1
|
Bezrukova AI, Basharova KS, Emelyanov AK, Rybakov AV, Miliukhina IV, Pchelina SN, Usenko TS. Autophagy Process in Parkinson's Disease Depends on Mutations in the GBA1 and LRRK2 Genes. Biochem Genet 2025:10.1007/s10528-025-11125-z. [PMID: 40388077 DOI: 10.1007/s10528-025-11125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and abnormal aggregation of the alpha-synuclein protein. Disruption of the autophagy-lysosomal pathway is closely associated with PD pathogenesis. Here, using western-blot analysis we assessed the level of autophagy-related proteins, including phosphorylated mTOR (p-mTOR), phosphorylated RPS6 (p-RPS6), beclin-1 (BECN1), LC3B, p62, and cathepsin D (CTSD) in macrophages derived from peripheral blood mononuclear cells (PBMC-derived macrophages) of GBA1-PD (p.N370S/N, p.L444P/N), LRRK2-PD (p.G2019S/N), idiopathic PD (iPD) patients, and healthy controls. Our findings revealed mutation-specific disruptions in autophagy pathways among PD patients. In p.N370S-GBA1-PD, PBMC-derived macrophages exhibited elevated levels of p-RPS6, BECN1, LC3B-II and decreased mature form of CTSD levels suggesting more active mTOR-dependent autophagy initiation alongside potential autophagosome accumulation that may lead to downregulation of lysosomal degradation. p.L444P-GBA1-PD PBMC-derived macrophages showed increased levels of p-RPS6 and BECN1, coupled with decreased p62 levels and stable mature form of CTSD and LC3B-II, indicative of enhanced autophagy flux driven by mTOR activity without evident lysosomal dysfunction. In p.G2019S-LRRK2-PD patients, PBMC-derived macrophages demonstrated elevated p-RPS6, LC3B-II, and mature CTSD levels, alongside reduced p62 levels. These changes suggest higher basal autophagosome abundance in steady-state autophagy and turnover, potentially driven by lysosomal alterations rather than direct mTOR dysregulation. These mutation-dependent differences highlight distinct autophagy dynamics in GBA1-PD and LRRK2-PD, underscoring the critical role of genetic mutations in modulating PD pathogenesis. Our results emphasize the necessity for subtype-specific therapeutic strategies targeting autophagy and other mTOR-regulated pathways to address the heterogeneity of PD mechanisms.
Collapse
Affiliation(s)
- A I Bezrukova
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 Lva Tolstogo Street, 197022, Saint Petersburg, Russia
| | - K S Basharova
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 Lva Tolstogo Street, 197022, Saint Petersburg, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 Lva Tolstogo Street, 197022, Saint Petersburg, Russia
| | - A V Rybakov
- Institute of the Human Brain, Russian Academy of Sciences (RAS), 9 Akademika Pavlova Street, Saint Petersburg, Russia
| | - I V Miliukhina
- Institute of the Human Brain, Russian Academy of Sciences (RAS), 9 Akademika Pavlova Street, Saint Petersburg, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 Lva Tolstogo Street, 197022, Saint Petersburg, Russia
| | - T S Usenko
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.
- Pavlov First Saint Petersburg State Medical University, 6-8 Lva Tolstogo Street, 197022, Saint Petersburg, Russia.
| |
Collapse
|
2
|
Oettinger D, Yamamoto A. Autophagy dysfunction and neurodegeneration: Where does it go wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Della Vecchia S, Imbrici P, Liantonio A, Naef V, Damiani D, Licitra R, Bernardi S, Marchese M, Santorelli FM. Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model. Biomed Pharmacother 2025; 183:117800. [PMID: 39753095 PMCID: PMC11794196 DOI: 10.1016/j.biopha.2024.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD. With this in mind, we tested dapagliflozin (50 µM), canagliflozin (2.5 µM) and empagliflozin (200 µM) in our epm2a-/- zebrafish model, investigating their effects on pathological behaviour. In the case of dapagliflozin, we also investigated the possible mechanisms of action. Overall, the gliflozins reduced or rescued neuronal hyperexcitability and locomotor impairment. Dapagliflozin also reduced spontaneous seizure-like events in epm2a-/- larvae. At the biochemical and molecular level, dapagliflozin was found to slightly reduce glycogen content, and suppress inflammation and oxidative stress. It also ameliorates autophagic homeostasis and improves lysosomal markers. In conclusion, our preclinical study showed that dapagliflozin was able to ameliorate part of the pathological phenotype of epm2a-/- zebrafish larvae and could potentially be a suitable drug for repurposing in LD. However, since our model does not present Lafora bodies (LBs), at this early disease stage at least, it would be important to use mouse models in order to ascertain whether it is able to prevent or reduce LB formation.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, Florence 50139, Italy.
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Naef
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Devid Damiani
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Rosario Licitra
- Department of Veterinary Sciences, University of Pisa, Pisa 56124, Italy
| | - Sara Bernardi
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Maria Marchese
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | | |
Collapse
|
4
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
5
|
Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z. Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 2024; 81:382. [PMID: 39223418 PMCID: PMC11368888 DOI: 10.1007/s00018-024-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
6
|
Yuan Z, Ye J, Liu B, Zhang L. Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics. ADVANCED BIOTECHNOLOGY 2024; 2:14. [PMID: 39883213 PMCID: PMC11740883 DOI: 10.1007/s44307-024-00021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options. In this review, we discuss in detail how mutations in autophagy-related genes function in Crohn's disease and summarize the modulatory effects on autophagy of small-molecule drugs currently used for Crohn's disease treatment. Furthermore, we delve into the therapeutic potential of small-molecule autophagy inducers on Crohn's disease, emphasizing the prospects for development in this field. We aim to highlight the significance of autophagy modulation in Crohn's disease, with the aspiration of contributing to the development of more efficacious treatments that can alleviate their suffering, and improve their quality of life.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Ćurčić V, Olszewski M, Maciejewska N, Višnjevac A, Srdić-Rajić T, Dobričić V, García-Sosa AT, Kokanov SB, Araškov JB, Silvestri R, Schüle R, Jung M, Nikolić M, Filipović NR. Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition. Arch Pharm (Weinheim) 2024; 357:e2300426. [PMID: 37991233 DOI: 10.1002/ardp.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
Heterocyclic pharmacophores such as thiazole and quinoline rings have a significant role in medicinal chemistry. They are considered privileged structures since they constitute several Food and Drug Administration (FDA)-approved drugs for cancer treatment. Herein, we report the synthesis, in silico evaluation of the ADMET profiles, and in vitro investigation of the anticancer activity of a series of novel thiazolyl-hydrazones based on the 8-quinoline (1a-c), 2-quinoline (2a-c), and 8-hydroxy-2-quinolyl moiety (3a-c). The panel of several human cancer cell lines and the nontumorigenic human embryonic kidney cell line HEK-293 were used to evaluate the compound-mediated in vitro anticancer activities, leading to [2-(2-(quinolyl-8-ol-2-ylmethylene)hydrazinyl)]-4-(4-methoxyphenyl)-1,3-thiazole (3c) as the most promising compound. The study revealed that 3c blocks the cell-cycle progression of a human colon cancer cell line (HCT-116) in the S phase and induces DNA double-strand breaks. Also, our findings demonstrate that 3c accumulates in lysosomes, ultimately leading to the cell death of the hepatocellular carcinoma cell line (Hep-G2) and HCT-116 cells, by the mechanism of autophagy inhibition.
