: 10.1002/advs.202303619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a promising source of biomarkers for disease diagnosis. However, current diagnostic methods for EVs present formidable challenges, given the low expression levels of biomarkers carried by EV samples, as well as their complex physical and biological properties. Herein, a highly sensitive double digital assay is developed that allows for the absolute quantification of individual molecules from a single EV. Because the relative abundance of proteins is low for a single EV, tyramide signal amplification (TSA) is integrated to increase the fluorescent signal readout for evaluation. With the integrative microfluidic technology, the technology's ability to compartmentalize single EVs is successfully demonstrated, proving the technology's digital partitioning capacity. Then the device is applied to detect single PD-L1 proteins from single EVs derived from a melanoma cell line and it is discovered that there are ≈2.7 molecules expressed per EV, demonstrating the applicability of the system for profiling important prognostic and diagnostic cancer biomarkers for therapy response, metastatic status, and tumor progression. The ability to accurately quantify protein molecules of rare abundance from individual EVs will shed light on the understanding of EV heterogeneity and discovery of EV subtypes as new biomarkers.
Collapse
Affiliation(s)
- David E. Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Menghan Pan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jingbo Yang
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - George Galanis
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yoon Ho Roh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | | | | | - Su‐Jin Heo
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Orthopaedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Wei Guo
- Department of BiologySchool of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jina Ko
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
9
|
Zhang J, Wu J, Wang G, He L, Zheng Z, Wu M, Zhang Y. Extracellular Vesicles: Techniques and Biomedical Applications Related to Single Vesicle Analysis. ACS NANO 2023; 17:17668-17698. [PMID: 37695614 DOI: 10.1021/acsnano.3c03172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Extracellular vesicles (EVs) are extensively dispersed lipid bilayer membrane vesicles involved in the delivery and transportation of molecular payloads to certain cell types to facilitate intercellular interactions. Their significant roles in physiological and pathological processes make EVs outstanding biomarkers for disease diagnosis and treatment monitoring as well as ideal candidates for drug delivery. Nevertheless, differences in the biogenesis processes among EV subpopulations have led to a diversity of biophysical characteristics and molecular cargos. Additionally, the prevalent heterogeneity of EVs has been found to substantially hamper the sensitivity and accuracy of disease diagnosis and therapeutic monitoring, thus impeding the advancement of clinical applications. In recent years, the evolution of single EV (SEV) analysis has enabled an in-depth comprehension of the physical properties, molecular composition, and biological roles of EVs at the individual vesicle level. This review examines the sample acquisition tactics prior to SEV analysis, i.e., EV isolation techniques, and outlines the current state-of-the-art label-free and label-based technologies for SEV identification. Furthermore, the challenges and prospects of biomedical applications based on SEV analysis are systematically discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiacheng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Guanzhao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Luxuan He
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ziwei Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Amrhein K, Taylor ML, Wilson R, Gallops CE, Annamer A, Vinduska V, Kwizera EA, Zhang H, Wang Y, Hoang TB, Huang X. Dual Imaging Single Vesicle Surface Protein Profiling and Early Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2679-2692. [PMID: 36598405 PMCID: PMC9990180 DOI: 10.1021/acsami.2c19235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single vesicle molecular profiling has the potential to transform cancer detection and monitoring by precisely probing cancer-associated extracellular vesicles (EVs) in the presence of normal EVs in body fluids, but it is challenging due to the small EV size, low abundance of antigens on individual vesicles, and a complex biological matrix. Here, we report a facile dual imaging single vesicle technology (DISVT) for surface protein profiling of individual EVs and quantification of target-specific EV subtypes based on direct molecular capture of EVs from diluted biofluids, dual EV-protein fluorescence-light scattering imaging, and fast image analysis using Bash scripts, Python, and ImageJ. Plasmonic gold nanoparticles (AuNPs) were used to label and detect targeted surface protein markers on individual EVs with dark-field light scattering imaging at the single particle level. Monte Carlo calculations estimated that the AuNPs could detect EVs down to 40 nm in diameter. Using the DISVT, we profiled surface protein markers of interest across individual EVs derived from several breast cancer cell lines, which reflected the parental cells. Studies with plasma EVs from healthy donors and breast cancer patients revealed that the DISVT, but not the traditional bulk enzyme-linked immunosorbent assay, detected human epidermal growth factor receptor 2 (HER2)-positive breast cancer at an early stage. The DISVT also precisely differentiated HER2-positive breast cancer from HER2-negative breast cancer. We additionally showed that the amount of tumor-associated EVs was tripled in locally advanced patients compared to that in early-stage patients. These studies suggest that single EV surface protein profiling with DISVT can provide a facile and high-sensitivity method for early cancer detection and quantitative monitoring.
Collapse
Affiliation(s)
- Kristopher Amrhein
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Raymond Wilson
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Caleb Edward Gallops
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Assam Annamer
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Vojtech Vinduska
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Elyahb Allie Kwizera
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Hongmei Zhang
- School of Public Health, The University of Memphis, Memphis, TN 38152, United States
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - Thang Ba Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, United States
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
11
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
12
|
Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and proximity assays. Commun Biol 2022; 5:1402. [PMID: 36550367 PMCID: PMC9780212 DOI: 10.1038/s42003-022-04349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication and a promising class of biomarkers. Surface proteins of EVs play decisive roles in establishing a connection with recipient cells, and they are putative targets for diagnostic assays. Analysis of the surface proteins can thus both illuminate the biological functions of EVs and help identify potential biomarkers. We developed a strategy combining high-resolution mass spectrometry (HRMS) and proximity ligation assays (PLA) to first identify and then validate surface proteins discovered on EVs. We applied our workflow to investigate surface proteins of small EVs found in seminal fluid (SF-sEV). We identified 1,014 surface proteins and verified the presence of a subset of these on the surface of SF-sEVs. Our work demonstrates a general strategy for deep analysis of EVs' surface proteins across patients and pathological conditions, proceeding from unbiased screening by HRMS to ultra-sensitive targeted analyses via PLA.
