1
|
Ogwo MN, Goyal G, Zotor P, Sharma B, Rodarte D, Lakshmanaswamy R, Kumar S. MicroRNAs alteration and unique distribution in the soma and synapses of substantia nigra in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642888. [PMID: 40161593 PMCID: PMC11952443 DOI: 10.1101/2025.03.12.642888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative condition after Alzheimer's. Abnormal accumulation of alpha-synuclein (α-syn) aggregates disrupts the balance of dopaminergic (DA-ergic) synapse components, interfering with dopamine transmission and leading to synaptic dysfunction and neuronal loss in PD. However exact molecular mechanism underlying DA-ergic neuronal cell loss in the SNpc in not known. MicroRNAs (miRNAs) are observed in various compartments of neural elements including cell bodies, nerve terminals, mitochondria, synaptic vesicles and synaptosomes. However, miRNAs expression and cellular distribution are unknown in the soma and synapse compartment in PD and healthy state. To address this void of information, we isolated synaptosomes and cytosolic fractions (soma) from post-mortem brains of PD-affected individuals and unaffected controls (UC) and processed for miRNA sequencing analysis. A group of miRNAs were significantly altered ( p < 0.05) with high fold changes (variance +/- > 2-fold) in their expressions in different comparisons: 1. UC synaptosome vs UC cytosol, 2. PD synaptosome vs PD cytosol, 3. PD synaptosome vs UC synaptosome, 4. PD cytosol vs UC cytosol. Our study unveiled some potential miRNAs in PD and their alteration and unique distribution in the soma and synapses of SNpc in PD and controls. Further, gene ontology enrichment analysis showed the involvement of deregulated miRNAs in several molecular function and cellular components: synapse assembly formation, cell junction organization, cell projections, mitochondria, Calcium ion binding and protein binding activities.
Collapse
|
2
|
Ramirez-Gomez J, Dalal S, Devara D, Sharma B, Rodarte D, Kumar S. MicroRNA-based recent research developments in Alzheimer's disease. J Alzheimers Dis 2025; 104:14-31. [PMID: 39894921 DOI: 10.1177/13872877241313397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory and physical impairment in aged individuals. microRNAs (miRNAs) are small, single-stranded noncoding RNAs that induce translational repression by binding to the 3' UTR of a target mRNA. miRNAs play a crucial role in neurological activity by mediating cellular proliferation, synaptic plasticity, apoptosis and more. Ongoing research in patents and clinical trials have called attention to promising miRNAs as biomarkers and therapeutics in AD. Recent research has shown that miRNAs are aberrantly expressed in AD brain, blood, cerebrospinal fluid and serum. Attenuated miRNA expressions have diagnostic potential in AD by interacting with amyloid-β synthesis, phosphorylated tau, and neurofibrillary tangles. In this study, miRNA-29a, miRNA-125b, miRNA-34a, miRNA-146a, and miRNA-155 have shown promise as potential biomarker candidates for AD. Improving cognitive symptoms can be traced to restoring the endogenous miRNA activity by synthesizing miRNA mimics and miRNA antisense oligonucleotides. miRNA-483-5p, miRNA-188-5p, miRNA-219, miRNA135a/5p, miRNA-23/23b-3p, miRNA-124, and miRNA-455-3p are growing therapeutics for AD. However, miRNA-based therapeutics struggle outside of preclinical testing. miRNA-107, miRNA-206, miRNA-30/7, and miRNA-142-3p face bottlenecks in clinical trials due to a lack of experimental design, transparency and volunteer size. Patenting recent miRNA-based developments demonstrates the commitment in identifying a new biomarker and/or therapeutic for AD.
Collapse
Affiliation(s)
- Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Daniela Rodarte
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
3
|
Simula ER, Jasemi S, Paulus K, Sechi LA. Upregulation of microRNAs correlates with downregulation of HERV-K expression in Parkinson's disease. J Neurovirol 2024; 30:550-555. [PMID: 39424758 PMCID: PMC11846710 DOI: 10.1007/s13365-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Human endogenous retroviruses (HERVs) involvement in neurological diseases has been extensively documented, although the etiology of HERV reactivation remains unclear. MicroRNAs represent one of the potential regulatory mechanisms of HERV reactivation. We identified fourteen microRNAs predicted to bind the HERV-K transcript, and subsequently analyzed for their gene expression levels alongside those of HERV-K. We documented an increased expression of four microRNAs in patients with Parkinson's disease compared to healthy controls, which correlated with a downregulation of HERV-K transcripts. We hypothesize that specific microRNAs may bind to HERV-K transcripts, leading to its downregulation.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Somaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Kay Paulus
- Servizio di neuroabilitazione, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy.
| |
Collapse
|
4
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
5
|
Hou D, Pei C, Yu D, Yang G. miR-188-5p silencing improves cerebral ischemia/reperfusion injury by targeting Lin28a. Metab Brain Dis 2023; 38:2327-2338. [PMID: 37572229 DOI: 10.1007/s11011-023-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
This report aimed to explore whether miR-188-5p regulated the pathological regulatory network of cerebral ischemia/reperfusion (I/R) injury. We simulated the cerebral I/R injury model with MACO/R and OGD/R treatments. Neuronal viability and apoptosis were assessed. The contents of miR-188-5p and Lin 28a were evaluated. The abundances of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured. The interaction of miR-188-5p and Lin28a was confirmed. Lin28a silencing was supplemented to determine the delicate regulation of miR-188-5p. We revealed that miR-188-5p was upregulated and Lin28a was downregulated in I/R rats and OGD/R-induced cells. miR-188-5p silencing remarkably reduced the cerebral infarction volume, neurobehavioral score, brain edema, and Evans blue leakage. miR-188-5p silencing enhanced neuronal viability and alleviated apoptosis. The abundance of Bax and cleaved caspase-3 was reduced by miR-188-5p silencing, while Bcl-2 was augmented. miR-188-5p silencing impeded the contents of TNF-α, IL-1β, and IL-6. miR-188-5p interacted with Lin28a and negatively regulated its expression. Interestingly, extra Lin28a silencing reversed apoptosis and the content of inflammatory cytokines. Our studies confirmed that miR-188-5p silencing alleviated neuronal apoptosis and inflammation by mediating the expression of Lin28a. The crosstalk of miR-188-5p and Lin28a offered a different direction for ischemic stroke therapy.
Collapse
Affiliation(s)
- Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China.
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China.
| |
Collapse
|
6
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
9
|
Zhou Y, Wang X, Liu Y, Gu Y, Gu R, Zhang G, Lin Q. Mechanisms of abnormal adult hippocampal neurogenesis in Alzheimer's disease. Front Neurosci 2023; 17:1125376. [PMID: 36875663 PMCID: PMC9975352 DOI: 10.3389/fnins.2023.1125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system, the most common type of dementia in old age, which causes progressive loss of cognitive functions such as thoughts, memory, reasoning, behavioral abilities and social skills, affecting the daily life of patients. The dentate gyrus of the hippocampus is a key area for learning and memory functions, and an important site of adult hippocampal neurogenesis (AHN) in normal mammals. AHN mainly consists of the proliferation, differentiation, survival and maturation of newborn neurons and occurs throughout adulthood, but the level of AHN decreases with age. In AD, the AHN will be affected to different degrees at different times, and its exact molecular mechanisms are increasingly elucidated. In this review, we summarize the changes of AHN in AD and its alteration mechanism, which will help lay the foundation for further research on the pathogenesis and diagnostic and therapeutic approaches of AD.
