1
|
Zhou W, Lu H, Lin J, Zhu J, Liang J, Xie Y, Hu J, Su N. Coexisting Lung Cancer and Pulmonary Tuberculosis: A Comprehensive Review From Incidence to Management. Cancer Rep (Hoboken) 2025; 8:e70213. [PMID: 40347011 PMCID: PMC12065023 DOI: 10.1002/cnr2.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Globally, infections account for 10% of new cancer cases, and cancer can compromise the immune system, increasing the risk of infections. With advances in cancer treatment, widespread use of immunotherapy, and prolonged survival of cancer patients, the coexistence of tuberculosis (TB) and cancer is becoming increasingly common in clinical settings. AIM This review aims to explore the interaction between tuberculosis (TB) and tumors, particularly lung cancer (LC), and to identify appropriate clinical management approaches. RESULTS LC patients with a history of TB have higher adjusted risk ratios for both all-cause and cancer-specific 3-year mortality compared to those without a history of TB. TB may elevate the risk of developing tumors through mechanisms such as chronic inflammation, altered immune responses, and DNA damage. Conversely, cancer patients, whether due to the disease itself or immune dysfunction caused by anti-tumor treatments, may be more susceptible to TB. The coexistence of TB and tumors presents significant challenges in clinical management, making the development of treatment strategies and quality-of-life improvements crucial. CONCLUSION There is a close relationship between TB and cancer, with TB potentially serving as a risk factor for cancer, and cancer influencing susceptibility to TB. Effective clinical management is essential to enhance treatment strategies and improve the quality of life for patients with both TB and cancer.
Collapse
Affiliation(s)
- Wendi Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
- Department of Children's Psychological and Rehabilitation, Shen Zhen Maternity and Child Health HospitalSouthern Medical UniversityShenzhenP. R. China
| | - Hongxu Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jiamin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jialou Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jizhen Liang
- Department of OncologyGuangzhou Red Cross HospitalGuangzhouP. R. China
| | - Yalin Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Ning Su
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| |
Collapse
|
2
|
Chandra P, Philips JA. USP8 promotes intracellular infection by enhancing ESCRT-mediated membrane repair, limiting xenophagy, and reducing oxidative stress. Autophagy 2025; 21:298-314. [PMID: 39178916 PMCID: PMC11759523 DOI: 10.1080/15548627.2024.2395134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
The host ESCRT-machinery repairs damaged endolysosomal membranes. If damage persists, selective macroautophagy/autophagy clears the damaged compartment. Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that damages the phagosomal membrane and targets ESCRT-mediated repair as part of its virulence program. The E3 ubiquitin ligases PRKN and SMURF1 promote autophagic capture of damaged, Mtb-containing phagosomes. Because ubiquitination is a reversible process, we anticipated that host deubiquitinases (DUBs) would also be involved. Here, we screened all predicted mouse DUBs for their role in ubiquitin targeting and control of intracellular Mtb. We show that USP8 (ubiquitin specific peptidase 8) colocalizes with intracellular Mtb, recognizes phagosomal membrane damage, and is required for ESCRT-dependent membrane repair. Furthermore, we show that USP8 regulates the NFE2L2/NRF2-dependent antioxidant signature. Taken together, our study demonstrates a central role of USP8 in promoting Mtb intracellular growth by promoting phagosomal membrane repair, limiting ubiquitin-driven selective autophagy, and reducing oxidative stress.Abbreviation: BMDMs: bone marrow-derived macrophages; CFUs: colony-forming units; DUB: deubiquitinase; ESCRT: endosomal sorting complexes required for transport; LLOMe: L-leucyl-L-leucine methyl ester; MFI: mean fluorescence intensity; MOI: multiplicity of infection; Mtb: Mycobacterium tuberculosis; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; PMA: phorbol 12-myristate 13-acetate; ROS: reactive oxygen species; USP8: ubiquitin specific peptidase 8.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Zhu J, Zhi S, Zeng J, Zhou S, Ji Y, Han F. Development and validation of a TRIM27-based nomogram for predicting metachronous liver metastasis and prognosis in postoperative colorectal cancer patients. BMC Cancer 2024; 24:1142. [PMID: 39266987 PMCID: PMC11396292 DOI: 10.1186/s12885-024-12890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Colorectal cancer ranks among the most prevalent malignancies globally. Accurate prediction of metachronous liver metastasis is crucial for optimizing postoperative management. Tripartite motif-containing protein 27 (TRIM27), an E3 ubiquitin ligase, is implicated in diverse cellular functions and tumorigenesis. METHODS This study aimed to develop and validate a TRIM27-based nomogram for prognostication in colorectal cancer patients. Transcriptome sequencing of five paired tumor and normal tissue samples identified TRIM27 as a potential prognostic biomarker. Immunohistochemistry was employed to assess TRIM27 expression in colorectal cancer cohorts from two institutions. RESULTS TRIM27 expression correlated significantly with both the prognosis of colorectal cancer patients and the occurrence of metachronous liver metastasis. A nomogram incorporating TRIM27 and clinical factors was constructed and demonstrated robust predictive accuracy in an independent validation cohort. CONCLUSION The TRIM27-based nomogram is a valuable prognostic tool for predicting prognosis and metachronous liver metastasis in colorectal cancer patients, aiding in personalized treatment decisions.
Collapse
Affiliation(s)
- Jiankun Zhu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastrointestinal Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Shilin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jintao Zeng
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Shengning Zhou
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yong Ji
- Department of Gastrointestinal Surgery, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
4
|
Zhao D, Qiang L, Lei Z, Ge P, Lu Z, Wang Y, Zhang X, Qiang Y, Li B, Pang Y, Zhang L, Liu CH, Wang J. TRIM27 elicits protective immunity against tuberculosis by activating TFEB-mediated autophagy flux. Autophagy 2024; 20:1483-1504. [PMID: 38390831 PMCID: PMC11210901 DOI: 10.1080/15548627.2024.2321831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/27/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases, such as Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), remain a global threat exacerbated by increasing drug resistance. Host-directed therapy (HDT) is a promising strategy for infection treatment through targeting host immunity. However, the limited understanding of the function and regulatory mechanism of host factors involved in immune defense against infections has impeded HDT development. Here, we identify the ubiquitin ligase (E3) TRIM27 (tripartite motif-containing 27) as a host protective factor against Mtb by enhancing host macroautophagy/autophagy flux in an E3 ligase activity-independent manner. Mechanistically, upon Mtb infection, nuclear-localized TRIM27 increases and functions as a transcription activator of TFEB (transcription factor EB). Specifically, TRIM27 binds to the TFEB promoter and the TFEB transcription factor CREB1 (cAMP responsive element binding protein 1), thus enhancing CREB1-TFEB promoter binding affinity and promoting CREB1 transcription activity toward TFEB, eventually inducing autophagy-related gene expression as well as autophagy flux activation to clear the pathogen. Furthermore, TFEB activator 1 can rescue TRIM27 deficiency-caused decreased autophagy-related gene transcription and attenuated autophagy flux, and accordingly suppressed the intracellular survival of Mtb in cell and mouse models. Taken together, our data reveal that TRIM27 is a host defense factor against Mtb, and the TRIM27-CREB1-TFEB axis is a potential HDT-based TB target that can enhance host autophagy flux.Abbreviations: ATG5: autophagy related 5; BMDMs: bone marrow-derived macrophages; CFU: colony-forming unit; ChIP-seq: chromatin immunoprecipitation followed by sequencing; CREB1: cAMP responsive element binding protein 1; CTSB: cathepsin B; E3: ubiquitin ligase; EMSA: electrophoretic mobility shift assay; HC: healthy control; HDT: host-directed therapy; LAMP: lysosomal associated membrane protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1: mucolipin TPR cation channel 1; Mtb: Mycobacterium tuberculosis; NLS: nuclear localization signal; PBMCs: peripheral blood mononuclear cells; PRKA/PKA: protein kinase cAMP-activated; qRT-PCR: quantitative real-time PCR; RFP: RET finger protein; TB: tuberculosis; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; TRIM: tripartite motif; TSS: transcription start site; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yiru Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xinwen Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuyun Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Nenasheva VV, Stepanenko EA, Tarantul VZ. Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1283-1299. [PMID: 39218025 DOI: 10.1134/s0006297924070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.