Collapse
Affiliation(s)
- Vladimir Ćurčić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Sanja B Kokanov
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Romano Silvestri
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Manfred Jung
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Milan Nikolić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
8
|
Sharma A, Kaur S, Wani A, Kour D, Ali M, Ali SM, Singh L, Gour A, Nandi U, Datt M, Sharma PR, Weihl CC, Singh G, Kumar A. Gentiacaulein inhibits glucose transport to induce PRKAA1-mediated autophagy to clear amyloid beta and associated inflammation in primary astrocytes. AUTOPHAGY REPORTS 2024; 3:2296209. [PMID: 40395536 PMCID: PMC11864677 DOI: 10.1080/27694127.2023.2296209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 05/22/2025]
Abstract
Being present in substantial numbers, astrocytes play an indispensable role in maintaining homeostasis in the brain. However, their positive or negative involvement in pathological conditions in the brain has not been explored much. In recent years, an emerging thought of targeting astrocytes for the resolution of neurodegenerative diseases has gained momentum. In this study, we have attempted to explore the likelihood of targeting astrocytes by using a natural compound, gentiacaulein (GENT), for clearance of amyloid-β (Aβ) through autophagy and amelioration of neuroinflammation associated with Aβ. We found that GENT treatment of astrocytes hampered the transport of glucose across the cell membrane, which resulted in a reduction in ATP production. With increased treatment time, AMP: ATP ratio was increased significantly, which caused the induction of PRKAA1-mediated autophagy. We further show that increased autophagy considerably enhanced the clearance of amyloid-β by astrocytes. GENT reduced the Aβ mediated inflammation by inhibiting the nuclear translocation of NF-κB and decreased the release of inflammatory cytokines TNF-α and IL-6. The role of PRKAA1 in GENT-induced autophagy and anti-inflammatory activity was confirmed when its knockdown reversed these effects. Our data suggest that targeting astrocytes can be a good strategy to prevent/treat Alzheimer's disease.
Collapse
Affiliation(s)
- Ankita Sharma
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Sukhleen Kaur
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Abubakar Wani
- Department of Immunology, St Jude children’s Hospital, Memphis, TN38105, USA
| | - Dilpreet Kour
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Mehboob Ali
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Syed Mudassir Ali
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Lakhvinder Singh
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Abhishek Gour
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Utpal Nandi
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Manish Datt
- Biological and Life Sciences Division, Institute of Life Sciences, Ahmedabad University, Ahmedabad, Gujarat - 380009, India
| | - Parduman Raj Sharma
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Gurdarshan Singh
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Ajay Kumar
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Bhushan B, Singh NK. Role of Astrogliosis in the Pathogenesis of Parkinson's Disease: Insights into Astrocytic Nrf2 Pathway as a Potential Therapeutic Target. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1015-1029. [PMID: 37817521 DOI: 10.2174/0118715273270473231002104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
Recently, Parkinson's disease (PD) has become a remarkable burden on families and society with an acceleration of population aging having several pathological hallmarks such as dopaminergic neuronal loss of the substantia nigra pars compacta, α-synucleinopathy, neuroinflammation, autophagy, last but not the least astrogliosis. Astrocyte, star-shaped glial cells perform notable physiological functions in the brain through several molecular and cellular mechanisms including nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. It has been well established that the downregulation of the astrocytic Nrf2 signaling pathway plays a crucial role in the pathogenesis of PD because it is a master regulator of cellular defense mechanism along with a regulator of numerous detoxifying and antioxidant enzymes gene expression. Fascinatingly, upregulation of the astrocytic Nrf2 signaling pathway attenuates the degeneration of nigrostriatal neurons, restores neuronal proliferation, rejuvenates astrocytic functions, and exhibits neuroprotective effects via numerous cellular and molecular mechanisms in the PD-like brain of the experimental animal. Here, we discuss the numerous in-vitro and in-vivo studies that evaluate the neuroprotective potential of the astrocytic Nrf2 signaling pathway against experimentally-induced PD-like manifestation. In conclusion, based on available preclinical reports, it can be assumed that the astrocytic Nrf2 signaling pathway could be an alternative target in the drug discovery process for the prevention, management, and treatment of PD.
Collapse
Affiliation(s)
- Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| |
Collapse
|
10
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
11
|
Chen SL, Li CM, Li W, Liu QS, Hu SY, Zhao MY, Hu DS, Hao YW, Zeng JH, Zhang Y. How autophagy, a potential therapeutic target, regulates intestinal inflammation. Front Immunol 2023; 14:1087677. [PMID: 37168865 PMCID: PMC10165000 DOI: 10.3389/fimmu.2023.1087677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic inflammation in the intestines, with the primary types including ulcerative colitis and Crohn's disease. The link between autophagy, a catabolic mechanism in which cells clear protein aggregates and damaged organelles, and intestinal health has been widely studied. Experimental animal studies and human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation and other aspects. However, few articles have summarized and discussed the pathways by which autophagy improves or exacerbates IBD. Here, we review how autophagy alleviates IBD through the specific genes (e.g., ATG16L1, IRGM, NOD2 and LRRK2), crosstalk of multiple phenotypes with autophagy (e.g., Interaction of autophagy with endoplasmic reticulum stress, intestinal antimicrobial defense and apoptosis) and autophagy-associated signaling pathways. Moreover, we briefly discuss the role of autophagy in colorectal cancer and current status of autophagy-based drug research for IBD. It should be emphasized that autophagy has cell-specific and environment-specific effects on the gut. One of the problems of IBD research is to understand how autophagy plays a role in intestinal tract under specific environmental factors. A better understanding of the mechanism of autophagy in the occurrence and progression of IBD will provide references for the development of therapeutic drugs and disease management for IBD in the future.
Collapse
Affiliation(s)
- Shuang-Lan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Meng Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Song Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang-Yuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Yuan Zhao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Sen Hu
- Department of Reproductive Medicine, Chengdu Xinan Women’s Hospital, Chengdu, China
| | - Yan-Wei Hao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Hao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jin-Hao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jin-Hao Zeng, ; Yi Zhang,
| |
Collapse
|
12
|
Zhao Y, Vavouraki N, Lovering RC, Escott-Price V, Harvey K, Lewis PA, Manzoni C. Tissue specific LRRK2 interactomes reveal a distinct striatal functional unit. PLoS Comput Biol 2023; 19:e1010847. [PMID: 36716346 PMCID: PMC9910798 DOI: 10.1371/journal.pcbi.1010847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/09/2023] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease. Despite substantial research efforts, the physiological and pathological role of this multidomain protein remains poorly defined. In this study, we used a systematic approach to construct the general protein-protein interactome around LRRK2, which was then evaluated taking into consideration the differential expression patterns and the co-expression behaviours of the LRRK2 interactors in 15 different healthy tissue types. The LRRK2 interactors exhibited distinct expression features in the brain as compared to the peripheral tissues analysed. Moreover, a high degree of similarity was found for the LRRK2 interactors in putamen, caudate and nucleus accumbens, thus defining a potential LRRK2 functional cluster within the striatum. The general LRRK2 interactome paired with the expression profiles of its members constitutes a powerful tool to generate tissue-specific LRRK2 interactomes. We exemplified the generation of the tissue-specific LRRK2 interactomes and explored the functions highlighted by the "core LRRK2 interactors" in the striatum in comparison with the cerebellum. Finally, we illustrated how the LRRK2 general interactome reported in this manuscript paired with the expression profiles can be used to trace the relationship between LRRK2 and specific interactors of interest, here focusing on the LRRK2 interactors belonging to the Rab protein family.