Collapse
Affiliation(s)
- Yujuan Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xu Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | - Yulu Gu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Geng Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Sundaramoorthy TH, Castanho I. The Neuroepigenetic Landscape of Vertebrate and Invertebrate Models of Neurodegenerative Diseases. Epigenet Insights 2022; 15:25168657221135848. [PMID: 36353727 PMCID: PMC9638687 DOI: 10.1177/25168657221135848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Vertebrate and invertebrate models of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, have been paramount to our understanding of the pathophysiology of these conditions; however, the brain epigenetic landscape is less well established in these disease models. DNA methylation, histone modifications, and microRNAs are among commonly studied mechanisms of epigenetic regulation. Genome-wide studies and candidate studies of specific methylation marks, histone marks, and microRNAs have demonstrated the dysregulation of these mechanisms in models of neurodegenerative diseases; however, the studies to date are scarce and inconclusive and the implications of many of these changes are still not fully understood. In this review, we summarize epigenetic changes reported to date in the brain of vertebrate and invertebrate models used to study neurodegenerative diseases, specifically diseases affecting the aging population. We also discuss caveats of epigenetic research so far and the use of disease models to understand neurodegenerative diseases, with the aim of improving the use of model organisms in this context in future studies.
Collapse
Affiliation(s)
| | - Isabel Castanho
- University of Exeter Medical School,
University of Exeter, Exeter, UK
- Beth Israel Deaconess Medical Center,
Boston, MA, USA
- Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
11
|
Hsa_circ_0044301 Regulates Gastric Cancer Cell’s Proliferation, Migration, and Invasion by Modulating the Hsa-miR-188-5p/DAXX Axis and MAPK Pathway. Cancers (Basel) 2022; 14:cancers14174183. [PMID: 36077718 PMCID: PMC9454757 DOI: 10.3390/cancers14174183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This study aimed to investigate whether circRNA could be potential prognosis or therapeutic target. And we found the upregulated hsa_circ_0044301 was positively correlated with the 5-year survival rate of patients, which also could influence the proliferation, migration and invasion of gastric cancer cells in vitro and in vivo. Mechanically, it could act as the sponge of hsa-miR-188-5p and regulate the expression and function of targeted gene DAXX. In addition, this circRNA could also modulate the effect of GDC-0994 on ERK1/2 or 5-FU in cells. These findings have made a significant contribution to the study of circRNA in the treatment field of gastric cancer. Meanwhile this is the first detailed investigation of hsa_circ_0044301 in gastric cancer, and the circRNA has the value of further animal and clinical translation. Abstract Background: Despite advances in diagnostic and therapeutic technologies, the prognosis of patients with gastric cancer (GC) remains poor, necessitating further search for more effective therapeutic targets and markers for prognosis prediction. Circular RNA (circRNA) plays a role in various diseases, including GC. Methods: CircRNA expression in GC tissues was detected by circRNA microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The correlation between circRNA-0044301 and patient survival was analyzed by log-rank test and Cox regression analysis. Next, in vitro characterization and functional analysis of circRNA-0044301 was done by various assays using RNase R, actinomycin D, and RNA fluorescence in situ hybridization, as well as investigations into its use as a drug to treat tumors in a subcutaneous tumorigenesis model. RNA immunoprecipitation and dual-luciferase reporter assays were used to identify circRNA-0044301-related miRNA (miRNA-188-5p), key proteins of the related pathway (ERK1/2), and the downstream target DAXX. Finally, we investigated the relationship between circRNA-0044301 and ravoxertinib (GDC-0994) and 5-fluorouracil (5-FU) using qRT-PCR, Western blotting, and CCK8 assays. Results: CircRNA-0044301 was upregulated in tissues and cancer cells compared to its levels in controls, related to patient prognosis, and its specific siRNA-vivo could slow tumor growth. On the mechanism, it acted as a sponge of miRNA-188-5p, could regulate the downstream target DAXX, and modulated the effect of GDC-0994 on ERK1/2 and 5-FU in cells. Conclusions: CircRNA-0044301/miRNA-188-5p/DAXX (ERK1/2) may be a key axis in GC progression, and circRNA-0044301 has immense potential to be a therapeutic target for GC.
Collapse
|
12
|
MicroRNAs in Learning and Memory and Their Impact on Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081856. [PMID: 36009403 PMCID: PMC9405363 DOI: 10.3390/biomedicines10081856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
Learning and memory formation rely on the precise spatiotemporal regulation of gene expression, such as microRNA (miRNA)-associated silencing, to fine-tune gene expression for the induction and maintenance of synaptic plasticity. Much progress has been made in presenting direct evidence of miRNA regulation in learning and memory. Here, we summarize studies that have manipulated miRNA expression using various approaches in rodents, with changes in cognitive performance. Some of these are involved in well-known mechanisms, such as the CREB-dependent signaling pathway, and some of their roles are in fear- and stress-related disorders, particularly cognitive impairment. We also summarize extensive studies on miRNAs correlated with pathogenic tau and amyloid-β that drive the processes of Alzheimer’s disease (AD). Although altered miRNA profiles in human patients with AD and in mouse models have been well studied, little is known about their clinical applications and therapeutics. Studies on miRNAs as biomarkers still show inconsistencies, and more challenges need to be confronted in standardizing blood-based biomarkers for use in AD.
Collapse
|
13
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
14
|
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics. Genes (Basel) 2022; 13:genes13030425. [PMID: 35327979 PMCID: PMC8951370 DOI: 10.3390/genes13030425] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science’s 2021 annual report suggests around 6.2 million Americans are living with Alzheimer’s disease, and there is a possibility that there will be 1.2 million Parkinson’s disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA
- Correspondence:
| | - Erica Lee
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Teresa Li
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Maria Rampersaud
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| |
Collapse
|
15
|
Duan Y, Ye T, Qu Z, Chen Y, Miranda A, Zhou X, Lok KC, Chen Y, Fu AKY, Gradinaru V, Ip NY. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice. Nat Biomed Eng 2022; 6:168-180. [PMID: 34312508 DOI: 10.1038/s41551-021-00759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
The pathology of familial Alzheimer's disease, which is caused by dominant mutations in the gene that encodes amyloid-beta precursor protein (APP) and in those that encode presenilin 1 and presenilin 2, is characterized by extracellular amyloid plaques and intracellular neurofibrillary tangles in multiple brain regions. Here we show that the brain-wide selective disruption of a mutated APP allele in transgenic mouse models carrying the human APP Swedish mutation alleviates amyloid-beta-associated pathologies for at least six months after a single intrahippocampal administration of an adeno-associated virus that encodes both Cas9 and a single-guide RNA that targets the mutation. We also show that the deposition of amyloid-beta, as well as microgliosis, neurite dystrophy and the impairment of cognitive performance, can all be ameliorated when the CRISPR-Cas9 construct is delivered intravenously via a modified adeno-associated virus that can cross the blood-brain barrier. Brain-wide disease-modifying genome editing could represent a viable strategy for the treatment of familial Alzheimer's disease and other monogenic diseases that affect multiple brain regions.
