1
|
Bernardoni BL, D'Agostino I, Siragusa S, Mori M, Garavaglia S, La Motta C. A scaffold repositioning approach: dihydroBenzoImidazoTriazineDione (BITD) derivatives as selective ALDH1A1 inhibitors. Mol Divers 2025:10.1007/s11030-025-11179-6. [PMID: 40185985 DOI: 10.1007/s11030-025-11179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The overexpression of the Aldehyde Dehydrogenases 1A subfamily (ALDH1As) in various diseases, particularly in cancer, has made it an important target for therapeutic applications. Interestingly, the 1A1 isoenzyme plays a role in tumor initiation and progression, being identified as a biomarker for cancer stem cells. However, although promising, current ALDH1A1 inhibitors suffer from a lack of isoform selectivity and off-target toxicity. This study aims to address these limitations by developing a new class of ALDH1A1-selective inhibitors. By leveraging structural analogies with Isatin-based ALDH1A1 inhibitors, we designed compounds containing a dihydrobenzo[4,5]imidazo[2,1-c][1,2,4]triazine-3,4-dione (BITD) core, that emerged from a repositioning approach. Using a microwave-assisted protocol, a small library of derivatives was synthesized, and enzymatic assays highlighted a promising isoform specificity for ALDH1A1 among ALDH1As, with the best-in-class compound 5, showing an inhibition of the enzyme activity of 86% for ALDH1A1 and no inhibition for 1A2 and 1A3 isoenzymes. In silico studies further elucidated the binding mode of 5, providing a rational basis for the observed selectivity. These findings represent a promising strategy for the development of more selective ALDH1A1 inhibitors, laying the foundation for further optimization processes.
Collapse
Affiliation(s)
| | | | - Sonia Siragusa
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy.
| | | |
Collapse
|
2
|
Sharma R, Mendez K, Begum S, Chu S, Prince N, Hecker J, Kelly RS, Chen Q, Wheelock CE, Celedón JC, Clish C, Gertszen R, Tantisira KG, Weiss ST, Lasky-Su J, McGeachie M. miRNAome-metabolome wide association study reveals effects of miRNA regulation in eosinophilia and airflow obstruction in childhood asthma. EBioMedicine 2025; 112:105534. [PMID: 39740296 PMCID: PMC11750448 DOI: 10.1016/j.ebiom.2024.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma. METHODS We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (NBaseline = 312 and NEnd of trial = 454). We conducted a meta-analysis of the two cohorts to identify common contemporaneous associations between CAMP and GACRS (false-discovery rate (FDR) = 0.05). We assessed persistent miRNA-metabolome associations using baseline miRNAs and metabolomic profiling in CAMP at the end of the trial. The relation between miRNAs, metabolites and clinical phenotypes, including airway hyper-responsiveness (AHR), peripheral blood eosinophilia, and airflow obstruction, were then assessed via. Mediation analysis with 1000 bootstraps at an FDR significance level of 0.05. FINDINGS The meta-analysis yielded a total of 369 significant contemporaneous associations, involving 133 miRNAs and 60 metabolites. We identified 13 central hub metabolites (taurine, 12,13-diHOME, sebacate, 9-cis-retinoic acid, azelate, asparagine, C5:1 carnitine, cortisol, 3-methyladipate, inosine, NMMA, glycine, and Pyroglutamic acid) and four hub miRNAs (hsa-miR-186-5p, hsa-miR-143-3p, hsa-miR-192-5p, and hsa-miR-223-3p). Nine of these associations, between eight miRNAs and eight metabolites, were persistent in CAMP from baseline to the end of trial. Finally, five central hub metabolites (9-cis-retinoic acid, taurine, sebacate, azelate, and 12,13-diHOME) were identified as primary mediators in over 100 significant indirect miRNA-metabolite associations, with a collective influence on peripheral blood eosinophilia, AHR, and airflow obstruction. INTERPRETATION The robust association between miRNAs and metabolites, along with the substantial indirect impact of miRNAs via 5 hub metabolites on multiple clinical asthma metrics, suggests important integrated effects of miRNAs and metabolites on asthma. These findings imply that the indirect regulation of metabolism and cellular functions by miRNA influences Th2 inflammation, AHR, and airflow obstruction in childhood asthma. FUNDING Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Chemistry, Edith Cowan University, Perth, Australia
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Robert Gertszen
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Ko JH, Jeong KH, Son SB, Lee JY. Structural analysis of ExaC, an NAD +-dependent aldehyde dehydrogenase, from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2025; 742:151077. [PMID: 39642707 DOI: 10.1016/j.bbrc.2024.151077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (Pa) utilizes ethanol as an energy source, however, ethanol metabolism generates acetaldehyde, a toxic byproduct. To mitigate this toxicity, P. aeruginosa employs aldehyde dehydrogenases (ALDHs) to oxidize acetaldehyde into less harmful compounds. ExaC, an NAD+-dependent ALDH from P. aeruginosa (PaExaC) and a member of group X ALDHs, plays a critical role in this detoxification by oxidizing both aldehydes and hydrazones. In this study, we determined the crystal structures of PaExaC in its apo and NAD+ -bound forms. PaExaC functions as a homodimer, with three distinct domains: an NAD+ binding domain, a catalytic domain, and an oligomerization domain. Structural analyses revealed that PaExaC's substrate entry channel (SEC) is optimized for size-selective aldehyde metabolism, with Leu120, Tyr462, and Thr302. Comparative structural and docking analyses with other ALDHs further validated PaExaC's preference for small aliphatic aldehydes and hydrazones. These findings highlight PaExaC's role in aldehyde detoxification, facilitating P. aeruginosa survival in diverse environments, and provide structural insights for developing targeted inhibitors to help treat infections.
Collapse
Affiliation(s)
- Ji Hyuk Ko
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Su Bin Son
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
4
|
Cesaro S, Orlando M, Bettin I, Longo C, Spagnoli G, de Laureto PP, Molla G, Bertoldi M. A crucial active site network of titratable residues guides catalysis and NAD + binding in human succinic semialdehyde dehydrogenase. Protein Sci 2025; 34:e70024. [PMID: 39731543 DOI: 10.1002/pro.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD+-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay. Due to the poor characterization of this enzyme, we carried out evolutionary and kinetic investigations to contribute to its functional behavior, a prerequisite to interpreting pathogenic variants. An in silico analysis shows that succinic semialdehyde dehydrogenases belong to two families, one human-like and the other of bacterial origin, differing in the oligomeric state and in a network of active site residues. This information is coupled to the biophysical-biochemical characterization of the human recombinant enzyme uncovering that (i) catalysis proceeds by an ordered bi-bi mechanism with NAD+ binding before the aldehyde that exerts a partial non-competitive inhibition; (ii) a stabilizing complex between the catalytic Cys340 and NAD+ is observed and interpreted as a protective mechanism; and (iii) a concerted non-covalent network assists the action of the catalytic residues Cys340 and Glu306. Through mutational analyses of Lys214, Glu306, Cys340, and Glu515 associated with pH studies, we showed that NAD+ binding is controlled by the dyad Lys214-Glu515. Moreover, catalysis is assured by proton transfer exerted by the same dyad networked with the catalytic Glu306, involved in catalytic Cys340 deprotonation/reprotonation. The identification of this weak bond network essential for cofactor binding and catalysis represents a first step to tackling the molecular basis for its deficiency.