Collapse
|
6
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
7
|
Wan G, Wang Z, Zhang X, Tian Y, Zhou X, Ge L, Xiong G, Wang X, Hu Y. Genomic and transcriptome insight into the structure and immunity role of TRIM proteins in Chinese soft-shelled turtles (Pelodiscus sinensis) after Aeromonas hydrophila infection. Mol Biol Rep 2024; 51:263. [PMID: 38302771 DOI: 10.1007/s11033-023-09139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND TRIM proteins, recognized as a class of E3 ubiquitin ligases, are increasingly acknowledged for their antipathogen immune functions in mammals and fish. In the Chinese soft-shelled turtle (Pelodiscus sinensis), a secondary aquatic reptile that occupies a unique evolutionary position, the TRIM gene has rarely been reported. METHODS AND RESULTS In the present study, 48 PsTRIM proteins were identified from the genome of Pelodiscus sinensis via Hidden Markov Model (HMM) searches and Signal Transduction ATPases with Numerous Domains (SMART) analysis. These PsTRIMs were found across 43 distinct scaffolds, and phylogenetic analyses classified them into three principal clades. The PsTRIMs feature a conserved assembly of either RING-B-box-coiled-coil (RBCC) or B-box-coiled-coil (BBC) domains at the N-terminus, in addition to eight unique domains at the C-terminus, including the B30.2 domain, 19 of which were identified. Expression profiling revealed ubiquitous expression of the 48 PsTRIMs across various P. sinensis tissues. Notably, seven PsTRIMs exhibited significant differential expression in liver transcriptomes following infection with Aeromonas hydrophila. Weighted gene coexpression network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis implicated PsTRIM14 and PsTRIM28 as key players in host defense against bacterial invasion. Real-time quantitative PCR results indicated that PsTRIM1, PsTRIM2, PsTRIM14, and PsTRIM28 experienced marked upregulation in P. sinensis livers at 12 h post-infection with A. hydrophila. CONCLUSIONS Our study is the first to comprehensively identify and analyze the functions of TRIM genes in P. sinensis, unveiling their considerable diversity and potential roles in modulating immune responses.
Collapse
Affiliation(s)
- Gang Wan
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Ziao Wang
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127, China
| | - Xingyue Zhang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Tian
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xianwen Zhou
- Affair Center of Animal Husbandry and Aquaculture in Xiang Xi Autonomous Prefecture, Jishou, 416000, Hunan, China
| | - Lingrui Ge
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127, China
| | - Gang Xiong
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127, China
| | - Xiaoqing Wang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| | - Yazhou Hu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
9
|
Solomon SL, Bryson BD. Single-cell analysis reveals a weak macrophage subpopulation response to Mycobacterium tuberculosis infection. Cell Rep 2023; 42:113418. [PMID: 37963018 PMCID: PMC10842899 DOI: 10.1016/j.celrep.2023.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection remains one of society's greatest human health challenges. Macrophages integrate multiple signals derived from ontogeny, infection, and the environment. This integration proceeds heterogeneously during infection. Some macrophages are infected, while others are not; therefore, bulk approaches mask the subpopulation dynamics. We establish a modular, targeted, single-cell protein analysis framework to study the immune response to Mtb. We demonstrate that during Mtb infection, only a small fraction of resting macrophages produce tumor necrosis factor (TNF) protein. We demonstrate that Mtb infection results in muted phosphorylation of p38 and JNK, regulators of inflammation, and leverage our single-cell methods to distinguish between pathogen-mediated interference in host signaling and weak activation of host pathways. We demonstrate that the inflammatory signal magnitude is decoupled from the ability to control Mtb growth. These data underscore the importance of developing pathogen-specific models of signaling and highlight barriers to activation of pathways that control inflammation.
Collapse
Affiliation(s)
- Sydney L Solomon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Stepanenko E, Bondareva N, Sheremet A, Fedina E, Tikhomirov A, Gerasimova T, Poberezhniy D, Makarova I, Tarantul V, Zigangirova N, Nenasheva V. Identification of Key TRIM Genes Involved in Response to Pseudomonas aeruginosa or Chlamydia spp. Infections in Human Cell Lines and in Mouse Organs. Int J Mol Sci 2023; 24:13290. [PMID: 37686095 PMCID: PMC10487655 DOI: 10.3390/ijms241713290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infections represent an unsolved problem today since bacteria can evade antibiotics and suppress the host's immune response. A family of TRIM proteins is known to play a role in antiviral defense. However, the data on the involvement of the corresponding genes in the antibacterial response are limited. Here, we used RT-qPCR to profile the transcript levels of TRIM genes, as well as interferons and inflammatory genes, in human cell lines (in vitro) and in mice (in vivo) after bacterial infections caused by Pseudomonas aeruginosa and Chlamydia spp. As a result, the genes were identified that are involved in the overall immune response and associated primarily with inflammation in human cells and in mouse organs when infected with both pathogens (TRIM7, 8, 14, 16, 17, 18, 19, 20, 21, 47, 68). TRIMs specific to the infection (TRIM59 for P. aeruginosa, TRIM67 for Chlamydia spp.) were revealed. Our findings can serve as a basis for further, more detailed studies on the mechanisms of the immune response to P. aeruginosa and Chlamydia spp. Studying the interaction between bacterial pathogens and the immune system contributes to the search for new ways to successfully fight bacterial infections.