Collapse
Affiliation(s)
- Yibo Zhao
- University College London, School of Pharmacy, London, United Kingdom
| | | | - Ruth C. Lovering
- University College London, Institute for Cardiovascular Science, London, United Kingdom
| | - Valentina Escott-Price
- University of Cardiff, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Kirsten Harvey
- University College London, School of Pharmacy, London, United Kingdom
| | - Patrick A. Lewis
- University of Reading, School of Pharmacy, Reading, United Kingdom
- Royal Veterinary College, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Claudia Manzoni
- University College London, School of Pharmacy, London, United Kingdom
| |
Collapse
|
13
|
Ravinther AI, Dewadas HD, Tong SR, Foo CN, Lin YE, Chien CT, Lim YM. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911744. [PMID: 36233046 PMCID: PMC9569706 DOI: 10.3390/ijms231911744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases affecting the ageing population, with a prevalence that has doubled over the last 30 years. As the mechanism of the disease is not fully elucidated, the current treatments are unable to effectively prevent neurodegeneration. Studies have found that mutations in Leucine-rich-repeat-kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). Moreover, aberrant (higher) LRRK2 kinase activity has an influence in idiopathic PD as well. Hence, the aim of this review is to categorize and synthesize current information related to LRRK2-linked PD and present the factors associated with LRRK2 that can be targeted therapeutically. A systematic review was conducted using the databases PubMed, Medline, SCOPUS, SAGE, and Cochrane (January 2016 to July 2021). Search terms included “Parkinson’s disease”, “mechanism”, “LRRK2”, and synonyms in various combinations. The search yielded a total of 988 abstracts for initial review, 80 of which met the inclusion criteria. Here, we emphasize molecular mechanisms revealed in recent in vivo and in vitro studies. By consolidating the recent updates in the field of LRRK2-linked PD, researchers can further evaluate targets for therapeutic application.
Collapse
Affiliation(s)
- Ailyn Irvita Ravinther
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hemaniswarri Dewi Dewadas
- Centre for Biomedical and Nutrition Research, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Shi Ruo Tong
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Population Medicine, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Yu-En Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
14
|
Kondapuram SK, Coumar MS. Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them. Gene X 2022; 844:146821. [PMID: 35985410 DOI: 10.1016/j.gene.2022.146821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India.
| |
Collapse
|
15
|
Abstract
Macroautophagy is an evolutionarily conserved process that delivers diverse cellular contents to lysosomes for degradation. As our understanding of this pathway grows, so does our appreciation for its importance in disorders of the CNS. Once implicated primarily in neurodegenerative events owing to acute injury and ageing, macroautophagy is now also linked to disorders of neurodevelopment, indicating that it is essential for both the formation and maintenance of a healthy CNS. In parallel to understanding the significance of macroautophagy across contexts, we have gained a greater mechanistic insight into its physiological regulation and the breadth of cargoes it can degrade. Macroautophagy is a broadly used homeostatic process, giving rise to questions surrounding how defects in this single pathway could cause diseases with distinct clinical and pathological signatures. To address this complexity, we herein review macroautophagy in the mammalian CNS by examining three key features of the process and its relationship to disease: how it functions at a basal level in the discrete cell types of the brain and spinal cord; which cargoes are being degraded in physiological and pathological settings; and how the different stages of the macroautophagy pathway intersect with diseases of neurodevelopment and adult-onset neurodegeneration.
Collapse
Affiliation(s)
- Christopher J Griffey
- Doctoral Program in Neurobiology and Behaviour, Medical Scientist Training Program, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology, and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Ruz C, Alcantud JL, Vives F, Arrebola F, Hardy J, Lewis PA, Manzoni C, Duran R. Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression in H4, a Human Neuroglioma Cell Line. Int J Mol Sci 2022; 23:ijms23136935. [PMID: 35805938 PMCID: PMC9266636 DOI: 10.3390/ijms23136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkinson's disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme β-Glucocerebrosidase (GCase) was assessed in a human neuroglioma cell model treated with two selective inhibitors of LRKK2 kinase activity (LRRK2-in-1 and MLi-2) and a GCase irreversible inhibitor, condutirol-beta-epoxide (CBE), under 24 and 72 h experimental conditions. We observed levels of GCase activity comparable to controls in response to 24 and 72 h treatments with LRRK2-in-1 and MLi-2. However, GBA protein levels increased upon 72 h treatment with LRRK2-in-1. Moreover, LC3-II protein levels were increased after both 24 and 72 h treatments with LRRK2-in-1, suggesting an activation of the autophagic pathway. These results highlight a possible regulation of lysosomal function through the LRRK2 kinase domain and suggest an interplay between LRRK2 kinase activity and GBA. Although further investigations are needed, the enhancement of GCase activity might restore the defective protein metabolism seen in PD.
Collapse
Affiliation(s)
- Clara Ruz
- Department of Physiology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain; (C.R.); (F.V.)
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
| | - José Luis Alcantud
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
| | - Francisco Vives
- Department of Physiology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain; (C.R.); (F.V.)
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
| | - Francisco Arrebola
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
- Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (J.H.); (P.A.L.)
| | - Patrick A. Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (J.H.); (P.A.L.)
- Department of Comparative Biomedical Science, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK;
| | - Raquel Duran
- Department of Physiology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain; (C.R.); (F.V.)
- Institute of Neurosciences “Federico Olóriz”, Centro de Investigación Biomédica (CIBM), Universidad de Granada, 18016 Granada, Spain; (J.L.A.); (F.A.)
- Correspondence:
| |
Collapse
|
17
|
Zhang M, Li C, Ren J, Wang H, Yi F, Wu J, Tang Y. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's Disease. Front Aging Neurosci 2022; 14:909303. [PMID: 35645775 PMCID: PMC9131027 DOI: 10.3389/fnagi.2022.909303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most common causative genes in Parkinson's disease (PD). The complex structure of this multiple domains' protein determines its versatile functions in multiple physiological processes, including migration, autophagy, phagocytosis, and mitochondrial function, among others. Mounting studies have also demonstrated the role of LRRK2 in mediating neuroinflammation, the prominent hallmark of PD, and intricate functions in immune cells, such as microglia, macrophages, and astrocytes. Of those, microglia were extensively studied in PD, which serves as the resident immune cell of the central nervous system that is rapidly activated upon neuronal injury and pathogenic insult. Moreover, the activation and function of immune cells can be achieved by modulating their intracellular metabolic profiles, in which LRRK2 plays an emerging role. Here, we provide an updated review focusing on the double-faceted role of LRRK2 in regulating various cellular physiology and immune functions especially in microglia. Moreover, we will summarize the latest discovery of the three-dimensional structure of LRRK2, as well as the function and dysfunction of LRRK2 in immune cell-related pathways.
Collapse
Affiliation(s)
- Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, Aldubayan M, Alhowail A, Kaur S, Bhatia S, Al-Harrasi A, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Abdel Daim MM. Exploring the focal role of LRRK2 kinase in Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32368-32382. [PMID: 35147886 DOI: 10.1007/s11356-022-19082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Satvinder Kaur
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistrty, Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mohamed M Abdel Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JD, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy 2022; 18:86-103. [PMID: 33906557 PMCID: PMC8865220 DOI: 10.1080/15548627.2021.1909406] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Petese A, Cesaroni V, Cerri S, Blandini F. Are Lysosomes Potential Therapeutic Targets for Parkinson's Disease? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:642-655. [PMID: 34370650 DOI: 10.2174/1871527320666210809123630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Parkinson´s Disease (PD) is the second most common neurodegenerative disorder, affecting ~2-3% of the population over 65 years old. In addition to progressive degeneration of nigrostriatal neurons, the histopathological feature of PD is the accumulation of misfolded α-synuclein protein in abnormal cytoplasmatic inclusions, known as Lewy Bodies (LBs). Recently, Genome-Wide Association Studies (GWAS) have indicated a clear association of variants within several lysosomal genes with risk for PD. Newly evolving data have been shedding light on the relationship between lysosomal dysfunction and alpha-synuclein aggregation. Defects in lysosomal enzymes could lead to the insufficient clearance of neurotoxic protein materials, possibly leading to selective degeneration of dopaminergic neurons. Specific modulation of lysosomal pathways and their components could be considered a novel opportunity for therapeutic intervention for PD. The purpose of this review is to illustrate lysosomal biology and describe the role of lysosomal dysfunction in PD pathogenesis. Finally, the most promising novel therapeutic approaches designed to modulate lysosomal activity, as a potential disease-modifying treatment for PD will be highlighted.