Collapse
Affiliation(s)
- Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Department of Biotechnology e Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
- Department of Biology, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Carmen Longo
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Giulia Spagnoli
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
5
|
ROZA D, FADHILAH G, INDRIANI E, WILIRANTI YA, JUWITANINGSIH T. Evaluation of Anticancer and Antioxidant Activities ( In Vitro Studies) of Coffee Stem Parasite Extract [ Scurrula ferruginea (Roxb. ex Jack) Danser] and In Silico Studies of its Isolate. Turk J Pharm Sci 2024; 21:463-473. [PMID: 39569710 PMCID: PMC11600323 DOI: 10.4274/tjps.galenos.2023.26243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 11/22/2024]
Abstract
Objectives The coffee parasite Scurrula ferruginea (Roxb. ex Jack) Danser has been shown to exhibit various biological activities. Based on previous pharmacological studies, coffee parasites are effective for treating cancer or cytotoxicity and are vasorelaxant. The aim of this study was to examine the potential of the worm S. ferruginea (Roxb. ex Jack): danser on coffee stems as a natural anticancer. Materials and Methods In silico and in vitro studies have been conducted on coffee stem parasite extracts to analyze compounds that have the potential to act as human epidermal growth factor 2 (HER2) inhibitors, the antioxidant activity of the extract, and the extract's ability to act as an anticancer agent against HeLa and MCF-7 cells. Results The results show that several components of the coffee stem parasite extract, including flavonoids and fatty acids, have the potential to act as HER2 inhibitors. The coffee stem parasite extract has strong antioxidant activity with an IC50 of 59,736 ppm and it is inactive against cancer cells. Characterization using gas chromatography-mass spectrometry revealed the presence of bis (2-Ethylhexyl) phthalate (C24H38O4) in the coffee stem parasite extract, which is toxic as an anticancer drug. Conclusion Although coffee stem parasite extract does not function as an anti-cancer agent, its strong antioxidant activity has potential for other applications.
Collapse
Affiliation(s)
- Destria ROZA
- Medan State University Faculty of Mathematics and Natural Sciences, Chemistry Study Program, Medan, Indonesia
| | - Gianna FADHILAH
- National Taiwan University of Science and Technology, Department of Chemical Engineering, Taipei, Taiwan
| | - Eka INDRIANI
- Medan State University Faculty of Mathematics and Natural Sciences, Chemistry Study Program, Medan, Indonesia
| | - Yuli Asih WILIRANTI
- Medan State University Faculty of Mathematics and Natural Sciences, Chemistry Study Program, Medan, Indonesia
| | - Tita JUWITANINGSIH
- Medan State University Faculty of Mathematics and Natural Sciences, Chemistry Study Program, Medan, Indonesia
| |
Collapse
|
6
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
7
|
Zhang Y, Yu H, Ye L. From β-Carotene to Retinoids: A Review of Microbial Production of Vitamin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20752-20762. [PMID: 39285668 DOI: 10.1021/acs.jafc.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from β-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.
Collapse
Affiliation(s)
- Yijun Zhang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Magrassi L, Pinton G, Luzzi S, Comincini S, Scravaglieri A, Gigliotti V, Bernardoni BL, D’Agostino I, Juretich F, La Motta C, Garavaglia S. A New Vista of Aldehyde Dehydrogenase 1A3 (ALDH1A3): New Specific Inhibitors and Activity-Based Probes Targeting ALDH1A3 Dependent Pathways in Glioblastoma, Mesothelioma and Other Cancers. Cancers (Basel) 2024; 16:2397. [PMID: 39001459 PMCID: PMC11240489 DOI: 10.3390/cancers16132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Aldehyde dehydrogenases of the subfamily 1A (ALDH1A) are enzymes necessary for the oxidation of all-trans or 9-cis retinal to retinoic acid (RA). Retinoic acid and its derivatives are important for normal development and maintenance of epithelia, reproduction, memory, and immune function in adults. Moreover, in recent years, it has been demonstrated that ALDH1A members are also expressed and functional in several human cancers where their role is not limited to the synthesis of RA. Here, we review the current knowledge about ALDH1A3, one of the 1A isoforms, in cancers with an emphasis on two of the deadliest tumors that affect humans: glioblastoma multiforme and mesothelioma. In both tumors, ALDH1A3 is considered a negative prognostic factor, and its level correlates with excessive proliferation, chemoresistance, and invasiveness. We also review the recent attempts to develop both ALDH1A3-selective inhibitors for cancer therapy and ALDH1A3-specific fluorescent substrates for fluorescence-guided tumor resection.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
- Istituto di Genetica Molecolare—CNR, 27100 Pavia, Italy
| | - Giulia Pinton
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Sabino Luzzi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Sergio Comincini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Andrea Scravaglieri
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Valentina Gigliotti
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Bianca Laura Bernardoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Francesca Juretich
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Silvia Garavaglia
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| |
Collapse
|
9
|
Cazacu N, Stan DL, Târcă R, Chilom CG. Binding of flavonoids to yeast aldehyde dehydrogenase: a molecular mechanism and computational approach. J Biomol Struct Dyn 2023; 41:11247-11254. [PMID: 36571489 DOI: 10.1080/07391102.2022.2160820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
The interaction of three flavonoids, apigenin, fisetin and quercetin with yeast aldehyde dehydrogenase, ALDH was studied by spectroscopic and molecular docking methods. A combination of both static and dynamic processes interaction mechanism for the binding of flavonoids with ALDH was found. The interaction takes place with moderate binding and the interaction was driven by hydrophobic contacts. The microenvironments of the fluorescent amino acids changed upon flavonoids binding. The distances between ALDH and flavonoids determined by Förster Resonant Energy Transfer (FRET) confirmed the results obtained by fluorescence. The structure of ALDH against thermal denaturation was stabilized by apigenin and destabilized by fisetin and quercetin. Molecular docking simulation showed that all flavonoids bind to the same site of ALDH and confirmed the moderate binding straight found in fluorescence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Diana L Stan
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Raluca Târcă
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
10
|
Duan JJ, Cai J, Gao L, Yu SC. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. J Enzyme Inhib Med Chem 2023; 38:2166035. [PMID: 36651035 PMCID: PMC9858439 DOI: 10.1080/14756366.2023.2166035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High aldehyde dehydrogenase (ALDH) activity is a metabolic feature of adult stem cells and various cancer stem cells (CSCs). The ALDEFLUOR system is currently the most commonly used method for evaluating ALDH enzyme activity in viable cells. This system is applied extensively in the isolation of normal stem cells and CSCs from heterogeneous cell populations. For many years, ALDH1A1 has been considered the most important subtype among the 19 ALDH family members in determining ALDEFLUOR activity. However, in recent years, studies of many types of normal and tumour tissues have demonstrated that other ALDH subtypes can also significantly influence ALDEFLUOR activity. In this article, we briefly review the relationships between various members of the ALDH family and ALDEFLUOR activity. The clinical significance of these ALDH isoforms in different cancers and possible directions for future studies are also summarised.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Jiao Cai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital; Third Medical University (Army Medical University), Chongqing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China,Jin-feng Laboratory, Chongqing, China,CONTACT Shi-Cang Yu Department of Stem Cell and Regenerative Medicine, Third Military Medical University (Army Medical University), Chongqing400038, China
| |
Collapse
|
11
|
Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 2023; 19:756-770. [PMID: 37752323 DOI: 10.1038/s41581-023-00767-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily S Sumrall
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Markus Bitzer
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Mullin NK, Voigt AP, Boese EA, Liu X, Stone EM, Tucker BA, Mullins RF. Transcriptomic and Chromatin Accessibility Analysis of the Human Macular and Peripheral Retinal Pigment Epithelium at the Single-Cell Level. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1750-1761. [PMID: 36775060 PMCID: PMC10616710 DOI: 10.1016/j.ajpath.2023.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Some human retinal diseases are characterized by pathology that is restricted to specific cell types and to specific regions of the eye. Several disease entities either selectively affect or spare the macula, the retina region at the center of the posterior pole. Photoreceptor cells in the macula are involved in high-acuity vision and require metabolic support from non-neuronal cell types. Some macular diseases involve the retinal pigment epithelium (RPE), an epithelial cell layer with several metabolic-support functions essential for the overlying photoreceptors. In the current study, the ways in which RPE confers region-specific disease susceptibility were determined by examining heterogeneity within RPE tissue from human donors. RPE nuclei from the macular and peripheral retina were profiled using joint single-nucleus RNA and ATAC sequencing. The expression of several genes differed between macular and peripheral RPE. Region-specific ATAC peaks were found, suggesting regulatory elements used exclusively by macular or peripheral RPE. Across anatomic regions, subpopulations of RPE were identified that appeared to have differential levels of expression of visual cycle genes. Finally, loci associated with age-related macular degeneration were examined for a better understanding of RPE-specific disease phenotypes. These findings showed variations in the regulation of gene expression in the human RPE by region and subpopulation, and provide a source for a better understanding of the molecular basis of macular disease.
