1
|
Giliberti A, Giustiniano S, Carbonaro Y, Frisina AM, Roccella M, Serra G, Nardello R. A new association between Kleefstra syndrome and Panayiotopoulos epilepsy. Ital J Pediatr 2025; 51:148. [PMID: 40394668 PMCID: PMC12093761 DOI: 10.1186/s13052-025-01982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 05/04/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Kleefstra syndrome is a rare genetic disorder attributed to loss of function of EHMT1, either due to a point mutation or a microdeletion in the chromosome region 9q34.3. This gene encodes an enzyme that modifies histone function and is essential for normal development. Individuals with Kleefstra syndrome typically present intellectual disability (from moderate to severe), language delay, autism spectrum disorders, generalized hypotonia, and distinctive facial dysmorphic features. Additional manifestations in children may include cardiac defects, renal and urological malformations, genital anomalies, respiratory infections, epilepsy (including febrile seizures), and psychiatric disorders. Panayiotopoulos syndrome is a specific type of epilepsy, usually presenting in early to mid-childhood with benign focal seizures. These seizures are characterized by primarily autonomic symptoms, abnormal EEG findings showing shifts or multiple seizure foci (often located in occipital lobe), and other autonomic manifestations such as pallor, redness or cyanosis, mydriasis or miosis, heart and breathing problems, thermoregulatory changes, urinary and/or fecal incontinence, hypersalivation, and altered gut motility. CASE PRESENTATION We present the case of a child with Kleefstra syndrome and Panayiotopoulos epilepsy. The patient is a 12-year-old male born from a full-term pregnancy to non-consanguineous healthy parents with a family history of neurodevelopmental disorders. At birth, he presented dysmorphic facial features including receding forehead, low-set ears and lingual protrusion. From 6 months of age, he manifested predominantly axial and lower limb hypotonia, associated with a delay in acquiring psychomotor developmental milestones. Genetic counseling was requested, and array-CGH was then performed. Molecular analysis detected a 9q34.3 microdeletion which included the EHMT1 gene, leading to Kleefstra syndrome diagnosis. From the age of 6 years, he began experiencing seizures with features typical of Panayiotopoulos epilepsy and started treatment with valproic acid. CONCLUSIONS We highlight the association between Panayiotopoulos epilepsy and Kleefstra syndrome, which has not been previously reported in the literature. Although this kind of epilepsy is quite frequent in pediatric age and the possibility of a casual co-occurrence should be considered, however in Kleefstra syndrome patients carrying 9q34.3 microdeletion a potential additional role of genetic (besides EHMT1) and epigenetic factors in developing seizures cannot be excluded. The present data expand the genomic and phenotypical features of the syndrome, providing new insights about research, which are useful to achieve genotype/phenotype correlations and better management of affected subjects.
Collapse
Affiliation(s)
- Alessandra Giliberti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Stefania Giustiniano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Ylenia Carbonaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Adele Maria Frisina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, 90128, Italy
| | - Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, Palermo, Italy.
| |
Collapse
|
2
|
Rodrigues B, Leitão RA, Santos M, Trofimov A, Silva M, Inácio ÂS, Abreu M, Nobre RJ, Costa J, Cardoso AL, Milosevic I, Peça J, Oliveiros B, Pereira de Almeida L, Pinheiro PS, Carvalho AL. MiR-186-5p inhibition restores synaptic transmission and neuronal network activity in a model of chronic stress. Mol Psychiatry 2025; 30:1034-1046. [PMID: 39237722 PMCID: PMC11835755 DOI: 10.1038/s41380-024-02715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo A Leitão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Santos
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexander Trofimov
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Integrative Brain Function Neurobiology Lab, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 197022, St. Petersburg, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Mariline Silva
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Department of Applied Physics and Science for Life Laboratory (SciLifeLab), KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ângela S Inácio
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui J Nobre
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jéssica Costa
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ana Luísa Cardoso
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ira Milosevic
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Bárbara Oliveiros
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- iCRB-Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
3
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
4
|
Alonso A, Samanta A, van der Meij J, van den Brand L, Negwer M, Navarro Lobato I, Genzel L. Defensive and offensive behaviours in a Kleefstra syndrome mouse model. Anim Cogn 2023; 26:1131-1140. [PMID: 36877418 PMCID: PMC10345049 DOI: 10.1007/s10071-023-01757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
Kleefstra syndrome in humans is characterized by a general delay in development, intellectual disability and autistic features. The mouse model of this disease (Ehmt1±) expresses anxiety, autistic-like traits, and aberrant social interactions with non-cagemates. To investigate how Ehmt1± mice behave with unfamiliar conspecifics, we allowed adult, male animals to freely interact for 10 min in a neutral, novel environment within a host-visitor setting. In trials where the Ehmt1± mice were hosts, there were defensive and offensive behaviors. Our key finding was that Ehmt1± mice displayed defensive postures, attacking and biting; in contrast, wild-type (WT) interacting with other WT did not enact such behaviors. Further, if there was a fight between an Ehmt1± and a WT mouse, the Ehmt1± animal was the most aggressive and always initiated these behaviors.