Collapse
Affiliation(s)
- Yangyang Duan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tao Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhe Qu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Abigail Miranda
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Ka-Chun Lok
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China. .,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.
| |
Collapse
|
16
|
Su L, Li R, Zhang Z, Liu J, Du J, Wei H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer's disease. Ageing Res Rev 2022; 73:101497. [PMID: 34710587 DOI: 10.1016/j.arr.2021.101497] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by decreased memory and cognitive functions. Exosomes carry a variety of important information such as proteins, lipids, DNA and RNA of mother cells. It is reported that exosomes play critical roles in nervous system physiology and neurodegenerative diseases. However, the functions of exosomes in AD progression are not fully elucidated. In this study, we detected the expression pattern of mRNAs and miRNAs in exosomes derived from the AD and health mice. A total of 1320 mRNAs and 29 miRNAs were differentially expressed in exosomes between the two groups. Subsequently, the downregulation of Chi3l1 and upregulation of Rhog in AD mice were verified by qRT-PCR. Meanwhile, the downregulation of miR-148a-5p and upregulation of miR-27a-5p in AD group were also tested by qRT-PCR. The functions of differentially expressed mRNAs and potential target genes of miRNAs were determined by GO and KEGG analysis. According to the ceRNA hypothesis, we established an integrated ceRNA network of circRNA-lncRNA-miRNA-mRNA. In conclusion, exosomal lncRNAs, mRNAs, circRNAs and miRNAs were identified to participate in the progression of AD which might be possible biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Lining Su
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Renqing Li
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Zhiqing Zhang
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Jijia Liu
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Jingkao Du
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| | - Huiping Wei
- Department of Basic Medicine, Hebei North University, Zhangjiakou, China.
| |
Collapse
|
17
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
18
|
Sokolik VV, Berchenko OH, Kolyada OK, Shulga SM. Direct and Indirect Action of Liposomal Form of MIR-101 on Cells in the Experimental Model of Alzheimer’s Disease. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021; 16:76. [PMID: 34742333 PMCID: PMC8572071 DOI: 10.1186/s13024-021-00496-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lujia Zhou
- Division of Janssen Pharmaceutica NV, Discovery Neuroscience, Janssen Research and Development, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Florijn BW, Bijkerk R, Kruyt ND, van Zonneveld AJ, Wermer MJH. Sex-Specific MicroRNAs in Neurovascular Units in Ischemic Stroke. Int J Mol Sci 2021; 22:11888. [PMID: 34769320 PMCID: PMC8585074 DOI: 10.3390/ijms222111888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence pinpoints sex differences in stroke incidence, etiology and outcome. Therefore, more understanding of the sex-specific mechanisms that lead to ischemic stroke and aggravation of secondary damage after stroke is needed. Our current mechanistic understanding of cerebral ischemia states that endothelial quiescence in neurovascular units (NVUs) is a major physiological parameter affecting the cellular response to neuron, astrocyte and vascular smooth muscle cell (VSMC) injury. Although a hallmark of the response to injury in these cells is transcriptional activation, noncoding RNAs such as microRNAs exhibit cell-type and context dependent regulation of gene expression at the post-transcriptional level. This review assesses whether sex-specific microRNA expression (either derived from X-chromosome loci following incomplete X-chromosome inactivation or regulated by estrogen in their biogenesis) in these cells controls NVU quiescence, and as such, could differentiate stroke pathophysiology in women compared to men. Their adverse expression was found to decrease tight junction affinity in endothelial cells and activate VSMC proliferation, while their regulation of paracrine astrocyte signaling was shown to neutralize sex-specific apoptotic pathways in neurons. As such, these microRNAs have cell type-specific functions in astrocytes and vascular cells which act on one another, thereby affecting the cell viability of neurons. Furthermore, these microRNAs display actual and potential clinical implications as diagnostic and prognostic biomarkers in ischemic stroke and in predicting therapeutic response to antiplatelet therapy. In conclusion, this review improves the current mechanistic understanding of the molecular mechanisms leading to ischemic stroke in women and highlights the clinical promise of sex-specific microRNAs as novel diagnostic biomarkers for (silent) ischemic stroke.
Collapse
Affiliation(s)
- Barend W. Florijn
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
| | - Roel Bijkerk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nyika D. Kruyt
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marieke J. H. Wermer
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
| |
Collapse
|
21
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
22
|
MicroRNA Dysregulation in the Hippocampus of Rats with Noise-Induced Hearing Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1377195. [PMID: 34527169 PMCID: PMC8437592 DOI: 10.1155/2021/1377195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Although hippocampal changes due to noise-induced hearing loss have been suggested, little is known about the miRNA levels due to these hippocampal changes. Three-week-old Sprague-Dawley rats were divided into noise and control groups (n = 20 per group). The noise group rats were exposed to white Gaussian noise (115 dB SPL, 4 hours per day) for three days. One day after noise exposure, the hippocampi of rats were harvested and miRNA expressions were analyzed using the Affymetrix miRNA 4.0 microarray (n = 6 per group). The predicted target genes of each miRNA were retrieved, and the pathways related to the predicted target genes were analyzed. miR-758-5p, miR-210-5p, miR-370-5p, miR-652-5p, miR-3544, miR-128-1-5p, miR-665, miR-188-5p, and miR-874-5p expression increased in the hippocampal tissue of the noise group compared to that in the control group. The overlapping predicted target genes included Bend4, Creb1, Adcy6, Creb5, Kcnj9, and Pten. The pathways related to these genes were the estrogen signaling pathway, vasopressin-regulated water reabsorption, thyroid hormone synthesis, aldosterone synthesis and secretion, insulin secretion, circadian entrainment, insulin resistance, cholinergic synapse, dopaminergic synapse, cGMP-PKG signaling pathway, cAMP signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, and AMPK signaling pathway. miR-448-3p, miR204-5p, and miR-204-3p expression decreased in the hippocampal tissue of the noise group compared to that in the control group. The overlapping predicted target genes of these three miRNAs were Rps6kas, Nfactc3, Rictor, Spred1, Cdh4, Cdh6, Dvl3, and Rcyt1b. Pathway analysis suggested that the Wnt signaling pathway is related to Dvl3 and Nfactc3. Noise-induced hearing loss dysregulates miR-758-5p, miR210-5p, miR370-5p, miR-652-5p, miR-3544, miR-128-1-5p, miR-665, miR-188-5p, miR-874-5p, miR-448-3p, miR-204-5p, miR-204-3p, and miR-140-5p expression in the hippocampus. These miRNAs have been predicted to be associated with hormonal, inflammatory, and synaptic pathways.