Collapse
Affiliation(s)
- Nathaniel K Mullin
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Andrew P Voigt
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Erin A Boese
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa
| | - Xiuying Liu
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa
| | - Edwin M Stone
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa
| | - Budd A Tucker
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa
| | - Robert F Mullins
- Institute for Vision Research, University of Iowa, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
13
|
Kundu B, Iyer MR. A patent review on aldehyde dehydrogenase inhibitors: an overview of small molecule inhibitors from the last decade. Expert Opin Ther Pat 2023; 33:651-668. [PMID: 38037334 DOI: 10.1080/13543776.2023.2287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Physiological and pathophysiological effects arising from detoxification of aldehydes in humans implicate the enzyme aldehyde dehydrogenase (ALDH) gene family comprising of 19 isoforms. The main function of this enzyme family is to metabolize reactive aldehydes to carboxylic acids. Dysregulation of ALDH activity has been associated with various diseases. Extensive research has since gone into studying ALHD isozymes, their structural biology and developing small-molecule inhibitors. Novel chemical strategies to enhance the selectivity of ALDH inhibitors have now appeared. AREAS COVERED A comprehensive review of patent literature related to aldehyde dehydrogenase inhibitors in the last decade and half (2007-2022) is provided. EXPERT OPINION Aldehyde dehydrogenase (ALDH) is an important enzyme that metabolizes reactive exogenous and endogenous aldehydes in the body through NAD(P)±dependent oxidation. Hence this family of enzymes possess important physiological as well as toxicological roles in human body. Significant efforts in the field have led to potent inhibitors with approved clinical agents for alcohol use disorder therapy. Further clinical translation of novel compounds targeting ALDH inhibition will validate the promised therapeutic potential in treating many human diseases.The scientific/patent literature has been searched on SciFinder-n, Reaxys, PubMed, Espacenet and Google Patents. The search terms used were 'ALDH inhibitors', 'Aldehyde Dehydrogenase Inhibitors'.
Collapse
Affiliation(s)
- Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
14
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Piryaei F, Pakmanesh R, Salehirad M, Akbari S, Edizadeh M, Khodadadi H. ALDH1A3-related congenital microphthalmia-8 due to a novel frameshift variant. Eur J Med Genet 2023:104801. [PMID: 37339696 DOI: 10.1016/j.ejmg.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Microphthalmia (MCOP) is a group of rare developmental malformations of eye with often reduced size of the eyeball, leading to blindness. Affecting about 1 in 7000 live births, MCOP can occur due to either environmental or genetic factors. Isolated microphthalmia-8 (MCOP8) has been proved to be caused by autosomal recessive mutations of the ALDH1A3 gene (MIM*600463) encoding aldehyde dehydrogenase 1 family, member A3. Herein, we report an 8-year-old boy with vision problems since birth from a first-cousin consanguineous parents. The main symptoms of the patient included severe bilateral microphthalmia, cyst in the left eye and blindness. The child developed behavioral disorders at the age of 7. It should be noted that there is no family history of the disease. To identify the genetic factor underlying the pathogenesis in this case Whole Exome Sequencing (WES) was performed and followed by Sanger sequencing. A novel pathogenic variant, c.1441delA (p.M482Cfs*8), in the ALDH1A3 gene was detected by WES in the proband. Further prenatal diagnosis is highly suggested to the family for the future pregnancies.
Collapse
Affiliation(s)
- Fahimeh Piryaei
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Pakmanesh
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; MADAR Genetics Laboratory, Khorramabad, Lorestan, Iran
| | - Maryam Salehirad
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; MADAR Genetics Laboratory, Khorramabad, Lorestan, Iran
| | - Soheila Akbari
- Department of Obstetrics and Gynecology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Masoud Edizadeh
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; MADAR Genetics Laboratory, Khorramabad, Lorestan, Iran
| | - Hamidreza Khodadadi
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; Hepatitis Research Center, Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran.
| |
Collapse
|
16
|
Li Z, Chen C, Yu W, Xu L, Jia H, Wang C, Pei N, Liu Z, Luo D, Wang J, Lv W, Yuan B, Zhang J, Jiang H. Colitis-Mediated Dysbiosis of the Intestinal Flora and Impaired Vitamin A Absorption Reduce Ovarian Function in Mice. Nutrients 2023; 15:nu15112425. [PMID: 37299390 DOI: 10.3390/nu15112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the composition and ratio of the flora during colitis have been found to potentially affect ovarian function through nutrient absorption. However, the mechanisms have not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water. High-throughput sequencing technology was used to clarify the composition and proportion of bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number, and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarβ were significantly decreased, as well as the levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol, progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly. The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced ovarian function.
Collapse
Affiliation(s)
- Ze Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Wenjie Yu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Lingxia Xu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haitao Jia
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chen Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Na Pei
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Zibin Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Dan Luo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
Boumya S, Fallarini S, Siragusa S, Petrarolo G, Aprile S, Audrito V, La Motta C, Garavaglia S, Moro L, Pinton G. A Selective ALDH1A3 Inhibitor Impairs Mesothelioma 3-D Multicellular Spheroid Growth and Neutrophil Recruitment. Int J Mol Sci 2023; 24:ijms24076689. [PMID: 37047661 PMCID: PMC10094992 DOI: 10.3390/ijms24076689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3), one of the three members of the aldehyde dehydrogenase 1A subfamily, has been associated with increased progression and drug resistance in various types of solid tumours. Recently, it has been reported that high ALDH1A3 expression is prognostic of poor survival in patients with malignant pleural mesothelioma (MPM), an asbestos-associated chemoresistant cancer. We treated MPM cells, cultured as multicellular spheroids, with NR6, a potent and highly selective ALDH1A3 inhibitor. Here we report that NR6 treatment caused the accumulation of toxic aldehydes, induced DNA damage, CDKN2A expression and cell growth arrest. We observed that, in CDKN2A proficient cells, NR6 treatment induced IL6 expression, but abolished CXCL8 expression and IL-8 release, preventing both neutrophil recruitment and generation of neutrophil extracellular traps (NETs). Furthermore, we demonstrate that in response to ALDH1A3 inhibition, CDKN2A loss skewed cell fate from senescence to apoptosis. Dissecting the role of ALDH1A3 isoform in MPM cells and tumour microenvironment can open new fronts in the treatment of this cancer.
Collapse
Affiliation(s)
- Sara Boumya
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Sonia Siragusa
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | | | - Silvio Aprile
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation, University of Piemonte Orientale, 15121 Alessandria, Italy
| | | | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
18
|
The Expanding Role of Cancer Stem Cell Marker ALDH1A3 in Cancer and Beyond. Cancers (Basel) 2023; 15:cancers15020492. [PMID: 36672441 PMCID: PMC9857290 DOI: 10.3390/cancers15020492] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is one of 19 ALDH enzymes expressed in humans, and it is critical in the production of hormone receptor ligand retinoic acid (RA). We review the role of ALDH1A3 in normal physiology, its identification as a cancer stem cell marker, and its modes of action in cancer and other diseases. ALDH1A3 is often over-expressed in cancer and promotes tumor growth, metastasis, and chemoresistance by altering gene expression, cell signaling pathways, and glycometabolism. The increased levels of ALDH1A3 in cancer occur due to genetic amplification, epigenetic modifications, post-transcriptional regulation, and post-translational modification. Finally, we review the potential of targeting ALDH1A3, with both general ALDH inhibitors and small molecules specifically designed to inhibit ALDH1A3 activity.
Collapse
|
19
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Curcumin-based-fluorescent probes targeting ALDH1A3 as a promising tool for glioblastoma precision surgery and early diagnosis. Commun Biol 2022; 5:895. [PMID: 36050388 PMCID: PMC9437101 DOI: 10.1038/s42003-022-03834-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour for which both effective treatments and efficient tools for an early-stage diagnosis are lacking. Herein, we present curcumin-based fluorescent probes that are able to bind to aldehyde dehydrogenase 1A3 (ALDH1A3), an enzyme overexpressed in glioma stem cells (GSCs) and associated with stemness and invasiveness of GBM. Two compounds are selective versus ALDH1A3, without showing any appreciable interaction with other ALDH1A isoenzymes. Indeed, their fluorescent signal is detectable only in our positive controls in vitro and absent in cells that lack ALDH1A3. Remarkably, in vivo, our Probe selectively accumulate in glioblastoma cells, allowing the identification of the growing tumour mass. The significant specificity of our compounds is the necessary premise for their further development into glioblastoma cells detecting probes to be possibly used during neurosurgical operations. Curcumin-based fluorescent probes are presented that are able to selectively bind to aldehyde dehydrogenase 1A3 (ALDH1A3), an enzyme overexpressed in glioma stem cells and specifically identify glioblastoma cells in vitro and in vivo.