Collapse
|
13
|
Banijamali M, Höjer P, Nagy A, Hååg P, Gomero EP, Stiller C, Kaminskyy VO, Ekman S, Lewensohn R, Karlström AE, Viktorsson K, Ahmadian A. Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis. J Extracell Vesicles 2022; 11:e12277. [DOI: 10.1002/jev2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mahsan Banijamali
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| | - Pontus Höjer
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| | - Abel Nagy
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Petra Hååg
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
| | - Elizabeth Paz Gomero
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Christiane Stiller
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Vitaliy O. Kaminskyy
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Simon Ekman
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Theme Cancer, Medical Unit head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center Karolinska University Hospital Solna Sweden
| | - Rolf Lewensohn
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Theme Cancer, Medical Unit head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center Karolinska University Hospital Solna Sweden
| | - Amelie Eriksson Karlström
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | | | - Afshin Ahmadian
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| |
Collapse
|
14
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Gul B, Syed F, Khan S, Iqbal A, Ahmad I. Characterization of extracellular vesicles by flow cytometry: Challenges and promises. Micron 2022; 161:103341. [DOI: 10.1016/j.micron.2022.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
16
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
17
|
Al-Amin RA, Muthelo PM, Abdurakhmanov E, Vincke C, Amin SP, Muyldermans S, Danielson UH, Landegren U. Sensitive Protein Detection Using Site-Specifically Oligonucleotide-Conjugated Nanobodies. Anal Chem 2022; 94:10054-10061. [PMID: 35786874 PMCID: PMC9310004 DOI: 10.1021/acs.analchem.2c00584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
High-quality affinity
probes are critical for sensitive and specific
protein detection, in particular for detection of protein biomarkers
in the early phases of disease development. Proximity extension assays
(PEAs) have been used for high-throughput multiplexed protein detection
of up to a few thousand different proteins in one or a few microliters
of plasma. Clonal affinity reagents can offer advantages over the
commonly used polyclonal antibodies (pAbs) in terms of reproducibility
and standardization of such assays. Here, we explore nanobodies (Nbs)
as an alternative to pAbs as affinity reagents for PEA. We describe
an efficient site-specific approach for preparing high-quality oligo-conjugated
Nb probes via enzyme coupling using Sortase A (SrtA). The procedure
allows convenient removal of unconjugated affinity reagents after
conjugation. The purified high-grade Nb probes were used in PEA, and
the reactions provided an efficient means to select optimal pairs
of binding reagents from a group of affinity reagents. We demonstrate
that Nb-based PEA (nano-PEA) for interleukin-6 (IL6) detection can
augment assay performance, compared to the use of pAb probes. We identify
and validate Nb combinations capable of binding in pairs without competition
for IL6 antigen detection by PEA.
Collapse
Affiliation(s)
- Rasel A Al-Amin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Phathutshedzo M Muthelo
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Eldar Abdurakhmanov
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Shahnaz P Amin
- Capio Vårdcentral Väsby, Dragonvägen 92, 194 33 Upplands Väsby, Sweden
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - U Helena Danielson
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| |
Collapse
|
18
|
Hao P, Niu L, Luo Y, Wu N, Zhao Y. Surface Engineering of Lipid Vesicles Based on DNA Nanotechnology. Chempluschem 2022; 87:e202200074. [PMID: 35604011 DOI: 10.1002/cplu.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Pengyan Hao
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Liqiong Niu
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Yuanyuan Luo
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Na Wu
- Xi'an Jiaotong University School of Life Science and Technology No.28, West Xianning Road 710049 Xi'an CHINA
| | - Yongxi Zhao
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| |
Collapse
|
19
|
Chen L, Liang J. A proximity ligation assay (PLA) based sensing platform for the ultrasensitive detection of P53 protein-specific SUMOylation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Cheng S, Li Y, Yan H, Wen Y, Zhou X, Friedman L, Zeng Y. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics. LAB ON A CHIP 2021; 21:3219-3243. [PMID: 34352059 PMCID: PMC8387453 DOI: 10.1039/d1lc00443c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) secreted by cells into the bloodstream and other bodily fluids, including exosomes, have been demonstrated to be a class of significant messengers that mediate intercellular communications. Tumor-derived extracellular vesicles are enriched in a selective set of biomolecules from original cells, including proteins, nucleic acids, and lipids, and thus offer a new perspective of liquid biopsy for cancer diagnosis and therapeutic monitoring. Owing to the heterogeneity of their biogenesis, physical properties, and molecular constituents, isolation and molecular characterization of EVs remain highly challenging. Microfluidics provides a disruptive platform for EV isolation and analysis owing to its inherent advantages to promote the development of new molecular and cellular sensing systems with improved sensitivity, specificity, spatial and temporal resolution, and throughput. This review summarizes the state-of-the-art advances in the development of microfluidic principles and devices for EV isolation and biophysical or biochemical characterization, in comparison to the conventional counterparts. We will also survey the progress in adapting the new microfluidic techniques to assess the emerging EV-associated biomarkers, mostly focused on proteins and nucleic acids, for clinical diagnosis and prognosis of cancer. Lastly, we will discuss the current challenges in the field of EV research and our outlook on future development of enabling microfluidic platforms for EV-based liquid biopsy.
Collapse
Affiliation(s)
- Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fostering "Education": Do Extracellular Vesicles Exploit Their Own Delivery Code? Cells 2021; 10:cells10071741. [PMID: 34359911 PMCID: PMC8305232 DOI: 10.3390/cells10071741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV “delivery code” and on the combinations of the hypothesized EV surface membrane “sender” and “recipient” molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.