Collapse
Affiliation(s)
- Alejandra Alonso
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Anumita Samanta
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Liz van den Brand
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Moritz Negwer
- Donders Institute for Brain, Cognition and Behaviour, RadboudUMC, Nijmegen, The Netherlands
| | - Irene Navarro Lobato
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Iglesias-Ortega L, Megías-Fernández C, Domínguez-Giménez P, Jimeno-González S, Rivero S. Cell consequences of loss of function of the epigenetic factor EHMT1. Cell Signal 2023:110734. [PMID: 37257768 DOI: 10.1016/j.cellsig.2023.110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
EHMT1 is an epigenetic factor with histone methyltransferase activity that appears mutated in Kleefstra syndrome, a neurodevelopmental genetic disorder characterized by developmental delay, intellectual disability, and autistic-like features. Despite recent progress in the study of the function of this gene and the molecular etiology of the disease, our knowledge of how EHMT1 haploinsufficiency causes Kleefstra syndrome is still very limited. Here, we show that EHMT1 depletion in RPE1 cells leads to alterations in the morphology and distribution of different subcellular structures, such as the Golgi apparatus, the lysosomes and different cell adhesion components. EHMT1 downregulation also increases centriolar satellites detection, which may indicate a role for EHMT1 in centrosome functioning. Furthermore, the migration process is also altered in EHMT1 depleted cells, which show reduced migration capacity. We consider that the described phenotypes could open new possibilities for understanding the functional impact of EHMT1 haploinsufficiency in Kleefstra syndrome, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in this neurodevelopmental disorder. This knowledge could be relevant not only for the treatment of this syndrome, but also for other neurodevelopmental conditions that could share similar deregulated cellular pathways.
Collapse
Affiliation(s)
- Lucía Iglesias-Ortega
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Clara Megías-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Paloma Domínguez-Giménez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sabrina Rivero
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
6
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
7
|
Following Excitation/Inhibition Ratio Homeostasis from Synapse to EEG in Monogenetic Neurodevelopmental Disorders. Genes (Basel) 2022; 13:genes13020390. [PMID: 35205434 PMCID: PMC8872324 DOI: 10.3390/genes13020390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Pharmacological options for neurodevelopmental disorders are limited to symptom suppressing agents that do not target underlying pathophysiological mechanisms. Studies on specific genetic disorders causing neurodevelopmental disorders have elucidated pathophysiological mechanisms to develop more rational treatments. Here, we present our concerted multi-level strategy ‘BRAINMODEL’, focusing on excitation/inhibition ratio homeostasis across different levels of neuroscientific interrogation. The aim is to develop personalized treatment strategies by linking iPSC-based models and novel EEG measurements to patient report outcome measures in individual patients. We focus our strategy on chromatin- and SNAREopathies as examples of severe genetic neurodevelopmental disorders with an unmet need for rational interventions.
