1
|
Goo YT, Grigoriev V, Korzun T, Sharma KS, Singh P, Taratula OR, Marks DL, Taratula O. Blood-Brain Barrier-Penetrating Nanocarriers Enable Microglial-Specific Drug Delivery in Hypothalamic Neuroinflammation. Adv Healthc Mater 2025; 14:e2500521. [PMID: 40181631 DOI: 10.1002/adhm.202500521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Hypothalamic inflammation plays a pivotal role in appetite dysregulation across various pathological conditions, including cancer cachexia. However, delivering anti-inflammatory agents to microglia, key mediators of hypothalamic inflammation, remains challenging due to the unsurmountable blood-brain barrier (BBB). To overcome this challenge, dual peptide-functionalized polymeric nanocarriers capable of both BBB penetration and microglial targeting are engineered for systemic delivery of IRAK4 inhibitors to treat hypothalamic inflammation. After intravenous administration, the nanocarriers demonstrated efficient brain and hypothalamic accumulation in both acute (lipopolysaccharide-induced) and chronic (pancreatic cancer cachexia) neuroinflammation mouse models. Their microglial targeting capability is confirmed through hypothalamic immunohistochemistry and flow cytometry analysis using a BBB-microglia co-culture model. Systemic administration of IRAK4 inhibitor-loaded nanocarriers effectively attenuated hypothalamic inflammation in both animal models, as evidenced by marked reductions in pro-inflammatory cytokine expression. Treated animals displayed significantly increased food intake and improved body weight compared to the saline-treated group. In the cancer cachexia model, the treatment preserved muscle mass, reducing cachexia-induced gastrocnemius muscle loss by 50% relative to controls. These findings highlight the potential of this nanocarrier system as a promising therapeutic strategy for conditions characterized by hypothalamic dysfunction, particularly cancer cachexia, where neuroinflammation plays a crucial role in disease progression.
Collapse
Affiliation(s)
- Yoon Tae Goo
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Vladislav Grigoriev
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Kongbrailatpam Shitaljit Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Daniel L Marks
- Endevica Bio, 1935 Techny Rd, Northbrook, Illinois, 60062, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
2
|
Liu L, Poveda C, Jenkins PE, Iddrisu I, Walton GE. In Vitro Modelling of a Typical Dietary Intake in Restrictive Anorexia Nervosa Results in Changes to Gut Microbial Community and Metabolites. Appl Microbiol 2024; 4:1642-1660. [DOI: 10.3390/applmicrobiol4040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Anorexia nervosa (AN) is a psychiatric illness with harmful physical consequences. Studies have observed differences in the faecal microbiota of patients with AN compared to healthy controls. Diet has an impact on the gut microbiota, facilitating an altered community, such changes could impact the gut–brain axis. In this study, a three-stage gut model system that mimics the luminal microbiology of the large intestine was conducted to identify relationships between diet and gut microbiota. A microbial medium was developed to provide nutrients more appropriate to restricting subtype AN (R-AN). The model was inoculated with faeces and samples were taken to compare differences in the microbiota and end products following the fermentation of healthy control medium (HC) compared to R-AN medium. Then, 16S amplicon sequencing along with flow cytometry–fluorescence in situ hybridisation were used to ascertain changes in the microbiota. Gas chromatography (GC) was used to assess changes in microbial metabolites. There were reduced levels of SCFA following the fermentation of R-AN medium. The fermentation of R-AN media led to fewer total bacteria numbers, along with less bifidobacteria and Rumincoccus proximally, but more Clostridium and Enterobacteriaceae. Nutrient-deficient medium resulted in reduced neurotransmitter-producing bacteria, reduced butyrate-producing bacteria, and increased protein-utilising bacteria, all of which could be maintaining factors in AN. The model system provides a novel tool for exploring how extreme dietary changes impact the microbiota and could therefore could be useful for assessing appropriate gut–brain targeted treatments.
Collapse
Affiliation(s)
- Litai Liu
- The Food Microbial Science Unit (FMSU), Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Carlos Poveda
- The Food Microbial Science Unit (FMSU), Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Paul E. Jenkins
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ES, UK
| | - Ishawu Iddrisu
- The Food Microbial Science Unit (FMSU), Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Gemma E. Walton
- The Food Microbial Science Unit (FMSU), Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| |
Collapse
|
3
|
Huwart SJP, Fayt C, Gangarossa G, Luquet S, Cani PD, Everard A. TLR4-dependent neuroinflammation mediates LPS-driven food-reward alterations during high-fat exposure. J Neuroinflammation 2024; 21:305. [PMID: 39580436 PMCID: PMC11585241 DOI: 10.1186/s12974-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Obesity has become a global pandemic, marked by significant shifts in both the homeostatic and hedonic/reward aspects of food consumption. While the precise causes are still under investigation, recent studies have identified the role of gut microbes in dysregulating the reward system within the context of obesity. Unravelling these gut-brain connections is crucial for developing effective interventions against eating and metabolic disorders, particularly in the context of obesity. This study explores the causal role of LPS, as a key relay of microbiota component-induced neuroinflammation in the dysregulation of the reward system following exposure to high-fat diet (HFD). METHODS Through a series of behavioural paradigms related to food-reward events and the use of pharmacological agents targeting the dopamine circuit, we investigated the mechanisms associated with the development of reward dysregulation during HFD-feeding in male mice. A Toll-like receptor 4 (TLR4) full knockout model and intraventricular lipopolysaccharide (LPS) diffusion at low doses, which mimics the obesity-associated neuroinflammatory phenotype, were used to investigate the causal roles of gut microbiota-derived components in neuroinflammation and reward dysregulation. RESULTS Our study revealed that short term exposure to HFD (24 h) tended to affect food-seeking behaviour, and this effect became significant after 1 week of HFD. Moreover, we found that deletion of TLR4 induced a partial protection against HFD-induced neuroinflammation and reward dysregulation. Finally, chronic brain diffusion of LPS recapitulated, at least in part, HFD-induced molecular and behavioural dysfunctions within the reward system. CONCLUSIONS These findings highlight a link between the neuroinflammatory processes triggered by the gut microbiota components LPS and the dysregulation of the reward system during HFD-induced obesity through the TLR4 pathway, thus paving the way for future therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Clémence Fayt
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
- Institut Universitaire de France (IUF), Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
4
|
Spero V, Scherma M, D'Amelio S, Collu R, Dedoni S, Camoglio C, Siddi C, Fratta W, Molteni R, Fadda P. Activity-based anorexia (ABA) model: Effects on brain neuroinflammation, redox balance and neuroplasticity during the acute phase. Neurochem Int 2024; 180:105842. [PMID: 39244038 DOI: 10.1016/j.neuint.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Several evidences suggest that immuno-inflammatory responses are involved in the pathogenesis of anorexia nervosa (AN). Herein we investigate the possible alteration of key mediators of inflammation, redox balance, and neuroplasticity in the brain of rats showing an anorexic-like phenotype. We modeled AN in adolescent female rats using the activity-based anorexia (ABA) paradigm and measured gene expression levels of targets of interest in the prefrontal cortex (PFC) and dorsal hippocampus (DH). We observed reduced mRNA levels of pro-inflammatory cytokines IL-1β and TNF-α, the inflammasome NLRP3, and the microglial marker CD11b in both PFC and DH of ABA animals. Conversely, the mRNA of IL-6, which acts as both a pro-inflammatory and anti-inflammatory cytokine, was increased. Moreover, we observed an overall upregulation of different antioxidant enzymes in PFC, while their profile was not affected or opposite in the DH, with the exception of MT1α. Interestingly, ABA animals showed elevated levels of the neuroplasticity marker BDNF in both PFC and DH. Our data indicate that ABA induction is associated with anatomical-specific cerebral alteration of mediators of neuroinflammation, oxidative balance and neuroplasticity. Although more research should be conducted, these results add important information about the role of these systems in the complex AN etiopathogenesis.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Sabrina D'Amelio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Collu
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Chiara Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy.