Collapse
|
23
|
Bahrami A, Moradi Binabaj M, A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother 2021; 141:111882. [PMID: 34218003 DOI: 10.1016/j.biopha.2021.111882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small cell derived membrane nano-vesicles that carry various components including lipids, proteins and nucleic acids. There is accumulating evidence that exosomes have a role in tumorigenesis, tumor invasiveness and metastasis. Furthermore, oncogene mutation may influence exosome release from tumor cells. Exosomes may induce colorectal cancer by altering signaling cascades such as the Wnt/β-catenin and KRAS pathways that are involved in cell proliferation, apoptosis, dissemination, angiogenesis, and drug resistance. The aim of this review was to overview recent findings evaluating the association between tumor cells-derived exosomes and their content in modulating signaling pathways in colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
24
|
Horta S, Neumann F, Yeh SH, Langseth CM, Kangro K, Breukers J, Madaboosi N, Geukens N, Vanhoorelbeke K, Nilsson M, Lammertyn J. Evaluation of Immuno-Rolling Circle Amplification for Multiplex Detection and Profiling of Antigen-Specific Antibody Isotypes. Anal Chem 2021; 93:6169-6177. [PMID: 33823582 DOI: 10.1021/acs.analchem.1c00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antibody characterization is essential for understanding the immune system and development of diagnostics and therapeutics. Current technologies are mainly focusing on the detection of antigen-specific immunoglobulin G (IgG) using bulk singleplex measurements, which lack information on other isotypes and specificity of individual antibodies. Digital immunoassays based on nucleic acid amplification have demonstrated superior performance by allowing the detection of single molecules in a multiplex and sensitive manner. In this study, we demonstrate for the first time an immuno-rolling circle amplification (immuno-RCA) assay for the multiplex detection of three antigen-specific antibody isotypes (IgG, IgA, and IgM) and its integration with microengraving. To validate this approach, we used the autoimmune disease immune-mediated thrombotic thrombocytopenic purpura (iTTP) as the model disease with anti-ADAMTS13 autoantibodies as the diagnostic target molecules. To identify the anti-ADAMTS13 autoantibody isotypes, we designed a pool of three unique antibody-oligonucleotide conjugates for identification and subsequent amplification and visualization via RCA. To validate this approach, we first confirmed an assay specificity of >88% and a low limit of detection of 0.3 ng/mL in the spiked buffer. Subsequently, we performed a dilution series of an iTTP plasma sample for the multiplex detection of the three isotypes with higher sensitivity compared to an enzyme-linked immunosorbent assay. Finally, we demonstrated single-cell analysis of human B cells and hybridoma cells for the detection of secreted antibodies using microengraving and achieved a detection of 23.3 pg/mL secreted antibodies per hour. This approach could help to improve the understanding of antibody isotype distributions and their roles in various diseases.
Collapse
Affiliation(s)
- Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium.,Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Felix Neumann
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23B, Solna 171 65, Sweden
| | - Shu-Hao Yeh
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Christoffer Mattsson Langseth
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23B, Solna 171 65, Sweden
| | - Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium.,Icosagen Cell Factory OÜ, Kambja vald, Tartumaa 61713, Estonia
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Narayanan Madaboosi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23B, Solna 171 65, Sweden
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23B, Solna 171 65, Sweden
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| |
Collapse
|
25
|
Ko J, Wang Y, Sheng K, Weitz DA, Weissleder R. Sequencing-Based Protein Analysis of Single Extracellular Vesicles. ACS NANO 2021; 15:5631-5638. [PMID: 33687214 PMCID: PMC8742254 DOI: 10.1021/acsnano.1c00782] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circulating extracellular vesicles (EVs)-biological nanomaterials shed from most mammalian cells-have emerged as promising biomarkers, drug delivery vesicles, and treatment modulators. While different types of vesicles are being explored for these applications, it is becoming clear that human EVs are quite heterogeneous even in homogeneous or monoclonal cell populations. Since it is the surface EV protein composition that will largely dictate their biological behavior, high-throughput single EV profiling methods are needed to better define EV subpopulations. Here, we present an antibody-based immunosequencing method that allows multiplexed measurement of protein molecules from individual nanometer-sized EVs. We use droplet microfluidics to compartmentalize and barcode individual EVs. The barcodes/antibody-DNA are then sequenced to determine protein composition. Using this highly sensitive technology, we detected specific proteins at the single EV level. We expect that this technology can be further adapted for multiplexed protein analysis of any nanoparticle.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Yongcheng Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David A. Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- R. Weissleder, MD, PhD, Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, 617-726-8226,
| |
Collapse
|
26
|
Marnissi B, Khalfaoui K, Ebai T, Marques Souza de Oliveira F, Ghram A, Kamali-Moghaddam M, Hmila I. Accurate detection of Newcastle disease virus using proximity-dependent DNA aptamer ligation assays. FEBS Open Bio 2021; 11:1122-1131. [PMID: 33595202 PMCID: PMC8016122 DOI: 10.1002/2211-5463.13117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Detecting viral antigens at low concentrations in field samples can be crucial for early veterinary diagnostics. Proximity ligation assays (PLAs) in both solution and solid‐phase formats are widely used for high‐performance protein detection in medical research. However, the affinity reagents used, which are mainly poly‐ and monoclonal antibodies, play an important role in the performance of PLAs. Here, we have established the first homogeneous and solid‐phase proximity‐dependent DNA aptamer ligation assays for rapid and accurate detection of Newcastle disease virus (NDV). NDV is detected by a pair of extended DNA aptamers that, upon binding in proximity to proteins on the envelope of the virus, are joined by enzymatic ligation to form a unique amplicon that can be sensitively detected using real‐time PCR. The sensitivity, specificity, and reproducibility of the assays were validated using 40 farm samples. The results demonstrated that the developed homogeneous and solid‐phase PLAs, which use NDV‐selective DNA aptamers, are more sensitive than the sandwich enzymatic‐linked aptamer assay (ELAA), and have a comparable sensitivity to real‐time reverse transcription PCR (rRT‐PCR) as the gold standard detection method. In addition, the solid‐phase PLA was shown to have a greater dynamic range with improved lower limit of detection, upper‐ and lower limit of quantification, and minimal detectable dose as compared with those of ELAA and rRT‐PCR. The specificity of PLA is shown to be concordant with rRT‐PCR.