Collapse
|
8
|
Schmidt S, Haensch T, Frank R, Jahnke HG, Robitzki AA. Reactive Sputtered Silicon Nitride as an Alternative Passivation Layer for Microelectrode Arrays in Sensitive Bioimpedimetric Cell Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59185-59195. [PMID: 34851082 DOI: 10.1021/acsami.1c14981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microelectrode arrays (MEAs) are widely used to study the behavior of cells noninvasively and in real time. While the design of MEAs focuses mainly on the electrode material or its application-dependent modification, the passivation layer, which is crucial to define the electrode area and to insulate the conducting paths, remains largely unnoticed. Because often most cells are in direct contact with the passivation layer rather than the electrode material, biocompatible photoresists such as SU-8 are almost exclusively used. However, SU-8 is not without limitations in terms of optical transmission, optimal cell support, or compatibility within polymer-based microfluidic lab on chip systems. Here, we established a silicon nitride (SiN) passivation by physical vapor deposition (PVD), which was optimized and evaluated for impedance spectroscopy-based monitoring of cells. Surface characteristics, biocompatibility, and electrical insulation capability were investigated and compared to SU8 in detail. To investigate the influence of the SiN passivation on the impedimetric analysis of cells, HEK-293 A and MCF-7 were chosen as adherent cell models and measured on microelectrodes of 50-200 μm in diameter. The results clearly revealed an overall suitability of SiN as alternative passivation. While for the smallest electrode size a cell line dependent comparable or slightly decreased cell signal could be observed in comparison with SU-8, a significant higher cell signal was observed for microelectrodes larger than 50 μm in diameter. Furthermore, a high suitability for the bonding of PEGDA and PDMS microfluidic structures on the SiN passivation layer without any leakage could be demonstrated.
Collapse
Affiliation(s)
- Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Tobias Haensch
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| |
Collapse
|
9
|
A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol Psychiatry 2021; 26:7550-7559. [PMID: 34262135 DOI: 10.1038/s41380-021-01199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin β (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.
Collapse
|
10
|
Jobic F, Lacot-Leriche E, Piton A, Le Moing AG, Mathieu-Dramard M, Costantini S, Morin G, Jedraszak G. Kleefstra syndrome: Recurrence in siblings due to a paternal mosaic mutation. Am J Med Genet A 2021; 185:3877-3883. [PMID: 34357686 DOI: 10.1002/ajmg.a.62448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022]
Abstract
Kleefstra syndrome (KS) is a rare autosomic dominant genetic disorder caused by euchromatic histone methyltransferase 1 (EHMT1) alterations. Patients mainly present with moderate to severe intellectual disability, a severe delay in/or absence of speech, autism spectrum disorder, childhood hypotonia, neuropsychiatric anomalies, and distinctive dysmorphic features. Here, we report the cases of a male and a female, two younger siblings of three, with asymptomatic parents. An EHMT1 new mutation was identified. Both presented with a typical core phenotype. Some specific features were noted, such as macrocephaly (previously reported) and enuresis (not yet described). Parental analysis identified the mutation in the mosaic state in the father. Reverse phenotyping enabled us to highlight the pauci phenotype features of inguinal hernia, azoospermia, and possible behavioral disorders. This allowed us to adapt his follow-up and genetic counseling for the family. Our three reported cases provide a new description of KS with an intragenic EHMT1 mutation, whereas in the literature most reported cases have EHMT1 deletions. Moreover, in the areas of next-generation sequencing and trio techniques with parental segregation, it is important to remain cautious about disregarding variants based on an autosomal recessive hypothesis.
Collapse
Affiliation(s)
- Florence Jobic
- Reference Center for Rare Diseases, Amiens-Picardy University Hospital, Amiens, France
| | - Emilie Lacot-Leriche
- Reference Center for Rare Diseases, Amiens-Picardy University Hospital, Amiens, France.,EA 7273 CRP-CPO, University of Picardy, Jules Verne, Amiens, France
| | - Amélie Piton
- Laboratory of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Gaëlle Le Moing
- Department of Child Neurology, Amiens-Picardy University Hospital, Amiens, France
| | | | - Sara Costantini
- Reference Center for Rare Diseases, Amiens-Picardy University Hospital, Amiens, France
| | - Gilles Morin
- Genetics Laboratory, Amiens-Picardy University Hospital, Amiens, France
| | - Guillaume Jedraszak
- Genetics Laboratory, Amiens-Picardy University Hospital, Amiens, France.,EA 4666 HEMATIM - CURS, University of Picardy, Jules Verne, Amiens, France
| |
Collapse
|
11
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Distinct Pathogenic Genes Causing Intellectual Disability and Autism Exhibit a Common Neuronal Network Hyperactivity Phenotype. Cell Rep 2021; 30:173-186.e6. [PMID: 31914384 DOI: 10.1016/j.celrep.2019.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023] Open
Abstract
Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.