Collapse
|
23
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021; 13:654978. [PMID: 34276336 PMCID: PMC8283767 DOI: 10.3389/fnagi.2021.654978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. AD is characterized by the production and aggregation of beta-amyloid (Aβ) peptides, hyperphosphorylated tau proteins that form neurofibrillary tangles (NFTs), and subsequent neuroinflammation, synaptic dysfunction, autophagy and oxidative stress. Non-coding RNAs (ncRNAs) can be used as potential therapeutic targets and biomarkers due to their vital regulatory roles in multiple biological processes involved in disease development. The involvement of ncRNAs in the pathogenesis of AD has been increasingly recognized. Here, we review the ncRNAs implicated in AD and elaborate on their main regulatory pathways, which might have contributions for discovering novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- Institute of Biomedical Research, School for Life Science, Shandong University of Technology, Zibo, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Svob Strac D, Konjevod M, Sagud M, Nikolac Perkovic M, Nedic Erjavec G, Vuic B, Simic G, Vukic V, Mimica N, Pivac N. Personalizing the Care and Treatment of Alzheimer's Disease: An Overview. Pharmgenomics Pers Med 2021; 14:631-653. [PMID: 34093032 PMCID: PMC8169052 DOI: 10.2147/pgpm.s284615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, complex, and multifactorial neurodegenerative disorder, still without effective and stable therapeutic strategies. Currently, available medications for AD are based on symptomatic therapy, which include acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonist. Additionally, medications such as antipsychotic drugs, antidepressants, sedative, and hypnotic agents, and mood stabilizers are used for the management of behavioral and psychological symptoms of dementia (BPSD). Clinical research has been extensively investigated treatments focusing on the hallmark pathology of AD, including the amyloid deposition, tau hyperphosphorylation, neuroinflammation, and vascular changes; however, so far without success, as all new potential drugs failed to show significant clinical benefit. The underlying heterogeneous etiology and diverse symptoms of AD suggest that a precision medicine strategy is required, which would take into account the complex genetic, epigenetic, and environmental landscape of each AD patient. The article provides a comprehensive overview of the literature on AD, the current and potential therapy of both cognitive symptoms as well as BPSD, with a special focus on gut microbiota and epigenetic modifications as new emerging drug targets. Their specific patterns could represent the basis for novel individually tailored approaches aimed to optimize precision medicine strategies for AD prevention and treatment. However, the successful application of precision medicine to AD demands a further extensive research of underlying pathological processes, as well as clinical and biological complexity of this multifactorial neurodegenerative disorder.
Collapse
Affiliation(s)
- Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, Clinical Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Goran Simic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Vana Vukic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
25
|
Samadian M, Gholipour M, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer's Disease. Front Aging Neurosci 2021; 13:641080. [PMID: 33790780 PMCID: PMC8005705 DOI: 10.3389/fnagi.2021.641080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is an irrevocable neurodegenerative condition characterized by the presence of senile plaques comprising amassed β-amyloid peptides (Aβ) and neurofibrillary tangles mainly comprising extremely phosphorylated Tau proteins. Recent studies have emphasized the role of microRNAs (miRNAs) in the development of AD. A number of miRNAs, namely, miR-200a-3p, miR-195, miR-338-5p, miR-34a-5p, miR-125b-5p, miR-132, miR-384, miR-339-5p, miR-135b, miR-425-5p, and miR-339-5p, have been shown to participate in the development of AD through interacting with BACE1. Other miRNAs might affect the inflammatory responses in the course of AD. Aberrant expression of several miRNAs in the plasma samples of AD subjects has been shown to have the aptitude for differentiation of AD subjects from healthy subjects. Finally, a number of AD-modifying agents affect miRNA profile in cell cultures or animal models. We have performed a comprehensive search and summarized the obtained data about the function of miRNAs in AD in the current review article.
Collapse
Affiliation(s)
- Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Riaz F, Chen Q, Lu K, Osoro EK, Wu L, Feng L, Zhao R, Yang L, Zhou Y, He Y, Zhu L, Du X, Sadiq M, Yang X, Li D. Inhibition of miR-188-5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. J Cell Mol Med 2021; 25:4073-4087. [PMID: 33689215 PMCID: PMC8051718 DOI: 10.1111/jcmm.16376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR‐188‐5p is dysregulated during the process of HF. However, the role of miR‐188‐5p in HF remains unclear. This study investigated the potential role of miR‐188‐5p in HSCs and HF. Firstly, we validated the miR‐188‐5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4)‐induced mice, TGF‐β1‐induced LX‐2 cells, livers from 6‐month high‐fat diet (HFD)‐induced rat and 4‐month HFD‐induced mice NASH models, and human non‐alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR‐188‐5p inhibitors to investigate the therapeutic effects of miR‐188‐5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR‐188‐5p in the activation and proliferation of HSCs. This present study reported that miR‐188‐5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR‐188‐5p resulted in the up‐regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR‐188‐5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR‐188‐5p suppressed the HF parameters, pro‐fibrotic and pro‐inflammatory genes, and fibrosis. Collectively, our results uncover the pro‐fibrotic role of miR‐188‐5p. Furthermore, we demonstrated that miR‐188‐5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.
Collapse
Affiliation(s)
- Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Ezra Kombo Osoro
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yimeng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Muhammad Sadiq
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Li J, Xu C, Zhang J, Jin C, Shi X, Zhang C, Jia S, Xu J, Gui X, Xing L, Lu L, Xu L. Identification of miRNA-Target Gene Pairs in the Parietal and Frontal Lobes of the Brain in Patients with Alzheimer's Disease Using Bioinformatic Analyses. Neurochem Res 2021; 46:964-979. [PMID: 33586092 DOI: 10.1007/s11064-020-03215-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a growing health concern worldwide. MicroRNAs (miRNAs) have been extensively studied in many diseases, including AD. To identify differentially expressed miRNAs (DEmiRNAs) and genes specific to AD, we used bioinformatic analyses to investigate candidate miRNA-mRNA pairs involved in the pathogenesis of AD. We focused on differentially expressed genes (DEGs) that are targets of DEmiRNAs. The GEO2R tool and the HISAT2-DESeq2 software were used to identify DEmiRNAs and DEGs. Bioinformatic tools available online, such as TAM and the Database for Annotation, Visualization and Integrated Discovery (DAVID), were used to perform functional annotation and enrichment analysis. Targets of miRNAs were predicted using the miRTarBase. The Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape, which are available online, were utilized to construct protein-protein interaction (PPI) networks and identify hub genes. Furthermore, transcription factors (TFs) encoded by the DEGs were predicted using the TransmiR database and TF-miRNA-mRNA networks were constructed. Finally, the expression profile of a hub gene in peripheral blood mononuclear cells was compared between healthy individuals and AD patients. We identified 26 correlated miRNA-mRNA pairs. In the parietal lobe, miRNA-mRNA pairs involved in protein folding were enriched, and in the frontal lobe, miRNA-mRNA pairs involved in synaptic transmission, abnormal protein degradation, and apoptosis were enriched. In addition, HSP90AB1 in peripheral blood mononuclear cells was found to be significantly downregulated in AD patients, and this was consistent with its expression profile in the parietal lobe of AD patients. Our results provide brain region-specific changes in miRNA-mRNA associations in AD patients, further our understanding of potential underlying molecular mechanisms of AD, and reveal promising diagnostic and therapeutic targets for AD.
Collapse
Affiliation(s)
- Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Junfang Zhang
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Caixia Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Xiujuan Shi
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Chen Zhang
- Department of Laboratory Research Center, Tongji University School of Medicine, Shanghai, China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Libo Xing
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Lei Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
28
|
Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C, McIntire LB, John V, Gylys KH, Bilousova T. Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Disease Brain Tissue Reveals Disease-Associated Signatures. Front Pharmacol 2021; 12:766082. [PMID: 34925024 PMCID: PMC8675946 DOI: 10.3389/fphar.2021.766082] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aβ. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.