Collapse
Affiliation(s)
- Boutheina Marnissi
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Khouloud Khalfaoui
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Tonge Ebai
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | | | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Issam Hmila
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
27
|
Yang KS, Lin HY, Curley C, Welch MW, Wolpin B, Lee H, Weissleder R, Im H, Castro CM. Bead-Based Extracellular Vesicle Analysis Using Flow Cytometry. ADVANCED BIOSYSTEMS 2020; 4:e2000203. [PMID: 33103361 PMCID: PMC7718389 DOI: 10.1002/adbi.202000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Indexed: 01/09/2023]
Abstract
Extracellular vesicles (EVs) represent promising circulating biomarkers for cancers, but their high-throughput analyses in clinical settings prove challenging due to lack of simple, fast, and robust EV assays. Here, a bead-based EV assay detected by flow cytometry is described, which integrates EV capture using microbeads with EV protein analyses by flow cytometry. The assay is fast (<4 h for 48 samples), robust, and compatible with conventional flow cytometry instruments for high-throughput EV analysis. With the method, a panel of pancreatic cancer biomarkers in EVs from plasma samples of pancreatic cancer patients is successfully analyzed. The assay is readily translatable to other biomarkers or cancer types and can be run with standard materials on conventional flow cytometers, making it highly flexible and adaptable to diverse research and clinical needs.
Collapse
Affiliation(s)
- Katherine S. Yang
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caleigh Curley
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
28
|
Lam KCK, Lam MKN, Chim CS, Chan GCF, Li JCB. The functional role of surface molecules on extracellular vesicles in cancer, autoimmune diseases, and coagulopathy. J Leukoc Biol 2020; 108:1565-1573. [PMID: 32480430 DOI: 10.1002/jlb.3mr0420-067r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that have emerged as mediators for intercellular communication in physiologic and pathologic conditions. EVs carry signaling information on their bilipid membrane as well as cargo within, allowing them to perform a wide range of biologic processes and contribute to pathophysiologic roles in a wide range of diseases, including cancer, autoimmune diseases and coagulopathy. This review will specifically address the function of surface molecules on EVs under normal and diseased conditions, as well as their potential to emerge as therapeutic targets in clinical settings, and the importance of further research on the surface topography of EVs.
Collapse
Affiliation(s)
- Katy C K Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Moses K N Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C S Chim
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - James C B Li
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
29
|
Ikebuchi R, Isaac AW, Yoshii K, Doulabi EM, Löf L, Azimi A, Chen L, Fredolini C, Gallini R, Landegren U, Kamali-Moghaddam M. Human proteins incorporated into tick-borne encephalitis virus revealed by in situ proximity ligation. Biochem Biophys Res Commun 2020; 525:714-719. [PMID: 32139125 DOI: 10.1016/j.bbrc.2020.02.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Host proteins incorporated into virus particles have been reported to contribute to infectivity and tissue-tropism. This incorporation of host proteins is expected to be variable among viral particles, however, protein analysis at single-virus levels has been challenging. We have developed a method to detect host proteins incorporated on the surface of virions using the in situ proximity ligation assay (isPLA) with rolling circle amplification (RCA), employing oligonucleotide-conjugated antibody pairs. The technique allows highly selective and sensitive antibody-based detection of viral and host proteins on the surface of individual virions. We detected recombinant noninfectious sub-viral particles (SVPs) of tick-borne encephalitis virus (TBEV) immobilized in microtiter wells as fluorescent particles detected by regular fluorescence microscopy. Counting the particles in the images enabled us to estimate individual TBEV-SVP counts in different samples. Using isPLA we detected individual calnexin-, CD9-, CD81-, CD29- and CD59-positive SVPs among the viral particles. Our data suggests that a diversity of host proteins may be incorporated into TEBV, illustrating that isPLA with digital counting enables single-virus analysis of host protein incorporation.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Japan.
| | - Alfred W Isaac
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Liza Löf
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alireza Azimi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lei Chen
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Claudia Fredolini
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Radiosa Gallini
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Wang S, Khan A, Huang R, Ye S, Di K, Xiong T, Li Z. Recent advances in single extracellular vesicle detection methods. Biosens Bioelectron 2020; 154:112056. [PMID: 32093894 DOI: 10.1016/j.bios.2020.112056] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are secreted by a variety of cells. They are known for their pertinent role in intercellular communication, and participation in different pathological processes, making them ideal candidate for utilization as a biomarker for diagnosis and treatment of diseases. In contemporary years, the concept of a well-established liquid biopsy technology, and detection and utilization of EVs as a biomarkers have received unprecedented attention. Many rapid and precise EVs detection methods have been proposed, however, majority of them detect EVs in a bulk. As the prevalent heterogeneity of single extracellular vesicle (SEV) plays an important role in the analysis of disease progression, therefore, to prevent information loss, increased attention has been paid to SEV detection with remarkable successes. Technologies like fluorescence labeling, micro imaging and microfluidic chip were successfully employed for EVs detection at SEV level. This review summarizes the recent advances in SEV detection methods, their potential targets, applications as well as concludes future prospects for developing new SEV detection strategies.
Collapse
Affiliation(s)
- Su Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing 210096, PR China
| | - Rongrong Huang
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Shiyi Ye
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kaili Di
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China; Department of Clinical Laboratory, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, PR China.