Collapse
Affiliation(s)
- Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Natalia Bondareva
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Anna Sheremet
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Elena Fedina
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Alexei Tikhomirov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
- Department of Chemistry and Technology of Biomedical Pharmaceuticals, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Tatiana Gerasimova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Daniil Poberezhniy
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Irina Makarova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Nailya Zigangirova
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| |
Collapse
|
11
|
Romagnoli A, Di Rienzo M, Petruccioli E, Fusco C, Palucci I, Micale L, Mazza T, Delogu G, Merla G, Goletti D, Piacentini M, Fimia GM. The ubiquitin ligase TRIM32 promotes the autophagic response to Mycobacterium tuberculosis infection in macrophages. Cell Death Dis 2023; 14:505. [PMID: 37543647 PMCID: PMC10404268 DOI: 10.1038/s41419-023-06026-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to evade host immune responses and persist in macrophages for long periods. A mechanism that the host uses to combat Mtb is xenophagy, a selective form of autophagy that targets intracellular pathogens for degradation. Ubiquitination of Mtb or Mtb-containing compartments is a key event to recruit the autophagy machinery and mediate the bacterial delivery to the lysosome. This event relies on the coordinated and complementary activity of different ubiquitin ligases, including PARKIN, SMURF1, and TRIM16. Because each of these factors is responsible for the ubiquitination of a subset of the Mtb population, it is likely that additional ubiquitin ligases are employed by macrophages to trigger a full xenophagic response during Mtb infection. In this study, we investigated the role TRIM proteins whose expression is modulated in response to Mtb or BCG infection of primary macrophages. These TRIMs were ectopically expressed in THP1 macrophage cell line to assess their impact on Mtb replication. This screening identified TRIM32 as a novel player involved in the intracellular response to Mtb infection, which promotes autophagy-mediated Mtb degradation. The role of TRIM32 in xenophagy was further confirmed by silencing TRIM32 expression in THP1 cells, which causes increased intracellular growth of Mtb associated to impaired Mtb ubiquitination, reduced recruitment of the autophagy proteins NDP52/CALCOCO2 and BECLIN 1/BECN1 to Mtb and autophagosome formation. Overall, these findings suggest that TRIM32 plays an important role in the host response to Mtb infection through the induction of autophagy, representing a promising target for host-directed tuberculosis therapies.
Collapse
Affiliation(s)
- Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Elisa Petruccioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, 00168, Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Mater Olbia Hospital, 07026, Olbia, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Delia Goletti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy.
| |
Collapse
|
12
|
Margenat M, Betancour G, Irving V, Costábile A, García-Cedrés T, Portela MM, Carrión F, Herrera FE, Villarino A. Characteristics of Mycobacterium tuberculosis PtpA interaction and activity on the alpha subunit of human mitochondrial trifunctional protein, a key enzyme of lipid metabolism. Front Cell Infect Microbiol 2023; 13:1095060. [PMID: 37424790 PMCID: PMC10325834 DOI: 10.3389/fcimb.2023.1095060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
During Mycobacterium tuberculosis (Mtb) infection, the virulence factor PtpA belonging to the protein tyrosine phosphatase family is delivered into the cytosol of the macrophage. PtpA interacts with numerous eukaryotic proteins modulating phagosome maturation, innate immune response, apoptosis, and potentially host-lipid metabolism, as previously reported by our group. In vitro, the human trifunctional protein enzyme (hTFP) is a bona fide PtpA substrate, a key enzyme of mitochondrial β-oxidation of long-chain fatty acids, containing two alpha and two beta subunits arranged in a tetramer structure. Interestingly, it has been described that the alpha subunit of hTFP (ECHA, hTFPα) is no longer detected in mitochondria during macrophage infection with the virulent Mtb H37Rv. To better understand if PtpA could be the bacterial factor responsible for this effect, in the present work, we studied in-depth the PtpA activity and interaction with hTFPα. With this aim, we performed docking and in vitro dephosphorylation assays defining the P-Tyr-271 as the potential target of mycobacterial PtpA, a residue located in the helix-10 of hTFPα, previously described as relevant for its mitochondrial membrane localization and activity. Phylogenetic analysis showed that Tyr-271 is absent in TFPα of bacteria and is present in more complex eukaryotic organisms. These results suggest that this residue is a specific PtpA target, and its phosphorylation state is a way of regulating its subcellular localization. We also showed that phosphorylation of Tyr-271 can be catalyzed by Jak kinase. In addition, we found by molecular dynamics that PtpA and hTFPα form a stable protein complex through the PtpA active site, and we determined the dissociation equilibrium constant. Finally, a detailed study of PtpA interaction with ubiquitin, a reported PtpA activator, showed that additional factors are required to explain a ubiquitin-mediated activation of PtpA. Altogether, our results provide further evidence supporting that PtpA could be the bacterial factor that dephosphorylates hTFPα during infection, potentially affecting its mitochondrial localization or β-oxidation activity.
Collapse
Affiliation(s)
- Mariana Margenat
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Gabriela Betancour
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Vivian Irving
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Tania García-Cedrés
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - María Magdalena Portela
- Instituto de Biología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando E. Herrera
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas-Universidad Nacional del Litoral – CONICET, Santa Fe, Argentina
| | - Andrea Villarino
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Zhang QA, Ma S, Li P, Xie J. The dynamics of Mycobacterium tuberculosis phagosome and the fate of infection. Cell Signal 2023; 108:110715. [PMID: 37192679 DOI: 10.1016/j.cellsig.2023.110715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Phagosomes are vesicles produced by phagocytosis of phagocytes, which are crucial in immunity against Mycobacterium tuberculosis (Mtb) infection. After the phagocyte ingests the pathogen, it activates the phagosomes to recruit a series of components and process proteins, to phagocytose, degrade and kill Mtb. Meanwhile, Mtb can resist acid and oxidative stress, block phagosome maturation, and manipulate host immune response. The interaction between Mtb and phagocytes leads to the outcome of infection. The dynamic of this process can affect the cell fate. This article mainly reviews the development and maturation of phagosomes, as well as the dynamics and modifications of Mtb effectors and phagosomes components, and new diagnostic and therapeutic markers involved in phagosomes.
Collapse
Affiliation(s)
- Qi-Ao Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shaying Ma
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing 400014, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China; Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
14
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
15
|
Garcia-Garcia J, Berge AKM, Overå KS, Larsen KB, Bhujabal Z, Brech A, Abudu YP, Lamark T, Johansen T, Sjøttem E. TRIM27 is an autophagy substrate facilitating mitochondria clustering and mitophagy via phosphorylated TBK1. FEBS J 2023; 290:1096-1116. [PMID: 36111389 DOI: 10.1111/febs.16628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.
Collapse
Affiliation(s)
- Juncal Garcia-Garcia
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Anne Kristin McLaren Berge
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Katrine Stange Overå
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Kenneth Bowitz Larsen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Zambarlal Bhujabal
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Yakubu Princely Abudu
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Trond Lamark
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Terje Johansen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Eva Sjøttem
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| |
Collapse
|
16
|
Liu C, Liu J, Shao J, Huang C, Dai X, Shen Y, Hou W, Shen Y, Yu Y. MAGED4B Promotes Glioma Progression via Inactivation of the TNF-α-induced Apoptotic Pathway by Down-regulating TRIM27 Expression. Neurosci Bull 2023; 39:273-291. [PMID: 35986882 PMCID: PMC9905453 DOI: 10.1007/s12264-022-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/09/2022] [Indexed: 10/15/2022] Open
Abstract
MAGED4B belongs to the melanoma-associated antigen family; originally found in melanoma, it is expressed in various types of cancer, and is especially enriched in glioblastoma. However, the functional role and molecular mechanisms of MAGED4B in glioma are still unclear. In this study, we found that the MAGED4B level was higher in glioma tissue than that in non-cancer tissue, and the level was positively correlated with glioma grade, tumor diameter, Ki-67 level, and patient age. The patients with higher levels had a worse prognosis than those with lower MAGED4B levels. In glioma cells, MAGED4B overexpression promoted proliferation, invasion, and migration, as well as decreasing apoptosis and the chemosensitivity to cisplatin and temozolomide. On the contrary, MAGED4B knockdown in glioma cells inhibited proliferation, invasion, and migration, as well as increasing apoptosis and the chemosensitivity to cisplatin and temozolomide. MAGED4B knockdown also inhibited the growth of gliomas implanted into the rat brain. The interaction between MAGED4B and tripartite motif-containing 27 (TRIM27) in glioma cells was detected by co-immunoprecipitation assay, which showed that MAGED4B was co-localized with TRIM27. In addition, MAGED4B overexpression down-regulated the TRIM27 protein level, and this was blocked by carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), an inhibitor of the proteasome. On the contrary, MAGED4B knockdown up-regulated the TRIM27 level. Furthermore, MAGED4B overexpression increased TRIM27 ubiquitination in the presence of MG132. Accordingly, MAGED4B down-regulated the protein levels of genes downstream of ubiquitin-specific protease 7 (USP7) involved in the tumor necrosis factor-alpha (TNF-α)-induced apoptotic pathway. These findings indicate that MAGED4B promotes glioma growth via a TRIM27/USP7/receptor-interacting serine/threonine-protein kinase 1 (RIP1)-dependent TNF-α-induced apoptotic pathway, which suggests that MAGED4B is a potential target for glioma diagnosis and treatment.