Collapse
Affiliation(s)
- Alessandro Petese
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Cesaroni
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021; 65:859-872. [PMID: 34897411 DOI: 10.1042/ebc20210013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex GTPase/kinase orchestrating cytoskeletal dynamics and multiple steps of the endolysosomal pathway through interaction with a host of partners and phosphorylation of a subset of Rab GTPases. Mutations in LRRK2 cause late-onset Parkinson's disease (PD) and common variants in the locus containing LRRK2 have been associated with sporadic PD, progressive supranuclear palsy as well as a number of inflammatory diseases. This review encompasses the major discoveries in the field of LRRK2 pathobiology, from the initial gene cloning to the latest progress in LRRK2 inhibition as a promising therapeutic approach to fight neurodegeneration.
Collapse
|
22
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
23
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
24
|
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharm Sin B 2021; 11:3015-3034. [PMID: 34729301 PMCID: PMC8546670 DOI: 10.1016/j.apsb.2021.02.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 5-HT2A, Serotonin 2A
- 5-HT2C, serotonin 2C
- A2A, adenosine 2A
- AADC, aromatic amino acid decarboxylase
- ALP, autophagy-lysosomal pathway
- AMPK, 5ʹAMP-activated protein kinase
- ATG, autophagy related protein
- ATP13A2, ATPase cation transporting 13A2
- ATTEC, autophagosome-tethering compound
- AUC, the area under the curve
- AUTAC, autophagy targeting chimera
- Autophagy
- BAF, bafilomycinA1
- BBB, blood−brain barrier
- CL, clearance rate
- CMA, chaperone-mediated autophagy
- CNS, central nervous system
- COMT, catechol-O-methyltransferase
- DA, dopamine
- DAT, dopamine transporter
- DJ-1, Parkinson protein 7
- DR, dopamine receptor
- ER, endoplasmic reticulum
- ERRα, estrogen-related receptor alpha
- F, oral bioavailability
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GBA, glucocerebrosidase β acid
- GWAS, genome-wide association study
- HDAC6, histone deacetylase 6
- HSC70, heat shock cognate 71 kDa protein
- HSPA8, heat shock 70 kDa protein 8
- IMPase, inositol monophosphatase
- IPPase, inositol polyphosphate 1-phosphatase
- KI, knockin
- LAMP2A, lysosome-associated membrane protein 2 A
- LC3, light chain 3
- LIMP-2, lysosomal integrated membrane protein-2
- LRRK2, leucine-rich repeat sequence kinase 2
- LRS, leucyl-tRNA synthetase
- LUHMES, lund human mesencephalic
- Lamp2a, type 2A lysosomal-associated membrane protein
- MAO-B, monoamine oxidase B
- MPP+, 1-methyl-4-phenylpyridinium
- MPTP, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
- MYCBP2, MYC-binding protein 2
- NMDA, N-methyl-d-aspartic acid
- ONRs, orphan nuclear receptors
- PD therapy
- PD, Parkinson's disease
- PDE4, phosphodiesterase 4
- PI3K, phosphatidylinositol 3-kinase
- PI3P, phosphatidylinositol 3-phosphate
- PINK1, PTEN-induced kinase 1
- PLC, phospholipase C
- PREP, prolyl oligopeptidase
- Parkin, parkin RBR E3 ubiquitin−protein ligase
- Parkinson's disease (PD)
- ROS, reactive oxygen species
- SAR, structure–activity relationship
- SAS, solvent accessible surface
- SN, substantia nigra
- SNCA, α-synuclein gene
- SYT11, synaptotagmin 11
- Small-molecule compound
- TFEB, transcription factor EB
- TSC2, tuberous sclerosis complex 2
- Target
- ULK1, UNC-51-like kinase 1
- UPS, ubiquitin−proteasome system
- mAChR, muscarinic acetylcholine receptor
- mTOR, the mammalian target of rapamycin
- α-syn, α-synuclein
Collapse
|
25
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years. Biochem Soc Trans 2021; 49:1375-1384. [PMID: 33960369 DOI: 10.1042/bst20201092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dominant Parkinson's disease (PD). In the years LRRK2 has been associated with several organelles and related pathways in cell. However, despite the significant amount of research done in the past decade, the contribution of LRRK2 mutations to PD pathogenesis remains unknown. Growing evidence highlights that LRRK2 controls multiple processes in brain immune cells, microglia and astrocytes, and suggests that deregulated LRRK2 activity in these cells, due to gene mutation, might be directly associated with pathological mechanisms underlying PD. In this brief review, we recapitulate and update the last LRRK2 functions dissected in microglia and astrocytes. Moreover, we discuss how dysfunctions of LRRK2-related pathways may impact glia physiology and their cross-talk with neurons, thus leading to neurodegeneration and progression of PD.
Collapse
|
27
|
LRRK2 at the Crossroad of Aging and Parkinson's Disease. Genes (Basel) 2021; 12:genes12040505. [PMID: 33805527 PMCID: PMC8066012 DOI: 10.3390/genes12040505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of PD is still far from clear, but aging has been considered as the highest risk factor influencing the clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD induce common changes in multiple cellular functions, including redox imbalance, mitochondria dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal dominant PD and comprise the most common genetic causes of both familial and sporadic PD. LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2 mutations and discuss how the interplay between the two might play a role in PD pathologies.