Collapse
|
13
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Negwer M, Piera K, Hesen R, Lütje L, Aarts L, Schubert D, Nadif Kasri N. EHMT1 regulates Parvalbumin-positive interneuron development and GABAergic input in sensory cortical areas. Brain Struct Funct 2020; 225:2701-2716. [PMID: 32975655 PMCID: PMC7674571 DOI: 10.1007/s00429-020-02149-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Mutations in the Euchromatic Histone Methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a rare form of intellectual disability (ID) with strong autistic traits and sensory processing deficits. Proper development of inhibitory interneurons is crucial for sensory function. Here we report a timeline of Parvalbumin-positive (PV+) interneuron development in the three most important sensory cortical areas in the Ehmt1+/- mouse. We find a hitherto unreported delay of PV+ neuron maturation early in sensory development, with layer- and region-specific variability later in development. The delayed PV+ maturation is also reflected in a delayed maturation of GABAergic transmission in Ehmt1+/- auditory cortex, where we find a reduced GABA release probability specifically in putative PV+ synapses. Together with earlier reports of excitatory impairments in Ehmt1+/- neurons, we propose a shift in excitatory-inhibitory balance towards overexcitability in Ehmt1+/- sensory cortices as a consequence of early deficits in inhibitory maturation.
Collapse
Affiliation(s)
- Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Karol Piera
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Rick Hesen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Lukas Lütje
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Lynn Aarts
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Aleo S, Cinnante C, Avignone S, Prada E, Scuvera G, Ajmone PF, Selicorni A, Costantino MA, Triulzi F, Marchisio P, Gervasini C, Milani D. Olfactory Malformations in Mendelian Disorders of the Epigenetic Machinery. Front Cell Dev Biol 2020; 8:710. [PMID: 32850830 PMCID: PMC7417603 DOI: 10.3389/fcell.2020.00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Usually overlooked by physicians, olfactory abnormalities are not uncommon. Olfactory malformations have recently been reported in an emerging group of genetic disorders called Mendelian Disorders of the Epigenetic Machinery (MDEM). This study aims to determine the prevalence of olfactory malformations in a heterogeneous group of subjects with MDEM. We reviewed the clinical data of 35 patients, 20 females and 15 males, with a mean age of 9.52 years (SD 4.99). All patients had a MDEM and an already available high-resolution brain MRI scan. Two experienced neuroradiologists reviewed the MR images, noting abnormalities and classifying olfactory malformations. Main findings included Corpus Callosum, Cerebellar vermis, and olfactory defects. The latter were found in 11/35 cases (31.4%), of which 7/11 had Rubinstein-Taybi syndrome (RSTS), 2/11 had CHARGE syndrome, 1/11 had Kleefstra syndrome (KLFS), and 1/11 had Weaver syndrome (WVS). The irregularities mainly concerned the olfactory bulbs and were bilateral in 9/11 patients. With over 30% of our sample having an olfactory malformation, this study reveals a possible new diagnostic marker for MDEM and links the epigenetic machinery to the development of the olfactory bulbs.
Collapse
Affiliation(s)
- Sebastiano Aleo
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cinnante
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Università degli Studi di Milano, Milan, Italy
| | - Sabrina Avignone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Prada
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulietta Scuvera
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Maria Antonella Costantino
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Università degli Studi di Milano, Milan, Italy
| | - Paola Marchisio
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Division of Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Schut EHS, Alonso A, Smits S, Khamassi M, Samanta A, Negwer M, Kasri NN, Navarro Lobato I, Genzel L. The Object Space Task reveals increased expression of cumulative memory in a mouse model of Kleefstra syndrome. Neurobiol Learn Mem 2020; 173:107265. [PMID: 32531423 DOI: 10.1016/j.nlm.2020.107265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/06/2020] [Accepted: 05/30/2020] [Indexed: 11/27/2022]
Abstract
Kleefstra syndrome is a disorder caused by a mutation in the EHMT1 gene characterized in humans by general developmental delay, mild to severe intellectual disability and autism. Here, we characterized cumulative memory in the Ehmt1+/- mouse model using the Object Space Task. We combined conventional behavioral analysis with automated analysis by deep-learning networks, a session-based computational learning model, and a trial-based classifier. Ehmt1+/- mice showed more anxiety-like features and generally explored objects less, but the difference decreased over time. Interestingly, when analyzing memory-specific exploration, Ehmt1+/- show increased expression of cumulative memory, but a deficit in a more simple, control memory condition. Using our automatic classifier to differentiate between genotypes, we found that cumulative memory features are better suited for classification than general exploration differences. Thus, detailed behavioral classification with the Object Space Task produced a more detailed behavioral phenotype of the Ehmt1+/- mouse model.
