1
|
Wu J, Cui X, Bao L, Liu G, Wang X, Chen C. A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease. SCIENCE ADVANCES 2025; 11:eado4927. [PMID: 39813330 PMCID: PMC11734722 DOI: 10.1126/sciadv.ado4927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker. ATB NPs by stereotactic injection target dopamine neurons expressing TRPV1 receptors in the substantia nigra. Upon pulsed near-infrared irradiation, ATB NPs, serving as nanoantennae, convert the light into heat, leading to calcium ion influx, depolarization, and action potentials in dopamine neurons through TRPV1 receptors. Simultaneously, β-synuclein peptides released from ATB NPs cooperate with chaperone-mediated autophagy initiated by heat shock protein, HSC70, to effectively eliminate α-synuclein fibrils in neurons. These orchestrated actions restored pathological dopamine neurons and locomotor behaviors of Parkinson's disease.
Collapse
Affiliation(s)
- Junguang Wu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Cui
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Bao
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanyu Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kalmouni M, Oh Y, Alata W, Magzoub M. Designed Cell-Penetrating Peptide Constructs for Inhibition of Pathogenic Protein Self-Assembly. Pharmaceutics 2024; 16:1443. [PMID: 39598566 PMCID: PMC11597747 DOI: 10.3390/pharmaceutics16111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
Collapse
Affiliation(s)
| | | | | | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates; (Y.O.)
| |
Collapse
|
3
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
4
|
Kambanis L, Ayoub A, Bedding MJ, Egelund PHG, Maxwell JWC, Franck C, Lambrechts L, Hawkins PME, Chisholm TS, Mackay JP, Sierecki E, Gambin Y, Kulkarni SS, Payne RJ. Expressed Protein Ligation in Flow. J Am Chem Soc 2024; 146:22027-22035. [PMID: 39052634 DOI: 10.1021/jacs.4c07462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of a flow chemistry platform for the generation of modified protein targets via expressed protein ligation (EPL) is described. The flow EPL platform enables efficient ligation reactions with high recoveries of target protein products and superior reaction rates compared to corresponding batch processes. The utility of the flow EPL technology was first demonstrated through the semisynthesis of the tick-derived chemokine-binding protein ACA-01 containing two tyrosine sulfate modifications. Full-length, sulfated ACA-01 could be efficiently assembled by ligating a recombinantly expressed C-terminal protein fragment and a synthetic sulfopeptide thioester in flow. Following folding, the semisynthetic sulfoprotein was shown to exhibit potent binding to a variety of pro-inflammatory chemokines. In a second modified protein target, we employed an in-line flow EPL-photodesulfurization strategy to generate both unmodified and phosphorylated forms of human β-synuclein by fusing a recombinant protein thioester, generated through cleavage of an intein fusion protein, and a synthetic (phospho)peptide. The semisynthetic proteins were assembled in 90 min in flow, a significant improvement over corresponding batch protein assembly, and enabled access to tens of milligrams of high purity material. Flow EPL has the potential to serve as a robust technology to streamline access to homogeneously modified proteins for a variety of applications in both academia, as well as in the pharmaceutical and biotechnology sector.
Collapse
Affiliation(s)
- Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony Ayoub
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter H G Egelund
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Novo Nordisk A/S, CMC API Development, DK-2880 Bagsværd, Denmark
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lucien Lambrechts
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Timothy S Chisholm
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Emma Sierecki
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yann Gambin
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Wu X, Wang G, Zhao Z, Qian Z. In silico study on graphene quantum dots modified with various functional groups inhibiting α‑synuclein dimerization. J Colloid Interface Sci 2024; 667:723-730. [PMID: 38641462 DOI: 10.1016/j.jcis.2024.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
HYPOTHESIS Graphene quantum dots (GQDs) with various functional groups are hypothesized to inhibit the α-synuclein (αS) dimerization, a crucial step in Parkinson's disease pathogenesis. The potential of differently functionalized GQDs is systematically explored. EXPERIMENTS All-atom replica-exchange molecular dynamics simulations (accumulating to 75.6 μs) in explicit water were performed to study the dimerization of the αS non-amyloid component region and the influence of GQDs modified with various functional groups. Conformation ensemble, binding behavior, and free energy analysis were conducted. FINDINGS All studied GQDs inhibit β-sheet and backbone hydrogen bond formation in αS dimers, leading to looser oligomeric conformations. Charged GQDs severely impede the growth of extended β-sheets by providing extra contact surface. GQD binding primarily disrupts αS inter-peptide interactions through π-π stacking, CH-π interactions, and for charged GQDs, additionally through salt-bridge and hydrogen bonding interactions. GQD-COO- showed the most optimal inhibitory effect, binding mode, and intensity, which holds promise for the development of nanomedicines targeting amyloid aggregation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Gang Wang
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Ziqian Zhao
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
6
|
Xian M, Li J, Liu T, Hou K, Sun L, Wei J. β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2445-2453. [PMID: 38905183 DOI: 10.1021/acschemneuro.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.
Collapse
Affiliation(s)
- Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Kaiying Hou
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
7
|
Mahur P, Sharma A, Jahan G, S G A, Kumar Singh A, Muthukumaran J, Jain M. Understanding Genetic Risks: Computational Exploration of Human β-Synuclein nsSNPs and their Potential Impact on Structural Alteration. Neurosci Lett 2024; 833:137826. [PMID: 38768940 DOI: 10.1016/j.neulet.2024.137826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (β-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. β-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by β-synuclein, which occurs in conditions like Parkinson's disease, β-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, β-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the β-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.
Collapse
Affiliation(s)
- Pragati Mahur
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Abhishek Sharma
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gulnaz Jahan
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Adithya S G
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
8
|
Zhong W, Yang Q, Wang F, Lin X, Chen Z, Xue J, Zhao W, Liu X, Rao B, Zhang J. Cell-specific localization of β-synuclein in the mouse retina. Brain Struct Funct 2024; 229:1279-1298. [PMID: 38703218 DOI: 10.1007/s00429-024-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
β-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, β-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of β-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified β-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including β-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high β- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of β-synuclein and its potential role in synuclein pathology within the retina.