Collapse
|
21
|
Glenn KC, Silvanovich A, Lee SG, Allen A, Park S, Dunn SE, Kessenich C, Meng C, Vicini JL, Jez JM. Biochemical and clinical studies of putative allergens to assess what distinguishes them from other non-allergenic proteins in the same family. Transgenic Res 2022; 31:507-524. [PMID: 35939227 PMCID: PMC9489553 DOI: 10.1007/s11248-022-00316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/21/2022] [Indexed: 10/26/2022]
Abstract
Many protein families have numerous members listed in databases as allergens; however, some allergen database entries, herein called "orphan allergens", are members of large families of which all other members are not allergens. These orphan allergens provide an opportunity to assess whether specific structural features render a protein allergenic. Three orphan allergens [Cladosporium herbarum aldehyde dehydrogenase (ChALDH), Alternaria alternata ALDH (AaALDH), and C. herbarum mannitol dehydrogenase (ChMDH)] were recombinantly produced and purified for structure characterization and for clinical skin prick testing (SPT) in mold allergic participants. Examination of the X-ray crystal structures of ChALDH and ChMDH and a homology structure model of AaALDH did not identify any discernable epitopes that distinguish these putative orphan allergens from their non-allergenic protein relatives. SPT results were aligned with ChMDH being an allergen, 53% of the participants were SPT (+). AaALDH did not elicit SPT reactivity above control proteins not in allergen databases (i.e., Psedomonas syringae indole-3-acetaldehyde dehydrogenase and Zea mays ALDH). Although published results showed consequential human IgE reactivity with ChALDH, no SPT reactivity was observed in this study. With only one of these three orphan allergens, ChMDH, eliciting SPT(+) reactions consistent with the protein being included in allergen databases, this underscores the complicated nature of how bioinformatics is used to assess the potential allergenicity of food proteins that could be newly added to human diets and, when needed, the subsequent clinical testing of that bioinformatic assessment.Trial registration number and date of registration AAC-2017-0467, approved as WIRB protocol #20172536 on 07DEC2017 by WIRB-Copernicus (OHRP/FDA Registration #: IRB00000533, organization #: IORG0000432).
Collapse
Affiliation(s)
- Kevin C Glenn
- Bayer Crop Science, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Andre Silvanovich
- Bayer Crop Science, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Soon Goo Lee
- Department of Biology, Washington University, CB 1137, One Brookings Dr., St. Louis, MO, 63130, USA.,Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Aron Allen
- Department of Biology, Washington University, CB 1137, One Brookings Dr., St. Louis, MO, 63130, USA
| | - Stephanie Park
- Allergy and Asthma Care of St. Louis, 8888 Ladue Road, Suite 105, St. Louis, MO, 63124, USA
| | - S Eliza Dunn
- Bayer Crop Science, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Colton Kessenich
- Bayer Crop Science, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Chen Meng
- Bayer Crop Science, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - John L Vicini
- Bayer Crop Science, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA.
| | - Joseph M Jez
- Department of Biology, Washington University, CB 1137, One Brookings Dr., St. Louis, MO, 63130, USA
| |
Collapse
|
22
|
Baker NC, Pierro JD, Taylor LW, Knudsen TB. Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity. ALTEX 2022; 40:217–236. [PMID: 35796328 PMCID: PMC10765368 DOI: 10.14573/altex.2202231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound’s developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.
Collapse
Affiliation(s)
| | - Jocylin D. Pierro
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Laura W. Taylor
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X, Farrés J. Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Commun Biol 2022; 5:354. [PMID: 35418200 PMCID: PMC9007972 DOI: 10.1038/s42003-022-03311-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Human aldehyde dehydrogenase (ALDH) participates in the oxidative stress response and retinoid metabolism, being involved in several diseases, including cancer, diabetes and obesity. The ALDH1A3 isoform has recently elicited wide interest because of its potential use as a cancer stem cell biomarker and drug target. We report high-resolution three-dimensional ALDH1A3 structures for the apo-enzyme, the NAD+ complex and a binary complex with ATP. Each subunit of the ALDH1A3-ATP complex contains one ATP molecule bound to the adenosine-binding pocket of the cofactor-binding site. The ATP complex also shows a molecule, putatively identified as a polyethylene glycol aldehyde, covalently bound to the active-site cysteine. This mimics the thioacyl-enzyme catalytic intermediate, which is trapped in a dead enzyme lacking an active cofactor. At physiological concentrations, ATP inhibits the dehydrogenase activity of ALDH1A3 and other isoforms, with a Ki value of 0.48 mM for ALDH1A3, showing a mixed inhibition type against NAD+. ATP also inhibits esterase activity in a concentration-dependent manner. The current ALDH1A3 structures at higher resolution will facilitate the rational design of potent and selective inhibitors. ATP binding to ALDH1A3 enables activity modulation by the energy status of the cell and metabolic reprogramming, which may be relevant in several disease conditions.
Collapse
Affiliation(s)
- Albert Castellví
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Vito Barracco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Judith Juanhuix
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
24
|
Ibrahim AIM, Batlle E, Sneha S, Jiménez R, Pequerul R, Parés X, Rüngeler T, Jha V, Tuccinardi T, Sadiq M, Frame F, Maitland NJ, Farrés J, Pors K. Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. J Med Chem 2022; 65:3833-3848. [PMID: 35212533 PMCID: PMC9007462 DOI: 10.1021/acs.jmedchem.1c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Aldehyde dehydrogenases (ALDHs) are
overexpressed in various tumor
types including prostate cancer and considered a potential target
for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB)
has been extensively reported as a pan-inhibitor of ALDH isoforms,
and here, we report on the synthesis, ALDH isoform selectivity, and
cellular potencies in prostate cancer cells of 40 DEAB analogues;
three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues
(18 and 19) showed potent inhibitory activity
against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity
(IC50 = 10–200 μM) compared with DEAB (>200
μM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against
patient-derived primary prostate tumor epithelial cells, as single
agents or in combination treatment with docetaxel. In conclusion,
our study supports the use of DEAB as an ALDH inhibitor but also reveals
closely related analogues with increased selectivity and potency.
Collapse
Affiliation(s)
- Ali I M Ibrahim
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Elisabet Batlle
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| | - Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Till Rüngeler
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Vibhu Jha
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Fiona Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| |
Collapse
|
25
|
Li J, Garavaglia S, Ye Z, Moretti A, Belyaeva OV, Beiser A, Ibrahim M, Wilk A, McClellan S, Klyuyeva AV, Goggans KR, Kedishvili NY, Salter EA, Wierzbicki A, Migaud ME, Mullett SJ, Yates NA, Camacho CJ, Rizzi M, Sobol RW. A specific inhibitor of ALDH1A3 regulates retinoic acid biosynthesis in glioma stem cells. Commun Biol 2021; 4:1420. [PMID: 34934174 PMCID: PMC8692581 DOI: 10.1038/s42003-021-02949-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/07/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Zhaofeng Ye
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Andrea Moretti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - E Alan Salter
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Andrzej Wierzbicki
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steven J Mullett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
26
|
Study of ALDH from Thermus thermophilus-Expression, Purification and Characterisation of the Non-Substrate Specific, Thermophilic Enzyme Displaying Both Dehydrogenase and Esterase Activity. Cells 2021; 10:cells10123535. [PMID: 34944041 PMCID: PMC8699947 DOI: 10.3390/cells10123535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases (ALDH), found in all kingdoms of life, form a superfamily of enzymes that primarily catalyse the oxidation of aldehydes to form carboxylic acid products, while utilising the cofactor NAD(P)+. Some superfamily members can also act as esterases using p-nitrophenyl esters as substrates. The ALDHTt from Thermus thermophilus was recombinantly expressed in E. coli and purified to obtain high yields (approximately 15–20 mg/L) and purity utilising an efficient heat treatment step coupled with IMAC and gel filtration chromatography. The use of the heat treatment step proved critical, in its absence decreased yield of 40% was observed. Characterisation of the thermophilic ALDHTt led to optimum enzymatic working conditions of 50 °C, and a pH of 8. ALDHTt possesses dual enzymatic activity, with the ability to act as a dehydrogenase and an esterase. ALDHTt possesses broad substrate specificity, displaying activity for a range of aldehydes, most notably hexanal and the synthetic dialdehyde, terephthalaldehyde. Interestingly, para-substituted benzaldehydes could be processed efficiently, but ortho-substitution resulted in no catalytic activity. Similarly, ALDHTt displayed activity for two different esterase substrates, p-nitrophenyl acetate and p-nitrophenyl butyrate, but with activities of 22.9% and 8.9%, respectively, compared to the activity towards hexanal.