Collapse
Affiliation(s)
- Evelien H S Schut
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands
| | - Alejandra Alonso
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Steven Smits
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Mehdi Khamassi
- Institute of Intelligent Systems and Robotics, Sorbonne Université, CNRS, Paris, France
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Moritz Negwer
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands
| | - Irene Navarro Lobato
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, Netherlands.
| |
Collapse
|
17
|
Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun 2019; 10:4928. [PMID: 31666522 PMCID: PMC6821803 DOI: 10.1038/s41467-019-12947-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.
Collapse
|
18
|
Iacono G, Dubos A, Méziane H, Benevento M, Habibi E, Mandoli A, Riet F, Selloum M, Feil R, Zhou H, Kleefstra T, Kasri NN, van Bokhoven H, Herault Y, Stunnenberg HG. Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res 2019; 46:4950-4965. [PMID: 29554304 PMCID: PMC6007260 DOI: 10.1093/nar/gky196] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Kleefstra syndrome, a disease with intellectual disability, autism spectrum disorders and other developmental defects is caused in humans by haploinsufficiency of EHMT1. Although EHMT1 and its paralog EHMT2 were shown to be histone methyltransferases responsible for deposition of the di-methylated H3K9 (H3K9me2), the exact nature of epigenetic dysfunctions in Kleefstra syndrome remains unknown. Here, we found that the epigenome of Ehmt1+/- adult mouse brain displays a marked increase of H3K9me2/3 which correlates with impaired expression of protocadherins, master regulators of neuronal diversity. Increased H3K9me3 was present already at birth, indicating that aberrant methylation patterns are established during embryogenesis. Interestingly, we found that Ehmt2+/- mice do not present neither the marked increase of H3K9me2/3 nor the cognitive deficits found in Ehmt1+/- mice, indicating an evolutionary diversification of functions. Our finding of increased H3K9me3 in Ehmt1+/- mice is the first one supporting the notion that EHMT1 can quench the deposition of tri-methylation by other Histone methyltransferases, ultimately leading to impaired neurocognitive functioning. Our insights into the epigenetic pathophysiology of Kleefstra syndrome may offer guidance for future developments of therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Giovanni Iacono
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3610524; . Correspondence may also be addressed to Giovanni Iacono.
| | - Aline Dubos
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Hamid Méziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Ehsan Habibi
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
| | - Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR5535, Centre National de Recherche Scientifique (CNRS), 1919 Route de Mende, 34293 Montpellier, France
- The University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Huiqing Zhou
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Hendrik G Stunnenberg
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3610524; . Correspondence may also be addressed to Giovanni Iacono.