Collapse
Affiliation(s)
- Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongqun Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jing Xue
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
9
|
Dear AJ, Teng X, Ball SR, Lewin J, Horne RI, Clow D, Stevenson A, Harper N, Yahya K, Yang X, Brewerton SC, Thomson J, Michaels TCT, Linse S, Knowles TPJ, Habchi J, Meisl G. Molecular mechanism of α-synuclein aggregation on lipid membranes revealed. Chem Sci 2024; 15:7229-7242. [PMID: 38756798 PMCID: PMC11095391 DOI: 10.1039/d3sc05661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
The central hallmark of Parkinson's disease pathology is the aggregation of the α-synuclein protein, which, in its healthy form, is associated with lipid membranes. Purified monomeric α-synuclein is relatively stable in vitro, but its aggregation can be triggered by the presence of lipid vesicles. Despite this central importance of lipids in the context of α-synuclein aggregation, their detailed mechanistic role in this process has not been established to date. Here, we use chemical kinetics to develop a mechanistic model that is able to globally describe the aggregation behaviour of α-synuclein in the presence of DMPS lipid vesicles, across a range of lipid and protein concentrations. Through the application of our kinetic model to experimental data, we find that the reaction is a co-aggregation process involving both protein and lipids and that lipids promote aggregation as much by enabling fibril elongation as by enabling their initial formation. Moreover, we find that the primary nucleation of lipid-protein co-aggregates takes place not on the surface of lipid vesicles in bulk solution but at the air-water and/or plate interfaces, where lipids and proteins are likely adsorbed. Our model forms the basis for mechanistic insights, also in other lipid-protein co-aggregation systems, which will be crucial in the rational design of drugs that inhibit aggregate formation and act at the key points in the α-synuclein aggregation cascade.
Collapse
Affiliation(s)
- Alexander J Dear
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Xiangyu Teng
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Sarah R Ball
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Joshua Lewin
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Robert I Horne
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Daniel Clow
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Alisdair Stevenson
- Department of Biology, Institute of Biochemistry, ETH Zurich Otto Stern Weg 3 8093 Zurich Switzerland
- Bringing Materials to Life Initiative, ETH Zurich Switzerland
| | - Natasha Harper
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Kim Yahya
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Xiaoting Yang
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Suzanne C Brewerton
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - John Thomson
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich Otto Stern Weg 3 8093 Zurich Switzerland
- Bringing Materials to Life Initiative, ETH Zurich Switzerland
| | - Sara Linse
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
- Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
- Cavendish Laboratory, University of Cambridge Cambridge UK
| | - Johnny Habchi
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Georg Meisl
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
10
|
Horne RI, Andrzejewska EA, Alam P, Brotzakis ZF, Srivastava A, Aubert A, Nowinska M, Gregory RC, Staats R, Possenti A, Chia S, Sormanni P, Ghetti B, Caughey B, Knowles TPJ, Vendruscolo M. Discovery of potent inhibitors of α-synuclein aggregation using structure-based iterative learning. Nat Chem Biol 2024; 20:634-645. [PMID: 38632492 PMCID: PMC11062903 DOI: 10.1038/s41589-024-01580-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024]
Abstract
Machine learning methods hold the promise to reduce the costs and the failure rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases, where the development of disease-modifying drugs has been particularly challenging. To address this problem, we describe here a machine learning approach to identify small molecule inhibitors of α-synuclein aggregation, a process implicated in Parkinson's disease and other synucleinopathies. Because the proliferation of α-synuclein aggregates takes place through autocatalytic secondary nucleation, we aim to identify compounds that bind the catalytic sites on the surface of the aggregates. To achieve this goal, we use structure-based machine learning in an iterative manner to first identify and then progressively optimize secondary nucleation inhibitors. Our results demonstrate that this approach leads to the facile identification of compounds two orders of magnitude more potent than previously reported ones.
Collapse
Affiliation(s)
- Robert I Horne
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ewa A Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Parvez Alam
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Z Faidon Brotzakis
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Alice Aubert
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Magdalena Nowinska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rebecca C Gregory
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrea Possenti
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Vorobyov V, Deev A, Chaprov K, Ninkina N. Disruption of Electroencephalogram Coherence between Cortex/Striatum and Midbrain Dopaminergic Regions in the Knock-Out Mice with Combined Loss of Alpha, Beta, and Gamma Synucleins. Biomedicines 2024; 12:881. [PMID: 38672235 PMCID: PMC11048202 DOI: 10.3390/biomedicines12040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The malfunctioning of the brain synucleins is associated with pathogenesis of Parkinson's disease. Synucleins' ability to modulate various pre-synaptic processes suggests their modifying effects on the electroencephalogram (EEG) recorded from different brain structures. Disturbances in interrelations between them are critical for the onset and evolution of neurodegenerative diseases. Recently, we have shown that, in mice lacking several synucleins, differences between the frequency spectra of EEG from different brain structures are correlated with specificity of synucleins' combinations. Given that EEG spectra are indirect characteristics of inter-structural relations, in this study, we analyzed a coherence of instantaneous values for EEGs recorded from different structures as a direct measure of "functional connectivity" between them. METHODS EEG data from seven groups of knock-out (KO) mice with combined deletions of alpha, beta, and gamma synucleins versus a group of wild-type (WT) mice were compared. EEG coherence was estimated between the cortex (MC), putamen (Pt), ventral tegmental area (VTA), and substantia nigra (SN) in all combinations. RESULTS EEG coherence suppression, predominantly in the beta frequency band, was observed in KO mice versus WT littermates. The suppression was minimal in MC-Pt and VTA-SN interrelations in all KO groups and in all inter-structural relations in mice lacking either all synucleins or only beta synuclein. In other combinations of deleted synucleins, significant EEG coherence suppression in KO mice was dominant in relations with VTA and SN. CONCLUSION Deletions of the synucleins produced significant attenuation of intra-cerebral EEG coherence depending on the imbalance of different types of synucleins.
Collapse
Affiliation(s)
- Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Natalia Ninkina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
12
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
13
|
Allen SG, Meade RM, White Stenner LL, Mason JM. Peptide-based approaches to directly target alpha-synuclein in Parkinson's disease. Mol Neurodegener 2023; 18:80. [PMID: 37940962 PMCID: PMC10633918 DOI: 10.1186/s13024-023-00675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Peptides and their mimetics are increasingly recognised as drug-like molecules, particularly for intracellular protein-protein interactions too large for inhibition by small molecules, and inaccessible to larger biologics. In the past two decades, evidence associating the misfolding and aggregation of alpha-synuclein strongly implicates this protein in disease onset and progression of Parkinson's disease and related synucleinopathies. The subsequent formation of toxic, intracellular, Lewy body deposits, in which alpha-synuclein is a major component, is a key diagnostic hallmark of the disease. To reach their therapeutic site of action, peptides must both cross the blood-brain barrier and enter dopaminergic neurons to prevent the formation of these intracellular inclusions. In this review, we describe and summarise the current efforts made in the development of peptides and their mimetics to directly engage with alpha-synuclein with the intention of modulating aggregation, and importantly, toxicity. This is a rapidly expanding field with great socioeconomic impact; these molecules harbour significant promise as therapeutics, or as early biomarkers during prodromal disease stages, or both. As these are age-dependent conditions, an increasing global life expectancy means disease prevalence is rising. No current treatments exist to either prevent or slow disease progression. It is therefore crucial that drugs are developed for these conditions before health care and social care capacities become overrun.