Collapse
Affiliation(s)
- Whitaker Cohn
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Huang
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sujyoti Chandra
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laura Beth McIntire
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Kumar S, Reddy PH. The role of synaptic microRNAs in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165937. [PMID: 32827646 PMCID: PMC7680400 DOI: 10.1016/j.bbadis.2020.165937] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Structurally and functionally active synapses are essential for neurotransmission and for maintaining normal synaptic and cognitive functions. Researchers have found that synaptic dysfunction is associated with the onset and progression of neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic dysfunction is even one of the main physiological hallmarks of AD. MiRNAs are present in small, subcellular compartments of the neuron such as neural dendrites, synaptic vesicles, and synaptosomes are known as synaptic miRNAs. Synaptic miRNAs involved in governing multiple synaptic functions that lead to healthy brain functioning and synaptic activity. However, the precise role of synaptic miRNAs has not been determined in AD progression. This review emphasizes the presence of miRNAs at the synapse, synaptic compartments and roles of miRNAs in multiple synaptic functions. We focused on synaptic miRNAs alteration in AD, and how the modulation of miRNAs effect the synaptic functions in AD. We also discussed the impact of synaptic miRNAs in AD progression concerning the synaptic ATP production, mitochondrial function, and synaptic activity.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
30
|
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y, Li H. MicroRNAs in Alzheimer's Disease: Function and Potential Applications as Diagnostic Biomarkers. Front Mol Neurosci 2020; 13:160. [PMID: 32973449 PMCID: PMC7471745 DOI: 10.3389/fnmol.2020.00160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although the incidence of AD is high, the rates of diagnosis and treatment are relatively low. Moreover, effective means for the diagnosis and treatment of AD are still lacking. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play regulatory roles by targeting mRNAs. The expression of miRNAs is conserved, temporal, and tissue-specific. Impairment of microRNA function is closely related to AD pathogenesis, including the beta-amyloid and tau hallmarks of AD, and there is evidence that the expression of some microRNAs differs significantly between healthy people and AD patients. These properties of miRNAs endow them with potential diagnostic and therapeutic value in the treatment of this debilitating disease. This review provides comprehensive information about the regulatory function of miRNAs in AD, as well as potential applications as diagnostic biomarkers.
Collapse
Affiliation(s)
- Wei Wei
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Yong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Na Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting-Ting Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Berberine attenuates Aβ-induced neuronal damage through regulating miR-188/NOS1 in Alzheimer's disease. Mol Cell Biochem 2020; 474:285-294. [PMID: 32779043 DOI: 10.1007/s11010-020-03852-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a public health issue worldwide. Berberine (Ber) acts as the neuroprotective role in an animal experiment of AD. MicroRNA-188 (miRNA-188) was reported to be decreased in primary hippocampal neurons of mice. However, the roles and molecular basis of Ber and miRNA-188 in the treatment of AD need to be further explored. In this study, 5 μM Ber treatment has little effect on cell viability. Ber treatment or miR-188 overexpression expedited proliferation and inhibited caspase-3 activity and apoptotic rate in amyloid-beta (Aβ)-treated BV2 and N2a cells. MiR-188 was downregulated, and nitric oxide synthase 1 (NOS1) was upregulated in Aβ-induced BV2 and N2a cells. NOS1 worked as the target of miR-188. NOS1 overturned miR-188-induced effects on cell viability, caspase-3 activity, and apoptotic rate in Aβ-induced BV2 and N2a cells. Ber mitigated neuronal damage in Aβ-induced BV2 and N2a cells by miR-188/NOS1 axis. These results suggested that Ber accelerated cell viability and suppressed caspase-3 activity and apoptotic rate possible by miR-188/NOS1 pathway, implying the treatment of Ber as an underlying effective drug for AD patients.
Collapse
|
32
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
33
|
Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSDF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020; 21:E4977. [PMID: 32674523 PMCID: PMC7403962 DOI: 10.3390/ijms21144977] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleys´ Jequitinhonha and Mucuri, Minas Gerais 30000-000, Brazil;
| | - Roque Aras Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| |
Collapse
|
34
|
Bahlakeh G, Gorji A, Soltani H, Ghadiri T. MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: Lessons from animal models. J Cell Physiol 2020; 236:806-823. [PMID: 32602584 DOI: 10.1002/jcp.29908] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cognitive dysfunction is a state of losing or having difficulties in remembering, learning, focusing, or making decisions that impact individual healthy life. Small single-stranded and nonprotein coding RNAs, microRNAs (miRNAs) participate actively in regulatory processes, incorporate cognitive signaling pathways, and intensely affect cognitive evolution. miRNAs exert their modification activities through translational or transcriptional processes. Reportedly, cognitive impairment and dementia are rising, especially in developing countries. Herein we provided a brief review of original studies addressing miRNA changes in the most common neurological diseases with a focus on dementia and Alzheimer's disease. It must be noted that an increase in the level of certain miRNAs but a decrease in other ones deteriorate cognitive performance. The current review revealed that induction of miR-214-3p, miR-302, miR-21, miR- 200b/c, miR-207, miR-132, miR-188-3p and 5p, and miR-873 improved cognitive impairment in various cognitive tasks. On the other hand, intentionally lowering the level of miR-34a, miR-124, miR-574, and miR-191a enhanced cognitive function and memory. Synaptic dysfunction is a core cause of cognitive dysfunction; miRNA-34, miRNA-34-c, miRNA-124, miRNA-188-5p, miRNA-210-5p, miRNA-335-3p, and miRNA-134 strongly influence synaptic-related mechanisms. The downregulation of miRNA-132 aggregates both amyloid and tau in tauopathy. Concerning the massive burden of neurological diseases worldwide, the future challenge is the translation of animal model knowledge into the detection of pathophysiological stages of neurocognitive disorders and designing efficient therapeutic strategies. While the delivery procedure of agomir or antagomir miRNAs into the brain is invasive and only applied in animal studies, finding a safe and specific delivery route is a priority.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Soltani
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer's Disease: Aspects and Challenges. Int J Mol Sci 2020; 21:E3517. [PMID: 32429229 PMCID: PMC7278930 DOI: 10.3390/ijms21103517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - Vo Van Giau
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - SeongSoo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
36
|
Duale N, Eide DM, Amberger ML, Graupner A, Brede DA, Olsen AK. Using prediction models to identify miRNA-based markers of low dose rate chronic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137068. [PMID: 32062256 DOI: 10.1016/j.scitotenv.2020.137068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Robust biomarkers of exposure to chronic low dose stressors such as ionizing radiation, particularly following chronic low doses and dose-rates, are urgently needed. MicroRNAs (miRNA) have emerged as promising markers of exposure to high dose and dose-rate. Here, we evaluated the feasibility of classifying γ-radiation exposure at different dose rates based on miRNA expression levels. Our objective was to identify miRNA-signatures discriminating between exposure to γ-radiation or not, including exposure to chronic low dose rates. We exposed male CBA/CaOlaHsd and C57BL/6NHsd wild-type mice to 0, 2.5, 10 and 100 mGy/h γ-irradiation (3 Gy total-dose). From an initial screening of 576 miRNAs, a set of 21 signature-miRNAs was identified based on differential expression (>± 2-fold or p < 0.05). This 21-signature miRNA panel was investigated in 39 samples from 4/5 livers/group/mouse strain. A set of significantly differentially expressed miRNAs was identified in all γ-irradiated samples. Most miRNAs were upregulated in all γ-irradiated groups compared to control, and functional analysis of these miRNAs revealed involvement in several cancer-related signaling pathways. To identify miRNAs that distinguished exposed mice from controls, nine prediction methods; i.e., six variants of generalized regression models, random-forest, boosted-tree and nearest-shrunken-centroid (PAM) were used. The generalized regression methods seem to outperform the other prediction methods for classification of irradiated and control samples. Using the 21-miRNA panel in the prediction models, we identified sets of candidate miRNA-markers that predict exposure to γ-radiation. Among the top10 miRNA predictors, contributing most in each of the three γ-irradiated groups, three miRNA predictors (miR-140-3p, miR-133a-5p and miR-145a-5p) were common. Three miRNAs, miR-188-3p/26a-5p/26b-5p, were specific for lower dose-rate γ-radiation. Similarly, exposure to the high dose-rates was also correctly predicted, including mice exposed to X-rays. Our approach identifying miRNA-based signature panels may be extended to classify exposure to environmental, nutritional and life-style-related stressors, including chronic low-stress scenarios.