Collapse
|
27
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
28
|
Schwartz M, Neiers F, Charles JP, Heydel JM, Muñoz-González C, Feron G, Canon F. Oral enzymatic detoxification system: Insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr Rev Food Sci Food Saf 2021; 20:5516-5547. [PMID: 34653315 DOI: 10.1111/1541-4337.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Philippe Charles
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Carolina Muñoz-González
- Instituto de investigación en Ciencias de la Alimentación (CIAL), (CSIC-UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
29
|
Design, Synthesis, Biological Evaluation and In Silico Study of Benzyloxybenzaldehyde Derivatives as Selective ALDH1A3 Inhibitors. Molecules 2021; 26:molecules26195770. [PMID: 34641313 PMCID: PMC8510124 DOI: 10.3390/molecules26195770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) has recently gained attention from researchers in the cancer field. Several studies have reported ALDH1A3 overexpression in different cancer types, which has been found to correlate with poor treatment recovery. Therefore, finding selective inhibitors against ALDH1A3 could result in new treatment options for cancer treatment. In this study, ALDH1A3-selective candidates were designed based on the physiological substrate resemblance, synthesized and investigated for ALDH1A1, ALDH1A3 and ALDH3A1 selectivity and cytotoxicity using ALDH-positive A549 and ALDH-negative H1299 cells. Two compounds (ABMM-15 and ABMM-16), with a benzyloxybenzaldehyde scaffold, were found to be the most potent and selective inhibitors for ALDH1A3, with IC50 values of 0.23 and 1.29 µM, respectively. The results also show no significant cytotoxicity for ABMM-15 and ABMM-16 on either cell line. However, a few other candidates (ABMM-6, ABMM-24, ABMM-32) showed considerable cytotoxicity on H1299 cells, when compared to A549 cells, with IC50 values of 14.0, 13.7 and 13.0 µM, respectively. The computational study supported the experimental results and suggested a good binding for ABMM-15 and ABMM-16 to the ALDH1A3 isoform. From the obtained results, it can be concluded that benzyloxybenzaldehyde might be considered a promising scaffold for further drug discovery aimed at exploiting ALDH1A3 for therapeutic intervention.
Collapse
|
30
|
Dehghan Tezerjani M, Fathi Dizaji B, Metanat Z, Vahidi Mehrjardi MY. Incomplete penetrance of autosomal recessive anophthalmia in a large consanguineous family. Ophthalmic Genet 2021; 42:787-789. [PMID: 34287093 DOI: 10.1080/13816810.2021.1955276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Behdokht Fathi Dizaji
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Metanat
- Provincial Clinical Genetic Counseling Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
31
|
Balhara A, Basit A, Argikar UA, Dumouchel JL, Singh S, Prasad B. Comparative Proteomics Analysis of the Postmitochondrial Supernatant Fraction of Human Lens-Free Whole Eye and Liver. Drug Metab Dispos 2021; 49:592-600. [PMID: 33952609 DOI: 10.1124/dmd.120.000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
The increasing incidence of ocular diseases has accelerated research into therapeutic interventions needed for the eye. Ocular enzymes play important roles in the metabolism of drugs and endobiotics. Various ocular drugs are designed as prodrugs that are activated by ocular enzymes. Moreover, ocular enzymes have been implicated in the bioactivation of drugs to their toxic metabolites. The key purpose of this study was to compare global proteomes of the pooled samples of the eye (n = 11) and the liver (n = 50) with a detailed analysis of the abundance of enzymes involved in the metabolism of xenobiotics and endobiotics. We used the postmitochondrial supernatant fraction (S9 fraction) of the lens-free whole eye homogenate as a model to allow accurate comparison with the liver S9 fraction. A total of 269 proteins (including 23 metabolic enzymes) were detected exclusively in the pooled eye S9 against 648 proteins in the liver S9 (including 174 metabolic enzymes), whereas 424 proteins (including 94 metabolic enzymes) were detected in both the organs. The major hepatic cytochrome P450 and UDP-glucuronosyltransferases enzymes were not detected, but aldehyde dehydrogenases and glutathione transferases were the predominant proteins in the eye. The comparative qualitative and quantitative proteomics data in the eye versus liver is expected to help in explaining differential metabolic and physiologic activities in the eye. SIGNIFICANCE STATEMENT: Information on the enzymes involved in xenobiotic and endobiotic metabolism in the human eye in relation to the liver is scarcely available. The study employed global proteomic analysis to compare the proteomes of the lens-free whole eye and the liver with a detailed analysis of the enzymes involved in xenobiotic and endobiotic metabolism. These data will help in better understanding of the ocular metabolism and activation of drugs and endobiotics.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Abdul Basit
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Upendra A Argikar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Jennifer L Dumouchel
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| |
Collapse
|
32
|
Shortall K, Djeghader A, Magner E, Soulimane T. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Front Mol Biosci 2021; 8:659550. [PMID: 34055881 PMCID: PMC8160307 DOI: 10.3389/fmolb.2021.659550] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Aldehyde dehydrogenases engage in many cellular functions, however their dysfunction resulting in accumulation of their substrates can be cytotoxic. ALDHs are responsible for the NAD(P)-dependent oxidation of aldehydes to carboxylic acids, participating in detoxification, biosynthesis, antioxidant and regulatory functions. Severe diseases, including alcohol intolerance, cancer, cardiovascular and neurological diseases, were linked to dysfunctional ALDH enzymes, relating back to key enzyme structure. An in-depth understanding of the ALDH structure-function relationship and mechanism of action is key to the understanding of associated diseases. Principal structural features 1) cofactor binding domain, 2) active site and 3) oligomerization mechanism proved critical in maintaining ALDH normal activity. Emerging research based on the combination of structural, functional and biophysical studies of bacterial and eukaryotic ALDHs contributed to the appreciation of diversity within the superfamily. Herewith, we discuss these studies and provide our interpretation for a global understanding of ALDH structure and its purpose–including correct function and role in disease. Our analysis provides a synopsis of a common structure-function relationship to bridge the gap between the highly studied human ALDHs and lesser so prokaryotic models.
Collapse
Affiliation(s)
- Kim Shortall
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Edmond Magner
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
33
|
Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep 2021; 41:228584. [PMID: 33950219 PMCID: PMC8493444 DOI: 10.1042/bsr20210491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Selective modulation of retinaldehyde dehydrogenases (RALDHs)-the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.
Collapse
|
34
|
Multi-species transcriptome meta-analysis of the response to retinoic acid in vertebrates and comparative analysis of the effects of retinol and retinoic acid on gene expression in LMH cells. BMC Genomics 2021; 22:146. [PMID: 33653267 PMCID: PMC7923837 DOI: 10.1186/s12864-021-07451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Retinol (RO) and its active metabolite retinoic acid (RA) are major regulators of gene expression in vertebrates and influence various processes like organ development, cell differentiation, and immune response. To characterize a general transcriptomic response to RA-exposure in vertebrates, independent of species- and tissue-specific effects, four publicly available RNA-Seq datasets from Homo sapiens, Mus musculus, and Xenopus laevis were analyzed. To increase species and cell-type diversity we generated RNA-seq data with chicken hepatocellular carcinoma (LMH) cells. Additionally, we compared the response of LMH cells to RA and RO at different time points. Results By conducting a transcriptome meta-analysis, we identified three retinoic acid response core clusters (RARCCs) consisting of 27 interacting proteins, seven of which have not been associated with retinoids yet. Comparison of the transcriptional response of LMH cells to RO and RA exposure at different time points led to the identification of non-coding RNAs (ncRNAs) that are only differentially expressed (DE) during the early response. Conclusions We propose that these RARCCs stand on top of a common regulatory RA hierarchy among vertebrates. Based on the protein sets included in these clusters we were able to identify an RA-response cluster, a control center type cluster, and a cluster that directs cell proliferation. Concerning the comparison of the cellular response to RA and RO we conclude that ncRNAs play an underestimated role in retinoid-mediated gene regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07451-2.