Collapse
Affiliation(s)
- Scott G Allen
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Richard M Meade
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lucy L White Stenner
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
14
|
Karaca M, Tahtasakal R, Dana H, Sahin M, Pirencioglu SN, Tughan E, Dal F, Demirci E, Sener EF. Decreased levels of alpha synuclein in families with autism spectrum disorder and relationship between the disease severity. Brain Res 2023; 1814:148410. [PMID: 37244604 DOI: 10.1016/j.brainres.2023.148410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorders that begin in early childhood. Mutations in α-synuclein (SNCA) gene have been shown to result in the accumulation of α-synuclein, which occurs in many neurodegenerative diseases. Our aim was to determine the changes in the expression profile and protein level of this gene by comparing the autistic children with their healthy siblings, their mothers and healthy controls in order to elucidate the possible contribution of the SNCA gene to the etiology of ASD. 50 autistic patients, their mothers, siblings and 25 healthy controls and their mothers were enrolled to determine SNCA gene expression and serum α-synuclein levels. It was determined that α-synuclein serum levels decreased in the autistic patients. Similarly, it was found that SNCA gene expression and serum α-synuclein levels were significantly decreased in the mothers of the patients. Significant negative correlation was observed between the SNCA gene and protein expression amounts in the 6-8 age of the patients. This family-based study is the first in the literature, with both gene expression and serum levels of α-synuclein. The relationship between ASD severity and α-synuclein level needs to be confirmed in larger-scale studies.
Collapse
Affiliation(s)
- Mukaddes Karaca
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey
| | - Reyhan Tahtasakal
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey
| | - Halime Dana
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University Medical Faculty Department of Medical Biology, Kayseri, Turkey
| | - Murside Sahin
- Erciyes University Medical Faculty Department of Child and Adolescent Psychiatry, 38039 Kayseri, Turkey
| | - Seyda Nur Pirencioglu
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey
| | - Emre Tughan
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey
| | - Fatma Dal
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey
| | - Esra Demirci
- Erciyes University Medical Faculty Department of Child and Adolescent Psychiatry, 38039 Kayseri, Turkey
| | - Elif Funda Sener
- Erciyes University Genome and Stem Cell Center (GENKOK), Erciyes University Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University Medical Faculty Department of Medical Biology, Kayseri, Turkey
| |
Collapse
|
15
|
Zanotti LC, Malizia F, Cesatti Laluce N, Avila A, Mamberto M, Anselmino LE, Menacho-Márquez M. Synuclein Proteins in Cancer Development and Progression. Biomolecules 2023; 13:980. [PMID: 37371560 PMCID: PMC10296229 DOI: 10.3390/biom13060980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Synucleins are a family of small, soluble proteins mainly expressed in neural tissue and in certain tumors. Since their discovery, tens of thousands of scientific reports have been published about this family of proteins as they are associated with severe human diseases. Although the physiological function of these proteins is still elusive, their relationship with neurodegeneration and cancer has been clearly described over the years. In this review, we summarize data connecting synucleins and cancer, going from the structural description of these molecules to their involvement in tumor-related processes, and discuss the putative use of these proteins as cancer molecular biomarkers.
Collapse
Affiliation(s)
- Lucía C. Zanotti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Florencia Malizia
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Nahuel Cesatti Laluce
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Aylén Avila
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Macarena Mamberto
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Luciano E. Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| |
Collapse
|
16
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Interneuronal In Vivo Transfer of Synaptic Proteins. Cells 2023; 12:cells12040569. [PMID: 36831238 PMCID: PMC9954582 DOI: 10.3390/cells12040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuron-to-neuron transfer of pathogenic α-synuclein species is a mechanism of likely relevance to Parkinson's disease development. Experimentally, interneuronal α-synuclein spreading from the low brainstem toward higher brain regions can be reproduced by the administration of AAV vectors encoding for α-synuclein into the mouse vagus nerve. The aim of this study was to determine whether α-synuclein's spreading ability is shared by other proteins. Given α-synuclein synaptic localization, experiments involved intravagal injections of AAVs encoding for other synaptic proteins, β-synuclein, VAMP2, or SNAP25. Administration of AAV-VAMP2 or AAV-SNAP25 caused robust transduction of either of the proteins in the dorsal medulla oblongata but was not followed by interneuronal VAMP2 or SNAP25 transfer and caudo-rostral spreading. In contrast, AAV-mediated β-synuclein overexpression triggered its spreading to more frontal brain regions. The aggregate formation was investigated as a potential mechanism involved in protein spreading, and consistent with this hypothesis, results showed that overexpression of β-synuclein, but not VAMP2 or SNAP25, in the dorsal medulla oblongata was associated with pronounced protein aggregation. Data indicate that interneuronal protein transfer is not a mere consequence of increased expression or synaptic localization. It is rather promoted by structural/functional characteristics of synuclein proteins that likely include their tendency to form aggregate species.
Collapse
|
18
|
Bons J, Rose J, Zhang R, Burton JB, Carrico C, Verdin E, Schilling B. In-depth analysis of the Sirtuin 5-regulated mouse brain malonylome and succinylome using library-free data-independent acquisitions. Proteomics 2023; 23:e2100371. [PMID: 36479818 PMCID: PMC10363399 DOI: 10.1002/pmic.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modifications (PTMs) dynamically regulate proteins and biological pathways, typically through the combined effects of multiple PTMs. Lysine residues are targeted for various PTMs, including malonylation and succinylation. However, PTMs offer specific challenges to mass spectrometry-based proteomics during data acquisition and processing. Thus, novel and innovative workflows using data-independent acquisition (DIA) ensure confident PTM identification, precise site localization, and accurate and robust label-free quantification. In this study, we present a powerful approach that combines antibody-based enrichment with comprehensive DIA acquisitions and spectral library-free data processing using directDIA (Spectronaut). Identical DIA data can be used to generate spectral libraries and comprehensively identify and quantify PTMs, reducing the amount of enriched sample and acquisition time needed, while offering a fully automated workflow. We analyzed brains from wild-type and Sirtuin 5 (SIRT5)-knock-out mice, and discovered and quantified 466 malonylated and 2211 succinylated peptides. SIRT5 regulation remodeled the acylomes by targeting 164 malonylated and 578 succinylated sites. Affected pathways included carbohydrate and lipid metabolisms, synaptic vesicle cycle, and neurodegenerative diseases. We found 48 common SIRT5-regulated malonylation and succinylation sites, suggesting potential PTM crosstalk. This innovative and efficient workflow offers deeper insights into the mouse brain lysine malonylome and succinylome.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California, USA
| | - Ran Zhang
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, USA
| | | |
Collapse
|
19
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
20
|
Chia S, Faidon Brotzakis Z, Horne RI, Possenti A, Mannini B, Cataldi R, Nowinska M, Staats R, Linse S, Knowles TPJ, Habchi J, Vendruscolo M. Structure-Based Discovery of Small-Molecule Inhibitors of the Autocatalytic Proliferation of α-Synuclein Aggregates. Mol Pharm 2023; 20:183-193. [PMID: 36374974 PMCID: PMC9811465 DOI: 10.1021/acs.molpharmaceut.2c00548] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022]
Abstract
The presence of amyloid fibrils of α-synuclein is closely associated with Parkinson's disease and related synucleinopathies. It is still very challenging, however, to systematically discover small molecules that prevent the formation of these aberrant aggregates. Here, we describe a structure-based approach to identify small molecules that specifically inhibit the surface-catalyzed secondary nucleation step in the aggregation of α-synuclein by binding to the surface of the amyloid fibrils. The resulting small molecules are screened using a range of kinetic and thermodynamic assays for their ability to bind α-synuclein fibrils and prevent the further generation of α-synuclein oligomers. This study demonstrates that the combination of structure-based and kinetic-based drug discovery methods can lead to the identification of small molecules that selectively inhibit the autocatalytic proliferation of α-synuclein aggregates.