Collapse
Affiliation(s)
- Nur Duale
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway.
| | - Dag M Eide
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| | - Maria L Amberger
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| | - Anne Graupner
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| | - Dag A Brede
- Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway; Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann K Olsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| |
Collapse
|
37
|
Wu X, Zou S, Wu F, He Z, Kong W. Role of microRNA in inner ear stem cells and related research progress. AMERICAN JOURNAL OF STEM CELLS 2020; 9:16-24. [PMID: 32419976 PMCID: PMC7218733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Deafness is one of the major global health problems that seriously affects the quality of human life. At present, there are no successful treatments for deafness caused by cochlear hair cell (HC) damage. The irreversibility of mammalian hearing impairment is that the inner ear's sensory epithelium cannot repair lost hair cells and neurons through spontaneous regeneration. The goal of stem cell therapy for sensorineural hearing loss is to reconstruct the damaged inner ear structure and achieve functional repair. microRNA (miRNA), as a class of highly conserved endogenous non-coding small RNAs, plays an important role in the development of cochlea and HCs. miRNA also participates in the regulation of stem cell proliferation and differentiation, and plays an important role in the process of regeneration of inner ear HCs, miRNA has a broad application prospect of clinical treatment of hearing loss, which is conducive to solving the medical problem of inner ear HC regeneration.
Collapse
Affiliation(s)
- Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Shengyu Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Fan Wu
- Otorhinolaryngology Department, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University107 West Yan Jiang Road, Guangzhou 510120, P. R. China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| |
Collapse
|
38
|
Kou X, Chen D, Chen N. The Regulation of microRNAs in Alzheimer's Disease. Front Neurol 2020; 11:288. [PMID: 32362867 PMCID: PMC7180504 DOI: 10.3389/fneur.2020.00288] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are small non-coding nucleic acids that are responsible for regulating the gene expression by binding to the coding region and 3' and 5' un-translated region of target messenger RNA. Approximately 70% of known microRNAs are expressed in the brain and increasing evidences demonstrate the possible involvement of microRNAs in Alzheimer's disease (AD) according to the statistics. The characteristic symptoms of AD are the progressive loss of memory and cognitive functions due to the deposition of amyloid β (Aβ) peptide, intracellular aggregation of hyperphosphorylated Tau protein, the loss of synapses, and neuroinflammation, as well as dysfunctional autophagy. Therefore, microRNA-mediated regulation for above-mentioned changes may be the potential therapeutic strategies for AD. In this review, the role of specific microRNAs involved in AD and corresponding applications are systematically discussed, including positive effects associated with the reduction of Aβ or Tau protein, the protection of synapses, the inhibition of neuroinflammation, the mitigation of aging, and the induction of autophagy in AD. It will be beneficial to develop effective targets for establishing a cross link between pharmacological intervention and AD in the near future.
Collapse
Affiliation(s)
- Xianjuan Kou
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Dandan Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
39
|
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S. Circulating MicroRNA-19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation. J Bone Miner Res 2020; 35:306-316. [PMID: 31614022 DOI: 10.1002/jbmr.3892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Circulating microRNAs (miRNAs) play important roles in regulating gene expression and have been reported to be involved in various metabolic diseases, including osteoporosis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the role of circulating miRNAs in this process is poorly understood. Here we discovered that the level of circulating miR-19b was significantly lower in osteoporotic patients with vertebral compression fractures than that of healthy controls. The expression level of miR-19b was increased during osteoblastic differentiation of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells, and transfection with synthetic miR-19b could promote osteoblastic differentiation of hMSCs and MC3T3-E1 cells. PTEN (phosphatase and tensin homolog deleted from chromosome 10) was found to be directly repressed by miR-19b, with a concomitant increase in Runx2 expression and increased phosphorylation of AKT (protein kinase B, PKB). The expression level of circulating miR-19b in aged ovariectomized mice was significantly lower than in young mice. Moreover, the osteoporotic bone phenotype in aged ovariectomized mice was alleviated by the injection of chemically modified miR-19b (agomiR-19b). Taken together, our results show that circulating miR-19b plays an important role in enhancing osteoblastogenesis, possibly through regulation of the PTEN/pAKT/Runx2 pathway, and may be a useful therapeutic target in bone loss disorders, such as osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengge Sun
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tongling Huang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng Yang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - William Lu
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Min Guan
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
40
|
Yang L, Zhai Y, Hao Y, Zhu Z, Cheng G. The Regulatory Functionality of Exosomes Derived from hUMSCs in 3D Culture for Alzheimer's Disease Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906273. [PMID: 31840420 DOI: 10.1002/smll.201906273] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Reducing amyloid-β (Aβ) accumulation could be a potential therapeutic approach for Alzheimer's disease (AD). Particular functional biomolecules in exosomes vested by the microenvironment in which the original cells resided can be transferred to recipient cells to improve pathological conditions. However, there are few reports addressing whether exosomes derived from cells cultured on scaffolds with varying dimension can reduce Aβ deposition or ameliorate cognitive decline for AD therapy. Herein, both 3D graphene scaffold and 2D graphene film are used as the matrix for human umbilical cord mesenchymal stem cell culture, from which the supernatants are obtained to isolate exosomes. The levels of 195 kinds of miRNAs and proteins, including neprilysin, insulin-degrading enzyme and heat shock protein 70, in 3D-cultured exosomes (3D-Exo) are dramatically different from those obtained from 2D culture. Hence, 3D-Exo could up-regulate the expression of α-secretase and down-regulate the β-secretase to reduce Aβ production in both AD pathology cells and transgenic mice, through their special cargo. With rescuing Aβ pathology, 3D-Exo exerts enhanced therapeutic effects on ameliorating the memory and cognitive deficits in AD mice. These findings provide a novel clinical application for scaffold materials and functional exosomes derived from stem cells.
Collapse
Affiliation(s)
- Lingyan Yang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Yuanxin Zhai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
41
|
Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer's Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med 2019; 21:369-390. [PMID: 31586276 DOI: 10.1007/s12017-019-08568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called "protein misfolding disorders (PMDs)", represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.