Collapse
Affiliation(s)
- Can Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jun Liu
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Juntang Shao
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yujun Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weishu Hou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuxian Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
17
|
Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, Ke X, Cui H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol 2023; 13:1062963. [PMID: 36936766 PMCID: PMC10020944 DOI: 10.3389/fcimb.2023.1062963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis (TB), remains a pathogen of great interest on a global scale. This airborne pathogen affects the lungs, where it interacts with macrophages. Acidic pH, oxidative and nitrosative stressors, and food restrictions make the macrophage's internal milieu unfriendly to foreign bodies. Mtb subverts the host immune system and causes infection due to its genetic arsenal and secreted effector proteins. In vivo and in vitro research have examined Mtb-host macrophage interaction. This interaction is a crucial stage in Mtb infection because lung macrophages are the first immune cells Mtb encounters in the host. This review summarizes Mtb effectors that interact with macrophages. It also examines how macrophages control and eliminate Mtb and how Mtb manipulates macrophage defense mechanisms for its own survival. Understanding these mechanisms is crucial for TB prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Haotian Bo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yuanmiao Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jun Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Miao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| |
Collapse
|
18
|
Rastogi S, Evavold CL, Briken V. Putting the p(hosphor) in pyroptosis. Cell Host Microbe 2022; 30:1650-1652. [PMID: 36521438 DOI: 10.1016/j.chom.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent study in Science found Mycobacterium tuberculosis inhibits pyroptosis of the host cell by secreting a phosphatase (PtpB). PtpB targets the plasma membrane to dephosphorylate PI4P and PI(4,5)P2, inhibiting recruitment of the pore-forming gasdermin D N-terminal fragment. Pyroptosis inhibition contributes to virulence, as ptpB-deficient Mtb is attenuated in mice.
Collapse
Affiliation(s)
- Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
19
|
Selvan GT, Gollapalli P, Shetty P, Kumari NS. Exploring key molecular signatures of immune responses and pathways associated with tuberculosis in comorbid diabetes mellitus: a systems biology approach. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:77. [DOI: 10.1186/s43088-022-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Comorbid type 2 diabetes mellitus (T2DM) increases the risk for tuberculosis (TB) and its associated complications, although the pathological connections between T2DM and TB are unknown. The current research aims to identify shared molecular gene signatures and pathways that affirm the epidemiological association of T2DM and TB and afford clues on mechanistic basis of their association through integrative systems biology and bioinformatics approaches. Earlier research has found specific molecular markers linked to T2DM and TB, but, despite their importance, only offered a limited understanding of the genesis of this comorbidity. Our investigation used a network medicine method to find possible T2DM-TB molecular mediators.
Results
Functional annotation clustering, interaction networks, network cluster analysis, and network topology were part of our systematic investigation of T2DM-TB linked with 1603 differentially expressed genes (DEGs). The functional enrichment and gene interaction network analysis emphasized the importance of cytokine/chemokine signalling, T cell receptor signalling route, NF-kappa B signalling pathway and Jak-STAT signalling system. Furthermore, network analysis revealed significant DEGs such as ITGAM and STAT1, which may be necessary for T2DM-TB immune responses. Furthermore, these two genes are modulators in clusters C4 and C5, abundant in cytokine/chemokine signalling and Jak-STAT signalling pathways.
Conclusions
Our analyses highlight the role of ITGAM and STAT1 in T2DM-TB-associated pathways and advances our knowledge of the genetic processes driving this comorbidity.
Collapse
|
20
|
Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol 2022; 323:C1444-C1474. [PMID: 36189975 PMCID: PMC9662802 DOI: 10.1152/ajpcell.00246.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Center (BBRC), University of Texas, El Paso, Texas
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
21
|
Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol 2022; 10:1004429. [PMID: 36200036 PMCID: PMC9527303 DOI: 10.3389/fcell.2022.1004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
As a member of the TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase that can mark other proteins for degradation. Its ubiquitination targets include PTEN, IκBα and p53, which allows it to regulate many signaling pathways to exert its functions under both physiological and pathological conditions, such as cell proliferation, differentiation and apoptosis. During the past decades, TRIM27 was reported to be involved in many diseases, including cancer, lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Although the research interest in TRIM27 is increasing, there are few reviews about the diverse roles of this protein. Here, we systematically review the roles of TRIM27 in cancer and other human diseases. Firstly, we introduce the biological functions of TRIM27. Next, we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast cancer and lung cancer. At the same time, we also describe the roles of TRIM27 in other human diseases, such as lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Finally, we discuss the future directions of TRIM27 research, especially its potential roles in tumor immunity.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Jinzhong, China
- Tongji Medical College, Shanxi Tongji Hospital, Huazhong University of Science and Technology, Taiyuan, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wang Y, Shi Q, Chen Q, Zhou X, Yuan H, Jia X, Liu S, Li Q, Ge L. Emerging advances in identifying signal transmission molecules involved in the interaction between Mycobacterium tuberculosis and the host. Front Cell Infect Microbiol 2022; 12:956311. [PMID: 35959378 PMCID: PMC9359464 DOI: 10.3389/fcimb.2022.956311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (MTB) is an ancient chronic infectious disease and is still the leading cause of death worldwide due to a single infectious disease. MTB can achieve immune escape by interacting with host cells through its special cell structure and secreting a variety of effector proteins. Innate immunity-related pattern recognition receptors (PPR receptors) play a key role in the regulation of signaling pathways. In this review, we focus on the latest research progress on related signal transduction molecules in the interaction between MTB and the host. In addition, we provide new research ideas for the development of new anti-tuberculosis drug targets and lead compounds and provide an overview of information useful for approaching future tuberculosis host-oriented treatment research approaches and strategies, which has crucial scientific guiding significance and research value.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Qi Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Huiling Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiwen Jia
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyuan Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Qin Li, ; Lijun Ge,
| | - Lijun Ge
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Li, ; Lijun Ge,
| |
Collapse
|
23
|
Secretory proteins of
Mycobacterium tuberculosis
and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J 2022; 289:4146-4171. [DOI: 10.1111/febs.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
|
24
|
Comín J, Madacki J, Rabanaque I, Zúñiga-Antón M, Ibarz D, Cebollada A, Viñuelas J, Torres L, Sahagún J, Klopp C, Gonzalo-Asensio J, Brosch R, Iglesias MJ, Samper S. The MtZ Strain: Molecular Characteristics and Outbreak Investigation of the Most Successful Mycobacterium tuberculosis Strain in Aragon Using Whole-Genome Sequencing. Front Cell Infect Microbiol 2022; 12:887134. [PMID: 35685752 PMCID: PMC9173592 DOI: 10.3389/fcimb.2022.887134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2004, a tuberculosis surveillance protocol has been carried out in Aragon, thereby managing to detect all tuberculosis outbreaks that take place in the community. The largest outbreak was caused by a strain named Mycobacterium tuberculosis Zaragoza (MtZ), causing 242 cases as of 2020. The main objective of this work was to analyze this outbreak and the molecular characteristics of this successful strain that could be related to its greater transmission. To do this, we first applied whole-genome sequencing to 57 of the isolates. This revealed two principal transmission clusters and six subclusters arising from them. The MtZ strain belongs to L4.8 and had eight specific single nucleotide polymorphisms (SNPs) in genes considered to be virulence factors [ptpA, mc3D, mc3F, VapB41, pks15 (two SNPs), virS, and VapC50]. Second, a transcriptomic study was carried out to better understand the multiple IS6110 copies present in its genome. This allowed us to observe three effects of IS6110: the disruption of the gene in which the IS6110 is inserted (desA3), the overexpression of a gene (ppe38), and the absence of transcription of genes (cut1:Rv1765c) due to the recombination of two IS6110 copies. Finally, because of the disruption of ppe38 and ppe71 genes by an IS6110, a study of PE_PGRS secretion was carried out, showing that MtZ secretes these factors in higher amounts than the reference strain, thereby differing from the hypervirulent phenotype described for the Beijing strains. In conclusion, MtZ consists of several SNPs in genes related to virulence, pathogenesis, and survival, as well as other genomic polymorphisms, which may be implicated in its success among our population.