| |
Collapse
|
31
|
Hough KP, Deshane JS. Cutting edge approaches for rapid characterization of airway exosomes. Methods 2020; 177:27-34. [PMID: 31953152 DOI: 10.1016/j.ymeth.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/14/2023] Open
Abstract
Exosomes have been described as promising biomarkers for understanding disease progression and prognosis. These lipid membrane nanoparticles derived from airway cells have been shown to have immunomodulatory effects, such as driving inflammatory responses in asthma. These emerging evidences demonstrating an important pathophysiological role of exosomes warrants the development of novel approaches for isolation and rapid characterization of exosomes, which would be applicable for both translational and clinical studies. In this review article, we describe two methods of rapid exosomes characterization: (1) imaging flow cytometry using ImageStream; and (2) conventional flow cytometry using the BD Symphony A5 platform. We also explore sorting of exosomes using the BD Aria.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Jessy S Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
32
|
Jhan YY, Prasca-Chamorro D, Palou Zuniga G, Moore DM, Arun Kumar S, Gaharwar AK, Bishop CJ. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int J Pharm 2020; 573:118802. [DOI: 10.1016/j.ijpharm.2019.118802] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 02/08/2023]
|
33
|
Zheng S, Sieder M, Mitterer M, Reth M, Cavallari M, Yang J. A new branched proximity hybridization assay for the quantification of nanoscale protein-protein proximity. PLoS Biol 2019; 17:e3000569. [PMID: 31825964 PMCID: PMC6905527 DOI: 10.1371/journal.pbio.3000569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
Membrane proteins are organized in nanoscale compartments. Their reorganization plays a crucial role in receptor activation and cell signaling. To monitor the organization and reorganization of membrane proteins, we developed a new branched proximity hybridization assay (bPHA) allowing better quantification of the nanoscale protein-protein proximity. In this assay, oligo-coupled binding probes, such as aptamer, nanobody, and antibodies, are used to translate the proximity of target proteins to the proximity of oligos. The closely positioned oligos then serve as a template for a maximum of 400-fold branched DNA (bDNA) signal amplification. The amplified bPHA signal is recorded by flow cytometer, thus enabling proximity studies with high throughput, multiplexing, and single-cell resolution. To demonstrate the potential of the bPHA method, we measured the reorganization of the immunoglobulin M (IgM)- and immunoglobulin D (IgD)-class B cell antigen receptor (BCR) on the plasma membrane and the recruitment of spleen tyrosine kinase (Syk) to the BCR upon B lymphocyte activation.
Collapse
Affiliation(s)
- Shuangshuang Zheng
- BIOSS Centre For Biological Signaling Studies and Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Sieder
- BIOSS Centre For Biological Signaling Studies and Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre For Biological Signaling Studies and Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre For Biological Signaling Studies and Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre For Biological Signaling Studies and Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Chen C, Zong S, Liu Y, Wang Z, Zhang Y, Chen B, Cui Y. Profiling of Exosomal Biomarkers for Accurate Cancer Identification: Combining DNA-PAINT with Machine- Learning-Based Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901014. [PMID: 31478613 DOI: 10.1002/smll.201901014] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/18/2019] [Indexed: 05/08/2023]
Abstract
Exosomes are endosome-derived vesicles enriched in body fluids such as urine, blood, and saliva. So far, they have been recognized as potential biomarkers for cancer diagnostics. However, the present single-variate analysis of exosomes has greatly limited the accuracy and specificity of diagnoses. Besides, most diagnostic approaches focus on bulk analysis using lots of exosomes and tend to be less accurate because they are vulnerable to impure extraction and concentration differences of exosomes. To address these challenges, a quantitative analysis platform is developed to implement a sequential quantification analysis of multiple exosomal surface biomarkers at the single-exosome level, which utilizes DNA-PAINT and a machine learning algorithm to automatically analyze the results. As a proof of concept, the profiling of four exosomal surface biomarkers (HER2, GPC-1, EpCAM, EGFR) is developed to identify exosomes from cancer-derived blood samples. Then, this technique is further applied to detect pancreatic cancer and breast cancer from unknown samples with 100% accuracy.
Collapse
Affiliation(s)
- Chen Chen
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yun Liu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yizhi Zhang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| |
Collapse
|
35
|
Profiling surface proteins on individual exosomes using a proximity barcoding assay. Nat Commun 2019; 10:3854. [PMID: 31451692 PMCID: PMC6710248 DOI: 10.1038/s41467-019-11486-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
Exosomes have been implicated in numerous biological processes, and they may serve as important disease markers. Surface proteins on exosomes carry information about their tissues of origin. Because of the heterogeneity of exosomes it is desirable to investigate them individually, but this has so far remained impractical. Here, we demonstrate a proximity-dependent barcoding assay to profile surface proteins of individual exosomes using antibody-DNA conjugates and next-generation sequencing. We first validate the method using artificial streptavidin-oligonucleotide complexes, followed by analysis of the variable composition of surface proteins on individual exosomes, derived from human body fluids or cell culture media. Exosomes from different sources are characterized by the presence of specific combinations of surface proteins and their abundance, allowing exosomes to be separately quantified in mixed samples to serve as markers for tissue-specific engagement in disease. The use of antibodies to capture and profile exosomes limits the number of target proteins that can be detected. Here the authors develop a proximity-dependent barcoding assay that allows profiling of 38 surface proteins on individual exosomes from heterogeneous samples such as serum and seminal fluid.
Collapse
|
36
|
Roy S, Lin HY, Chou CY, Huang CH, Small J, Sadik N, Ayinon CM, Lansbury E, Cruz L, Yekula A, Jones PS, Balaj L, Carter BS. Navigating the Landscape of Tumor Extracellular Vesicle Heterogeneity. Int J Mol Sci 2019; 20:ijms20061349. [PMID: 30889795 PMCID: PMC6471355 DOI: 10.3390/ijms20061349] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
The last decade has seen a rapid expansion of interest in extracellular vesicles (EVs) released by cells and proposed to mediate intercellular communication in physiological and pathological conditions. Considering that the genetic content of EVs reflects that of their respective parent cell, many researchers have proposed EVs as a source of biomarkers in various diseases. So far, the question of heterogeneity in given EV samples is rarely addressed at the experimental level. Because of their relatively small size, EVs are difficult to reliably isolate and detect within a given sample. Consequently, standardized protocols that have been optimized for accurate characterization of EVs are lacking despite recent advancements in the field. Continuous improvements in pre-analytical parameters permit more efficient assessment of EVs, however, methods to more objectively distinguish EVs from background, and to interpret multiple single-EV parameters are lacking. Here, we review EV heterogeneity according to their origin, mode of release, membrane composition, organelle and biochemical content, and other factors. In doing so, we also provide an overview of currently available and potentially applicable methods for single EV analysis. Finally, we examine the latest findings from experiments that have analyzed the issue at the single EV level and discuss potential implications.