| |
Collapse
|
5
|
Roubalová R, Procházková P, Kovářová T, Ježková J, Hrnčíř T, Tlaskalová-Hogenová H, Papežová H. Influence of the gut microbiome on appetite-regulating neuropeptides in the hypothalamus: Insight from conventional, antibiotic-treated, and germ-free mouse models of anorexia nervosa. Neurobiol Dis 2024; 193:106460. [PMID: 38432539 DOI: 10.1016/j.nbd.2024.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Recent research highlights the profound impact of the gut microbiome on neuropsychiatric disorders, shedding light on its potential role in shaping human behavior. In this study, we investigate the role of the gut microbiome in appetite regulation using activity-based anorexia (ABA) mouse model of anorexia nervosa (AN) - a severe eating disorder with significant health consequences. ABA was induced in conventional, antibiotic-treated, and germ-free mice. Our results show the clear influence of the gut microbiome on the expression of four orexigenic (neuropeptide Y, agouti-related peptide, melanin-concentrating hormone, and orexin) and four anorexigenic peptides (cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, thyrotropin-releasing hormone, and pro-opiomelanocortin) in the hypothalamus. Additionally, we assessed alterations in gut barrier permeability. While variations were noted in germ-free mice based on feeding and activity, they were not directly attributable to the gut microbiome. This research emphasizes that the gut microbiome is a pivotal factor in AN's appetite regulation beyond just dietary habits or physical activity.
Collapse
Affiliation(s)
- Radka Roubalová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Petra Procházková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Kovářová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Janet Ježková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hrnčíř
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Tlaskalová-Hogenová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Papežová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Brooks SJ, Dahl K, Dudley-Jones R, Schiöth HB. A neuroinflammatory compulsivity model of anorexia nervosa (NICAN). Neurosci Biobehav Rev 2024; 159:105580. [PMID: 38417395 DOI: 10.1016/j.neubiorev.2024.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Affiliation(s)
- S J Brooks
- Department of Surgical Sciences, Uppsala University, Sweden; School of Psychology, Liverpool John Moores University, UK; Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa.
| | - K Dahl
- Department of Surgical Sciences, Uppsala University, Sweden
| | - R Dudley-Jones
- School of Psychology, Liverpool John Moores University, UK
| | - H B Schiöth
- Department of Surgical Sciences, Uppsala University, Sweden
| |
Collapse
|
7
|
Salaün C, Courvalet M, Rousseau L, Cailleux K, Breton J, Bôle-Feysot C, Guérin C, Huré M, Goichon A, do Rego JC, Déchelotte P, Ribet D, Achamrah N, Coëffier M. Sex-dependent circadian alterations of both central and peripheral clock genes expression and gut-microbiota composition during activity-based anorexia in mice. Biol Sex Differ 2024; 15:6. [PMID: 38217033 PMCID: PMC10785476 DOI: 10.1186/s13293-023-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota-gut-brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut-microbiota composition. METHODS From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10-12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests. RESULTS ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut-bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model. CONCLUSIONS This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut-microbiota composition are sex-dependent.
Collapse
Affiliation(s)
- Colin Salaün
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marine Courvalet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Léna Rousseau
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Kévin Cailleux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jonathan Breton
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marion Huré
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jean-Claude do Rego
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Univ Rouen Normandie, Inserm, CNRS, Normandie Univ, HERACLES US 51 UAR 2026, Behavioural Analysis Platform SCAC, 76000, Rouen, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - David Ribet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Najate Achamrah
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France.
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
- Department of Nutrition, CHU Rouen, 76000, Rouen, France.
| |
Collapse
|
8
|
Atmani K, Meleine M, Langlois L, Coëffier M, Brumovsky P, Leroi AM, Gourcerol G. Involvement of acid sensing ion channel (ASIC)-3 in an acute urinary bladder-colon cross sensitization model in rodent. FRONTIERS IN PAIN RESEARCH 2023; 4:1083514. [PMID: 36969917 PMCID: PMC10030710 DOI: 10.3389/fpain.2023.1083514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionIrritable bowel syndrome and bladder pain syndrome are both characterized by pain in response to organ distension. Epidemiologic studies showed that these two syndromes are often overlapped. Such overlap may be due to sharing of common extrinsic innervations between the colorectum and the urinary bladder, where cross-sensitization of the urinary bladder and the colon would occur in response to mechanical distension of either organ. The aim of this project was to develop and characterize a rodent model of urinary bladder-colon sensitization and to assess the role of the acid sensing ion channel (ASIC)-3.MethodsDouble retrograde labelling was performed to identify extrinsic primary afferent neurons innervating both the colon (Fluororuby) and urinary bladder (Fluorogold) in the L6-S1 dorsal root ganglia (DRG) in Sprague Dawley rats. The phenotype of the colon/urinary bladder co-innervating primary afferent neurons was assessed using immunohistochemistry directed against ASIC-3. Cross-organ sensitization was induced in Sprague Dawley rats by using an echography-guided intravesical administration of acetic acid (0.75%) under brief isoflurane anesthesia. Colonic sensitivity was assessed in conscious rats by measuring abdominal contraction during isobaric colorectal distension (CRD). Measurement of urinary bladder and colonic paracellular permeabilities and tissue myeloperoxidase assay were performed. The involvement of ASIC-3 was assessed by use of S1 intrathecal administration of the ASIC-3 blocker, APETx2 (2.2 µM).ResultsImmunohistochemistry showed that 73.1% of extrinsic primary afferent neurons co-innervating the colon and the urinary bladder express ASIC-3. By contrast, extrinsic primary afferent neurons innervating the colon only or the urinary bladder only were positive for ASIC-3 in 39.3% and 42.6%, respectively. Echography-guided intravesical administration of acetic acid resulted in colonic hypersensitivity to colorectal distension. This effect started 1 h post-injection and lasted up to 24 h, and was not longer seen after 3 days after injection. No colonic hyperpermeability and no difference in urinary bladder and colon MPO activity was observed between control and acetic acid-treated rats. Colonic sensitization by intravesical acetic acid administration was prevented by S1 intrathecal administration of APETx2.ConclusionWe developed an acute pelvic cross-organ sensitization model in conscious rat. In this model, cross-organ sensitization is likely to involve S1-L6 extrinsic primary afferents co-innervating the colon and urinary bladder through an ASIC-3 pathway.