Collapse
Affiliation(s)
- Jessica Comín
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jan Madacki
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - Isabel Rabanaque
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - María Zúñiga-Antón
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Daniel Ibarz
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Alberto Cebollada
- Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jesús Viñuelas
- Hospital Universitario Miguel Servet, Zaragoza, Spain.,Grupo de Estudio de Infecciones por Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica, Madrid, Spain
| | | | - Juan Sahagún
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - María-José Iglesias
- Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
25
|
Chen Y, Liu Z, Hu Z, Feng X, Zuo L. Tripartite motif 27 promotes cardiac hypertrophy via PTEN/Akt/mTOR signal pathways. Bioengineered 2022; 13:8323-8333. [PMID: 35311628 PMCID: PMC9208448 DOI: 10.1080/21655979.2022.2051814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tripartite motif-containing 27 (Trim27) is highly expressed in tumor cells and regulates natural immunity and apoptosis. However, the effects of Trim27 in cardiac hypertrophy are not fully elucidated. In this study, we tried to explore the potential role of Trim27 in pressure overload-induced cardiac hypertrophy and the underlying mechanism. The results indicated that compared to sham operation (Sham) group, transverse aortic constriction (TAC) group showed significantly up-regulated Trim27 protein expression (P < 0.05). The neonatal rat cardiomyocytes (NRCMs) were isolated and stimulated with PBS, angiotensin (AngII) and phenylephrine (PE). NRCMs were collected to detect the protein expression of Trim27. The results were consistent with the results in vivo. Compared to PBS treatment, the expression of Trim27 protein in NRCMs was significantly increased after PE or AngII stimulation (P < 0.05, respectively). Knockout of Trim27 can reduce the size of cardiomyocytes and reduce the proteins expression of ANP, BNP, and β-MHC, improve cardiac function, and reverse myocardial hypertrophy (P < 0.05). Trim27 may be involved in regulating the development of cardiac hypertrophy. Further results showed that Trim27 can increase the protein expression of phosphorylation of Akt, GSK3β, mTOR, and P70s6k by interacting with PTEN (phosphatase tensin homolog). These findings revealed that Trim27 can promote cardiac hypertrophy by activating PTEN/Akt/GSK3β/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Cardiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Zewen Liu
- Department of Anesthesiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Zhengqing Hu
- Department of Cardiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Xiuyuan Feng
- Department of Cardiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Li Zuo
- Physiology and Biomedical Sciences, Molecular Physiology and Biophysics Laboratory, University of Maine Presque Isle Campus, Presque Isle, ME, USA
| |
Collapse
|
26
|
Phosphoproteomics of Mycobacterium-host interaction and inspirations for novel measures against tuberculosis. Cell Signal 2022; 91:110238. [PMID: 34986388 DOI: 10.1016/j.cellsig.2021.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) remains a tremendous global public health concern. Deciphering the biology of the pathogen and its interaction with host can inspire new measures against tuberculosis. Phosphorylation plays versatile and important role in the pathogen and host physiology, such as virulence, signaling and immune response. Proteome-wide phosphorylation of Mtb and its infected host cells, namely phosphoproteome, can inform the post-translational modification of the interaction network between the pathogen and the host, key targets for novel antibiotics. We summarized the phosphoproteome of Mtb, as well as the host, focusing on potential application for new measures against tuberculosis.
Collapse
|
27
|
Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021; 22:844. [PMID: 34733362 PMCID: PMC8561213 DOI: 10.3892/ol.2021.13105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The melanoma antigen gene (MAGE) protein family is a group of highly conserved proteins that share a common homology domain. Under normal circumstances, numerous MAGE proteins are only expressed in reproduction-related tissues; however, abnormal expression levels are observed in a variety of tumor tissues. The MAGE family consists of type I and II proteins, several of which are cancer-testis antigens that are highly expressed in cancer and serve a critical role in tumorigenesis. Therefore, this review will use the relationship between MAGEs and tumors as a starting point, focusing on the latest developments regarding the function of MAGEs as oncogenes, and preliminarily reveal their possible mechanisms.