Collapse
|
28
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
29
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
30
|
Palese F, Pontis S, Realini N, Piomelli D. NAPE-specific phospholipase D regulates LRRK2 association with neuronal membranes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:217-238. [PMID: 33706934 DOI: 10.1016/bs.apha.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-acylphosphatidylethanolamines (NAPEs) are glycerophospholipid precursors for bioactive lipid amides and potential regulators of membrane function. They are hydrolyzed by NAPE-specific phospholipase D (NAPE-PLD) and have been implicated in neurodegenerative disorders such as Parkinson's disease. Here, we used siRNA-mediated silencing of NAPE-PLD in human SH-SY5Y cells and NAPE-PLD-/- mice to determine whether NAPEs influence the membrane association of LRRK2, a multifunctional protein kinase that is frequently mutated in persons with sporadic Parkinson's disease. NAPE-PLD deletion caused a significant accumulation of non-metabolized NAPEs, which was accompanied by a shift of LRRK2 from membrane to cytosol and a reduction in total LRRK2 content. Conversely, exposure of intact SH-SY5Y cells to bacterial PLD lowered NAPE levels and enhanced LRRK2 association with membranes. The results suggest that NAPE-PLD activity may contribute to the control of LRRK2 localization by regulating membrane NAPE levels.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy; Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, United States
| | - Silvia Pontis
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|
31
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Zhao Y, Keshiya S, Perera G, Schramko L, Halliday GM, Dzamko N. LRRK2 kinase inhibitors reduce alpha-synuclein in human neuronal cell lines with the G2019S mutation. Neurobiol Dis 2020; 144:105049. [PMID: 32800998 DOI: 10.1016/j.nbd.2020.105049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022] Open
Abstract
Kinase activating missense mutations in leucine-rich repeat kinase 2 (LRRK2) predispose to Parkinson's disease. Consequently, there is much interest in delineating LRRK2 biology, both in terms of gaining further insight into disease causes, and also determining whether or not LRRK2 is a potential Parkinson's disease therapeutic target. Indeed, many potent and selective small molecule inhibitors of LRRK2 have been developed and are currently being used for pre-clinical testing in cell and animal models. In the current study, we have obtained fibroblasts from four subjects with the common LRRK2 mutation, G2019S. Fibroblasts were reprogrammed to induced pluripotent stem cells and then to neural stem cells and ultimately neurons. Two clones for each of the human neural cell lines were then chronically treated with and without either of two distinct inhibitors of LRRK2 and effects on toxicity and Parkinson's disease related phenotypes were assessed. Cells with the G2019S mutation had a propensity to accumulate the pathological Parkinson's disease protein α-synuclein. Moreover, α-synuclein accumulation in the G2019S cells was significantly reduced with both LRRK2 inhibitors in seven of the eight cell lines studied. LRRK2 inhibitors also improved the nuclear morphology of G2019S cells and impacted on measures of autophagy and endoplasmic reticulum stress. Lastly, we did not find evidence of inhibitor toxicity under the chronic treatment conditions. These results add to evidence that LRRK2 inhibitors may have utility in the treatment of Parkinson's disease via reducing α-synuclein.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Shikara Keshiya
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Gayathri Perera
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Lauren Schramko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Nicolas Dzamko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
33
|
Lin CH, Wei PC, Chen CM, Huang YT, Lin JL, Lo YS, Lin JL, Lin CY, Wu YR, Chang KH, Lee-Chen GJ. Lactulose and Melibiose Attenuate MPTP-Induced Parkinson's Disease in Mice by Inhibition of Oxidative Stress, Reduction of Neuroinflammation and Up-Regulation of Autophagy. Front Aging Neurosci 2020; 12:226. [PMID: 32848705 PMCID: PMC7396622 DOI: 10.3389/fnagi.2020.00226] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease characterized by the progressive loss of dopaminergic (DAergic) neurons in the ventral brain. A disaccharide trehalose has demonstrated the potential to mitigate the DAergic loss in disease models for PD. However, trehalose is rapidly hydrolyzed into glucose by trehalase in the intestine, limiting its potential for clinical practice. Here, we investigated the neuroprotective potential of two trehalase-indigestible analogs, lactulose and melibiose, in sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treatment with MPTP generated significant motor deficits, inhibited dopamine levels, and down-regulated dopamine transporter (DAT) in the striatum. Expression levels of genes involved in anti-oxidative stress pathways, including superoxide dismutase 2 (SOD2), nuclear factor erythroid 2-related factor 2 (NRF2), and NAD(P)H dehydrogenase (NQO1) were also down-regulated. Meanwhile, expression of the oxidative stress marker 4-hydroxynonenal (4-HNE) was up-regulated along with increased microglia and astrocyte reactivity in the ventral midbrain following MPTP treatment. MPTP also reduced the activity of autophagy, evaluated by the autophagosomal marker microtubule-associated protein 1 light chain 3 (LC3)-II. Lactulose and melibiose significantly rescued motor deficits, increased dopamine in the striatum, reduced microglia and astrocyte reactivity as well as decreased levels of 4-HNE. Furthermore, lactulose and melibiose up-regulated SOD2, NRF2, and NQO1 levels, as well as enhanced the LC3-II/LC3-I ratio in the ventral midbrain with MPTP treatment. Our findings indicate the potential of lactulose and melibiose to protect DAergic neurons in PD.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | | | - Jia-Lan Lin
- Taipei First Girls High School, Taipei, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Jia-Li Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
34
|
Madureira M, Connor-Robson N, Wade-Martins R. "LRRK2: Autophagy and Lysosomal Activity". Front Neurosci 2020; 14:498. [PMID: 32523507 PMCID: PMC7262160 DOI: 10.3389/fnins.2020.00498] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
It has been 15 years since the Leucine-rich repeat kinase 2 (LRRK2) gene was identified as the most common genetic cause for Parkinson's disease (PD). The two most common mutations are the LRRK2-G2019S, located in the kinase domain, and the LRRK2-R1441C, located in the ROC-COR domain. While the LRRK2-G2019S mutation is associated with increased kinase activity, the LRRK2-R1441C exhibits a decreased GTPase activity and altered kinase activity. Multiple lines of evidence have linked the LRRK2 protein with a role in the autophagy pathway and with lysosomal activity in neurons. Neurons rely heavily on autophagy to recycle proteins and process cellular waste due to their post-mitotic state. Additionally, lysosomal activity decreases with age which can potentiate the accumulation of α-synuclein, the pathological hallmark of PD, and subsequently lead to the build-up of Lewy bodies (LBs) observed in this disorder. This review provides an up to date summary of the LRRK2 field to understand its physiological role in the autophagy pathway in neurons and related cells. Careful assessment of how LRRK2 participates in the regulation of phagophore and autophagosome formation, autophagosome and lysosome fusion, lysosomal maturation, maintenance of lysosomal pH and calcium levels, and lysosomal protein degradation are addressed. The autophagy pathway is a complex cellular process and due to the variety of LRRK2 models studied in the field, associated phenotypes have been reported to be seemingly conflicting. This review provides an in-depth discussion of different models to assess the normal and disease-associated role of the LRRK2 protein on autophagic function. Given the importance of the autophagy pathway in Parkinson's pathogenesis it is particularly relevant to focus on the role of LRRK2 to discover novel therapeutic approaches that restore lysosomal protein degradation homeostasis.
Collapse
Affiliation(s)
- Marta Madureira
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Xiang H, Zhang J, Lin C, Zhang L, Liu B, Ouyang L. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm Sin B 2020; 10:569-581. [PMID: 32322463 PMCID: PMC7161711 DOI: 10.1016/j.apsb.2019.10.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy, defined as a scavenging process of protein aggregates and damaged organelles mediated by lysosomes, plays a significant role in the quality control of macromolecules and organelles. Since protein kinases are integral to the autophagy process, it is critically important to understand the role of kinases in autophagic regulation. At present, intervention of autophagic processes by small-molecule modulators targeting specific kinases has becoming a reasonable and prevalent strategy for treating several varieties of human disease, especially cancer. In this review, we describe the role of some autophagy-related kinase targets and kinase-mediated phosphorylation mechanisms in autophagy regulation. We also summarize the small-molecule kinase inhibitors/activators of these targets, highlighting the opportunities of these new therapeutic agents.