Collapse
Affiliation(s)
- Karim Atmani
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Mathieu Meleine
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Ludovic Langlois
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Moïse Coëffier
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Pablo Brumovsky
- Institute of Research in in Translational Medicine, CONICET-Austral University, Pilar, Argentina
| | - Anne-Marie Leroi
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
- Department of Physiology, Rouen University Hospital, Rouen, France
| | - Guillaume Gourcerol
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
- Department of Physiology, Rouen University Hospital, Rouen, France
- Correspondence: Guillaume Gourcerol
| |
Collapse
|
9
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
10
|
Tirelle P, Salaün C, Kauffmann A, Bôle-Feysot C, Guérin C, Huré M, Goichon A, Amamou A, Breton J, do Rego JL, Déchelotte P, Achamrah N, Coëffier M. Intestinal Epithelial Toll-like Receptor 4 Deficiency Modifies the Response to the Activity-Based Anorexia Model in a Sex-Dependent Manner: A Preliminary Study. Nutrients 2022; 14:nu14173607. [PMID: 36079861 PMCID: PMC9460860 DOI: 10.3390/nu14173607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
The role of microbiota in eating disorders has recently emerged. Previous data reported that lipopolysaccharides induce anorexia and a decrease of body weight through the activation of toll-like receptor 4 (TLR4). In the activity-based anorexia (ABA) mouse model, an increase of TLR4 expression in intestinal epithelial cells (IEC) has been described. We thus aimed to characterize the role of TLR4 in IEC in the ABA model in male and female mice. For this purpose, Vill-CreERT2-TLR4 LoxP, which are depleted for TLR4 in IEC in response to 4-OH tamoxifen, were submitted (ABA) or not (CT) to the ABA procedure that combined free access to a running wheel and progressive time-limited access to food. We thus compared CT and ABA TLR4IEC−/− mice to CT and ABA TLR4IEC+/+ mice. In response to the ABA model, TLR4IEC+/+ male and female mice exhibited a body weight loss associated to a decrease of lean mass. In TLR4IEC−/− male mice, body weight loss was delayed and less pronounced compared to TLR4IEC+/+ male mice. We did not observe a difference of body weight loss in female mice. The body composition remained unchanged between TLR4IEC−/− and TLR4IEC+/+ mice in both sexes. In both sexes, ABA TLR4IEC+/+ mice exhibited an increase of food-anticipatory activity, as well as an increase of immobility time during the open field test. However, female TLR4IEC−/− mice showed a decrease of the time spent at the centre and an increase of the time spent at the periphery of the open field area, whereas we did not observe differences in the male mice. In conclusion, the invalidation of TLR4 in IEC modified the response to the ABA model in a sex-dependent manner. Further studies should decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Pauline Tirelle
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Colin Salaün
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Alexandre Kauffmann
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Christine Bôle-Feysot
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Charlène Guérin
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Marion Huré
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Alexis Goichon
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Asma Amamou
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Jonathan Breton
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
| | - Jean-Luc do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Université de Rouen Normandie, INSERM US51-CNRS UAR2026, Animal Behavioural Platform, SCAC-HeRacLeS “High-Tech Research Infrastructures for Life”, 76183 Rouen, France
| | - Pierre Déchelotte
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
| | - Najate Achamrah
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
| | - Moïse Coëffier
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
- Correspondence: ; Tel.: +33-23-5148240
| |
Collapse
|
11
|
Teofilović A, Vratarić M, Veličković N, Vojnović Milutinović D, Mladenovic A, Prvulovic M, Djordjevic A. Late-Onset Calorie Restriction Improves Lipid Metabolism and Aggravates Inflammation in the Liver of Old Wistar Rats. Front Nutr 2022; 9:899255. [PMID: 35677539 PMCID: PMC9168317 DOI: 10.3389/fnut.2022.899255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Aging is a progressive process that could disturb metabolic homeostasis in the liver via ectopic lipid accumulation, oxidative stress, and deterioration of inflammatory response. Although calorie restriction (CR) is recognized as beneficial for life span and health span prolongation, it is still unclear how late-onset CR, characterized by late beginning and short duration, affects age-related processes. The aim of this study was to examine how late-onset CR-induced metabolic adjustments impact lipid status and inflammation in the liver of old rats. The experiments were conducted on aging male Wistar rats fed ad libitum (AL) or exposed to late-onset CR (60% of AL daily intake) from 21st to 24th month. The results showed that late-onset CR reduces body weight, visceral adipose tissue and liver mass, and triglyceride levels when compared to old animals on AL diet. The ameliorating effects of CR on lipid metabolism include increased activity of AMP-activated protein kinase, suppressed de novo fatty acid synthesis, stimulated β-oxidation, decreased lipotoxicity, and limited triglyceride synthesis and packaging in the liver. Restricted diet regime, however, does not improve expression of antioxidant enzymes, although it leads to progression of age-related inflammation in the liver, partially through lower corticosterone concentration and decreased activation of glucocorticoid receptor. In conclusion, late-onset CR is able to restore age-related imbalance of lipid metabolism in the liver, but has a negative impact on hepatic inflammatory status, implying that the type of diet for older individuals must be balanced and chosen carefully with appropriate duration and start point.
Collapse
Affiliation(s)
- Ana Teofilović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Ana Teofilović,
| | - Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Prvulovic
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Milton LK, Patton T, O'Keeffe M, Oldfield BJ, Foldi CJ. In pursuit of biomarkers for predicting susceptibility to activity-based anorexia in adolescent female rats. Int J Eat Disord 2022; 55:664-677. [PMID: 35302253 PMCID: PMC9311799 DOI: 10.1002/eat.23705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Identifying risk factors that contribute to the development of anorexia nervosa (AN) is critical for the implementation of early intervention strategies. Anxiety, obsessive-compulsive behavior, and immune dysfunction may be involved in the development of AN; however, their direct influence on susceptibility to the condition remains unclear. Here, we used the activity-based anorexia (ABA) model to examine whether activity, anxiety-like behavior, compulsive behavior, and circulating immune markers predict the subsequent development of pathological weight loss. METHOD Female Sprague-Dawley rats (n = 44) underwent behavioral testing before exposure to ABA conditions after which they were separated into susceptible and resistant subpopulations. Blood was sampled before behavioral testing and after recovery from ABA to screen for proinflammatory cytokines. RESULTS Rats that were vulnerable to pathological weight loss differed significantly from resistant rats on all key ABA parameters. While the primary measures of anxiety-like or compulsive behavior were not shown to predict vulnerability to ABA, increased locomotion and anxiety-like behavior were both associated with the extent of weight loss in susceptible but not resistant animals. Moreover, the change in expression of proinflammatory markers IL-4 and IL-6 evoked by ABA was associated with discrete vulnerability factors. Intriguingly, behavior related to risk assessment was shown to predict vulnerability to ABA. DISCUSSION We did not find undisputable behavioral or immune predictors of susceptibility to pathological weight loss in the ABA rat model. Future research should examine the role of cognition in the development of ABA, dysfunction of which may represent an endophenotype linking anorectic, anxiety-like and compulsive behavior. PUBLIC SIGNIFICANCE Anorexia nervosa (AN) has among the highest mortality rates of all psychiatric disorders and treatment options remain limited in their efficacy. Understanding what types of risk factors contribute to the development of AN is essential for implementing early intervention strategies. This study describes how some of the most common psychological features of AN could be used to predict susceptibility to pathological weight loss in a well-established animal model.