Collapse
Affiliation(s)
- J Weldon Furr
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Bharti Manwani
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Silvestro S, Bramanti P, Mazzon E. Role of miRNAs in Alzheimer's Disease and Possible Fields of Application. Int J Mol Sci 2019; 20:E3979. [PMID: 31443326 PMCID: PMC6720959 DOI: 10.3390/ijms20163979] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023] Open
Abstract
miRNAs (or microRNAs) are a class of single-stranded RNA molecules, responsible for post-transcriptional gene silencing through binding to the coding region as well as 3' and 5' untranslated region of target genes. About 70% of experimentally detectable miRNAs are expressed in the brain and some studies suggest that miRNAs are intimately involved in synaptic function and in specific signals during memory formation. More and more evidence demonstrates the possible involvement of miRNAs in Alzheimer's disease (AD). AD is the most common form of senile dementia, a disease that affects memory and cognitive functions. It is a neurodegenerative disorder characterized by loss of synapses, extracellular amyloid plaques composed of the amyloid-β peptide (Aβ), and intracellular aggregates of hyperphosphorylated TAU protein. This review aims to provide an overview of the in vivo studies of the last 5 years in the literature describing the role of the different miRNAs involved in AD. miRNAs hold huge potential as diagnostic and prognostic biomarkers and, at the same time, their modulation could be a potential therapeutic strategy against AD.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
43
|
Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer's Disease: Diagnostic Markers or Therapeutic Agents? Front Pharmacol 2019; 10:665. [PMID: 31275145 PMCID: PMC6591466 DOI: 10.3389/fphar.2019.00665] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding nucleic acids able to post-transcriptionally regulate gene expression by binding to complementary sequences of target messenger RNA (mRNA). It has been estimated that at least 1% of the human genome encodes miRNA and every miRNA can regulate up to 200 mRNAs. These findings suggest that dysregulation of miRNA expression could be associated with several human pathological conditions including central neurological disorders. Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia in the elderly. The characteristic symptoms are a progressive loss of memory and other cognitive functions due to the impairment of particular types of neurons and synapses, leading to neuronal death. At present, the available symptomatic treatments can only slow down disease progression without stopping it. miRNAs are widely found within the nervous system where they are key regulators of functions such as neurite outgrowth, dendritic spine morphology, neuronal differentiation, and synaptic plasticity. This has been the clue for considering miRNAs crucial molecules to be studied in AD, and nowadays, dysfunction of miRNAs in AD is increasingly recognized. In this review, we summarized existing evidence about miRNAs as biomarkers or therapeutic agents. The field of miRNAs as biomarkers is more advanced in terms of human data, and it is likely that miRNAs will be used successfully in the near future. Given the huge number of miRNAs potentially involved in diagnostics, miRNA panels will be used for specific tasks such as the stage of the disease, the risk prediction, and disease progression. The field of miRNAs as therapeutics is rapidly developing, and it offers a huge variety of solutions. These include positive effects related to beta-amyloid or tau reduction, increased number of neurons, inhibition of apoptosis, protection of synapses, transformation of other cellular elements into missing/deficient neurons in AD, and so on. It is predictable that both areas of research will be carried forward. However, given the absence of an AD therapy able to stop or reverse the disease, it is desirable to accelerate research on miRNAs as therapeutic agents.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
44
|
Wang M, Qin L, Tang B. MicroRNAs in Alzheimer's Disease. Front Genet 2019; 10:153. [PMID: 30881384 PMCID: PMC6405631 DOI: 10.3389/fgene.2019.00153] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive and devastating neurodegenerative disorder. It is the leading cause of dementia in the world’s rapidly growing aging population. The characteristics of AD are memory loss and cognitive impairment, meaning patients cannot carry out their daily activities independently. The increase of AD cases poses heavy burdens on families, society and the economy. Despite frequent efforts being made to research the etiology of AD, the causes of AD remain unknown, and no curative treatments are available yet. The pathological hallmarks of AD are amyloid plaques and neurofibrillary tangles in the brain. MicroRNAs are endogenous ∼22 nucleotides non-coding RNAs that could regulate gene expression at a post-transcriptional level by transcript degradation or translation repression. MicroRNAs are involved in many biological processes and diseases, particularly multifactorial diseases, providing an excellent tool with which to research the mechanisms of these diseases. AD is a multifactorial disorder, and accumulating evidence shows that microRNAs play a critical role in the pathogenesis of AD. In this review, we will highlight the effect of microRNAs in different pathological processes throughout AD progression.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
45
|
Patel AA, Ganepola GA, Rutledge JR, Chang DH. The Potential Role of Dysregulated miRNAs in Alzheimer’s Disease Pathogenesis and Progression. J Alzheimers Dis 2019; 67:1123-1145. [DOI: 10.3233/jad-181078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ankur A. Patel
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - Ganepola A.P. Ganepola
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - John R. Rutledge
- Department of Oncology Special Program, The Daniel and Gloria Blumenthal Cancer Center, The Valley Hospital, Paramus, NJ, USA
| | - David H. Chang
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| |
Collapse
|
46
|
Qian Q, Zhang J, He FP, Bao WX, Zheng TT, Zhou DM, Pan HY, Zhang H, Zhang XQ, He X, Sun BG, Luo BY, Chen C, Peng GP. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer's disease. FASEB J 2018; 33:4404-4417. [PMID: 30576233 DOI: 10.1096/fj.201801846r] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia. However, the mechanisms responsible for development of AD, especially for the sporadic variant, are still not clear. In our previous study, we discovered that a small noncoding RNA (miR-188-3p) targeting β-site amyloid precursor protein cleaving enzyme (BACE)-1, a key enzyme responsible for Aβ formation, plays an important role in the development of neuropathology in AD. In the present study, we identified that miR-338-5p, a new miRNA that also targets BACE1, contributes to AD neuropathology. We observed that expression of miR-338-5p was significantly down-regulated in the hippocampus of patients with AD and 5XFAD transgenic (TG) mice, an animal model of AD. Overexpression of miR-338-5p in the hippocampus of TG mice reduced BACE1 expression, Aβ formation, and neuroinflammation. Overexpression of miR-338-5p functionally prevented impairments in long-term synaptic plasticity, learning ability, and memory retention in TG mice. In addition, we provide evidence that down-regulated expression of miR-338-5p in AD is regulated through the NF-κB signaling pathway. Our results suggest that down-regulated expression of miR-338-5p plays an important role in the development of AD.-Qian, Q., Zhang, J., He, F.-P., Bao, W.-X., Zheng, T.-T., Zhou, D.-M., Pan, H.-Y., Zhang, H., Zhang, X.-Q., He, X., Sun, B.-G., Luo, B.-Y., Chen, C., Peng, G.-P. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Qi Qian
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; and
| | - Jian Zhang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Fang-Ping He
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang-Xiao Bao
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Zheng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong-Ming Zhou
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Yu Pan
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Qin Zhang
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao He
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Gui Sun
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben-Yan Luo
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chu Chen