Collapse
Key Words
- 4E-BP1, eukaryotic translation initiation factor 4E-binding protein
- AKT1, AKT serine/threonine kinase 1
- AMBRA1, autophagy/beclin-1 regulator 1
- AMPK, AMP-activated protein kinase
- ARF, auxin response factor gene
- ATG, autophagy-related protein
- Autophagy
- Autophagy-related kinase
- CaMKK2, calcium/calmodulin-dependent protein kinase kinase 2
- DAPK, death associated protein kinase
- FIP200, FAK family kinase-interacting protein of 200 kDa
- GAP, GTPase-activating protein
- GO, gene ontology
- GSK3α, glycogen synthase kinase 3 alpha
- HMGB1, high mobility group protein B1
- Human disease therapy
- JNK1, C-Jun N-terminal kinase
- LC3, microtubule-associated protein 1 light chain 3
- LKB1, serine/threonine-protein kinase stk11
- LPS, lipopolysaccharide
- LRRK2, leucine rich repeat kinase 2
- PD, Parkinson's disease
- PI, phosphatidylinositol
- PI3 kinase, phosphoinositide 3-kinase
- PI3P, phosphatidylinositol triphosphate
- PIM2, proviral insertion in murine lymphomas 2
- PINK1, PTEN-induced putative kinase 1
- PIP2, phosphatidylinositol-4,5-bisphosphate
- PKACα, a protein kinase cAMP-activated catalytic subunit alpha
- PKCα, protein kinase C alpha type
- PKD1, polycystin-1
- PPIs, protein–protein interactions
- PROTAC, proteolysis targeting chimeras
- PTMs, post-translational modifications
- Phosphorylation
- Protein kinases
- Rheb, the RAS homolog enriched in brain
- Small-molecule kinase inhibitors/activators
- TAK1, transforming growth factor activated kinase-1
- TFEB, transcription factor EB
- TNBC, triple-negative breast cancer
- TSC1/2, tuberous sclerosis complex proteins 1/2
- ULK complex, ULK1–mATG13–FIP200–ATG101 complex
- ULK1, unc-51-like kinase 1
- UVRAG, ultraviolet resistance-associated gene
- mTOR, mammalian target of rapamycin
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Honggang Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Wallings R, Connor-Robson N, Wade-Martins R. LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function. Hum Mol Genet 2020; 28:2696-2710. [PMID: 31039583 PMCID: PMC6687951 DOI: 10.1093/hmg/ddz088] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lysosomal dysfunction lies at the centre of the cellular mechanisms underlying Parkinson’s disease although the precise underlying mechanisms remain unknown. We investigated the role of leucine-rich repeat kinase 2 (LRRK2) on lysosome biology and the autophagy pathway in primary neurons expressing the human LRRK2-G2019S or LRKK2-R1441C mutant or the human wild-type (hWT-LRRK2) genomic locus. The expression of LRRK2-G2019S or hWT-LRRK2 inhibited autophagosome production, whereas LRRK2-R1441C induced a decrease in autophagosome/lysosome fusion and increased lysosomal pH. In vivo data from the cortex and substantia nigra pars compacta of aged LRRK2 transgenic animals revealed alterations in autophagosome puncta number reflecting those phenotypes seen in vitro. Using the two selective and potent LRRK2 kinase inhibitors, MLi-2 and PF-06447475, we demonstrated that the LRRK2-R1441C-mediated decrease in autolysosome maturation is not dependent on LRRK2 kinase activity. We showed that hWT-LRRK2 and LRRK2-G2019S bind to the a1 subunit of vATPase, which is abolished by the LRRK2-R1441C mutation, leading to a decrease in a1 protein and cellular mislocalization. Modulation of lysosomal zinc increased vATPase a1 protein levels and rescued the LRRK2-R1441C-mediated cellular phenotypes. Our work defines a novel interaction between the LRRK2 protein and the vATPase a1 subunit and demonstrates a mode of action by which drugs may rescue lysosomal dysfunction. These results demonstrate the importance of LRRK2 in lysosomal biology, as well as the critical role of the lysosome in PD.
Collapse
Affiliation(s)
- Rebecca Wallings
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
37
|
LRRK2 regulation of immune-pathways and inflammatory disease. Biochem Soc Trans 2020; 47:1581-1595. [PMID: 31769472 PMCID: PMC6925522 DOI: 10.1042/bst20180463] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease but are also found in immune-related disorders such as inflammatory bowel disease, tuberculosis and leprosy. LRRK2 is highly expressed in immune cells and has been functionally linked to pathways pertinent to immune cell function, such as cytokine release, autophagy and phagocytosis. Here, we examine the current understanding of the role of LRRK2 kinase activity in pathway regulation in immune cells, drawing upon data from multiple diseases associated with LRRK2 to highlight the pleiotropic effects of LRRK2 in different cell types. We discuss the role of the bona fide LRRK2 substrate, Rab GTPases, in LRRK2 pathway regulation as well as downstream events in the autophagy and inflammatory pathways.
Collapse
|
38
|
Cogo S, Manzoni C, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J Neurochem 2020; 152:273-283. [PMID: 31693760 DOI: 10.1111/jnc.14908] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Over the last two decades, a number of studies have underlined the importance of lysosomal-based degradative pathways in maintaining the homeostasis of post-mitotic cells, and revealed the remarkable contribution of a functional autophagic machinery in the promotion of longevity. In contrast, defects in the clearance of organelles and aberrant protein aggregates have been linked to accelerated neuronal loss and neurological dysfunction. Several neurodegenerative disorders, among which Alzheimer disease (AD), Frontotemporal dementia, and Amyotrophic Lateral Sclerosis to name a few, are associated with alterations of the autophagy and endo-lysosomal pathways. In Parkinson disease (PD), the most prevalent genetic determinant, Leucine-rich repeat kinase 2 (LRRK2), is believed to be involved in the regulation of intracellular vesicle traffic, autophagy and lysosomal function. Here, we review the current understanding of the mechanisms by which LRRK2 regulates lysosomal-based degradative pathways in neuronal and non-neuronal cells and discuss the impact of pathogenic PD mutations in contributing to lysosomal dyshomeostasis.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
39
|
Sironi L, Restelli LM, Tolnay M, Neutzner A, Frank S. Dysregulated Interorganellar Crosstalk of Mitochondria in the Pathogenesis of Parkinson's Disease. Cells 2020; 9:cells9010233. [PMID: 31963435 PMCID: PMC7016713 DOI: 10.3390/cells9010233] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder, is complex and involves the impairment of crucial intracellular physiological processes. Importantly, in addition to abnormal α-synuclein aggregation, the dysfunction of various mitochondria-dependent processes has been prominently implicated in PD pathogenesis. Besides the long-known loss of the organelles’ bioenergetics function resulting in diminished ATP synthesis, more recent studies in the field have increasingly focused on compromised mitochondrial quality control as well as impaired biochemical processes specifically localized to ER–mitochondria interfaces (such as lipid biosynthesis and calcium homeostasis). In this review, we will discuss how dysregulated mitochondrial crosstalk with other organelles contributes to PD pathogenesis.
Collapse
Affiliation(s)
- Lara Sironi
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
- Correspondence: (L.S.); (S.F.); Tel.: +41-61-265-2776 (L.S. & S.F.)
| | - Lisa Michelle Restelli
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
| | - Markus Tolnay
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
- Department of Ophthalmology University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (L.M.R.); (M.T.)
- Correspondence: (L.S.); (S.F.); Tel.: +41-61-265-2776 (L.S. & S.F.)
| |
Collapse
|
40
|
Berwick DC, Heaton GR, Azeggagh S, Harvey K. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same. Mol Neurodegener 2019; 14:49. [PMID: 31864390 PMCID: PMC6925518 DOI: 10.1186/s13024-019-0344-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson’s disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places.
Collapse
Affiliation(s)
- Daniel C Berwick
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - George R Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sonia Azeggagh
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
41
|
Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019; 13:1352. [PMID: 31920513 PMCID: PMC6928047 DOI: 10.3389/fnins.2019.01352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson’s disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson’s disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson’s disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson’s disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson’s disease is clinically and neuropathologically similar to idiopathic Parkinson’s disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson’s disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.