| |
Collapse
|
19
|
Gudmundsson S, Wilbe M, Filipek-Górniok B, Molin AM, Ekvall S, Johansson J, Allalou A, Gylje H, Kalscheuer VM, Ledin J, Annerén G, Bondeson ML. TAF1, associated with intellectual disability in humans, is essential for embryogenesis and regulates neurodevelopmental processes in zebrafish. Sci Rep 2019; 9:10730. [PMID: 31341187 PMCID: PMC6656882 DOI: 10.1038/s41598-019-46632-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Beata Filipek-Górniok
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Josefin Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Amin Allalou
- Department of Information Technology, Uppsala University, Sweden and Science for Life Laboratory, Uppsala, 751 05, Sweden
| | - Hans Gylje
- Department of Paediatrics, Central Hospital, Västerås, 721 89, Sweden
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 141 95, Germany
| | - Johan Ledin
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| |
Collapse
|
20
|
van Gils T, Tiesinga PHE, Englitz B, Martens MB. Sensitivity to Stimulus Irregularity Is Inherent in Neural Networks. Neural Comput 2019; 31:1789-1824. [PMID: 31335294 DOI: 10.1162/neco_a_01215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Behavior is controlled by complex neural networks in which neurons process thousands of inputs. However, even short spike trains evoked in a single cortical neuron were demonstrated to be sufficient to influence behavior in vivo. Specifically, irregular sequences of interspike intervals (ISIs) had a more reliable influence on behavior despite their resemblance to stochastic activity. Similarly, irregular tactile stimulation led to higher rates of behavioral responses. In this study, we identify the mechanisms enabling this sensitivity to stimulus irregularity (SSI) on the neuronal and network levels using simulated spiking neural networks. Matching in vivo experiments, we find that irregular stimulation elicits more detectable network events (bursts) than regular stimulation. Dissecting the stimuli, we identify short ISIs-occurring more frequently in irregular stimulations-as the main drivers of SSI rather than complex irregularity per se. In addition, we find that short-term plasticity modulates SSI. We subsequently eliminate the different mechanisms in turn to assess their role in generating SSI. Removing inhibitory interneurons, we find that SSI is retained, suggesting that SSI is not dependent on inhibition. Removing recurrency, we find that SSI is retained due to the ability of individual neurons to integrate activity over short timescales ("cell memory"). Removing single-neuron dynamics, we find that SSI is retained based on the short-term retention of activity within the recurrent network structure ("network memory"). Finally, using a further simplified probabilistic model, we find that local network structure is not required for SSI. Hence, SSI is identified as a general property that we hypothesize to be ubiquitous in neural networks with different structures and biophysical properties. Irregular sequences contain shorter ISIs, which are the main drivers underlying SSI. The experimentally observed SSI should thus generalize to other systems, suggesting a functional role for irregular activity in cortex.
Collapse
Affiliation(s)
- Teun van Gils
- Department of Neuroinformatics and Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, Gelderland, The Netherlands
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, Gelderland, The Netherlands
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, Gelderland, The Netherlands
| | - Marijn B Martens
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
21
|
Sullivan JM, De Rubeis S, Schaefer A. Convergence of spectrums: neuronal gene network states in autism spectrum disorder. Curr Opin Neurobiol 2019; 59:102-111. [PMID: 31220745 DOI: 10.1016/j.conb.2019.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by social deficits and restrictive and/or repetitive behaviors. The breadth of ASD symptoms is paralleled by the multiplicity of genes that have been implicated in its etiology. Initial findings revealed numerous ASD risk genes that contribute to synaptic function. More recently, genomic and gene expression studies point to altered chromatin function and impaired transcriptional control as additional risk factors for ASD. The consequences of impaired transcriptional alterations in ASD involve consistent changes in synaptic gene expression and cortical neuron specification during brain development. The multiplicity of genetic and environmental factors associated with ASD risk and their convergence onto common molecular pathways in neurons point to ASD as a disorder of gene regulatory networks.
Collapse
Affiliation(s)
- Josefa M Sullivan
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA
| | - Silvia De Rubeis
- Department of Psychiatry, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA.
| |
Collapse
|
22
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
23
|
Keller JM, Frega M. Past, Present, and Future of Neuronal Models In Vitro. ADVANCES IN NEUROBIOLOGY 2019; 22:3-17. [PMID: 31073930 DOI: 10.1007/978-3-030-11135-9_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past century, robust methods were developed that enable the isolation, culture, and dynamic observation of mammalian neuronal networks in vitro. But even if neuronal culture cannot yet fully recapitulate the normal brain, the knowledge that has been acquired from these surrogate in vitro models is invaluable. Indeed, neuronal culture has continued to propel basic neuroscience research, proving that in vitro systems have legitimacy when it comes to studying either the healthy or diseased human brain. Furthermore, scientific advancement typically parallels technical refinements in the field. A pertinent example is that a collective drive in the field of neuroscience to better understand the development, organization, and emergent properties of neuronal networks is being facilitated by progressive advances in micro-electrode array (MEA) technology. In this chapter, we briefly review the emergence of neuronal cell culture as a technique, the current trends in human stem cell-based modeling, and the technologies used to monitor neuronal communication. We conclude by highlighting future prospects that are evolving specifically out of the combination of human neuronal models and MEA technology.