Collapse
Affiliation(s)
- Laura Karina Milton
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia,Monash Biomedicine Discovery InstituteClaytonVictoriaAustralia
| | - Timothy Patton
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneElizabethVictoriaAustralia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Brian John Oldfield
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia,Monash Biomedicine Discovery InstituteClaytonVictoriaAustralia
| | - Claire Jennifer Foldi
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia,Monash Biomedicine Discovery InstituteClaytonVictoriaAustralia
| |
Collapse
|
13
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
14
|
Specht HE, Mannig N, Belheouane M, Andreani NA, Tenbrock K, Biemann R, Borucki K, Dahmen B, Dempfle A, Baines JF, Herpertz-Dahlmann B, Seitz J. Lower serum levels of IL-1β and IL-6 cytokines in adolescents with anorexia nervosa and their association with gut microbiota in a longitudinal study. Front Psychiatry 2022; 13:920665. [PMID: 36061277 PMCID: PMC9433656 DOI: 10.3389/fpsyt.2022.920665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Anorexia nervosa (AN) is an often chronic and debilitating psychiatric disease whose etiology is not completely understood. Recently, a potential role of inflammation has emerged in other psychiatric diseases, such as depression, PTSD and schizophrenia. The first results in adults with AN seemed to confirm a low-grade proinflammatory state until recent studies presented more differential findings. Studying adolescents with a shorter illness duration and fewer confounding factors might help elucidate the role of inflammation in the underlying pathophysiology of AN; however, the few available studies in adolescents remain ambiguous, and no longitudinal data are available in this age range. METHODS We examined the proinflammatory cytokines Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)-1β, IL-6, IL-15, and the cytokine-receptor IL-6 Receptor alpha (IL-6 Rα) in the serum of twenty-two hospitalized female adolescent patients with AN longitudinally at admission and discharge and compared their results to nineteen healthy controls (HC). We also collected clinical data and stool samples that were analyzed with 16S rRNA amplicon sequencing to explore potential influencing factors of cytokine changes. RESULTS TNF-α serum levels were significantly elevated in patients with AN at admission, while IL-1β and IL-6 levels were lower at admission and discharge than in HC. After treatment, we also found significantly elevated levels of IL-6 Rα compared to HC, while IL-15 did not show significant changes. Exploratory analyses revealed positive associations of cytokine and genus-level changes between admission and discharge for IL-1β (Bacteroides) and IL-15 (Romboutsia), and negative associations for IL-15 (Anaerostipes) and TNF-α (uncultured Lachnospiraceae). CONCLUSION We confirmed a previous finding of elevated levels of TNF-α also in adolescents with AN; however, the reduced IL-1β and IL-6 levels differed from the mostly increased levels found in adults. A mixed pro- and anti-inflammatory state appears to be present in adolescents, potentially due to their shorter illness duration. The gut microbiota, with its regulatory function on cytokine production, might play a role in mediating these inflammatory processes in AN and could offer targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Hannah E Specht
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Nina Mannig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nadia Andrea Andreani
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Pediatrics, IZKF Aachen, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ronald Biemann
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Brigitte Dahmen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Frintrop L, Trinh S, Seitz J, Kipp M. The Role of Glial Cells in Regulating Feeding Behavior: Potential Relevance to Anorexia Nervosa. J Clin Med 2021; 11:jcm11010186. [PMID: 35011927 PMCID: PMC8745326 DOI: 10.3390/jcm11010186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Eating behavior is controlled by hypothalamic circuits in which agouti-related peptide-expressing neurons when activated in the arcuate nucleus, promote food intake while pro-opiomelanocortin-producing neurons promote satiety. The respective neurotransmitters signal to other parts of the hypothalamus such as the paraventricular nucleus as well as several extra-hypothalamic brain regions to orchestrate eating behavior. This complex process of food intake may be influenced by glia cells, in particular astrocytes and microglia. Recent studies showed that GFAP+ astrocyte cell density is reduced in the central nervous system of an experimental anorexia nervosa model. Anorexia nervosa is an eating disorder that causes, among the well-known somatic symptoms, brain volume loss which was associated with neuropsychological deficits while the underlying pathophysiology is unknown. In this review article, we summarize the findings of glia cells in anorexia nervosa animal models and try to deduce which role glia cells might play in the pathophysiology of eating disorders, including anorexia nervosa. A better understanding of glia cell function in the regulation of food intake and eating behavior might lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-(0)-381-494-8406
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
16
|
Brain Volume Loss, Astrocyte Reduction, and Inflammation in Anorexia Nervosa. ADVANCES IN NEUROBIOLOGY 2021; 26:283-313. [PMID: 34888839 DOI: 10.1007/978-3-030-77375-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anorexia nervosa is the third most common chronic disease in adolescence and is characterized by low body weight, body image distortion, weight phobia, and severe somatic consequences. Among the latter, marked brain volume reduction has been linked to astrocyte cell count reduction of about 50% in gray and white matter, while neuronal and other glial cell counts remain normal. Exact underlying mechanisms remain elusive; however, first results point to important roles of the catabolic state and the very low gonadal steroid hormones in these patients. They also appear to involve inflammatory states of "hungry astrocytes" and interactions with the gut microbiota. Functional impairments could affect the role of astrocytes in supporting neurons metabolically, neurotransmitter reuptake, and synapse formation, among others. These could be implicated in reduced learning, mood alterations, and sleep disturbances often seen in patients with AN and help explain their rigidity and difficulties in relearning processes in psychotherapy during starvation.
Collapse
|
17
|
Spadini S, Ferro M, Lamanna J, Malgaroli A. Activity-based anorexia animal model: a review of the main neurobiological findings. J Eat Disord 2021; 9:123. [PMID: 34600568 PMCID: PMC8487535 DOI: 10.1186/s40337-021-00481-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genesis of anorexia nervosa (AN), a severe eating disorder with a pervasive effect on many brain functions such as attention, emotions, reward processing, cognition and motor control, has not yet been understood. Since our current knowledge of the genetic aspects of AN is limited, we are left with a large and diversified number of biological, psychological and environmental risk factors, called into question as potential triggers of this chronic condition with a high relapse rate. One of the most valid and used animal models for AN is the activity-based anorexia (ABA), which recapitulates important features of the human condition. This model is generated from naïve rodents by a self-motivated caloric restriction, where a fixed schedule food delivery induces spontaneous increased physical activity. AIM In this review, we sought to provide a summary of the experimental research conducted using the ABA model in the pursuit of potential neurobiological mechanism(s) underlying AN. METHOD The experimental work presented here includes evidence for neuroanatomical and neurophysiological changes in several brain regions as well as for the dysregulation of specific neurochemical synaptic and neurohormonal pathways. RESULTS The most likely hypothesis for the mechanism behind the development of the ABA phenotype relates to an imbalance of the neural circuitry that mediates reward processing. Evidence collected here suggests that ABA animals show a large set of alterations, involving regions whose functions extend way beyond the control of reward mechanisms and eating habits. Hence, we cannot exclude a primary role of these alterations from a mechanistic theory of ABA induction. CONCLUSIONS These findings are not sufficient to solve such a major enigma in neuroscience, still they could be used to design ad hoc further experimental investigation. The prospect is that, since treatment of AN is still challenging, the ABA model could be more effectively used to shed light on the complex AN neurobiological framework, thus supporting the future development of therapeutic strategies but also the identification of biomarkers and diagnostic tools. Anorexia Nervosa (AN) is a severe eating disorder with a dramatic effect on many functions of our brain, such as attention, emotions, cognition and motion control. Since our current knowledge of the genetic aspects behind the development of AN is still limited, many biological, psychological and environmental factors must be taken into account as potential triggers of this condition. One of the most valid animal models for studying AN is the activity-based anorexia (ABA). In this model, rodents spontaneously limit food intake and start performing increased physical activity on a running wheel, a result of the imposition of a fixed time schedule for food delivery. In this review, we provide a detailed summary of the experimental research conducted using the ABA model, which includes extended evidence for changes in the anatomy and function of the brain of ABA rodents. The hope is that such integrated view will support the design of future experiments that will shed light on the complex brain mechanisms behind AN. Such advanced knowledge is crucial to find new, effective strategies for both the early diagnosis of AN and for its treatment.