Collapse
Affiliation(s)
- Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingping Li
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
28
|
Zhang Z, Liu X, Li L, Yang Y, Yang J, Wang Y, Wu J, Wu X, Shan L, Pei F, Liu J, Wang S, Li W, Sun L, Liang J, Shang Y. SNP rs4971059 predisposes to breast carcinogenesis and chemoresistance via TRIM46-mediated HDAC1 degradation. EMBO J 2021; 40:e107974. [PMID: 34459501 DOI: 10.15252/embj.2021107974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Identification of the driving force behind malignant transformation holds the promise to combat the relapse and therapeutic resistance of cancer. We report here that the single nucleotide polymorphism (SNP) rs4971059, one of 65 new breast cancer risk loci identified in a recent genome-wide association study (GWAS), functions as an active enhancer of TRIM46 expression. Recreating the G-to-A polymorphic switch caused by the SNP via CRISPR/Cas9-mediated homologous recombination leads to an overt upregulation of TRIM46. We find that TRIM46 is a ubiquitin ligase that targets histone deacetylase HDAC1 for ubiquitination and degradation and that the TRIM46-HDAC1 axis regulates a panel of genes, including ones critically involved in DNA replication and repair. Consequently, TRIM46 promotes breast cancer cell proliferation and chemoresistance in vitro and accelerates tumor growth in vivo. Moreover, TRIM46 is frequently overexpressed in breast carcinomas, and its expression is correlated with lower HDAC1 expression, higher histological grades, and worse prognosis of the patients. Together, our study links SNP rs4971059 to replication and to breast carcinogenesis and chemoresistance and support the pursuit of TRIM46 as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yang
- Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Jianguo Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Pei
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shu Wang
- Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Wei Li
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Luyang Sun
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Jia X, Zhao C, Zhao W. Emerging Roles of MHC Class I Region-Encoded E3 Ubiquitin Ligases in Innate Immunity. Front Immunol 2021; 12:687102. [PMID: 34177938 PMCID: PMC8222901 DOI: 10.3389/fimmu.2021.687102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) class I (MHC-I) region contains a multitude of genes relevant to immune response. Multiple E3 ubiquitin ligase genes, including tripartite motif 10 (TRIM10), TRIM15, TRIM26, TRIM27, TRIM31, TRIM38, TRIM39, TRIM40, and RING finger protein 39 (RNF39), are organized in a tight cluster, and an additional two TRIM genes (namely TRIM38 and TRIM27) telomeric of the cluster within the MHC-I region. The E3 ubiquitin ligases encoded by these genes possess important roles in controlling the intensity of innate immune responses. In this review, we discuss the E3 ubiquitin ligases encoded within the MHC-I region, highlight their regulatory roles in innate immunity, and outline their potential functions in infection, inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyuan Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Liu S, Sun Y, Yang R, Ren W, Li C, Tang S. Expression profiling of TRIM gene family reveals potential diagnostic biomarkers for rifampicin-resistant tuberculosis. Microb Pathog 2021; 157:104916. [PMID: 34000303 DOI: 10.1016/j.micpath.2021.104916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
The epidemic of pulmonary tuberculosis (TB), especially rifampin-resistant tuberculosis (RR-TB) presents a major challenge for TB control today. However, there is a lack of reliable and specific biomarkers for the early diagnosis of RR-TB. We utilized reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to profile the transcript levels of 72 tripartite motif (TRIM) genes from a discovery cohort of 10 drug-sensitive tuberculosis (DS-TB) patients, 10 RR-TB patients, and 10 healthy controls (HCs). A total of 35 differentially expressed genes (DEGs) were screened out, all of which were down-regulated. The bio functions and pathways of these DEGs were enriched in protein ubiquitination, regulation of the viral process, Interferon signaling, and innate immune response, etc. A protein-protein interaction network (PPI) was constructed and analyzed using STRING and Cytoscape. Twelve TRIM genes were identified as hub genes, and seven (TRIM1, 9, 21, 32, 33, 56, 66) of them were verified by RT-qPCR in a validation cohort of 95 subjects. Moreover, we established the RR-TB decision tree models based on the 7 biomarkers. The receiver operating characteristic (ROC) analyses showed that the models exhibited the areas under the curve (AUC) values of 0.878 and 0.868 in discriminating RR-TB from HCs and DS-TB, respectively. Our study proposes potential biomarkers for RR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of RR-TB.
Collapse
Affiliation(s)
- Shengsheng Liu
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China; Multidisciplinary Diagnosis and Treatment Centre for Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China; Department of Tuberculosis, Anhui Chest Hospital, Anhui, 230022, China
| | - Yong Sun
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Ruifang Yang
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| | - Shenjie Tang
- Multidisciplinary Diagnosis and Treatment Centre for Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
31
|
Wang L, Lu KC, Chen GL, Li M, Zhang CZ, Chen YH. A Litopenaeus vannamei TRIM32 gene is involved in oxidative stress response and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 107:547-555. [PMID: 33161091 DOI: 10.1016/j.fsi.2020.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 05/25/2023]
Abstract
Tripartite motif (TRIM) family proteins are named by the presence of tripartite motifs in their amino terminal domains. Apart from the amino terminal, their carboxyl terminal contain variable domains which mediate diverse functions of the TRIM proteins. It had been found that TRIM proteins played important roles in distinct biological processes, such as innate immunity, anti-tumor immunity, cell cycle regulation and so on. In the present study, we cloned a TRIM32 (LvTRIM32) gene from Litopenaeus vannamei. LvTRIM32 was highly expressed in hemocytes, gills and epidermis, and subcellular localization analysis indicated that it was widely distributed in S2 cells. In vitro ubiquitination assays indicated that LvTRIM32 had E3 ubiquitin ligase activity. Results of real-time RT-PCR assay showed that LvTRIM32 was induced in shrimp hemocytes upon oxidative stress. It was also proved that the promoter activity of LvTRIM32 was enhanced by NF-E2-related factor, and knocked-down expression of LvTRIM32 depressed the expression of malic enzyme and epoxide hydrolase. Downregulated LvTRIM32 suppressed the cumulative mortality of shrimp under oxidative stress. Moreover, it was found that LvTRIM32 could be induced in shrimp hemocytes upon immunostimulation, and downregulated LvTRIM32 increased the cumulative mortality of shrimp infected with white spot syndrome virus (WSSV) or Vibrio alginolyticus. Collecting results suggested that LvTRIM32 was a member of shrimp antioxidant stress system, and it was also involved in WSSV- or V. alginolyticus-infection resistance.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Modern Aquaculture Science and Engineering (IMASE) / College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ke-Cheng Lu
- Institute of Modern Aquaculture Science and Engineering (IMASE) / College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Guo-Liang Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE) / College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Chao-Zheng Zhang
- China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE) / College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
32
|
Liu H, Zhu T, Li Q, Xiong X, Wang J, Zhu X, Zhou X, Zhang L, Zhu Y, Peng Y, Chen Y, Hu C, Chen H, Guo A. TRIM25 upregulation by Mycobacterium tuberculosis infection promotes intracellular survival of M.tb in RAW264.7 cells. Microb Pathog 2020; 148:104456. [PMID: 32810556 DOI: 10.1016/j.micpath.2020.104456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Tripartite motif 25 (TRIM25) is a TRIM family member which is involved in innate immunity. However, its role in the modulation of host defense against Mycobacterium tuberculosis (M.tb) infection has not been investigated. Therefore, this study aimed to demonstrate the significance of TRIM25 in the regulation of macrophage responses to M.tb infection. TRIM25 was found to be significantly overexpressed (3.476-fold) in peripheral blood mononuclear cells (PBMCs) of 67 patients with pulmonary tuberculosis compared with 48 healthy controls. TRIM25 expression was enhanced following M.tb infection of RAW264.7 cells, a macrophage cell line. Overexpression of TRIM25 in M.tb-infected RAW264.7 cells led to a significant increase in phosphorylated p38 levels; however, the production of IL-6, IL-1β, and TNF-α were significantly reduced. Finally, M.tb intracellular survival increased by 90% at 12 h post-infection (PI) (p < 0.01). To validate the previous results, TRIM25 levels in M.tb-infected RAW264.7 macrophages were down-regulated using small interfering RNA (siRNA). Therefore, it was concluded that TRIM25 promotes intracellular survival of M.tb in RAW264.7 cells, likely by enhancing p38 pathways and thereby inhibiting the production of proinflammatory cytokines. These results contribute to the further understanding of the host defense against M.tb infection.