Collapse
|
35
|
Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem Soc Trans 2021; 48:693-707. [PMID: 32311017 DOI: 10.1042/bst20191261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Dehydrogenases are oxidoreductase enzymes that play a variety of fundamental functions in the living organisms and have primary roles in pathogen survival and infection processes as well as in cancer development. We review here a sub-set of NAD-dependent dehydrogenases involved in human diseases and the recent advancements in drug development targeting pathogen-associated NAD-dependent dehydrogenases. We focus also on the molecular aspects of the inhibition process listing the structures of the most relevant molecules targeting this enzyme family. Our aim is to review the most impacting findings regarding the discovery of novel inhibitory compounds targeting the selected NAD-dependent dehydrogenases involved in cancer and infectious diseases.
Collapse
|
36
|
Gelardi ELM, Colombo G, Picarazzi F, Ferraris DM, Mangione A, Petrarolo G, Aronica E, Rizzi M, Mori M, La Motta C, Garavaglia S. A Selective Competitive Inhibitor of Aldehyde Dehydrogenase 1A3 Hinders Cancer Cell Growth, Invasiveness and Stemness In Vitro. Cancers (Basel) 2021; 13:cancers13020356. [PMID: 33478031 PMCID: PMC7835878 DOI: 10.3390/cancers13020356] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The aldehyde dehydrogenases enzymes (ALDHs) are promising drug targets in cancer therapy. ALDHs are members of an enzymatic superfamily composed by 19 isoforms involved in the oxidation of aldehydes, with a scavenger role. Among them, the isoform ALDH1A3 is a cancer biomarker since it is highly expressed in cancer stem cells characterized by a marked drug resistance and the capacity to promote self-renewal, clonogenic growth and tumour-initiating capacity. In this paper, we present the first highly potent and selective ALDH1A3 inhibitor able to induce cytotoxic effects and to reduce cell migration and stemness of ALDH1A3-positive cancer cells. We propose the targeting of the ALDH1A3 enzyme as a promising approach for improving the treatments outcomes of patients affected by ALDH1A3-positive cancers. Abstract Aldehyde dehydrogenase 1A3 (ALDH1A3) belongs to an enzymatic superfamily composed by 19 different isoforms, with a scavenger role, involved in the oxidation of a plethora of aldehydes to the respective carboxylic acids, through a NAD+-dependent reaction. Previous clinical studies highlighted the high expression of ALDH1A3 in cancer stem cells (CSCs) correlated to a higher risk of cancer relapses, chemoresistance and a poor clinical outcome. We report on the structural, biochemical, and cellular characterization of NR6, a new selective ALDH1A3 inhibitor derived from an already published ALDH non-selective inhibitor with cytotoxic activity on glioblastoma and colorectal cancer cells. Crystal structure, through X-Ray analysis, showed that NR6 binds a non-conserved tyrosine residue of ALDH1A3 which drives the selectivity towards this isoform, as supported by computational binding simulations. Moreover, NR6 shows anti-metastatic activity in wound healing and invasion assays and induces the downregulation of cancer stem cell markers. Overall, our work confirms the role of ALDH1A3 as an important target in glioblastoma and colorectal cells and propose NR6 as a promising molecule for future preclinical studies.
Collapse
Affiliation(s)
- Edoardo L. M. Gelardi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Francesca Picarazzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, 53100 Siena, Italy; (F.P.); (M.M.)
| | - Davide M. Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Andrea Mangione
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.L.M.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, The Netherlands;
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, The Netherlands
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, 53100 Siena, Italy; (F.P.); (M.M.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.L.M.)
- CISUP—Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
- Correspondence: ; Tel.: +39-0321375714
| |
Collapse
|
37
|
Wong WR, Maher S, Oh JY, Brugman KI, Gharib S, Sternberg PW. Conserved missense variant in ALDH1A3 ortholog impairs fecundity in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000357. [PMID: 33474529 PMCID: PMC7812383 DOI: 10.17912/micropub.biology.000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accumulating evidence demonstrates that mutations in ALDH1A3 (the aldehyde dehydrogenase 1 family, member A3) are associated with developmental defects. The ALDH1A3 enzyme catalyzes retinoic acid biosynthesis and is essential to patterning and neuronal differentiation in the development of embryonic nervous system. Several missense mutations in ALDH1A3 have been identified in family studies of autosomal recessive microphthalmia, autism spectrum disorder, and other neurological disorders. However, there has been no evidence from animal models that verify the functional consequence of missense mutations in ALDH1A3. Here, we introduced the equivalent of the ALDH1A3 C174Y variant into the Caenorhabditis elegans ortholog, alh-1, at the corresponding locus. Mutant animals with this missense mutation exhibited decreased fecundity by 50% compared to wild-type animals, indicating disrupted protein function. To our knowledge, this is the first ALDH1A3 C174Y missense model, which might be used to elucidate the effects of ALDH1A3 C174Y missense mutation in the retinoic acid signaling pathway during development.
Collapse
Affiliation(s)
- Wan-Rong Wong
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Shayda Maher
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology,
Department of Neurobiology, Northwestern University
| | - Katherine I Brugman
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Shahla Gharib
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology,
Correspondence to: Paul W Sternberg ()
| |
Collapse
|
38
|
Wang M, Xu G, Tang Y, Su S, Wang Y, Zhu Z. Investigation of the Molecular Mechanisms of Antioxidant Damage and Immune Response Downregulation in Liver of Coilia nasus Under Starvation Stress. Front Endocrinol (Lausanne) 2021; 12:622315. [PMID: 33732214 PMCID: PMC7959721 DOI: 10.3389/fendo.2021.622315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
Commercial fishing of estuarine tapertail anchovy (Coilia nasus), an important anadromous fish species in the Yangtze River of China, has been prohibited due to the serious damage overfishing has caused to the wild population. Research regarding the energy metabolism is important for migratory fish to ensure the continuation of their existence. In this study, we performed, for the first time, a comparative transcriptome analysis of the liver of C. nasus subjected to long-term starvation stress. The results indicated that the damaging effects involved downregulation of the antioxidant capacity and immune response. The positive response to starvation involved upregulation of the anti-allergy and anticancer capacity, which supports the function of starvation in cancer inhibition, as has also been determined for human beings. This study revealed regulatory pathways, differentially expressed genes (DEGs), and mechanisms leading to damage of the liver in C. nasus affected by starvation. This research contributes information for the further study of the energy metabolism mechanism of C. nasus and provides a theoretical reference for starvation metabolism research of other fish species and even human beings.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Aquatic Animal Genome Center of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Gangchun Xu, ; Yongkai Tang,
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Aquatic Animal Genome Center of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Gangchun Xu, ; Yongkai Tang,
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Aquatic Animal Genome Center of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yinping Wang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Zhixiang Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
39
|
Huddle BC, Grimley E, Chtcherbinine M, Buchman CD, Takahashi C, Debnath B, McGonigal SC, Mao S, Li S, Felton J, Pan S, Wen B, Sun D, Neamati N, Buckanovich RJ, Hurley TD, Larsen SD. Development of 2,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one inhibitors of aldehyde dehydrogenase 1A (ALDH1A) as potential adjuncts to ovarian cancer chemotherapy. Eur J Med Chem 2020; 211:113060. [PMID: 33341649 DOI: 10.1016/j.ejmech.2020.113060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
There is strong evidence that inhibition of one or more Aldehyde Dehydrogenase 1A (ALDH1A) isoforms may be beneficial in chemotherapy-resistant ovarian cancer and other tumor types. While many previous efforts have focused on development of ALDH1A1 selective inhibitors, the most deadly ovarian cancer subtype, high-grade serous (HGSOC), exhibits elevated expression of ALDH1A3. Herein, we report continued development of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in this critical tumor subtype. Optimization of the CM39 scaffold, aided by metabolite ID and several new ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular ALDH inhibition in HGSOC cell lines, and substantial improvements in microsomal stability culminating in orally bioavailable compounds. We demonstrate that two compounds 68 and 69 are able to synergize with chemotherapy in a resistant cell line and patient-derived HGSOC tumor spheroids, indicating their suitability for future in vivo proof of concept experiments.