Collapse
Affiliation(s)
- Federica Albanese
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
42
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
43
|
Takagawa T, Kitani A, Fuss I, Levine B, Brant SR, Peter I, Tajima M, Nakamura S, Strober W. An increase in LRRK2 suppresses autophagy and enhances Dectin-1-induced immunity in a mouse model of colitis. Sci Transl Med 2019; 10:10/444/eaan8162. [PMID: 29875204 DOI: 10.1126/scitranslmed.aan8162] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/23/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
The LRRK2/MUC19 gene region constitutes a high-risk genetic locus for the occurrence of both inflammatory bowel diseases (IBDs) and Parkinson's disease. We show that dendritic cells (DCs) from patients with Crohn's disease (CD) and lymphoblastoid cell lines derived from patients without CD but bearing a high-risk allele (rs11564258) at this locus as heterozygotes exhibited increased LRRK2 expression in vitro. To investigate the immunological consequences of this increased LRRK2 expression, we conducted studies in transgenic mice overexpressing Lrrk2 and showed that these mice exhibited more severe colitis induced by dextran sodium sulfate (DSS) than did littermate control animals. This increase in colitis severity was associated with lamina propria DCs that showed increased Dectin-1-induced NF-κB activation and proinflammatory cytokine secretion. Colitis severity was driven by LRRK2 activation of NF-κB pathway components including the TAK1 complex and TRAF6. Next, we found that membrane-associated LRRK2 (in association with TAB2) caused inactivation of Beclin-1 and inhibition of autophagy. HCT116 colon epithelial cells lacking Beclin-1 exhibited increased LRRK2 expression compared to wild-type cells, suggesting that inhibition of autophagy potentially could augment LRRK2 proinflammatory signaling. We then showed that LRRK2 inhibitors decreased Dectin-1-induced TNF-α production by mouse DCs and ameliorated DSS-induced colitis, both in control and Lrrk2 transgenic animals. Finally, we demonstrated that LRRK2 inhibitors blocked TNF-α production by cultured DCs from patients with CD. Our findings suggest that normalization of LRRK2 activation could be a therapeutic approach for treating IBD, regardless of whether a LRRK2 risk allele is involved.
Collapse
Affiliation(s)
- Tetsuya Takagawa
- Division of Internal Medicine, Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Nishinomiya 663-8501, Japan.,Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth Levine
- Departments of Internal Medicine and Microbiology, Center for Autophagy Research, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masaki Tajima
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiro Nakamura
- Division of Internal Medicine, Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Schmeisser K, Parker JA. Pleiotropic Effects of mTOR and Autophagy During Development and Aging. Front Cell Dev Biol 2019; 7:192. [PMID: 31572724 PMCID: PMC6749033 DOI: 10.3389/fcell.2019.00192] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Autophagy as a ubiquitous catabolic process causes degradation of cytoplasmic components and is generally considered to have beneficial effects on health and lifespan. In contrast, inefficient autophagy has been linked with detrimental effects on the organism and various diseases, such as Parkinson's disease. Previous research, however, showed that this paradigm is far from being black and white. For instance, it has been reported that increased levels of autophagy during development can be harmful, but become advantageous in the aging cell or organism, causing enhanced healthspan and even longevity. The antagonistic pleiotropy hypothesis postulates that genes, which control various traits in an organism, can be fitness-promoting in early life, but subsequently trigger aging processes later. Autophagy is controlled by the mechanistic target of rapamycin (mTOR), a key player of nutrient sensing and signaling and classic example of a pleiotropic gene. mTOR acts upstream of transcription factors such as FOXO, NRF, and TFEB, controlling protein synthesis, degradation, and cellular growth, thereby regulating fertility as well as aging. Here, we review recent findings about the pleiotropic role of autophagy during development and aging, examine the upstream factors, and contemplate specific mechanisms leading to disease, especially neurodegeneration.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - J Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
45
|
Pan H, Wang Y, Na K, Wang Y, Wang L, Li Z, Guo C, Guo D, Wang X. Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation. Cell Death Dis 2019; 10:456. [PMID: 31186406 PMCID: PMC6560101 DOI: 10.1038/s41419-019-1653-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Targeting autophagy may serve as a promising strategy for cancer therapy. Ganoderma lucidum polysaccharide (GLP) has been shown to exert promising anti-cancer effects. However, the underlying mechanisms remain elusive. Whether GLP regulates autophagy in cancer has never been reported. In this study, GLP induced the initiation of autophagy in colorectal cancer (CRC) HT-29 and HCT116 cells, as evidenced by enhanced level of LC3-II protein, GFP-LC3 puncta, and increased formation of double membrane vacuoles. However, GLP treatment caused marked increase of p62 expression. Addition of late stage autophagy inhibitor, chloroquine (CQ), further enhanced LC3-II and p62 level, as well as increased autophagosome accumulation, suggesting a blockage of autophagic flux by GLP in CRC cells. We then found GLP blocked autophagosome and lysosome fusion as determined by mRFP-GFP-LC3 colocalization analysis. Mechanistic study revealed that GLP-induced disruption of autophagosome-lysosome fusion is due to reduced lysosome acidification and lysosomal cathepsin activities. Cell viability and flow cytometry assays revealed that GLP-induced autophagosome accumulation is responsible for GLP-induced apoptosis in CRC cells. In line with this, inhibition of autophagy initiation by 3-methyladenine (3-MA), an early stage autophagy inhibitor, attenuated GLP-induced apoptosis. In contrast, suppression of autophagy at late stage by CQ enhanced the anti-cancer effect of GLP. Furthermore, we demonstrated that GLP-induced autophagosome accumulation and apoptosis is mediated via MAPK/ERK activation. Finally, GLP inhibited tumor growth and also inhibited autophagic flux in vivo. These results unveil new molecular mechanism underlying anti-cancer effects of GLP, suggesting that GLP is a potent autophagy inhibitor and might be useful in anticancer therapy.
Collapse
Affiliation(s)
- Haitao Pan
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Yujie Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Kun Na
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Zhenhao Li
- Zhejiang Shouxiangu Institute of Rare Medicine Plant, 12, Huanglong 3rd Road, 321200, Wuyi, Zhejiang, China
| | - Chengjie Guo
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Dandan Guo
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Xingya Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Anwar T, Liu X, Suntio T, Marjamäki A, Biazik J, Chan EYW, Varjosalo M, Eskelinen EL. ER-Targeted Beclin 1 Supports Autophagosome Biogenesis in the Absence of ULK1 and ULK2 Kinases. Cells 2019; 8:cells8050475. [PMID: 31108943 PMCID: PMC6562811 DOI: 10.3390/cells8050475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy transports cytoplasmic material and organelles to lysosomes for degradation and recycling. Beclin 1 forms a complex with several other autophagy proteins and functions in the initiation phase of autophagy, but the exact role of Beclin 1 subcellular localization in autophagy initiation is still unclear. In order to elucidate the role of Beclin 1 localization in autophagosome biogenesis, we generated constructs that target Beclin 1 to the endoplasmic reticulum (ER) or mitochondria. Our results confirmed the proper organelle-specific targeting of the engineered Beclin 1 constructs, and the proper formation of autophagy-regulatory Beclin 1 complexes. The ULK kinases are required for autophagy initiation upstream of Beclin 1, and autophagosome biogenesis is severely impaired in ULK1/ULK2 double knockout cells. We tested whether Beclin 1 targeting facilitated its ability to rescue autophagosome formation in ULK1/ULK2 double knockout cells. ER-targeted Beclin 1 was most effective in the rescue experiments, while mitochondria-targeted and non-targeted Beclin 1 also showed an ability to rescue, but with lower activity. However, none of the constructs was able to increase autophagic flux in the knockout cells. We also showed that wild type Beclin 1 was enriched on the ER during autophagy induction, and that ULK1/ULK2 facilitated the ER-enrichment of Beclin 1 under basal conditions. The results suggest that one of the functions of ULK kinases may be to enhance Beclin 1 recruitment to the ER to drive autophagosome formation.