Collapse
Affiliation(s)
- Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Robert I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Andrea Possenti
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Rodrigo Cataldi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Magdalena Nowinska
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Roxine Staats
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Sara Linse
- Department
of Biochemistry & Structural Biology, Center for Molecular Protein
Science, Lund University, 221 00Lund, Sweden
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Department
of Physics, Cavendish Laboratory, CambridgeCB3 0HE, U.K.
| | - Johnny Habchi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| |
Collapse
|
21
|
Loss of the Synuclein Family Members Differentially Affects Baseline- and Apomorphine-Associated EEG Determinants in Single-, Double- and Triple-Knockout Mice. Biomedicines 2022; 10:biomedicines10123128. [PMID: 36551884 PMCID: PMC9775760 DOI: 10.3390/biomedicines10123128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Synucleins comprise a family of small proteins highly expressed in the nervous system of vertebrates and involved in various intraneuronal processes. The malfunction of alpha-synuclein is one of the key events in pathogenesis of Parkinson disease and certain other neurodegenerative diseases, and there is a growing body of evidence that malfunction of other two synucleins might be involved in pathological processes in the nervous system. The modulation of various presynaptic mechanisms of neurotransmission is an important function of synucleins, and therefore, it is feasible that their deficiency might affect global electrical activity detected of the brain. However, the effects of the loss of synucleins on the frequency spectra of electroencephalograms (EEGs) have not been systematically studied so far. In the current study, we assessed changes in such spectra in single-, double- and triple-knockout mice lacking alpha-, beta- and gamma-synucleins in all possible combinations. EEGs were recorded from the motor cortex, the putamen, the ventral tegmental area and the substantia nigra of 78 3-month-old male mice from seven knockout groups maintained on the C57BL/6J genetic background, and 10 wild-type C57BL/6J mice for 30 min before and for 60 min after the systemic injection of a DA receptor agonist, apomorphine (APO). We found that almost any variant of synuclein deficiency causes multiple changes in both basal and APO-induced EEG oscillation profiles. Therefore, it is not the absence of any particular synuclein but rather a disbalance of synucleins that causes widespread changes in EEG spectral profiles.
Collapse
|
22
|
Akber U, Bong S, Park ZY, Park CS. Effects of cereblon on stress-activated redox proteins and core behavior. Brain Res 2022; 1793:148054. [PMID: 35973609 DOI: 10.1016/j.brainres.2022.148054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the vulnerability and resilience of an individual to stress are only partly understood. Response to stress is determined by behavioral and biochemical changes in the brain. Chronic ultra-mild stress (CUMS) induces an anhedonic-like state in mice that resembles symptoms of human depression. This study reports the role of cereblon (CRBN) in regulating the metabolic and antioxidant status of neuronal tissues in the mouse model of CUMS. Intriguingly, Crbn-/- (KO) mice showed resilient responsiveness, both at the behavioral and proteomic levels. Several core behaviors were also differentially altered by CUMS in KO mice. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based proteome analysis of whole brain lysate (WBL) showed an enriched chaperonic, metabolic, and antioxidant status in the brains of KO subjects, including several members of DNAJ chaperones, creatine kinase, quinone oxidoreductase, superoxide dismutase (SOD1), glutathione S-transferase Mu (GSTM), peroxiredoxin-6 (PRDX6), and thioredoxin. Pathological phosphorylation as characterized by aggregation of tau and α-synuclein (α-syn) was significantly reduced in the neuronal tissues of KO mouse model of CUMS as compared to wild type (WT) mice. Furthermore, significantly increased SOD1 activity and reduced lipid peroxidation were observed in Crbn-KO systems. Integrated signaling pathways were also identified in CRBN-specific sub-networks constructed from protein-protein interaction analysis by STRING. The present study highlights the roles of CRBN in regulating the stress response (SR) and reshaping metabolic status in the brains of mice exposed to CUMS. A better understanding of the molecular mechanisms of depression and neurodegeneration can improve the development of novel treatments.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
23
|
Yoo JM, Lin Y, Heo Y, Lee YH. Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Front Mol Biosci 2022; 9:959425. [PMID: 36032665 PMCID: PMC9412080 DOI: 10.3389/fmolb.2022.959425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
The major hallmark of Parkinson’s disease (PD) is represented by the formation of pathological protein plaques largely consisting of α-synuclein (αSN) amyloid fibrils. Nevertheless, the implications of αSN oligomers in neuronal impairments and disease progression are more importantly highlighted than mature fibrils, as they provoke more detrimental damages in neuronal cells and thereby exacerbate α-synucleinopathy. Interestingly, although generation of oligomeric species under disease conditions is likely correlated to cytotoxicity and different cellular damages, αSN oligomers manifest varying toxicity profiles dependent on the specific environments as well as the shapes and conformations the oligomers adopt. As such, this minireview discusses polymorphism in αSN oligomers and the association of the underlying heterogeneity in regard to toxicity under pathological conditions.
Collapse
Affiliation(s)
- Je Min Yoo
- BioGraphene Inc, Los Angeles, CA, United States
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Yunseok Heo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
- *Correspondence: Young-Ho Lee,
| |
Collapse
|
24
|
Carnazza KE, Komer LE, Xie YX, Pineda A, Briano JA, Gao V, Na Y, Ramlall T, Buchman VL, Eliezer D, Sharma M, Burré J. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Rep 2022; 39:110675. [PMID: 35417693 PMCID: PMC9116446 DOI: 10.1016/j.celrep.2022.110675] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/23/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
α-synuclein, β-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of β-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that β-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of β-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that β-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.