Collapse
Affiliation(s)
- Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
18
|
Tirelle P, Breton J, Kauffmann A, Bahlouli W, L'Huillier C, Salameh E, Amamou A, Jarbeau M, Guérin C, Goichon A, do Rego JC, Déchelotte P, Ribet D, Coëffier M. Gut microbiota depletion affects nutritional and behavioral responses to activity-based anorexia model in a sex-dependent manner. Clin Nutr 2021; 40:2734-2744. [PMID: 33933739 DOI: 10.1016/j.clnu.2021.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIMS In the last decade, the role of the microbiota-gut-brain axis in eating behavior and anxiety-depressive disorders has gained increasing attention. Although a gut microbiota dysbiosis has been reported in anorectic patients, its pathophysiological role remains poorly understood. Thus, we aimed to characterize the potential role of gut microbiota by evaluating the effects of its depletion in the Activity-Based Anorexia (ABA) mouse model both in male and female mice. METHODS Male and female C57Bl/6 mice were submitted (ABA group) or not (CT group) to the ABA protocol, which combines access to a running wheel with a progressive limited food access. Gut microbiota was previously depleted or not by a cocktail of antibiotics (ATB) delivered by oral gavages. We monitored body composition, anxiety-like behavior, leptin and adiponectin plasma levels, hypothalamic and hippocampal neuropeptides mRNA levels, as well as dopamine (DRD) and serotonin (5HT1 and 4) receptors mRNA expression. RESULTS In response to the ABA model, the body weight loss was less pronounced in ATB-treated ABA compared to untreated ABA, while food intake remained unaffected by ATB treatment. ATB-treated ABA exhibited increased fat mass and decreased lean mass compared to untreated ABA both in male and female mice, whereas but plasma adipokine concentrations were affected in a sex-dependent manner. Only male ABA mice showed a reduced anticipatory physical activity in response to ATB treatment. Similarly, anxiety-like behavior was mainly affected in ATB-treated ABA male mice compared to ATB-treated ABA female mice, which was associated with male-specific alterations of hypothalamic CRH mRNA and hippocampal DRD and 5-HT1A mRNA levels. CONCLUSIONS Our study provides evidence that ATB-induced gut microbiota depletion triggers alterations of nutritional and behavioral responses to the activity-based anorexia model in a sex-dependent manner.
Collapse
Affiliation(s)
- Pauline Tirelle
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Jonathan Breton
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Department of Nutrition, CHU Rouen, Rouen, France
| | - Alexandre Kauffmann
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Wafa Bahlouli
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Clément L'Huillier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Emmeline Salameh
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Asma Amamou
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Marine Jarbeau
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Charlène Guérin
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Alexis Goichon
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Jean-Claude do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Animal Behavior Facility, SCAC, UNIROUEN, France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Department of Nutrition, CHU Rouen, Rouen, France
| | - David Ribet
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Department of Nutrition, CHU Rouen, Rouen, France.
| |
Collapse
|
19
|
Hariyanto TI, Kurniawan A. Appetite problem in cancer patients: Pathophysiology, diagnosis, and treatment. Cancer Treat Res Commun 2021; 27:100336. [PMID: 33607591 DOI: 10.1016/j.ctarc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
AIM This study aims to review the current evidence regarding appetite problem in cancer patients, mainly focusing on pathophysiology, diagnosis, and treatment. INTRODUCTION Anorexia is the common symptom of malnutrition in cancer patients. Recently, the understanding of the pathophysiological mechanism of the appetite problem in cancer patients has been increasing that give impact to rigorous research to find the therapies for improving appetite in cancer patients. DISCUSSION The development of anorexia in cancer patients is a complex process that involves many cytokines, receptors, chemical mediators/substances, hormones, and peptides. Growth and differentiation factor-15 (GDF-15) and toll-like receptor (TLR-4) have recently been found to be implicated in the pathogenesis of anorexia. To help diagnose the appetite problem in cancer patients, several questionnaires can be used, starting from well-known questionnaires such as Functional Assessment of Anorexia Cachexia Therapy (FAACT), Visual Analog Scale (VAS), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ30). Several drugs with different mechanisms of action have been studied to help in improving appetite in cancer patients. New repurposed agents such as anamorelin, mirtazapine, thalidomide, and eicosapentaenoic acid (EPA) have shown a beneficial effect in improving appetite and quality of life in cancer patients, however more phase 3 clinical trial studies is still needed. CONCLUSION The pathophysiology of appetite problems in cancer patients is a complex process that involves many factors. Several drugs that target those factors have been studied, however more phase 3 clinical trial studies are needed to confirm the findings from previous studies.
Collapse
Affiliation(s)
- Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, , Indonesia.
| |
Collapse
|
20
|
Butler MJ, Perrini AA, Eckel LA. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021; 13:nu13020500. [PMID: 33546416 PMCID: PMC7913528 DOI: 10.3390/nu13020500] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alexis A. Perrini
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| | - Lisa A. Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3480
| |
Collapse
|
21
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Li Y, Jiang Q, Wang L. Appetite Regulation of TLR4-Induced Inflammatory Signaling. Front Endocrinol (Lausanne) 2021; 12:777997. [PMID: 34899611 PMCID: PMC8664591 DOI: 10.3389/fendo.2021.777997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Appetite is the basis for obtaining food and maintaining normal metabolism. Toll-like receptor 4 (TLR4) is an important receptor expressed in the brain that induces inflammatory signaling after activation. Inflammation is considered to affect the homeostatic and non-homeostatic systems of appetite, which are dominated by hypothalamic and mesolimbic dopamine signaling. Although the pathological features of many types of inflammation are known, their physiological functions in appetite are largely unknown. This review mainly addresses several key issues, including the structures of the homeostatic and non-homeostatic systems. In addition, the mechanism by which TLR4-induced inflammatory signaling contributes to these two systems to regulate appetite is also discussed. This review will provide potential opportunities to develop new therapeutic interventions that control appetite under inflammatory conditions.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| |
Collapse
|
23
|
Influence of Glutamine and Branched-Chain Amino Acids Supplementation during Refeeding in Activity-Based Anorectic Mice. Nutrients 2020; 12:nu12113510. [PMID: 33202638 PMCID: PMC7696484 DOI: 10.3390/nu12113510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 01/20/2023] Open
Abstract
Background: Optimizing the refeeding of patients with anorexia nervosa remains important to limit somatic complications of malnutrition, as well as to avoid disease relapses by targeting persistent mood and intestinal disorders. We aimed to evaluate the effects of glutamine (Gln) and branched-chain amino acids (BCAA) supplementation during refeeding in activity-based anorectic (ABA) mice. Method: Male C57Bl/6 mice were randomized in control and ABA groups. Once ABA-induced malnutrition was established, mice were progressively refed or not. Refed mice had free access to drinking water supplemented or not with 1% Gln or 2.5% BCAA for 10 days. Results: A progressive refeeding was associated with a partial restoration of body weight and lean mass, while a fat mass rebound was observed. In addition, refeeding restored glucose and leptin. Gln did not affect these parameters, while BCAA tended to increase body weight, fat mass, and glycaemia. In the colon, refeeding improved total protein synthesis and restored the LC3II/LC3I ratio, a marker of autophagy. Gln supplementation enhanced colonic protein synthesis, which was associated with an increased p-p70S6kinase/p70S6kinase ratio, whereas these effects were blunted by BCCA supplementation. Conclusions: In ABA mice, Gln and BCAA supplementations during a progressive refeeding fail to restore body weight and lean mass. However, Gln supplementation improves total colonic protein synthesis conversely to BCAA. Further studies are needed to decipher the underlying mechanisms involved in these opposite results.
Collapse
|
24
|
Breton J, Giallourou N, Nobis S, Morin A, Achamrah N, Goichon A, Belmonte L, Dechelotte P, Rego JLD, Coëffier M, Swann J. Characterizing the metabolic perturbations induced by activity-based anorexia in the C57Bl/6 mouse using 1H NMR spectroscopy. Clin Nutr 2020; 39:2428-2434. [PMID: 31870654 DOI: 10.1016/j.clnu.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
|
25
|
Gut microbiota alteration in a mouse model of Anorexia Nervosa. Clin Nutr 2020; 40:181-189. [PMID: 32460959 DOI: 10.1016/j.clnu.2020.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Anorexia Nervosa is a severe disease depending on both biological, psychological and environmental factors. The gut microbiota has recently been proposed as one of the biological factors potentially involved in the onset or maintenance of Anorexia Nervosa. To unravel the potential role of the gut microbiota in this disease, we characterized the dysbiosis occurring in a mouse model of Anorexia and correlated bacteria level changes with different physiological parameters such as body weight, food intake or levels of hypothalamic neuropeptides. METHODS We used the Activity-Based Anorexia (ABA) mouse model, which combines food restriction and physical activity, and which mimics core features of Anorexia Nervosa. We characterized the gut microbiota alteration in ABA mice by combining 16S rRNA gene sequencing and quantitative PCR analyses of targeted genera or species. RESULTS We identified 68 amplicon sequence variants (ASVs) with decreased levels and 8 ASVs with increased levels in the cecal content of ABA mice compared to control mice. We observed in particular in ABA mice increases in the abundance of Clostridium cocleatum and several Lactobacillus species and a decrease in the abundance of Burkholderiales compared to control mice. Interestingly, we show that most of the observed gut microbiota alterations are due to food restriction and are not affected by physical activity. In addition, we identified several bacterial groups that correlate with mice body weight, food intake, lean and fat masses as well as with hypothalamic mRNA levels of NPY (Neuropeptide Y) and POMC (Pro-opiomelanocortin). CONCLUSIONS Our study provides a comprehensive characterization of the gut microbiota dysbiosis occurring in the Activity-Based Anorexia mouse model. These data constitute a valuable resource to further decipher the role of the gut microbiota in the different facets of anorexia pathophysiology, such as functional gastrointestinal disorders, appetite regulation and mood disorders.