Collapse
Affiliation(s)
- Han Liu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Li
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuekai Xiong
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jieru Wang
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojie Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Zhou
- Tuberculosis Department, Wuhan Medical Treatment Center, Wuhan, 430023, China
| | - Li Zhang
- Tuberculosis Department, Wuhan Medical Treatment Center, Wuhan, 430023, China
| | - Yifan Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youchong Peng
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
34
|
Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens 2020; 9:pathogens9030218. [PMID: 32188164 PMCID: PMC7157668 DOI: 10.3390/pathogens9030218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the first innate defense barriers and play an indispensable role in communication between innate and adaptive immune responses, leading to restricted Mycobacterium tuberculosis (Mtb) infection. The macrophages can undergo programmed cell death (apoptosis), which is a crucial step to limit the intracellular growth of bacilli by liberating them into extracellular milieu in the form of apoptotic bodies. These bodies can be taken up by the macrophages for the further degradation of bacilli or by the dendritic cells, thereby leading to the activation of T lymphocytes. However, Mtb has the ability to interplay with complex signaling networks to subvert macrophage apoptosis. Here, we describe the intelligent strategies of Mtb inhibition of macrophages apoptosis. This review provides a platform for the future study of unrevealed Mtb anti-apoptotic mechanisms and the design of therapeutic interventions.
Collapse
|
35
|
Zheng F, Xu N, Zhang Y. TRIM27 Promotes Hepatitis C Virus Replication by Suppressing Type I Interferon Response. Inflammation 2020; 42:1317-1325. [PMID: 30847745 DOI: 10.1007/s10753-019-00992-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type I interferon (IFN) response is central for host defense against viral infection. Tripartite motif 27 (TRIM27) is implicated in antiviral innate immune response; however, whether it affects the replication of hepatitis C virus (HCV) and the underlying mechanisms remain uncharacterized. Here, we show that TRIM27 expression is induced in Huh7.5 human hepatoma cells infected with HCV or stimulated with type I IFNs in vitro. In addition, TRIM27 overexpression increases and its knockdown decreases viral RNA and protein levels, suggesting that TRIM27 positively regulates HCV replication. Mechanistically, TRIM27 inhibits type I IFN response against HCV infection through inhibiting IRF3 and NF-κB pathways, since TRIM27 mutant unable to inhibit these two inflammatory pathways fails to promote HCV replication. Taken together, this study identifies TRIM27 as a novel positive regulator of HCV replication, and also implicates that targeting TRIM27 may serve as a therapeutic strategy for controlling HCV replication.
Collapse
Affiliation(s)
- Feng Zheng
- Department of Infectious Disease, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, 250012, Shandong province, People's Republic of China.
| | - Nannan Xu
- Department of Infectious Disease, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, 250012, Shandong province, People's Republic of China
| | - Yajun Zhang
- Department of Infectious Disease, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, 250012, Shandong province, People's Republic of China
| |
Collapse
|
36
|
Yu X, Feng J, Huang L, Gao H, Liu J, Bai S, Wu B, Xie J. Molecular Basis Underlying Host Immunity Subversion by Mycobacterium tuberculosis PE/PPE Family Molecules. DNA Cell Biol 2019; 38:1178-1187. [PMID: 31580738 DOI: 10.1089/dna.2019.4852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family proteins, with >160 members, are crucial for virulence, cell wall, host cell fate, host Th1/Th2 balance, and CD8+ T cell recognition. Ca2+ signaling is involved in PE/PPE protein-mediated host-pathogen interaction. PE/PPE proteins also function in heme utilization and nitric oxide production. PE/PPE family proteins are intensively pursued as diagnosis biomarkers and vaccine components.
Collapse
Affiliation(s)
- Xiaowen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jing Feng
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jinkun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Shutong Bai
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Bin Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, P.R. China
| |
Collapse
|
37
|
Alsayed SSR, Beh CC, Foster NR, Payne AD, Yu Y, Gunosewoyo H. Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Curr Mol Pharmacol 2019; 12:27-49. [PMID: 30360731 DOI: 10.2174/1874467211666181025141114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Chau C Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Neil R Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
38
|
Bai J, Li K, Tang W, Liang Z, Wang X, Feng W, Zhang S, Ren L, Wu S, Han H, Zhao Y. A high-throughput screen for genes essential for PRRSV infection using a piggyBac-based system. Virology 2019; 531:19-30. [DOI: 10.1016/j.virol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 01/11/2023]
|
39
|
Cao T, Lyu L, Jia H, Wang J, Du F, Pan L, Li Z, Xing A, Xiao J, Ma Y, Zhang Z. A Two-Way Proteome Microarray Strategy to Identify Novel Mycobacterium tuberculosis-Human Interactors. Front Cell Infect Microbiol 2019; 9:65. [PMID: 30984625 PMCID: PMC6448480 DOI: 10.3389/fcimb.2019.00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a serious threat to human health which is caused by mycobacterium tuberculosis (Mtb). The main reason for failure to eliminate TB is lack of clearly understanding the molecular mechanism of Mtb pathogenesis. Determining human Mtb-interacting proteins enables us to characterize the mechanism and identify potential molecular targets for TB diagnosis and treatment. However, experimentally systematic Mtb interactors are not readily available. In this study, we performed an unbiased, comprehensive two-way proteome microarray based approach to systematically screen global human Mtb interactors and determine the binding partners of Mtb effectors. Our results, for the first time, screened 84 potential human Mtb interactors. Bioinformatic analysis further highlighted these protein candidates might engage in a wide range of cellular functions such as activation of DNA endogenous promoters, transcription of DNA/RNA and necrosis, as well as immune-related signaling pathways. Then, using Mtb proteome microarray followed His tagged pull-down assay and Co-IP, we identified one interacting partner (Rv0577) for the protein candidate NRF1 and three binding partners (Rv0577, Rv2117, Rv2423) for SMAD2, respectively. This study gives new insights into the profile of global Mtb interactors potentially involved in Mtb pathogenesis and demonstrates a powerful strategy in the discovery of Mtb effectors.
Collapse
Affiliation(s)
- Tingming Cao
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lingna Lyu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fengjiao Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jing Xiao
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yu Ma
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis 2018; 76:4970761. [PMID: 29762680 DOI: 10.1093/femspd/fty037] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Macrophages are first-line responders against microbes. The success of Mycobacterium tuberculosis (Mtb) rests upon its ability to convert these antimicrobial cells into a permissive cellular niche. This is a remarkable accomplishment, as the antimicrobial arsenal of macrophages is extensive. Normally bacteria are delivered to an acidic, degradative lysosome through one of several trafficking pathways, including LC3-associated phagocytosis (LAP) and autophagy. Once phagocytozed, the bacilli are subjected to reactive oxygen and nitrogen species, and they induce the expression of proinflammatory cytokines, which serve to augment host responses. However, Mtb hijacks these host defense mechanisms, manipulating host cellular trafficking, innate immune responses, and cell death pathways to its benefit. The complex series of measures and countermeasures between host and pathogen ultimately determines the outcome of infection. In this review, we focus on the diverse effectors that Mtb uses in its multipronged effort to subvert the innate immune responses of macrophages. We highlight recent advances in understanding the molecular interface of the Mtb-macrophage interaction.