Collapse
Affiliation(s)
- Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lauren E Komer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying Xue Xie
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - André Pineda
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Juan Antonio Briano
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Virginia Gao
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yoonmi Na
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Trudy Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff CF103AX, UK; Belgorod State National Research University, 85 Pobedy Street, Belgorod, Belgorod 308015, Russian Federation
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
25
|
Rodríguez EE, Ríos A, Trujano-Ortiz LG, Villegas A, Castañeda-Hernández G, Fernández CO, González FJ, Quintanar L. Comparing the copper binding features of alpha and beta synucleins. J Inorg Biochem 2022; 229:111715. [DOI: 10.1016/j.jinorgbio.2022.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/10/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
|
26
|
A light-inducible protein clustering system for in vivo analysis of α-synuclein aggregation in Parkinson disease. PLoS Biol 2022; 20:e3001578. [PMID: 35263320 PMCID: PMC8936469 DOI: 10.1371/journal.pbio.3001578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/21/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.
Collapse
|
27
|
Abdel-Hamid M, Yang P, Mostafa I, Osman A, Romeih E, Yang Y, Huang Z, Awad AA, Li L. Changes in Whey Proteome between Mediterranean and Murrah Buffalo Colostrum and Mature Milk Reflect Their Pharmaceutical and Medicinal Value. Molecules 2022; 27:1575. [PMID: 35268677 PMCID: PMC8912021 DOI: 10.3390/molecules27051575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Milk represents an integrated meal for newborns; its whey protein is rich in many health beneficial components and proteins. The current study aimed to investigate the differences between colostrum and mature milk from Mediterranean and Murrah buffaloes using labeled proteomics and bioinformatics tools. In the current work, LC-MS/MS analysis led to identification of 780 proteins from which 638 were shared among three independent TMT experiments. The significantly changed proteins between the studied types were analyzed using gene ontology enrichment and KEGG pathways, and their interactions were generated using STRING database. Results indicated that immunological, muscular development and function, blood coagulation, heme related, neuronal, translation, metabolic process, and binding proteins were the main terms. Overall, colostrum showed higher levels of immunoglobulins, myosins, actin, neurofascin, syntaxins, thyroglobulins, and RNA-binding proteins, reflecting its importance in the development and activity of immunological, muscular, cardiac, neuronal, and thyroid systems, while lactoferrin and ferritin were increased in mature milk, highlighting its role in iron storage and hemoglobin formation.
Collapse
Affiliation(s)
- Mahmoud Abdel-Hamid
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ehab Romeih
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zizhen Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| | - Awad A. Awad
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| |
Collapse
|
28
|
Hayashi J, Carver JA. β-Synuclein: An Enigmatic Protein with Diverse Functionality. Biomolecules 2022; 12:142. [PMID: 35053291 PMCID: PMC8773819 DOI: 10.3390/biom12010142] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson's disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, βS has been largely understudied in comparison to αS. However, recent reports suggest that βS promotes neurotoxicity, implying that βS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human βS in order to understand better the role of βS in homeostasis and pathology. Firstly, the structure of βS is discussed. Secondly, the ability of βS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of βS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of βS is reviewed. Overall, it is concluded that βS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS.
Collapse
Affiliation(s)
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia;
| |
Collapse
|
29
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
30
|
Scheibe C, Karreman C, Schildknecht S, Leist M, Hauser K. Synuclein Family Members Prevent Membrane Damage by Counteracting α-Synuclein Aggregation. Biomolecules 2021; 11:biom11081067. [PMID: 34439733 DOI: 10.3390/biom11081067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023] Open
Abstract
The 140 amino acid protein α-synuclein (αS) is an intrinsically disordered protein (IDP) with various roles and locations in healthy neurons that plays a key role in Parkinson's disease (PD). Contact with biomembranes can lead to α-helical conformations, but can also act as s seeding event for aggregation and a predominant β-sheet conformation. In PD patients, αS is found to aggregate in various fibrillary structures, and the shift in aggregation and localization is associated with disease progression. Besides full-length αS, several related polypeptides are present in neurons. The role of many αS-related proteins in the aggregation of αS itself is not fully understood Two of these potential aggregation modifiers are the αS splicing variant αS Δexon3 (Δ3) and the paralog β-synuclein (βS). Here, polarized ATR-FTIR spectroscopy was used to study the membrane interaction of these proteins individually and in various combinations. The method allowed a continuous monitoring of both the lipid structure of biomimetic membranes and the aggregation state of αS and related proteins. The use of polarized light also revealed the orientation of secondary structure elements. While αS led to a destruction of the lipid membrane upon membrane-catalyzed aggregation, βS and Δ3 aggregated significantly less, and they did not harm the membrane. Moreover, the latter proteins reduced the membrane damage triggered by αS. There were no major differences in the membrane interaction for the different synuclein variants. In combination, these observations suggest that the formation of particular protein aggregates is the major driving force for αS-driven membrane damage. The misbalance of αS, βS, and Δ3 might therefore play a crucial role in neurodegenerative disease.
Collapse
Affiliation(s)
- Christian Scheibe
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | - Stefan Schildknecht
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, 72488 Sigmaringen, Germany
| | - Marcel Leist
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
31
|
Kim TE, Newman AJ, Imberdis T, Brontesi L, Tripathi A, Ramalingam N, Fanning S, Selkoe D, Dettmer U. Excess membrane binding of monomeric alpha-, beta-, and gamma-synuclein is invariably associated with inclusion formation and toxicity. Hum Mol Genet 2021; 30:2332-2346. [PMID: 34254125 PMCID: PMC8600006 DOI: 10.1093/hmg/ddab188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
α-Synuclein (αS) has been well-documented to play a role in human synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). First, the lesions found in PD/DLB brains—Lewy bodies and Lewy neurites—are rich in aggregated αS. Second, genetic evidence links missense mutations and increased αS expression to familial forms of PD/DLB. Third, toxicity and cellular stress can be caused by αS under certain experimental conditions. In contrast, the homologs β-synuclein (βS) and γ-synuclein (γS) are not typically found in Lewy bodies/neurites, have not been clearly linked to brain diseases and have been largely non-toxic in experimental settings. In αS, the so-called non-amyloid-β component of plaques (NAC) domain, constituting amino acids 61–95, has been identified to be critical for aggregation in vitro. This domain is partially absent in βS and only incompletely conserved in γS, which could explain why both homologs do not cause disease. However, αS in vitro aggregation and cellular toxicity have not been firmly linked experimentally, and it has been proposed that excess αS membrane binding is sufficient to induce neurotoxicity. Indeed, recent characterizations of Lewy bodies have highlighted the accumulation of lipids and membranous organelles, raising the possibility that βS and γS could also become neurotoxic if they were more prone to membrane/lipid binding. Here, we increased βS and γS membrane affinity by strategic point mutations and demonstrate that these proteins behave like membrane-associated monomers, are cytotoxic and form round cytoplasmic inclusions that can be prevented by inhibiting stearoyl-CoA desaturase.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Andrew J Newman
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
32
|
Guschina IA, Ninkina N, Roman A, Pokrovskiy MV, Buchman VL. Triple-Knockout, Synuclein-Free Mice Display Compromised Lipid Pattern. Molecules 2021; 26:3078. [PMID: 34064018 PMCID: PMC8196748 DOI: 10.3390/molecules26113078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson's disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.