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Guo-Ping Peng
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Fainstein N, Dan-Goor N, Ben-Hur T. Resident brain neural precursor cells develop age-dependent loss of therapeutic functions in Alzheimer's mice. Neurobiol Aging 2018; 72:40-52. [PMID: 30205359 DOI: 10.1016/j.neurobiolaging.2018.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022]
Abstract
There is vast knowledge on pathogenic mechanisms in Alzheimer's disease but very little on means by which the brain protects itself from disease. A major candidate in providing neuroprotection is the resident brain neural precursor/stem cell (NPC) pool. Transplanted NPCs possess powerful immune-modulatory and trophic properties in vivo and in vitro, underscoring the question whether resident brain NPCs have any role in regulating disease pathology in Alzheimer's disease, and particularly whether they fail to protect the brain from degeneration. To evaluate brain NPC function in relation to disease pathology, we first characterized the pathological properties of 5xFAD transgenic mouse model of Alzheimer's disease at different ages. We found that age 7 months is a critical time point of heavy amyloid deposition and gliosis but before neurodegeneration and a normal basal rate of NPC turnover in the subventricular zone (SVZ) of 5xFAD mice as compared to wild-type mice. Analysis of NPC functional properties showed that despite preserved rate of turnover, there was substantial SVZ NPC dysfunction as indicated by both ex vivo and in vivo assays. Freshly isolated NPCs from 7-month-old 5xFAD mice exhibited reduced expansion rate and diminished immune-modulatory and trophic properties. Moreover, there was slowed recovery of SVZ NPCs after cytosine-arabinoside insult and markedly reduced migratory response following a lysolecithin-induced lesion in the corpus callosum in vivo. Importantly, these functions were fully preserved in 2-month-old 5xFAD mice, a time point before Alzheimer's disease-specific pathological changes. There was reduced expression of key genes involved in NPC proliferative and migratory response in NPCs derived from 7-month-old 5xFAD mice. The dysfunctional properties and downregulation of gene expression were reversible in NPCs derived from 7-month-old 5xFAD mice following in vitro expansion and were reproduced in wild-type NPC by addition of amyloid beta peptide. Thus, there is age-dependent acquired NPC dysfunction, with loss of immune-modulatory and neurotrophic properties, which is induced by the pathological Alzheimer's brain environment at a critical time point before neurodegeneration. We suggest that failure of resident NPC to provide tissue support may be involved in promoting neurodegeneration.
Collapse
Affiliation(s)
- Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nadav Dan-Goor
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
48
|
Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z. Analysis of microRNA and Gene Expression Profiles in Alzheimer's Disease: A Meta-Analysis Approach. Sci Rep 2018; 8:4767. [PMID: 29555910 PMCID: PMC5859169 DOI: 10.1038/s41598-018-20959-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Understanding the molecular mechanisms underlying Alzheimer’s disease (AD) is necessary for the diagnosis and treatment of this neurodegenerative disorder. It is therefore important to detect the most important genes and miRNAs, which are associated with molecular events, and studying their interactions for recognition of AD mechanisms. Here we focus on the genes and miRNAs expression profile, which we have detected the miRNA target genes involved in AD. These are the most quintessential to find the most important miRNA, to target genes and their important pathways. A total of 179 differentially expressed miRNAs (DEmiRs) and 1404 differentially expressed genes (DEGs) were obtained from a comprehensive meta-analysis. Also, regions specific genes with their molecular function in AD have been demonstrated. We then focused on miRNAs which regulated most genes in AD, alongside we analyzed their pathways. The miRNA-30a-5p and miRNA-335 elicited a major function in AD after analyzing the regulatory network, we showed they were the most regulatory miRNAs in the AD. In conclusion, we demonstrated the most important genes, miRNAs, miRNA-mRNA interactions and their related pathways in AD using Bioinformatics methods. Accordingly, our defined genes and miRNAs could be used for future molecular studies in the context of AD.
Collapse
Affiliation(s)
- Shirin Moradifard
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Moslem Hoseinbeyki
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Zarrin Minuchehr
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
49
|
Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice. Psychopharmacology (Berl) 2018; 235:337-349. [PMID: 29124300 DOI: 10.1007/s00213-017-4775-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/23/2017] [Indexed: 01/22/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is characterized by memory loss and synaptic damage. Previous studies suggested that xanthoceraside decreases glutamate-induced PC12 cell death, ameliorates memory deficits, and increases the number of dendritic spines in AD mice. These results indicated that xanthoceraside might have activities that protect synaptic plasticity. Herein, we detected the effect of xanthoceraside on synaptic function. MATERIALS AND METHODS Three-month-old APP/PS1 transgenic mice were orally treated with xanthoceraside (0.02, 0.08, or 0.32 mg/kg) once daily for 4 months and then behavioral tests were performed. LTP and Fluo-4/AM were carried out in vivo and in vitro, respectively. CaMKII-GluR1 and NR2B-associated proteins on synapses were measured. RESULTS Xanthoceraside administration alleviated learning-memory deficits and increased the LTP in APP/PS1 transgenic mice. Meanwhile, xanthoceraside increased the expression of pT286-CaMKII in synaptic and extrasynaptic pools and CaMKII, pS831-GluR1, and GluR1 in synaptic pools. In addition, xanthoceraside increased the total pY1472-NR2B and NR2B expression and increased the levels of pY1472-NR2B in synaptic and extrasynaptic pools and NR2B in synaptic pools. However, NR2B was decreased in extrasynaptic pools, which might be associated with decreased expression of STEP61 and pY531-Fyn. In vitro studies showed that xanthoceraside inhibited intracellular calcium overload and increased the number of and extended the length of dendrites in primary hippocampal neurons compared with the Aβ25-35 group. CONCLUSIONS The mechanism of xanthoceraside on ameliorating learning-memory deficits might be related to decrease intracellular calcium overload, increase CaMKII-GluR1 proteins, and up-regulate trafficking of pY1472-NR2B at synapse, thereby improving LTP in APP/PS1 transgenic mice.
Collapse
|
50
|
Raikwar SP, Thangavel R, Dubova I, Ahmed ME, Selvakumar PG, Kempuraj D, Zaheer S, Iyer S, Zaheer A. Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet? J Alzheimers Dis 2018; 65:321-344. [PMID: 30040732 PMCID: PMC6130335 DOI: 10.3233/jad-180422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a highly complex neurodegenerative disorder and the current treatment strategies are largely ineffective thereby leading to irreversible and progressive cognitive decline in AD patients. AD continues to defy successful treatment despite significant advancements in the field of molecular medicine. Repeatedly, early promising preclinical and clinical results have catapulted into devastating setbacks leading to multi-billion dollar losses not only to the top pharmaceutical companies but also to the AD patients and their families. Thus, it is very timely to review the progress in the emerging fields of gene therapy and stem cell-based precision medicine. Here, we have made sincere efforts to feature the ongoing progress especially in the field of AD gene therapy and stem cell-based regenerative medicine. Further, we also provide highlights in elucidating the molecular mechanisms underlying AD pathogenesis and describe novel AD therapeutic targets and strategies for the new drug discovery. We hope that the quantum leap in the scientific advancements and improved funding will bolster novel concepts that will propel the momentum toward a trajectory leading to a robust AD patient-specific next generation precision medicine with improved cognitive function and excellent life quality.
Collapse
Affiliation(s)
- Sudhanshu P. Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Pushpavathi Govindhasamy Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| |
Collapse
|