Collapse
|
26
|
Effects of toll-like receptor-7 agonists on feeding behaviour, voluntary activity, cloacal temperature and crop emptying in chicks. Br Poult Sci 2020; 61:303-310. [PMID: 31973574 DOI: 10.1080/00071668.2020.1720907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The purpose of the present study was to determine if an intraperitoneal injection of two toll-like receptor-7 (TLR7) agonists, imiquimod and resiquimod, affect feed intake, voluntary activity, cloacal temperature, crop-emptying rate, plasma corticosterone (CORT) and glucose concentrations, and splenic gene expression of cytokines in chicks (Gallus gallus). 2. Although intraperitoneal injection of 100 µg imiquimod significantly increased splenic gene expression of interleukin-1β (IL-1β), IL-6, IL-8, and interferon-γ (IFN-γ), it did not affect feed intake, voluntary activity, cloacal temperature, crop-emptying rate or plasma constituents. 3. Intraperitoneal injection of 100 µg resiquimod significantly decreased feed intake, voluntary activity, cloacal temperature, crop-emptying rate and increased plasma corticosterone concentrations. 4. Intraperitoneal injection of resiquimod significantly increased splenic gene expression of IL-1β, IL-6, IL-8, IFN-γ, and tumour necrosis factor-like cytokine 1A. 5. The results showed that activation of TLR7 is associated with anorexia, hypoactivity, hypothermia, disturbance of feed passage in the digestive tract and the response to stress in chicks.
Collapse
|
27
|
New therapeutic approaches to target gut-brain axis dysfunction during anorexia nervosa. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Breton J, Déchelotte P, Ribet D. Intestinal microbiota and Anorexia Nervosa. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Collu R, Post JM, Scherma M, Giunti E, Fratta W, Lutz B, Fadda P, Bindila L. Altered brain levels of arachidonic acid-derived inflammatory eicosanoids in a rodent model of anorexia nervosa. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158578. [PMID: 31778792 DOI: 10.1016/j.bbalip.2019.158578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Increasing evidence underline the role of inflammation in the behavioral, emotional and cognitive dysregulations displayed in anorexia nervosa (AN). Among the inflammatory mediators acting at both peripheral and central levels, growing attention receives a class of lipids derived from arachidonic acid (AA), called eicosanoids (eiCs), which exert a complex, multifaceted role in a wide range of neuroinflammatory processes, peripheral inflammation, and generally in immune system function. To date, little is known about their possible involvement in the neurobiological underpinnings of AN. The present study evaluated whether the activity-based model of AN (ABA) may alter AA-metabolic pathways by changing the levels of AA-derived eiCs in specific brain areas implicated in the development of the typical anorexic-like phenotype, i.e. in prefrontal cortex, cerebral cortex, nucleus accumbens, caudate putamen, amygdala, hippocampus, hypothalamus and cerebellum. Our results point to brain region-specific alterations of the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP) metabolic pathways rendering altered levels of AA-derived eiCs (i.e. prostaglandins, thromboxanes and hydroxyeicosatetraenoic acids) in response to induction of and recovery from the ABA condition. These changes, supported by altered messenger RNA (mRNA) levels of genes coding for enzymes involved in eiCs-related methabolic pathways (i.e., PLA2, COX-2, 5-LOX and 15-LOX), underlie a widespread brain dysregulation of pro- and anti-inflammatory eiC-mediated processes in the ABA model of AN. These data suggest the importance of eiCs signaling within corticolimbic areas in regulating key neurobehavioral functions and highlight eiCs as biomarker candidates for monitoring the onset and development of AN, and/or as possible targets for pharmacological management.
Collapse
Affiliation(s)
- Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Julia Maria Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy; National Neuroscience Institute, Italy.
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
30
|
L'Huillier C, Jarbeau M, Achamrah N, Belmonte L, Amamou A, Nobis S, Goichon A, Salameh E, Bahlouli W, do Rego JL, Déchelotte P, Coëffier M. Glutamine, but not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients 2019; 11:nu11061348. [PMID: 31208031 PMCID: PMC6628073 DOI: 10.3390/nu11061348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background: During activity-based anorexia (ABA) in mice, enhanced paracellular permeability and reduced protein synthesis have been shown in the colon while the gut–brain axis has received increasing attention in the regulation of intestinal and mood disorders that frequently occur during anorexia nervosa, a severe eating disorder for which there is no specific treatment. In the present study, we assessed the effects of oral glutamine (Gln) or branched-chain amino acids (BCAA) supplementation during ABA to target intestinal functions, body composition and feeding behavior. Methods: C57BL/6 male mice were randomized in Control (CTRL) and ABA groups. After ABA induction, mice received, or not, either 1% Gln or 2.5% BCAA (Leu, Ile, Val) for one week in drinking water. Results: Neither Gln nor BCAA supplementation affected body weight and body composition, while only Gln supplementation slightly increased food intake. ABA mice exhibited increased paracellular permeability and reduced protein synthesis in the colonic mucosa. Oral Gln restored colonic paracellular permeability and protein synthesis and increased the mucin-2 mRNA level, whereas BCAA did not affect colonic parameters. Conclusion: In conclusion, oral Gln specifically improves colonic response during ABA. These data should be further confirmed in AN patients.
Collapse
Affiliation(s)
- Clément L'Huillier
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Marine Jarbeau
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Najate Achamrah
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Liliana Belmonte
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Asma Amamou
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Séverine Nobis
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Alexis Goichon
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Emmeline Salameh
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Wafa Bahlouli
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Jean-Luc do Rego
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Animal Behavior Facility, SCAC, UNIROUEN, 76183 Rouen, France.
| | - Pierre Déchelotte
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Moïse Coëffier
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| |
Collapse
|
31
|
Schalla MA, Stengel A. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review. Front Nutr 2019; 6:69. [PMID: 31165073 PMCID: PMC6536653 DOI: 10.3389/fnut.2019.00069] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder affecting around 1 per 100 persons. However, the knowledge about its underlying pathophysiology is limited. To address the need for a better understanding of AN, an animal model was established early on in the late 1960's: the activity-based anorexia (ABA) model in which rats have access to a running wheel combined with restricted food access leading to self-starving/body weight loss and hyperactivity. Both symptoms, separately or combined, can also be found in patients with AN. The aim of this systematic review was to compile the current knowledge about this animal model as well as to address gaps in knowledge. Using the data bases of PubMed, Embase and Web of science 102 publications were identified meeting the search criteria. Here, we show that the ABA model mimics core features of human AN and has been characterized with regards to brain alterations, hormonal changes as well as adaptations of the immune system. Moreover, pharmacological interventions in ABA animals and new developments, such as a chronic adaptation of the ABA model, will be highlighted. The chronic model might be well suited to display AN characteristics but should be further characterized. Lastly, limitations of the model will be discussed.