Collapse
Affiliation(s)
- Irina A. Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Andrei Roman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Mikhail V. Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod State National Research University, 85 Pobedy Street, Belgorod 308015, Belgorod Oblast, Russia;
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
33
|
NMR unveils an N-terminal interaction interface on acetylated-α-synuclein monomers for recruitment to fibrils. Proc Natl Acad Sci U S A 2021; 118:2017452118. [PMID: 33903234 DOI: 10.1073/pnas.2017452118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyloid fibril formation of α-synuclein (αS) is associated with multiple neurodegenerative diseases, including Parkinson's disease (PD). Growing evidence suggests that progression of PD is linked to cell-to-cell propagation of αS fibrils, which leads to seeding of endogenous intrinsically disordered monomer via templated elongation and secondary nucleation. A molecular understanding of the seeding mechanism and driving interactions is crucial to inhibit progression of amyloid formation. Here, using relaxation-based solution NMR experiments designed to probe large complexes, we probe weak interactions of intrinsically disordered acetylated-αS (Ac-αS) monomers with seeding-competent Ac-αS fibrils and seeding-incompetent off-pathway oligomers to identify Ac-αS monomer residues at the binding interface. Under conditions that favor fibril elongation, we determine that the first 11 N-terminal residues on the monomer form a common binding site for both fibrils and off-pathway oligomers. Additionally, the presence of off-pathway oligomers within a fibril seeding environment suppresses seeded amyloid formation, as observed through thioflavin-T fluorescence experiments. This highlights that off-pathway αS oligomers can act as an auto-inhibitor against αS fibril elongation. Based on these data taken together with previous results, we propose a model in which Ac-αS monomer recruitment to the fibril is driven by interactions between the intrinsically disordered monomer N terminus and the intrinsically disordered flanking regions (IDR) on the fibril surface. We suggest that this monomer recruitment may play a role in the elongation of amyloid fibrils and highlight the potential of the IDRs of the fibril as important therapeutic targets against seeded amyloid formation.
Collapse
|
34
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
35
|
Meade RM, Morris KJ, Watt KJC, Williams RJ, Mason JM. The Library Derived 4554W Peptide Inhibits Primary Nucleation of α-Synuclein. J Mol Biol 2020; 432:166706. [PMID: 33186583 DOI: 10.1016/j.jmb.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022]
Abstract
Aggregation of α-Synuclein (αS) is widely regarded as a key factor in neuronal cell death, leading to a wide range of synucleinopathies, including Parkinson's Disease. Development of therapeutics has therefore focused on inhibiting aggregation of αS into toxic forms. One such inhibitor, based on the preNAC region αS45-54 (4554W), was identified using an intracellular peptide library screen, and subsequently shown to both inhibit formation of αS aggregates while simultaneously lowering toxicity. Subsequent efforts have sought to determine the mode of 4554W action. In particular, and consistent with the fact that both target and peptide are co-produced during library screening, we find that the peptide inhibits primary nucleation of αS, but does not modulate downstream elongation or secondary nucleation events. These findings hold significant promise towards mechanistic understanding and development of molecules that can module the first steps in αS aggregation towards novel treatments for Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Richard M Meade
- Depart of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom
| | - Kimberley J Morris
- Depart of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom
| | - Kathryn J C Watt
- Depart of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom
| | - Robert J Williams
- Depart of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom
| | - Jody M Mason
- Depart of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom.
| |
Collapse
|
36
|
Eye lens crystallin proteins inhibit the autocatalytic amyloid amplification nature of mature α-synuclein fibrils. PLoS One 2020; 15:e0235198. [PMID: 32598365 PMCID: PMC7323979 DOI: 10.1371/journal.pone.0235198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson´s disease is characterized by the accumulation of proteinaceous aggregates in Lewy bodies and Lewy Neurites. The main component found in such aggregates is α-synuclein. Here, we investigate how bovine eye lens crystallin proteins influence the aggregation kinetics of α-synuclein at mildly acidic pH (5.5) where the underlying aggregation mechanism of this protein is dominated by secondary nucleation of monomers on fibril surface providing an autocatalytic amyloid amplification process. Bovine α-, βH- and γB-crystallins were found to display chaperone-like activity inhibiting α-synuclein aggregation. This effect was shown to be time-dependent, with early additions of α-crystallin capable of retarding and even inhibiting aggregation during the time frame of the experiment. The inhibitory nature of crystallins was further investigated using trap and seed kinetic experiments. We propose crystallins interact with mature α-synuclein fibrils, possibly binding along the surfaces and at fibril free ends, inhibiting both elongation and monomer-dependent secondary nucleation processes in a mechanism that may be generic to some chaperones that prevent the onset of protein misfolding related pathologies.