Collapse
Affiliation(s)
- Sabrina Roy
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Chung-Yu Chou
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Julia Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Noah Sadik
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA.
| | - Caroline M Ayinon
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Elizabeth Lansbury
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Lilian Cruz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
38
|
Thulin Å, Yan J, Åberg M, Christersson C, Kamali-Moghaddam M, Siegbahn A. Sensitive and Specific Detection of Platelet-Derived and Tissue Factor-Positive Extracellular Vesicles in Plasma Using Solid-Phase Proximity Ligation Assay. TH OPEN 2018; 2:e250-e260. [PMID: 31276087 PMCID: PMC6602879 DOI: 10.1055/s-0038-1667204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) derived from blood cells are promising biomarkers for various diseases. However, they are difficult to measure accurately in plasma due to their small size. Here, we demonstrate that platelet-derived EVs in plasma can be measured using solid-phase proximity ligation assay with high sensitivity and specificity using very small sample volume of biological materials. The results correlate well with high-sensitivity flow cytometry with the difference that the smallest EVs are detected. Briefly, the EVs are first captured on a solid phase, using lactadherin binding, and detection requires recognition with two antibodies followed by qPCR. The assay, using cholera toxin subunit-B or lactadherin as capture agents, also allowed detection of the more rare population of tissue factor (TF)-positive EVs at a concentration similar to sensitive TF activity assays. Thus, this assay can detect different types of EVs with high specificity and sensitivity, and has the potential to be an attractive alternative to flow cytometric analysis of preclinical and clinical samples. Improved techniques for measuring EVs in plasma will hopefully contribute to the understanding of their role in several diseases.
Collapse
Affiliation(s)
- Åsa Thulin
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Junhong Yan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Molecular Imaging of Aminopeptidase N in Cancer and Angiogenesis. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5315172. [PMID: 30046296 PMCID: PMC6036854 DOI: 10.1155/2018/5315172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
This review focuses on recent advances in the molecular imaging of aminopeptidase N (APN, also known as CD13), a zinc metalloenzyme that cleaves N-terminal neutral amino acids. It is overexpressed in multiple cancer types and also on the surface of vasculature undergoing angiogenesis, making it a promising target for molecular imaging and targeted therapy. Molecular imaging probes for APN are divided into two large subgroups: reactive and nonreactive. The structures of the reactive probes (substrates) contain a reporter group that is cleaved and released by the APN enzyme. The nonreactive probes are not cleaved by the enzyme and contain an antibody, peptide, or nonpeptide for targeting the enzyme exterior or active site. Multivalent homotopic probes utilize multiple copies of the same targeting unit, whereas multivalent heterotopic molecular probes are equipped with different targeting units for different receptors. Several recent preclinical cancer imaging studies have shown that multivalent APN probes exhibit enhanced tumor specificity and accumulation compared to monovalent analogues. The few studies that have evaluated APN-specific probes for imaging angiogenesis have focused on cardiac regeneration. These promising results suggest that APN imaging can be expanded to detect and monitor other diseases that are associated with angiogenesis.
Collapse
|
40
|
Wiklander OPB, Bostancioglu RB, Welsh JA, Zickler AM, Murke F, Corso G, Felldin U, Hagey DW, Evertsson B, Liang XM, Gustafsson MO, Mohammad DK, Wiek C, Hanenberg H, Bremer M, Gupta D, Björnstedt M, Giebel B, Nordin JZ, Jones JC, El Andaloussi S, Görgens A. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front Immunol 2018; 9:1326. [PMID: 29951064 PMCID: PMC6008374 DOI: 10.3389/fimmu.2018.01326] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom
| | - R Beklem Bostancioglu
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Welsh
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Antje M Zickler
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Pathology F56, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Giulia Corso
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Felldin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Björn Evertsson
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xiu-Ming Liang
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuela O Gustafsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dara K Mohammad
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology F56, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joel Z Nordin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom
| | - Jennifer C Jones
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom.,Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Bijnsdorp IV, van Royen ME, Verhaegh GW, Martens-Uzunova ES. The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Mol Diagn Ther 2018; 21:385-400. [PMID: 28299719 PMCID: PMC5511609 DOI: 10.1007/s40291-017-0271-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer and the second leading cause of cancer-related death in men. Despite extensive research, the molecular mechanisms underlying PCa initiation and progression remain unclear, and there is increasing need of better biomarkers that can distinguish indolent from aggressive and life-threatening disease. With the advent of advanced genomic technologies in the last decade, it became apparent that the human genome encodes tens of thousands non-protein-coding RNAs (ncRNAs) with yet to be discovered function. It is clear now that the majority of ncRNAs exhibit highly specific expression patterns restricted to certain tissues and organs or developmental stages and that the expression of many ncRNAs is altered in disease and cancer, including cancer of the prostate. Such ncRNAs can serve as important biomarkers for PCa diagnosis, prognosis, or prediction of therapy response. In this review, we give an overview of the different types of ncRNAs and their function, describe ncRNAs relevant for the diagnosis and prognosis of PCa, and present emerging new aspects of ncRNA research that may contribute to the future utilization of ncRNAs as clinically useful therapeutic targets.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/urine
- Early Detection of Cancer/methods
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Male
- Molecular Targeted Therapy
- Precision Medicine
- Prognosis
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA, Untranslated/blood
- RNA, Untranslated/classification
- RNA, Untranslated/genetics
- RNA, Untranslated/urine
Collapse
Affiliation(s)
- Irene V Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology and Erasmus Optical Imaging Centre (OIC), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud university medical center, Nijmegen, The Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus Medical Center, Erasmus Cancer Institute, Room Be-362b, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Han S, Kang B, Jang E, Ki J, Kim E, Jeong MY, Huh YM, Son HY, Haam S. Convenient Monitoring System of Intracellular microRNA Expression during Adipogenesis via Mechanical Stimulus-Induced Exocytosis of Lipovesicular miRNA Beacon. Adv Healthc Mater 2018; 7. [PMID: 29280320 DOI: 10.1002/adhm.201701019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/11/2017] [Indexed: 01/01/2023]
Abstract
Noninvasive investigation of microRNAs (miRNAs) expression, which is deeply related to biological phenomena such as stem cell differentiation, in culture soup is particularly useful for monitoring of stem cell differentiation without phototoxicity of living cells, especially when cell morphologies remain unchanged during differentiation. However, real-time detection of miRNA in culture soup is not recommended because of insufficient miRNA amounts in culture soup. In this study, a convenient method is introduced for real-time assessing intracellular miRNA in culture soup by using lipovesicular miRNA beacon (Lipo-mB) and mechanical stimulus-mediated exocytosis. Pipetting-harvest of culture soup induces exocytosis-secretion of fluorescence signal of Lipo-mB from cytoplasm into culture soup. To demonstrate this method, Lipo-mB is applied for monitoring of adipogenesis by analyzing the expression levels of various intracellular miRNAs, which are related to adipogenesis regulators. The fluorescence intensity profile of the culture soup is correlated with the quantitative reverse-transcription-polymerase chain reaction data and absorbance of Oil Red O staining. These results demonstrate that Lipo-mB can successfully monitor stem cell differentiation by sensing changes in miRNA expression from culture soup of living cells. Lipo-mB can be further developed as an accurate sensing system for analyzing subtle differences in genotype, even when changes in phenotype cannot be observed.