Collapse
Affiliation(s)
- Martha A Schalla
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Abstract
Growing interest exists in the association of gut bacteria with diseases, such as diabetes, obesity, inflammatory bowel disease, and psychiatric disorders. Gut microbiota influence the fermentation of nutrients, body-weight regulation, gut permeability, hormones, inflammation, immunology, and behavior (gut-brain axis). Regarding anorexia nervosa (AN), altered microbial diversity and taxa abundance were found and associated with depressive, anxious, and eating disorder symptoms. Potential mechanisms involve increased gut permeability, low-grade inflammation, autoantibodies, and reduced brain cell neogenesis and learning. Gut microbiome is strongly influenced by refeeding practices. Microbiota-modulating strategies like nutritional interventions or psychobiotics application could become relevant additions to AN treatment.
Collapse
|
33
|
Gabriel T, Paul S, Berger A, Massoubre C. Anorexia Nervosa and Autism Spectrum Disorders: Future Hopes Linked to Mucosal Immunity. Neuroimmunomodulation 2019; 26:265-275. [PMID: 31715599 DOI: 10.1159/000502997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022] Open
Abstract
Mental health is becoming a public health priority worldwide. Anorexia nervosa and autism spectrum disorders are 2 important types of childhood disorders with a bad prognosis. They share cognitive impairments and, in both cases, the microbiota appears to be a crucial factor. Alteration of the microbiota-gut-brain axis is an appealing hypothesis to define new pathophysiological mechanisms. Mucosal immunity plays a key role between the microbiota and the brain. The mucosal immune system receives and integrates messages from the intestinal microenvironment and the microbiota and then transmits the information to the nervous system. Abnormalities in this sensorial system may be involved in the natural history of mental diseases and might play a role in their maintenance. This review aims to highlight data about the relationship between intestinal mucosal immunity and these disorders. We show that shared cognitive impairments could be found in these 2 disorders, which both present dysbiosis. This literature review provides details on the immune status of anorexic and autistic patients, with a focus on intestinal mucosal factors. Finally, we suggest future research hypotheses that seem important for understanding the implication of the gut-brain-axis in psychiatric diseases.
Collapse
Affiliation(s)
- Tristan Gabriel
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France
| | - Stéphane Paul
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Anne Berger
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Catherine Massoubre
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France,
| |
Collapse
|
34
|
Fu Z, Shen Y, Lin L, Chen Y, Li Y, Que R. Association between Toll-Like Receptor 4 T399I Gene Polymorphism and the Susceptibility to Crohn's Disease: A Meta-Analysis of Case-Control Studies. Digestion 2018; 97:250-259. [PMID: 29421805 DOI: 10.1159/000485027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS This article was undertaken to investigate the association of toll-like receptor 4 (TLR4) polymorphism (Thr399Ile) and risk of Crohn's disease (CD) by performing a meta-analysis. METHODS Articles were chosen based on PubMed, Embase, China National Knowledge Internet, and Chinese Wanfang databases (up to 12th October 2016). Specific inclusion criteria were used to evaluate articles. Meta-analysis was performed by using a random or fixed effect model. Fifteen eligible case-control studies were finally included into this meta-analysis. We estimated the summary OR with its corresponding 95% CI to assess the association. RESULTS Summary results of this meta-analysis showed a moderate association between the TLR4 T399I polymorphism and the risk of CD (allele model: OR 1.26, 95% CI 1.06-1.50, p = 0.009; heterozygote model: OR 1.36, 95% CI 1.11-1.66, p = 0.003; dominant model: OR 1.35, 95% CI 1.10-1.64, p = 0.004; homozygote model: OR 1.08, 95% CI 0.44-2.64, p = 0.866; recessive model: OR 0.97, 95% CI 0.40-2.35, p = 0.946). Stratified analysis on geographical area, ethnicity, and genotypic methods suggested that the polymorphism was associated with increased risk of CD in Asia and Asians, and "T" allele only moderately increased CD risk within polymerase chain reaction-restricted fragment length polymorphism. CONCLUSIONS Our meta-analysis suggests that TLR4 T399I polymorphism is moderately associated with susceptibility to CD, and more studies are needed to confirm our conclusion.
Collapse
Affiliation(s)
- Zhiquan Fu
- Department of Gastroenterology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Shen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yirong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renye Que
- Department of Gastroenterology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Nobis S, Achamrah N, Goichon A, L'Huillier C, Morin A, Guérin C, Chan P, do Rego JL, do Rego JC, Vaudry D, Déchelotte P, Belmonte L, Coëffier M. Colonic Mucosal Proteome Signature Reveals Reduced Energy Metabolism and Protein Synthesis but Activated Autophagy during Anorexia-Induced Malnutrition in Mice. Proteomics 2018; 18:e1700395. [PMID: 29938906 DOI: 10.1002/pmic.201700395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Anorexia nervosa is an eating disorder often associated with intestinal disorders. To explore the underlying mechanisms of these disorders, the colonic proteome was evaluated during activity-based anorexia. Female C57Bl/6 mice were randomized into three groups: Control, Limited Food Access (LFA) and Activity-Based Anorexia (ABA). LFA and ABA mice had a progressive limited access to food but only ABA mice had access to an activity wheel. On colonic mucosal protein extracts, a 2D PAGE-based comparative proteomic analysis was then performed and differentially expressed proteins were identified by LC-ESI-MS/MS. Twenty-seven nonredundant proteins that were differentially expressed between Control, LFA, and ABA groups were identified. ABA mice exhibited alteration of several mitochondrial proteins involved in energy metabolism such as dihydrolipoyl dehydrogenase and 3-mercaptopyruvate sulfurtransferase. In addition, a downregulation of mammalian target of rapamycin (mTOR) pathway was observed leading, on the one hand, to the inhibition of protein synthesis, evaluated by puromycin incorporation and mediated by the increased phosphorylation of eukaryotic elongation factor 2, and on the other hand, to the activation of autophagy, assessed by the increase of the marker of autophagy, form LC3-phosphatidylethanolamine conjugate/Cytosolic form of Microtubule-associated protein 1A/1B light chain 3 (LC3II/LC3I) ratio. Colonic mucosal proteome is altered during ABA suggesting a downregulation of energy metabolism. A decrease of protein synthesis and an activation of autophagy were also observed mediated by mTOR pathway.
Collapse
Affiliation(s)
- Séverine Nobis
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Najate Achamrah
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Alexis Goichon
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Clément L'Huillier
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Aline Morin
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Charlène Guérin
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Jean Luc do Rego
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Jean Claude do Rego
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, 76000, Rouen, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, 76000, Rouen, France.,INSERM Unit 1239, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Pierre Déchelotte
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Liliana Belmonte
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Moïse Coëffier
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| |
Collapse
|
36
|
Nobis S, Morin A, Achamrah N, Belmonte L, Legrand R, Chan P, do Rego JL, Vaudry D, Gourcerol G, Déchelotte P, Goichon A, Coëffier M. Delayed gastric emptying and altered antrum protein metabolism during activity-based anorexia. Neurogastroenterol Motil 2018; 30:e13305. [PMID: 29411462 DOI: 10.1111/nmo.13305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Anorexia nervosa, a restrictive eating disorder, is often associated with gastrointestinal disorders, particularly a delayed gastric emptying. However, the mechanisms remained poorly documented. Thus, we aimed to evaluate gastric emptying and antrum protein metabolism in the Activity-Based Anorexia model (ABA). METHODS Females C57Bl/6 mice were randomized into 3 groups: Control, ABA, and Limited Food Access (LFA). Food access has been progressively limited from 6 h/day at day 6 to 3 h/day at day 9 and until day 17. ABA mice had free access to an activity wheel. Gastric emptying was assessed. On gastric extracts, a proteomic analysis was performed, as well as an evaluation of protein synthesis and protein oxidation. KEY RESULTS Both LFA and ABA mice exhibited a delayed gastric emptying compared with Controls (P < .05). Proteomic approach revealed 15 proteins that were differentially expressed. Among these proteins, we identified 2 clusters of interest contributing to (i) the organization of muscle fiber with ACTA2, VCL, KRT19, KRT8, and DES proteins and (ii) "heat shock proteins" with STIP1, HSPD1, and HSPA8 proteins. ABA mice specifically exhibited an increased rate of gastric oxidized proteins. CONCLUSIONS AND INFERENCES Delayed gastric emptying observed in anorectic conditions appears to be secondary to malnutrition. However, an oxidative stress is specifically present in the stomach of ABA mice. Its role remains to be further studied.