Collapse
Affiliation(s)
- Tahira Anwar
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland.
| | - Xiaonan Liu
- Institute of Biotechnology & HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Taina Suntio
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Annika Marjamäki
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland.
| | - Joanna Biazik
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland.
| | - Edmond Y W Chan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Markku Varjosalo
- Institute of Biotechnology & HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Eeva-Liisa Eskelinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland.
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
47
|
Funk N, Munz M, Ott T, Brockmann K, Wenninger-Weinzierl A, Kühn R, Vogt-Weisenhorn D, Giesert F, Wurst W, Gasser T, Biskup S. The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Sci Rep 2019; 9:4515. [PMID: 30872638 PMCID: PMC6418296 DOI: 10.1038/s41598-019-40808-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations within Leucine-rich repeat kinase 2 (LRRK2) are associated with late-onset Parkinson's disease. The physiological function of LRRK2 and molecular mechanism underlying the pathogenic role of LRRK2 mutations remain uncertain. Here, we investigated the role of LRRK2 in intracellular signal transduction. We find that deficiency of Lrrk2 in rodents affects insulin-dependent translocation of glucose transporter type 4 (GLUT4). This deficit is restored during aging by prolonged insulin-dependent activation of protein kinase B (PKB, Akt) and Akt substrate of 160 kDa (AS160), and is compensated by elevated basal expression of GLUT4 on the cell surface. Furthermore, we find a crucial role of Rab10 phosphorylation by LRRK2 for efficient insulin signal transduction. Translating our findings into human cell lines, we find comparable molecular alterations in fibroblasts from Parkinson's patients with the known pathogenic G2019S LRRK2 mutation. Our results highlight the role of LRRK2 in insulin-dependent signalling with potential therapeutic implications.
Collapse
Affiliation(s)
- Natalja Funk
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany.
| | - Marita Munz
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Thomas Ott
- IZKF Facility for Transgenic Animals, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Andrea Wenninger-Weinzierl
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Ralf Kühn
- Max-Delbrueck-Center for Moleculare Medizin and Berlin Institute of Health, Berlin, Germany
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
| | - Daniela Vogt-Weisenhorn
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
| | - Florian Giesert
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum Muenchen, Technical University Muenchen-Weihenstephan, Institute of Developmental Genetics, Neuherberg, Germany
- German Center for Neurodegenerative Diseases, Munich, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany
| | - Saskia Biskup
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany.
| |
Collapse
|
48
|
Sun Y, Cai Y, Zang QS. Cardiac Autophagy in Sepsis. Cells 2019; 8:cells8020141. [PMID: 30744190 PMCID: PMC6406743 DOI: 10.3390/cells8020141] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a leading cause of death in intensive care units, and cardiac dysfunction is an identified serious component of the multi-organ failure associated with this critical condition. This review summarized the current discoveries and hypotheses of how autophagy changes in the heart during sepsis and the underlying mechanisms. Recent investigations suggest that specific activation of autophagy initiation factor Beclin-1 has a potential to protect cardiac mitochondria, attenuate inflammation, and improve cardiac function in sepsis. Accordingly, pharmacological interventions targeting this pathway have a potential to become an effective approach to control sepsis outcomes. The role of autophagy during sepsis pathogenesis has been under intensive investigation in recent years. It is expected that developing therapeutic approaches with specificities targeting at autophagy regulatory factors may provide new opportunities to alleviate organ dysfunction caused by maladaptive autophagy during sepsis.
Collapse
Affiliation(s)
- Yuxiao Sun
- Departments of Surgery, University of Texas Southwestern Medical Center, 75390 Dallas, TX, USA.
| | - Ying Cai
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| | - Qun S Zang
- Departments of Surgery, University of Texas Southwestern Medical Center, 75390 Dallas, TX, USA.
| |
Collapse
|
49
|
Weykopf B, Haupt S, Jungverdorben J, Flitsch LJ, Hebisch M, Liu G, Suzuki K, Belmonte JCI, Peitz M, Blaess S, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson's disease. Eur J Neurosci 2019; 49:561-589. [PMID: 30656775 PMCID: PMC7114274 DOI: 10.1111/ejn.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in cell reprogramming have enabled assessment of disease-related cellular traits in patient-derived somatic cells, thus providing a versatile platform for disease modeling and drug development. Given the limited access to vital human brain cells, this technology is especially relevant for neurodegenerative disorders such as Parkinson's disease (PD) as a tool to decipher underlying pathomechanisms. Importantly, recent progress in genome-editing technologies has provided an ability to analyze isogenic induced pluripotent stem cell (iPSC) pairs that differ only in a single genetic change, thus allowing a thorough assessment of the molecular and cellular phenotypes that result from monogenetic risk factors. In this review, we summarize the current state of iPSC-based modeling of PD with a focus on leucine-rich repeat kinase 2 (LRRK2), one of the most prominent monogenetic risk factors for PD linked to both familial and idiopathic forms. The LRRK2 protein is a primarily cytosolic multi-domain protein contributing to regulation of several pathways including autophagy, mitochondrial function, vesicle transport, nuclear architecture and cell morphology. We summarize iPSC-based studies that contributed to improving our understanding of the function of LRRK2 and its variants in the context of PD etiopathology. These data, along with results obtained in our own studies, underscore the multifaceted role of LRRK2 in regulating cellular homeostasis on several levels, including proteostasis, mitochondrial dynamics and regulation of the cytoskeleton. Finally, we expound advantages and limitations of reprogramming technologies for disease modeling and drug development and provide an outlook on future challenges and expectations offered by this exciting technology.
Collapse
Affiliation(s)
- Beatrice Weykopf
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
- Precision Neurology Program & Advanced Center for Parkinson's Disease ResearchHarvard Medical School and Brigham & Women's HospitalBostonMassachusetts
| | | | - Johannes Jungverdorben
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Memorial Sloan Kettering Cancer CenterNew York CityNew York
| | - Lea Jessica Flitsch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Matthias Hebisch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Guang‐Hui Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Keiichiro Suzuki
- Gene Expression LaboratoryThe Salk Institute for Biological StudiesLa JollaCalifornia
| | | | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Sandra Blaess
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Andreas Till
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| |
Collapse
|
50
|
Cresto N, Gardier C, Gubinelli F, Gaillard MC, Liot G, West AB, Brouillet E. The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease. Eur J Neurosci 2019; 49:339-363. [PMID: 30269383 PMCID: PMC6391223 DOI: 10.1111/ejn.14182] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Our understanding of the mechanisms underlying Parkinson's disease, the once archetypical nongenetic neurogenerative disorder, has dramatically increased with the identification of α-synuclein and LRRK2 pathogenic mutations. While α-synuclein protein composes the aggregates that can spread through much of the brain in disease, LRRK2 encodes a multidomain dual-enzyme distinct from any other protein linked to neurodegeneration. In this review, we discuss emergent datasets from multiple model systems that suggest these unlikely partners do interact in important ways in disease, both within cells that express both LRRK2 and α-synuclein as well as through more indirect pathways that might involve neuroinflammation. Although the link between LRRK2 and disease can be understood in part through LRRK2 kinase activity (phosphotransferase activity), α-synuclein toxicity is multilayered and plausibly interacts with LRRK2 kinase activity in several ways. We discuss common protein interactors like 14-3-3s that may regulate α-synuclein and LRRK2 in disease. Finally, we examine cellular pathways and outcomes common to both mutant α-synuclein expression and LRRK2 activity and points of intersection. Understanding the interplay between these two unlikely partners in disease may provide new therapeutic avenues for PD.
Collapse
Affiliation(s)
- Noémie Cresto
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Camille Gardier
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Géraldine Liot
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Andrew B. West
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States 35294
| | - Emmanuel Brouillet
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| |
Collapse
|