Collapse
Affiliation(s)
- S Upadhyay
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - E Mittal
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J A Philips
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Gannoun-Zaki L, Pätzold L, Huc-Brandt S, Baronian G, Elhawy MI, Gaupp R, Martin M, Blanc-Potard AB, Letourneur F, Bischoff M, Molle V. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J Biol Chem 2018; 293:15569-15580. [PMID: 30131335 DOI: 10.1074/jbc.ra118.003555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Indexed: 11/06/2022] Open
Abstract
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Linda Pätzold
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Sylvaine Huc-Brandt
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Grégory Baronian
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Mohamed Ibrahem Elhawy
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Rosmarie Gaupp
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Marianne Martin
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Anne-Béatrice Blanc-Potard
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - François Letourneur
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Markus Bischoff
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| |
Collapse
|
42
|
Queval CJ, Song OR, Carralot JP, Saliou JM, Bongiovanni A, Deloison G, Deboosère N, Jouny S, Iantomasi R, Delorme V, Debrie AS, Park SJ, Gouveia JC, Tomavo S, Brosch R, Yoshimura A, Yeramian E, Brodin P. Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling. Cell Rep 2018; 20:3188-3198. [PMID: 28954234 PMCID: PMC5637157 DOI: 10.1016/j.celrep.2017.08.101] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/29/2017] [Accepted: 08/30/2017] [Indexed: 11/29/2022] Open
Abstract
Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS) protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH), which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive. M. tuberculosis interferes with host pathways to control vacuolar acidification Infection induces the expression of host CISH and recruitment to the phagosome CISH triggers the degradation of H+-V-ATPase via SOCS box-mediated ubiquitination This defense mechanism complements previous schemes relying on virulence factors
Collapse
Affiliation(s)
- Christophe J Queval
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Ok-Ryul Song
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, South Korea
| | - Jean-Philippe Carralot
- Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, South Korea
| | - Jean-Michel Saliou
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University Lille, 59000 Lille, France
| | - Antonino Bongiovanni
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Gaspard Deloison
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Nathalie Deboosère
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Samuel Jouny
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Raffaella Iantomasi
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vincent Delorme
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, South Korea
| | - Anne-Sophie Debrie
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Sei-Jin Park
- Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, South Korea
| | - Joana Costa Gouveia
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Stanislas Tomavo
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University Lille, 59000 Lille, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, CNRS UMR3528 Institut Pasteur, 75015 Paris, France.
| | - Priscille Brodin
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204, CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, South Korea.
| |
Collapse
|
43
|
Chai Q, Zhang Y, Liu CH. Mycobacterium tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases. Front Cell Infect Microbiol 2018; 8:158. [PMID: 29868514 PMCID: PMC5962710 DOI: 10.3389/fcimb.2018.00158] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an extremely successful pathogen that adapts to survive within the host. During the latency phase of infection, M. tuberculosis employs a range of effector proteins to be cloud the host immune system and shapes its lifestyle to reside in granulomas, sophisticated, and organized structures of immune cells that are established by the host in response to persistent infection. While normally being restrained in immunocompetent hosts, M. tuberculosis within granulomas can cause the recrudescence of TB when host immunity is compromised. Aside from causing TB, accumulating evidence suggests that M. tuberculosis is also associated with multiple other human diseases, such as pulmonary complications, autoimmune diseases, and metabolic syndromes. Furthermore, it has been recently appreciated that M. tuberculosis infection can also reciprocally interact with the human microbiome, which has a strong link to immune balance and health. In this review, we highlight the adaptive survival of M. tuberculosis within the host and provide an overview for regulatory mechanisms underlying interactions between M. tuberculosis infection and multiple important human diseases. A better understanding of how M. tuberculosis regulates the host immune system to cause TB and reciprocally regulates other human diseases is critical for developing rational treatments to better control TB and help alleviate its associated comorbidities.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Stutz MD, Clark MP, Doerflinger M, Pellegrini M. Mycobacterium tuberculosis: Rewiring host cell signaling to promote infection. J Leukoc Biol 2017; 103:259-268. [PMID: 29345343 PMCID: PMC6446910 DOI: 10.1002/jlb.4mr0717-277r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to cause disease hinges upon successfully thwarting the innate defenses of the macrophage host cell. The pathogen's trump card is its armory of virulence factors that throw normal host cell signaling into disarray. This process of subverting the macrophage begins upon entry into the cell, when M. tuberculosis actively inhibits the fusion of the bacilli‐laden phagosomes with lysosomes. The pathogen then modulates an array of host signal transduction pathways, which dampens the macrophage's host‐protective cytokine response, while simultaneously adapting host cell metabolism to stimulate lipid body accumulation. Mycobacterium tuberculosis also renovates the surface of its innate host cells by altering the expression of key molecules required for full activation of the adaptive immune response. Finally, the pathogen coordinates its exit from the host cell by shifting the balance from the host‐protective apoptotic cell death program toward a lytic form of host cell death. Thus, M. tuberculosis exploits its extensive repertoire of virulence factors in order to orchestrate the infection process to facilitate its growth, dissemination, and entry into latency. This review offers critical insights into the most recent advances in our knowledge of how M. tuberculosis manipulates host cell signaling. An appreciation of such interactions between the pathogen and host is critical for guiding novel therapies and understanding the factors that lead to the development of active disease in only a subset of exposed individuals.
Collapse
Affiliation(s)
- Michael D Stutz
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Clark
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Doerflinger
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc Pellegrini
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
45
|
Chen Y, Cao S, Sun Y, Li C. Gene expression profiling of the TRIM protein family reveals potential biomarkers for indicating tuberculosis status. Microb Pathog 2017; 114:385-392. [PMID: 29225091 DOI: 10.1016/j.micpath.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
Tripartite motif (TRIM) family proteins play important regulatory roles in innate immune responses, the dysregulation of which cause several infectious diseases. However, the role and function of TRIM family proteins during tuberculosis (TB) infection remains unclear. In this study, we employed real-time quantitative PCR to profile the transcript levels of 72 TRIM genes from a cohort of 5 active TB patients, 5 latent tuberculosis infection (LTBI) subjects, and 5 healthy controls (HCs) in an initial discovery phase. The notable TRIM genes were assessed by in vitro cell infection experiments and further validated in another independent cohort (36 active TB, 24 LTBI and 28 HCs). The receiver operating characteristic (ROC) was used to analyze the diagnostic power of these TRIM genes. Our results revealed that 20 TRIM genes were decreased in active TB compared to LTBI and HCs. In addition, TRIM4, 16, 27, 32, 35, 46, 47, 65 and 68 were further shown to be downregulated in Mycobacterium smegmatis-infected macrophages and were found to be closely correlated with infection time and initial bacteria loads. Furthermore, the ROC analyses showed that TRIM4, 27 and 65 all exhibited the highest areas under the curve (AUC) values of 1.00 in discriminating active TB from LTBI and HCs. Moreover, TRIM27 combined with TRIM32 for an improved AUC value of 0.81 in discriminating LTBI from HCs. These results suggest that TRIM gene dysregulation might be involved in the pathogenesis of TB and that these genes could serve as potential biomarkers for indicating TB status.
Collapse
Affiliation(s)
- Yanqing Chen
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Shuhui Cao
- Department of Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yong Sun
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
46
|
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14:963-975. [PMID: 28890547 PMCID: PMC5719146 DOI: 10.1038/cmi.2017.88] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haiying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
47
|
He X, Jiang HW, Chen H, Zhang HN, Liu Y, Xu ZW, Wu FL, Guo SJ, Hou JL, Yang MK, Yan W, Deng JY, Bi LJ, Zhang XE, Tao SC. Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Mol Cell Proteomics 2017; 16:2243-2253. [PMID: 29018126 DOI: 10.1074/mcp.ra117.000296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.
Collapse
Affiliation(s)
- Xiang He
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Wei Xu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Lin Wu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Li Hou
- ¶Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Kun Yang
- ‖Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Yan
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiao-Yu Deng
- **State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li-Jun Bi
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,§§School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Xian-En Zhang
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; .,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,¶¶State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| |
Collapse
|