Collapse
Affiliation(s)
- S Nobis
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France
| | - A Morin
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France
| | - N Achamrah
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| | - L Belmonte
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| | - R Legrand
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France
| | - P Chan
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, Rouen, France
| | - J-L do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, Rouen, France
| | - D Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, Rouen, France.,INSERM Unit 1239, UNIROUEN, Normandie University, Rouen, France
| | - G Gourcerol
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Physiology Department, Rouen University Hospital, Rouen, France
| | - P Déchelotte
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| | - A Goichon
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France
| | - M Coëffier
- INSERM Unit 1073, UNIROUEN, Normandie University, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
37
|
Nobis S, Goichon A, Achamrah N, Guérin C, Azhar S, Chan P, Morin A, Bôle-Feysot C, do Rego JC, Vaudry D, Déchelotte P, Belmonte L, Coëffier M. Alterations of proteome, mitochondrial dynamic and autophagy in the hypothalamus during activity-based anorexia. Sci Rep 2018; 8:7233. [PMID: 29740148 PMCID: PMC5940678 DOI: 10.1038/s41598-018-25548-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Restrictive anorexia nervosa is associated with reduced eating and severe body weight loss leading to a cachectic state. Hypothalamus plays a major role in the regulation of food intake and energy homeostasis. In the present study, alterations of hypothalamic proteome and particularly of proteins involved in energy and mitochondrial metabolism have been observed in female activity-based anorexia (ABA) mice that exhibited a reduced food intake and a severe weight loss. In the hypothalamus, mitochondrial dynamic was also modified during ABA with an increase of fission without modification of fusion. In addition, increased dynamin-1, and LC3II/LC3I ratio signed an activation of autophagy while protein synthesis was increased. In conclusion, proteomic analysis revealed an adaptive hypothalamic protein response in ABA female mice with both altered mitochondrial response and activated autophagy.
Collapse
Affiliation(s)
- Séverine Nobis
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Alexis Goichon
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Najate Achamrah
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Rouen University Hospital, Nutrition Department, Rouen, France
| | - Charlène Guérin
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Saida Azhar
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Philippe Chan
- Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie University, UNIROUEN, Platform in proteomics PISSARO, Rouen, France
| | - Aline Morin
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Christine Bôle-Feysot
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean Claude do Rego
- Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie University, UNIROUEN, Animal Behaviour Platform SCAC, Rouen, France
| | - David Vaudry
- Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie University, UNIROUEN, Platform in proteomics PISSARO, Rouen, France.,Normandie University, UNIROUEN, INSERM Unit 1239, Mont-Saint-Aignan, France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Rouen University Hospital, Nutrition Department, Rouen, France
| | - Liliana Belmonte
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Rouen University Hospital, Nutrition Department, Rouen, France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France. .,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Rouen University Hospital, Nutrition Department, Rouen, France.
| |
Collapse
|
38
|
Establishment of a chronic activity-based anorexia rat model. J Neurosci Methods 2017; 293:191-198. [PMID: 28970163 DOI: 10.1016/j.jneumeth.2017.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anorexia nervosa (AN) is often a chronic eating disorder characterised by body image disturbance and low body weight often associated with starvation-induced amenorrhoea and excessive exercise. Activity-based anorexia (ABA) is an animal model representing many somatic aspects of this psychiatric illness. We systematically manipulated the extent and length of starvation and animal age to find the optimal parameters to study chronic starvation. NEW METHODS Wistar rats had 24h/day running wheel access and received 40% of their baseline food intake until a 20% or 25% weight reduction was reached (acute starvation). This body weight was then maintained for two weeks (chronic starvation). The rats of different ages of 4 or 8 weeks were used to represent early and late adolescent animals, respectively. The complete absence of a menstrual cycle was defined as the primary outcome parameter. RESULTS Acute starvation caused a disruption of the oestrous cycle in 58% of the animals. During chronic starvation, a complete loss of the oestrous cycle could be found. Furthermore, 4-week-old rats exhibited higher levels of hyperactivity and amenorrhoea than 8-week-old animals. A 20% starvation level led to 90% loss of cycle, while a 25% starvation level triggered complete loss. COMPARISON WITH EXISTING METHODS Most current ABA models focus on acute starvation, while most patients are chronically ill. CONCLUSIONS The optimal parameters to achieve complete amenorrhoea included early adolescence, chronic starvation and 25% weight loss. The new ABA model allows studying the effects of chronic AN on underlying behavioural, hormonal and brain pathobiology.
Collapse
|
39
|
Borgo F, Riva A, Benetti A, Casiraghi MC, Bertelli S, Garbossa S, Anselmetti S, Scarone S, Pontiroli AE, Morace G, Borghi E. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS One 2017; 12:e0179739. [PMID: 28636668 PMCID: PMC5479564 DOI: 10.1371/journal.pone.0179739] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/02/2017] [Indexed: 01/02/2023] Open
Abstract
Anorexia nervosa (AN) is a psychiatric disease with devastating physical consequences, with a pathophysiological mechanism still to be elucidated. Metagenomic studies on anorexia nervosa have revealed profound gut microbiome perturbations as a possible environmental factor involved in the disease. In this study we performed a comprehensive analysis integrating data on gut microbiota with clinical, anthropometric and psychological traits to gain new insight in the pathophysiology of AN. Fifteen AN women were compared with fifteen age-, sex- and ethnicity-matched healthy controls. AN diet was characterized by a significant lower energy intake, but macronutrient analysis highlighted a restriction only in fats and carbohydrates consumption. Next generation sequencing showed that AN intestinal microbiota was significantly affected at every taxonomic level, showing a significant increase of Enterobacteriaceae, and of the archeon Methanobrevibacter smithii compared with healthy controls. On the contrary, the genera Roseburia, Ruminococcus and Clostridium, were depleted, in line with the observed reduction in AN of total short chain fatty acids, butyrate, and propionate. Butyrate concentrations inversely correlated with anxiety levels, whereas propionate directly correlated with insulin levels and with the relative abundance of Roseburia inulinivorans, a known propionate producer. BMI represented the best predictive value for gut dysbiosis and metabolic alterations, showing a negative correlation with Bacteroides uniformis (microbiota), with alanine aminotransferase (liver function), and with psychopathological scores (obsession-compulsion, anxiety, and depression), and a positive correlation with white blood cells count. In conclusion, our findings corroborate the hypothesis that the gut dysbiosis could take part in the AN neurobiology, in particular in sustaining the persistence of alterations that eventually result in relapses after renourishment and psychological therapy, but causality still needs to be proven.
Collapse
Affiliation(s)
- Francesca Borgo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Riva
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Maria Cristina Casiraghi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Garbossa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- ASST Santi Paolo e Carlo, Milan, Italy
| | | | - Silvio Scarone
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- ASST Santi Paolo e Carlo, Milan, Italy
| | - Antonio E. Pontiroli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- ASST Santi Paolo e Carlo, Milan, Italy
| | - Giulia Morace
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|