Collapse
|
37
|
Martial B, Raîche-Marcoux G, Lefèvre T, Audet P, Voyer N, Auger M. Structure of a Parkinson’s Disease-Involved α-Synuclein Peptide Is Modulated by Membrane Composition and Physical State. J Phys Chem B 2020; 124:3469-3481. [DOI: 10.1021/acs.jpcb.0c00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Gabrielle Raîche-Marcoux
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Pierre Audet
- Department of Chemistry, Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Normand Voyer
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| |
Collapse
|
38
|
Zhou J, Ruggeri FS, Zimmermann MR, Meisl G, Longo G, Sekatskii SK, Knowles TPJ, Dietler G. Effects of sedimentation, microgravity, hydrodynamic mixing and air-water interface on α-synuclein amyloid formation. Chem Sci 2020; 11:3687-3693. [PMID: 34094057 PMCID: PMC8152616 DOI: 10.1039/d0sc00281j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
The formation of amyloid fibrils is a characterizing feature of a range of protein misfolding diseases, including Parkinson's disease. The propensity of native proteins to form such amyloid fibril, both in vitro and in vivo, is highly sensitive to the surrounding environment, which can alter the aggregation kinetics and fibrillization mechanisms. Here, we investigate systematically the influence of several representative environmental stimuli on α-synuclein aggregation, including hydrodynamic mixing, the presence of an air-water interface and sedimentation. Our results show that hydrodynamic mixing and interfacial effects are critical in promoting several microscopic steps of α-synuclein aggregation and amyloid fibril formation. The presence of an air-water interface under agitation significantly promoted primary nucleation. Secondary processes were facilitated by hydrodynamic mixing, produced by 3D rotation and shaking either in the presence or in the absence of an air-water interface. Effects of sedimentation, as investigated in a microgravity incubator, of α-synuclein lead only to minor changes on the aggregation kinetics rates in comparison to static conditions. These results forward the understanding of α-synuclein fibrillization, paving the way for the development of high-throughput assays for the screening of pharmacological approaches targeting Parkinson's disease.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Francesco S Ruggeri
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Manuela R Zimmermann
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Georg Meisl
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Giovanni Longo
- Istituto di Struttura della Materia, CNR Via del Fosso del Cavaliere 100 Roma 00133 Italy
| | - Sergey K Sekatskii
- Laboratory of Physics of Living Matter, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
39
|
Yang X, Williams JK, Yan R, Mouradian MM, Baum J. Increased Dynamics of α-Synuclein Fibrils by β-Synuclein Leads to Reduced Seeding and Cytotoxicity. Sci Rep 2019; 9:17579. [PMID: 31772376 PMCID: PMC6879756 DOI: 10.1038/s41598-019-54063-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Alpha-synuclein (αS) fibrils are toxic to cells and contribute to the pathogenesis and progression of Parkinson's disease and other synucleinopathies. β-Synuclein (βS), which co-localizes with αS, has been shown to provide a neuroprotective effect, but the molecular mechanism by which this occurs remains elusive. Here we show that αS fibrils formed in the presence of βS are less cytotoxic, exhibit reduced cell seeding capacity and are more resistant to fibril shedding compared to αS fibrils alone. Using solid-state NMR, we found that the overall structure of the core of αS fibrils when co-incubated with βS is minimally perturbed, however, the dynamics of Lys and Thr residues, located primarily in the imperfect KTKEGV repeats of the αS N-terminus, are increased. Our results suggest that amyloid fibril dynamics may play a key role in modulating toxicity and seeding. Thus, enhancing the dynamics of amyloid fibrils may be a strategy for future therapeutic targeting of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jonathan K Williams
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Run Yan
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
40
|
The growth of amyloid fibrils: rates and mechanisms. Biochem J 2019; 476:2677-2703. [DOI: 10.1042/bcj20160868] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
AbstractAmyloid fibrils are β-sheet-rich linear protein polymers that can be formed by a large variety of different proteins. These assemblies have received much interest in recent decades, due to their role in a range of human disorders. However, amyloid fibrils are also found in a functional context, whereby their structural, mechanical and thermodynamic properties are exploited by biological systems. Amyloid fibrils form through a nucleated polymerisation mechanism with secondary processes acting in many cases to amplify the number of fibrils. The filamentous nature of amyloid fibrils implies that the fibril growth rate is, by several orders of magnitude, the fastest step of the overall aggregation reaction. This article focusses specifically on in vitro experimental studies of the process of amyloid fibril growth, or elongation, and summarises the state of knowledge of its kinetics and mechanisms. This work attempts to provide the most comprehensive summary, to date, of the available experimental data on amyloid fibril elongation rate constants and the temperature and concentration dependence of amyloid fibril elongation rates. These data are compared with those from other types of protein polymers. This comparison with data from other polymerising proteins is interesting and relevant because many of the basic ideas and concepts discussed here were first introduced for non-amyloid protein polymers, most notably by the Japanese school of Oosawa and co-workers for cytoskeletal filaments.
Collapse
|
41
|
Agerschou ED, Flagmeier P, Saridaki T, Galvagnion C, Komnig D, Heid L, Prasad V, Shaykhalishahi H, Willbold D, Dobson CM, Voigt A, Falkenburger B, Hoyer W, Buell AK. An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. eLife 2019; 8:46112. [PMID: 31389332 PMCID: PMC6721797 DOI: 10.7554/elife.46112] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Removing or preventing the formation of α-synuclein aggregates is a plausible strategy against Parkinson’s disease. To this end, we have engineered the β-wrapin AS69 to bind monomeric α-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of α-synuclein and formation of visible α-synuclein aggregates. In flies, AS69 reduced α-synuclein aggregates and the locomotor deficit resulting from α-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-α-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.
Collapse
Affiliation(s)
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | | | - Céline Galvagnion
- RG Mechanisms of Neuroprotection, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Pharmacology and Drug Design, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Laetitia Heid
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vibha Prasad
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Hamed Shaykhalishahi
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Bjoern Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, Dresden University Medical Center, Dresden, Germany.,JARA BRAIN Institute II, Julich and Aachen, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
42
|
Gámez-Valero A, Canet-Pons J, Urbizu A, Anillo A, Santos C, Ariza A, Beyer K. INDEL Length and Haplotypes in the β-Synuclein Gene: A Key to Differentiate Dementia with Lewy Bodies? J Alzheimers Dis 2019; 65:207-219. [PMID: 30040713 DOI: 10.3233/jad-180074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lewy body diseases (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB) and together with Alzheimer's disease (AD) they show an important neuropathological and clinical overlap. The human alpha- and beta-synuclein genes (SNCA and SNCB) are key factors for the development of Lewy body diseases. Here, we aimed to analyze the genotype distribution of potentially functional SNPs in SNCA and SNCB, perform haplotype analysis for SNCB, and to identify functional insertion and deletion (INDEL) variations within the regulatory region of SNCB which might be responsible for the drastically diminished beta-synuclein levels reported for pure DLB. Thus, we genotyped brain samples from AD, DLB, PD, and healthy controls for two SNCA and four SNCB SNPs. We also analyzed INDEL variations upstream of SNCB, determined SNCB expression levels, and correlated INDEL lengths with expression levels. Applying Fisher's exact, chi-square, ANOVA tests, and the ΔΔCt method, we found disease-specific genotype distribution of SNCA and SNCB SNPs. Additionally, we identified three INDEL variations upstream of SNCB and showed that the INDEL allele lengths were associated with SNCB expression levels. INDEL alleles associated with low SNCB expression were accumulated in pure DLB. Finally, one major and four minor DLB specific SNCB haplotypes were identified with Haploview and Arlequin. In summary, our study showed that different SNCA and SNCB genotypes are associated with the development of either PD or DLB, and that the frequencies of genotypes associated with low SNCB expression are elevated in DLB.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain.,REMAR-IVECAT group, Health Sciences Research Institute Germans Trias i Pujol, Barcelona, Spain
| | - Julia Canet-Pons
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Aintzane Urbizu
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Ana Anillo
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Aurelio Ariza
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
43
|
Alza NP, Iglesias González PA, Conde MA, Uranga RM, Salvador GA. Lipids at the Crossroad of α-Synuclein Function and Dysfunction: Biological and Pathological Implications. Front Cell Neurosci 2019; 13:175. [PMID: 31118888 PMCID: PMC6504812 DOI: 10.3389/fncel.2019.00175] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery, the study of the biological role of α-synuclein and its pathological implications has been the subject of increasing interest. The propensity to adopt different conformational states governing its aggregation and fibrillation makes this small 14-kDa cytosolic protein one of the main etiologic factors associated with degenerative disorders known as synucleinopathies. The structure, function, and toxicity of α-synuclein and the possibility of different therapeutic approaches to target the protein have been extensively investigated and reviewed. One intriguing characteristic of α-synuclein is the different ways in which it interacts with lipids. Though in-depth studies have been carried out in this field, the information they have produced is puzzling and the precise role of lipids in α-synuclein biology and pathology and vice versa is still largely unknown. Here we provide an overview and discussion of the main findings relating to α-synuclein/lipid interaction and its involvement in the modulation of lipid metabolism and signaling.