Collapse
Affiliation(s)
- Seungmin Han
- Department of Chemical and Biomolecular Engineering; Yonsei University; Seoul 120-749 Republic of Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering; Yonsei University; Seoul 120-749 Republic of Korea
| | - Eunji Jang
- Department of Radiology; College of Medicine; Yonsei University; Seoul 120-752 Republic of Korea
| | - Jisun Ki
- Department of Chemical and Biomolecular Engineering; Yonsei University; Seoul 120-749 Republic of Korea
| | - Eunjung Kim
- Department of Materials; Department of Bioengineering and Institute for Biomedical Engineering; Imperial College London; London SW7 2AZ UK
| | - Mun-Young Jeong
- Department of Radiology; College of Medicine; Yonsei University; Seoul 120-752 Republic of Korea
| | - Yong-Min Huh
- Department of Radiology; College of Medicine; Yonsei University; Seoul 120-752 Republic of Korea
- Severance Biomedical Science Institute; College of Medicine; Yonsei University; Seoul 120-752 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute; Seoul 120-752 Republic of Korea
- Brain Korea 21 Project for Medical Science; Yonsei University College of Medicine; Seoul 120-752 Republic of Korea
| | - Hye-Young Son
- Department of Radiology; College of Medicine; Yonsei University; Seoul 120-752 Republic of Korea
- Severance Biomedical Science Institute; College of Medicine; Yonsei University; Seoul 120-752 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute; Seoul 120-752 Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering; Yonsei University; Seoul 120-749 Republic of Korea
| |
Collapse
|
43
|
Lee K, Fraser K, Ghaddar B, Yang K, Kim E, Balaj L, Chiocca EA, Breakefield XO, Lee H, Weissleder R. Multiplexed Profiling of Single Extracellular Vesicles. ACS NANO 2018; 12:494-503. [PMID: 29286635 PMCID: PMC5898240 DOI: 10.1021/acsnano.7b07060] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EV) are a family of cell-originating, membrane-enveloped nanoparticles with diverse biological function, diagnostic potential, and therapeutic applications. While EV can be abundant in circulation, their small size (∼4 order of magnitude smaller than cells) has necessitated bulk analyses, making many more nuanced biological explorations, cell of origin questions, or heterogeneity investigations impossible. Here we describe a single EV analysis (SEA) technique which is simple, sensitive, multiplexable, and practical. We profiled glioblastoma EV and discovered surprising variations in putative pan-EV as well as tumor cell markers on EV. These analyses shed light on the heterogeneous biomarker profiles of EV. The SEA technology has the potential to address fundamental questions in vesicle biology and clinical applications.
Collapse
Affiliation(s)
- Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Kyle Fraser
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Bassel Ghaddar
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Katy Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Eunha Kim
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Leonora Balaj
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Xandra O. Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
44
|
Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, Nawaz M, Akbar N, Couch Y, Makin L, Cooke F, Vettore AL, Batista PX, Freezor R, Pezuk JA, Rosa-Fernandes L, Carreira ACO, Devitt A, Jacobs L, Silva IT, Coakley G, Nunes DN, Carter D, Palmisano G, Dias-Neto E. Technical challenges of working with extracellular vesicles. NANOSCALE 2018; 10:881-906. [PMID: 29265147 DOI: 10.1039/c7nr08360b] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Extracellular Vesicles (EVs) are gaining interest as central players in liquid biopsies, with potential applications in diagnosis, prognosis and therapeutic guidance in most pathological conditions. These nanosized particles transmit signals determined by their protein, lipid, nucleic acid and sugar content, and the unique molecular pattern of EVs dictates the type of signal to be transmitted to recipient cells. However, their small sizes and the limited quantities that can usually be obtained from patient-derived samples pose a number of challenges to their isolation, study and characterization. These challenges and some possible options to overcome them are discussed in this review.
Collapse
Affiliation(s)
- Marcel I Ramirez
- Fundação Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil and Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ivana Milic
- School of Life and Health Sciences, Aston University, England, UK
| | | | | | - Muhammad Nawaz
- Universidade de São Paulo, São Paulo, SP, Brazil and University of Gothenburg, Sweden
| | - Naveed Akbar
- Division of Cardiovascular Medicine, University of Oxford, Oxford, England, UK
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford, Oxford, England, UK
| | - Laura Makin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Fiona Cooke
- University of St Andrews, St Andrews, Fife, Scotland, UK
| | - Andre L Vettore
- Federal University of São Paulo campus Diadema, Diadema, Brazil
| | | | | | - Julia A Pezuk
- Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Lívia Rosa-Fernandes
- Universidade de São Paulo, São Paulo, SP, Brazil and University of Southern Denmark, Odense, Denmark
| | | | - Andrew Devitt
- School of Life and Health Sciences, Aston University, England, UK
| | | | | | - Gillian Coakley
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Diana N Nunes
- CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.
| | - Dave Carter
- Oxford Brookes University, Oxford, England, UK
| | - Giuseppe Palmisano
- Universidade de São Paulo, São Paulo, SP, Brazil and IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Emmanuel Dias-Neto
- CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil. and Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Rana A, Zhang Y, Esfandiari L. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers. Analyst 2018; 143:2971-2991. [DOI: 10.1039/c7an01965c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isolation of circulating biomarkers using microfluidic devices for cancer diagnosis.