Collapse
Affiliation(s)
- Brandt C Huddle
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Edward Grimley
- Division of Hematology-Oncology, Departments of Internal Medicine and Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh Medical Center and the Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Mikhail Chtcherbinine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cameron D Buchman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cyrus Takahashi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bikash Debnath
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stacy C McGonigal
- Division of Hematology-Oncology, Departments of Internal Medicine and Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh Medical Center and the Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Shuai Mao
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Siwei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeremy Felton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shu Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ronald J Buckanovich
- Division of Hematology-Oncology, Departments of Internal Medicine and Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh Medical Center and the Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
40
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
41
|
Meta-Analysis of Transcriptome Data Detected New Potential Players in Response to Dioxin Exposure in Humans. Int J Mol Sci 2020; 21:ijms21217858. [PMID: 33113971 PMCID: PMC7672605 DOI: 10.3390/ijms21217858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Dioxins are one of the most potent anthropogenic poisons, causing systemic disorders in embryonic development and pathologies in adults. The mechanism of dioxin action requires an aryl hydrocarbon receptor (AhR), but the downstream mechanisms are not yet precisely clear. Here, we performed a meta-analysis of all available transcriptome datasets taken from human cell cultures exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Differentially expressed genes from different experiments overlapped partially, but there were a number of those genes that were systematically affected by TCDD. Some of them have been linked to toxic dioxin effects, but we also identified other attractive targets. Among the genes that were affected by TCDD, there are functionally related gene groups that suggest an interplay between retinoic acid, AhR, and Wnt signaling pathways. Next, we analyzed the upstream regions of differentially expressed genes and identified potential transcription factor (TF) binding sites overrepresented in the genes responding to TCDD. Intriguingly, the dioxin-responsive element (DRE), the binding site of AhR, was not overrepresented as much as other cis-elements were. Bioinformatics analysis of the AhR binding profile unveils potential cooperation of AhR with E2F2, CTCFL, and ZBT14 TFs in the dioxin response. We discuss the potential implication of these predictions for further dioxin studies.
Collapse
|
42
|
Quattrini L, Gelardi ELM, Petrarolo G, Colombo G, Ferraris DM, Picarazzi F, Rizzi M, Garavaglia S, La Motta C. Progress in the Field of Aldehyde Dehydrogenase Inhibitors: Novel Imidazo[1,2- a]pyridines against the 1A Family. ACS Med Chem Lett 2020; 11:963-970. [PMID: 32435412 DOI: 10.1021/acsmedchemlett.9b00686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Members of the aldehyde dehydrogenase 1A family are commonly acknowledged as hallmarks of cancer stem cells, and their overexpression is significantly associated with poor prognosis in different types of malignancies. Accordingly, treatments targeting these enzymes may represent a successful strategy to fight cancer. In this work we describe a novel series of imidazo[1,2-a]pyridines, designed as aldehyde dehydrogenase inhibitors by means of a structure-based optimization of a previously developed lead. The novel compounds were evaluated in vitro for their activity and selectivity against the three isoforms of the ALDH1A family and investigated through crystallization and modeling studies for their ability to interact with the catalytic site of the 1A3 isoform. Compound 3f emerged as the first in class submicromolar competitive inhibitor of the target enzyme.
Collapse
Affiliation(s)
- Luca Quattrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Davide Maria Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- CISUP - Centre for Instrumentation Sharing - University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
43
|
Wang S, Zhou X, Liang C, Bao M, Tian Y, Zhu J, Zhang T, Yang J, Wang Z. ALDH1A3 serves as a predictor for castration resistance in prostate cancer patients. BMC Cancer 2020; 20:387. [PMID: 32375698 PMCID: PMC7201787 DOI: 10.1186/s12885-020-06899-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
Background Aldehyde dehydrogenase 1A3 (ALDH1A3) has been implicated in the survival and proliferation of prostate cancer cells. Methods We retrospectively reviewed our patients with advanced disease on adjuvant hormonal therapy after prostatectomy. Time to castration resistance stage was documented. And Immunohistochemistry analysis for ALDH1A3 was performed for those patient samples on tissue microarray. Bioinformatics anslysis was used for RNA sequencing data of both primary prostate cancer and metastatic castration resistance prostate cancer (mCRPC) from online datasets. Crispr-Cas9 was used to knock out ALDH1A3 in prostate cancer luminal cells, and morphologic analysis as well as the Gene Set Enrichment Analysis (GSEA) were facilitated to discover the mechanisms of the resistance phenotype. Results We found that the patients with ALDH1A3 low expression had shorter time to progression to castration resistance compared with those of higher expression group on adjuvant hormonal therapy after radical prostatectomy. The ALDH1A3 knockout cells gradually acquired resistance to androgen deprivation therapy, a few cells have been found in knockout group showing as that the spindle-like luminal cells in charcoal stripped medium. Furthermore, PI3K pathway activation has been confirmed by Western blot. The PI3K pathway inhibitor BEZ235 has been demonstrated that the acquired ADT resistance by ALDH1A3 down regulation could be rescued by PI3K pathway inhibitor. Conclusion These results suggested a novel function for ALDH1A3 in development of mCRPC, and indicated PI3K pathway inhibitor has the potential in the treatment of a subgroup of mCRPC patients.
Collapse
Affiliation(s)
- Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jundong Zhu
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
44
|
Quattrini L, Gelardi ELM, Coviello V, Sartini S, Ferraris DM, Mori M, Nakano I, Garavaglia S, La Motta C. Imidazo[1,2- a]pyridine Derivatives as Aldehyde Dehydrogenase Inhibitors: Novel Chemotypes to Target Glioblastoma Stem Cells. J Med Chem 2020; 63:4603-4616. [PMID: 32223240 DOI: 10.1021/acs.jmedchem.9b01910] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumor. It is known for its ability to escape the therapeutic options available to date thanks to the presence of a subset of cells endowed with stem-like properties and ability to resist to cytotoxic treatments. As the cytosolic enzyme aldehyde dehydrogenase 1A3 turns out to be overexpressed in these kinds of cells, playing a key role for their vitality, treatments targeting this enzyme may represent a successful strategy to fight GBM. In this work, we describe a novel class of imidazo[1,2-a]pyridine derivatives as aldehyde dehydrogenase 1A3 inhibitors, reporting the evidence of their significance as novel drug candidates for the treatment of GBM. Besides showing an interesting functional profile, in terms of activity against the target enzyme and selectivity toward highly homologous isoenzymes, representative examples of the series also showed a nanomolar to picomolar efficacy against patient-derived GBM stem-like cells, thus proving the concept that targeting aldehyde dehydrogenase might represent a novel and promising way to combat GBM by striking its ability to divide immortally.
Collapse
Affiliation(s)
- Luca Quattrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Vito Coviello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Stefania Sartini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Davide Maria Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy "Department of Excellence 2018-2022", University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, WTI 401, 1824 Sixth Avenue South, Birmingham, Alabama 35233, United States
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
45
|
Beedle MT, Stevison F, Zhong G, Topping T, Hogarth C, Isoherranen N, Griswold MD. Sources of all-trans retinal oxidation independent of the aldehyde dehydrogenase 1A isozymes exist in the postnatal testis†. Biol Reprod 2020; 100:547-560. [PMID: 30247516 DOI: 10.1093/biolre/ioy200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Faith Stevison
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Michael D Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
46
|
Brown JI, Page BDG, Frankel A. The application of differential scanning fluorimetry in exploring bisubstrate binding to protein arginine N-methyltransferase 1. Methods 2020; 175:10-23. [PMID: 31726226 DOI: 10.1016/j.ymeth.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Protein arginine N-methyltransferases (PRMTs) are a family of 9 enzymes that catalyze mono- or di-methylation of arginine residues using S-adenosyl-l-methionine (SAM). Arginine methylation is an important post-translational modification that can regulate the activity and structure of target proteins. Altered PRMT activity can lead to a variety of health issues including neurodevelopmental disease, autoimmune disorders, cancer, and cardiovascular disease. Thus, developing a robust mechanistic understanding of PRMT function may provide insight into these various disease states and enable the development of potential therapeutic agents. Although PRMTs have been studied for nearly two decades, a consensus regarding the mechanism of action for this class of enzymes has remained noticeably elusive. To address this shortcoming, differential scanning fluorimetry (DSF) was used to gain mechanistic insight into the order of PRMT substrate and cofactor binding. This methodology confirms that PRMT cofactor binding precedes target substrate binding and supports the use of DSF to study bisubstrate enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada; Department of Oncology and Pathology, Karolinska Institutet, Tomtebodavagen 23A, Stockholm, Sweden.