Collapse
Affiliation(s)
- Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands. .,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
24
|
Ciaccio C, Scuvera G, Tucci A, Gentilin B, Baccarin M, Marchisio P, Avignone S, Milani D. New Insights into Kleefstra Syndrome: Report of Two Novel Cases with Previously Unreported Features and Literature Review. Cytogenet Genome Res 2018; 156:127-133. [DOI: 10.1159/000494532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Kleefstra syndrome (KS) is a rare genetic condition resulting from either 9q34.3 microdeletions or mutations in the EHMT1 gene located in the same genomic region. To date, approximately 100 patients have been reported, thereby allowing the core phenotype of KS to be defined as developmental delay/intellectual disability, generalized hypotonia, neuropsychiatric anomalies, and a distinctive facial appearance. Here, to further expand the knowledge on genotype and phenotype of this condition, we report 2 novel cases: one patient carrying a 46-kb 9q34.3 deletion and showing macrocephaly never described in KS, and a second patient carrying a classic 9q34.3 deletion, presenting with a previously unreported skeletal feature (postaxial polydactyly of the right foot) and an unusual brain anomaly (olfactory bulb hypoplasia) observed via magnetic resonance imaging. Further, we provide a review of the current literature regarding KS and compare these 2 patients with those previously described, thereby confirming that the genotype-phenotype correlation in KS remains difficult to determine.
Collapse
|
25
|
Ding H, Lu WC, Hu JC, Liu YC, Zhang CH, Lian FL, Zhang NX, Meng FW, Luo C, Chen KX. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search. Molecules 2018; 23:567. [PMID: 29498708 PMCID: PMC6017732 DOI: 10.3390/molecules23030567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
SET7, serving as the only histone methyltransferase that monomethylates 'Lys-4' of histone H3, has been proved to function as a key regulator in diverse biological processes, such as cell proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein stability, heart morphogenesis and development. What's more, SET7 is involved inthe pathogenesis of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors. In this paper, based on DC-S239 which has been previously reported in our group, we employed scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit compound targeting SET7 (IC50 = 9.3 μM). Both radioactive tracing and NMR experiments validated the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to the identification ofDC-S303 with the IC50 value of 1.1 μM. In cellular level, DC-S285 retarded tumor cell proliferation and showed selectivity against MCF7 (IC50 = 21.4 μM), Jurkat (IC50 = 2.2 μM), THP1 (IC50 = 3.5 μM), U937 (IC50 = 3.9 μM) cell lines. Docking calculations suggested that DC-S303 share similar binding mode with the parent compoundDC-S239. What's more, it presented good selectivity against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can serve as a drug-like scaffold which may need further optimization for drug development, and can be used as chemical probe to help the community to better understand the SET7 biology.
Collapse
Affiliation(s)
- Hong Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Wen Chao Lu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jun Chi Hu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Chen Hua Zhang
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Fu Lin Lian
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Nai Xia Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Fan Wang Meng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cheng Luo
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Kai Xian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
26
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
27
|
Berridge MJ. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am J Physiol Cell Physiol 2017; 314:C135-C151. [PMID: 29070492 DOI: 10.1152/ajpcell.00188.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The process of development depends on a number of signaling systems that regulates the progressive sequence of developmental events. Infertility and neurodevelopmental diseases, such as attention deficit hyperactivity disorder, autism spectrum disorders, and schizophrenia, are caused by specific alterations in these signaling processes. Calcium signaling plays a prominent role throughout development beginning at fertilization and continuing through early development, implantation, and organ differentiation such as heart and brain development. Vitamin D plays a major role in regulating these signaling processes that control development. There is an increase in infertility and an onset of neurodevelopmental diseases when vitamin D is deficient. The way in which vitamin D deficiency acts to alter development is a major feature of this review. One of the primary functions of vitamin D is to maintain the phenotypic stability of both the Ca2+ and redox signaling pathways that play such a key role throughout development.
Collapse
Affiliation(s)
- Michael J Berridge
- Laboratory of Molecular Signalling, The Babraham Institute , Cambridge , United Kingdom
| |
Collapse
|
28
|
Kim JH, Lee JH, Lee IS, Lee SB, Cho KS. Histone Lysine Methylation and Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18071404. [PMID: 28665350 PMCID: PMC5535897 DOI: 10.3390/ijms18071404] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023] Open
Abstract
Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea.
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea.
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|