Collapse
Affiliation(s)
- Ankit Rana
- Department of Electrical Engineering and Computer Science
- College of Engineering and Applied Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Yuqian Zhang
- Department of Electrical Engineering and Computer Science
- College of Engineering and Applied Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science
- College of Engineering and Applied Sciences
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
46
|
Avin A, Levy M, Porat Z, Abramson J. Quantitative analysis of protein-protein interactions and post-translational modifications in rare immune populations. Nat Commun 2017; 8:1524. [PMID: 29142256 PMCID: PMC5688095 DOI: 10.1038/s41467-017-01808-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/17/2017] [Indexed: 01/23/2023] Open
Abstract
In spite of recent advances in proteomics, quantitative analyses of protein-protein interactions (PPIs) or post-translational modifications (PTMs) in rare cell populations remain challenging. This is in particular true for analyses of rare immune and/or stem cell populations that are directly isolated from humans or animal models, and which are often characterized by multiple surface markers. To overcome these limitations, here we have developed proximity ligation imaging cytometry (PLIC), a protocol for proteomic analysis of rare cells. Specifically, by employing PLIC on medullary thymic epithelial cells (mTECs), which serve as a paradigm for a rare immune population, we demonstrate that PLIC overcomes the inherent limitations of conventional proteomic approaches and enables a high-resolution detection and quantification of PPIs and PTMs at a single cell level.
Collapse
Affiliation(s)
- Ayelet Avin
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Maayan Levy
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ziv Porat
- Department of Biological Services, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
47
|
Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens Bioelectron 2017; 102:204-210. [PMID: 29145073 DOI: 10.1016/j.bios.2017.11.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023]
Abstract
Tumor-derived exosomes (TEXs) are extracellular vesicles that are continuously released into the blood by tumor cells and carry specific surface markers of the original tumor cells. Substantial evidence has implicated TEXs as attractive diagnostic markers for cancer. However, the detection of TEXs in blood at an early tumor stage is challenging due to their very low concentration. Here, we established a method called PLA-RPA-TMA assay that allows TEXs to be detected with high sensitivity and specificity. Based on two proximity ligation assay (PLA) probes that recognize a biomarker on a TEX, we generated a unique surrogate DNA signal for the specific biomarker, which was synchronously amplified twice by recombinase polymerase amplification (RPA) coupled with transcription-mediated amplification (TMA), and then the products of the RPA-TMA reaction were quantitatively detected using a gold nanoparticle-based colorimetric assay. We established proof-of-concept evidence for this approach using TEXs from nasopharyngeal carcinoma (NPC) cells, with a detection limit of 102 particles/mL, and reported the measurement of plasma Epstein-Barr virus latent membrane protein 1 (LPM1)-positive (LMP1+, accuracy: 0.956) and epidermal growth factor receptor (EGFR)-positive (EGFR+, accuracy: 0.906) TEXs as potent early diagnostic biomarkers for NPC.
Collapse
|
48
|
Savvateeva EN, Tikhonov AA, Butvilovskaya VI, Tsybulskaya MV, Rubina AY. Exosomal surface protein markers in diagnosis of colorectal cancer. Mol Biol 2017. [DOI: 10.1134/s0026893317050168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Ebai T, Souza de Oliveira FM, Löf L, Wik L, Schweiger C, Larsson A, Keilholtz U, Haybaeck J, Landegren U, Kamali-Moghaddam M. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification. Clin Chem 2017; 63:1497-1505. [DOI: 10.1373/clinchem.2017.271833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
Abstract
BACKGROUND
Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals.
METHODS
Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader.
RESULTS
We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA.
CONCLUSIONS
PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories.
Collapse
Affiliation(s)
- Tonge Ebai
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Liza Löf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lotta Wik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Schweiger
- Charité Comprehensive Cancer Center, University of Berlin, Berlin, Germany
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Anders Larsson
- Department of Medical Sciences, Biochemical Structure and Function, Uppsala University, Uppsala, Sweden
| | - Ulrich Keilholtz
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Johannes Haybaeck
- Charité Comprehensive Cancer Center, University of Berlin, Berlin, Germany
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Löf L, Arngården L, Ebai T, Landegren U, Söderberg O, Kamali-Moghaddam M. Detection of Extracellular Vesicles Using Proximity Ligation Assay with Flow Cytometry Readout-ExoPLA. ACTA ACUST UNITED AC 2017; 81:4.8.1-4.8.10. [PMID: 28678418 DOI: 10.1002/cpcy.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Extracellular vesicles (EVs) are continuously released by most cells, and they carry surface markers of their cells of origin. Found in all body fluids, EVs function as conveyers of cellular information, and evidence implicates them as markers of disease. These characteristics make EVs attractive diagnostic targets. However, detection and characterization of EVs is challenging due to their small size. We've established a method, called ExoPLA, that allows individual EVs to be detected and characterized at high specificity and sensitivity. Based on the in situ proximity ligation assay (in situ PLA), proximal oligonucleotide-conjugated antibodies bound to their targets on the surfaces of the EVs allow formation of circular products that can be fluorescently labeled by rolling circle amplification. The intense fluorescent signals produced in this assay allow detection and enumeration of individual EVs by flow cytometry. We describe the procedures for ExoPLA, along with expected results and troubleshooting. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Liza Löf
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Linda Arngården
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tonge Ebai
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|