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada.
| |
Collapse
|
47
|
Koenders STA, van Rooden EJ, van den Elst H, Florea BI, Overkleeft HS, van der Stelt M. STA-55, an Easily Accessible, Broad-Spectrum, Activity-Based Aldehyde Dehydrogenase Probe. Chembiochem 2020; 21:1911-1917. [PMID: 31985142 DOI: 10.1002/cbic.201900771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) convert aldehydes into carboxylic acids and are often upregulated in cancer. They have been linked to therapy resistance and are therefore potential therapeutic targets. However, only a few selective and potent inhibitors are currently available for this group of enzymes. Competitive activity-based protein profiling (ABPP) would aid the development and validation of new selective inhibitors. Herein, a broad-spectrum activity-based probe that reports on several ALDHs is presented. This probe was used in a competitive ABPP protocol against three ALDH inhibitors in lung cancer cells to determine their selectivity profiles and establish their target engagement.
Collapse
Affiliation(s)
- Sebastiaan T A Koenders
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hans van den Elst
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
48
|
Wang Y, Li PY, Zhang Y, Cao HY, Wang YJ, Li CY, Wang P, Su HN, Chen Y, Chen XL, Zhang YZ. 3,6-Anhydro-L-Galactose Dehydrogenase VvAHGD is a Member of a New Aldehyde Dehydrogenase Family and Catalyzes by a Novel Mechanism with Conformational Switch of Two Catalytic Residues Cysteine 282 and Glutamate 248. J Mol Biol 2020; 432:2186-2203. [PMID: 32087198 DOI: 10.1016/j.jmb.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
3,6-anhydro-α-L-galactose (L-AHG) is one of the main monosaccharide constituents of red macroalgae. In the recently discovered bacterial L-AHG catabolic pathway, L-AHG is first oxidized by a NAD(P)+-dependent dehydrogenase (AHGD), which is a key step of this pathway. However, the catalytic mechanism(s) of AHGDs is still unclear. Here, we identified and characterized an AHGD from marine bacterium Vibrio variabilis JCM 19239 (VvAHGD). The NADP+-dependent VvAHGD could efficiently oxidize L-AHG. Phylogenetic analysis suggested that VvAHGD and its homologs represent a new aldehyde dehydrogenase (ALDH) family with different substrate preferences from reported ALDH families, named the L-AHGDH family. To explain the catalytic mechanism of VvAHGD, we solved the structures of VvAHGD in the apo form and complex with NADP+ and modeled its structure with L-AHG. Based on structural, mutational, and biochemical analyses, the cofactor channel and the substrate channel of VvAHGD are identified, and the key residues involved in the binding of NADP+ and L-AHG and the catalysis are revealed. VvAHGD performs catalysis by controlling the consecutive connection and interruption of the cofactor channel and the substrate channel via the conformational changes of its two catalytic residues Cys282 and Glu248. Comparative analyses of structures and enzyme kinetics revealed that differences in the substrate channels (in shape, size, electrostatic surface, and residue composition) lead to the different substrate preferences of VvAHGD from other ALDHs. This study on VvAHGD sheds light on the diversified catalytic mechanisms and evolution of NAD(P)+-dependent ALDHs.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
49
|
Pequerul R, Vera J, Giménez-Dejoz J, Crespo I, Coines J, Porté S, Rovira C, Parés X, Farrés J. Structural and kinetic features of aldehyde dehydrogenase 1A (ALDH1A) subfamily members, cancer stem cell markers active in retinoic acid biosynthesis. Arch Biochem Biophys 2020; 681:108256. [PMID: 31923393 DOI: 10.1016/j.abb.2020.108256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 11/30/2022]
Abstract
Aldehyde dehydrogenases catalyze the NAD(P)+-dependent oxidation of aldehydes to their corresponding carboxylic acids. The three-dimensional structures of the human ALDH1A enzymes were recently obtained, while a complete kinetic characterization of them, under the same experimental conditions, is lacking. We show that the three enzymes, ALDH1A1, ALDH1A2 and ALDH1A3, have similar topologies, although with decreasing volumes in their substrate-binding pockets. The activity with aliphatic and retinoid aldehydes was characterized side-by-side, using an improved HPLC-based method for retinaldehyde. Hexanal was the most efficient substrate. ALDH1A1 displayed lower Km values with hexanal, trans-2-hexenal and citral, compared to ALDH1A2 and ALDH1A3. ALDH1A2 was the best enzyme for the lipid peroxidation product, 4-hydroxy-2-nonenal, in terms of kcat/Km. The catalytic efficiency towards all-trans and 9-cis-retinaldehyde was in general lower than for alkanals and alkenals. ALDH1A2 and ALDH1A3 showed higher catalytic efficiency for all-trans-retinaldehyde. The lower specificity of ALDH1A3 for 9-cis-retinaldehyde against the all-trans- isomer might be related to the smaller volume of its substrate-binding pocket. Magnesium inhibited ALDH1A1 and ALDH1A2, while it activated ALDH1A3, which is consistent with cofactor dissociation being the rate-limiting step for ALDH1A1 and ALDH1A2, and deacylation for ALDH1A3, with hexanal as a substrate. We mutated both ALDH1A1 (L114P) and ALDH1A2 (N475G, A476V, L477V, N478S) to mimic their counterpart substrate-binding pockets. ALDH1A1 specificity for citral was traced to residue 114 and to residues 458 to 461. Regarding retinaldehyde, the mutants did not show significant differences with their respective wild-type forms, suggesting that the mutated residues are not critical for retinoid specificity.
Collapse
Affiliation(s)
- Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Javier Vera
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Isidro Crespo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Joan Coines
- Department of Inorganic and Organic Chemistry, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Carme Rovira
- Department of Inorganic and Organic Chemistry, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
50
|
Michorowska S, Giebułtowicz J, Wolinowska R, Konopka A, Wilkaniec A, Krajewski P, Bulska E, Wroczyński P. Detection of ALDH3B2 in Human Placenta. Int J Mol Sci 2019; 20:E6292. [PMID: 31847104 PMCID: PMC6941052 DOI: 10.3390/ijms20246292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
Aldehyde dehydrogenase 3B2 (ALDH3B2) gene contains a premature termination codon, which can be skipped or suppressed resulting in full-length protein expression. Alternatively, the longest putative open reading frame starting with the second in-frame start codon would encode short isoform. No unequivocal evidence of ALDH3B2 expression in healthy human tissues is available. The aim of this study was to confirm its expression in human placenta characterized by the highest ALDH3B2 mRNA abundance. ALDH3B2 DNA and mRNA were sequenced. The expression was investigated using western blot. The identity of the protein was confirmed using mass spectrometry (MS). The predicted tertiary and quaternary structures, subcellular localization, and phosphorylation sites were assessed using bioinformatic analyses. All DNA and mRNA isolates contained the premature stop codon. In western blot analyses, bands corresponding to the mass of full-length protein were detected. MS analysis led to the identification of two unique peptides, one of which is encoded by the nucleotide sequence located upstream the second start codon. Bioinformatic analyses suggest cytoplasmic localization and several phosphorylation sites. Despite premature stop codon in DNA and mRNA sequences, full-length ALDH3B2 was found. It can be formed as a result of premature stop codon readthrough, complex phenomenon enabling stop codon circumvention.
Collapse
Affiliation(s)
- Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (E.B.)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Krajewski
- Forensic Medicine Department, First Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (E.B.)
| | - Piotr Wroczyński
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| |
Collapse
|