Collapse
Affiliation(s)
- Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Pablo A Iglesias González
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
44
|
Martial B, Lefèvre T, Buffeteau T, Auger M. Vibrational Circular Dichroism Reveals Supramolecular Chirality Inversion of α-Synuclein Peptide Assemblies upon Interactions with Anionic Membranes. ACS NANO 2019; 13:3232-3242. [PMID: 30811930 DOI: 10.1021/acsnano.8b08932] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parkinson's disease is an incurable neurodegenerative disorder caused by the aggregation of α-synuclein (AS). This amyloid protein contains a 12-residue-long segment, AS71-82, that triggers AS pathological aggregation. This peptide is then essential to better understand the polymorphism and the dynamics of formation of AS fibrillar structures. In this work, vibrational circular dichroism showed that AS71-82 is random coil in solution and forms parallel β-sheet fibrillar aggregates in the presence of anionic vesicles. Vibrational circular dichroism, with transmission electronic microscopy, revealed that the fibrillar structures exhibit a nanoscale tape-like morphology with a preferential supramolecular helicity. Whereas the structure handedness of some other amyloid peptides has been shown to be driven by pH, that of AS71-82 is controlled by peptide concentration and peptide-to-lipid (P:L) molar ratio. At low concentrations and low P:L molar ratios, AS71-82 assemblies have a left-twisted handedness, whereas at high concentrations and high P:L ratios, a right-twisted handedness is adopted. Left-twisted assemblies interconvert into right-twisted ones with time, suggesting a maturation of the amyloid structures. As fibril species with two chiralities have also been reported previously in Parkinson's disease Lewy bodies and fibrils, the present results seem relevant to better understand AS amyloid assembly and fibrillization in vivo. From a diagnosis or therapeutic point of view, it becomes essential that future fibril probes, inhibitors, or breakers target pathological assemblies with specific chirality and morphology, in particular, because they may change with the stage of the disease.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Thierry Buffeteau
- Université Bordeaux , Institut des Sciences Moléculaires, CNRS UMR 5255, 33405 Talence , France
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| |
Collapse
|
45
|
Ghosh S, Mahapatra A, Chattopadhyay K. Modulation of α-Synuclein Aggregation by Cytochrome c Binding and Hetero-dityrosine Adduct Formation. ACS Chem Neurosci 2019; 10:1300-1310. [PMID: 30620180 DOI: 10.1021/acschemneuro.8b00393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aggregation of α-synuclein (α-Syn) has been implicated strongly in Parkinson's disease (PD). The intrinsically disordered nature of α-Syn makes this protein prone to self-association or heteroassociation with another protein or lipid. While conformational fluctuation and free radical chemistry have been shown to play important roles in its ability toward self- and heteroassociation, any systematic understanding of their contributions is missing. Here, we report an in vitro investigation of the interaction between α-Syn and cytochrome c in the oxidized (cyt c III) and reduced forms (cyt c II), in which cyt c III was found to induce a large compaction of α-Syn and inhibit the aggregation by favoring a hetero-dityrosine bond formation. In contrast, the presence of cyt c II did not result in any compaction and its presence was found to facilitate α-Syn aggregation. The variation in the charge distribution of the surface residues of cyt c III and cyt c II is expected to play a decisive role in their interaction with α-Syn.
Collapse
Affiliation(s)
- Sumanta Ghosh
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Mahapatra
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
46
|
Gaiardo RB, Abreu TF, Tashima AK, Telles MM, Cerutti SM. Target Proteins in the Dorsal Hippocampal Formation Sustain the Memory-Enhancing and Neuroprotective Effects of Ginkgo biloba. Front Pharmacol 2019; 9:1533. [PMID: 30666208 PMCID: PMC6330356 DOI: 10.3389/fphar.2018.01533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that standardized extracts of Ginkgo biloba (EGb) modulate fear memory formation, which is associated with CREB-1 (mRNA and protein) upregulation in the dorsal hippocampal formation (dHF), in a dose-dependent manner. Here, we employed proteomic analysis to investigate EGb effects on different protein expression patterns in the dHF, which might be involved in the regulation of CREB activity and the synaptic plasticity required for long-term memory (LTM) formation. Adult male Wistar rats were randomly assigned to four groups (n = 6/group) and were submitted to conditioned lick suppression 30 min after vehicle (12% Tween 80) or EGb (0.25, 0.50, and 1.00 g⋅kg-1) administration (p.o). All rats underwent a retention test session 48 h after conditioning. Twenty-four hours after the test session, the rats were euthanized via decapitation, and dHF samples were removed for proteome analysis using two-dimensional polyacrylamide gel electrophoresis, followed by peptide mass fingerprinting. In agreement with our previous data, no differences in the suppression ratios (SRs) were identified among the groups during first trial of CS (conditioned stimulus) presentation (P > 0.05). Acute treatment with 0.25 g⋅kg-1 EGb significantly resulted in retention of original memory, without prevent acquisition of extinction within-session. In addition, our results showed, for the first time, that 32 proteins were affected in the dHF following treatment with 0.25, 0.50, and 1.00 g⋅kg-1 doses of EGb, which upregulated seven, 19, and five proteins, respectively. Additionally, EGb downregulated two proteins at each dose. These proteins are correlated with remodeling of the cytoskeleton; the stability, size, and shape of dendritic spines; myelin sheath formation; and composition proteins of structures found in the membrane of the somatodendritic and axonal compartments. Our findings suggested that EGb modulates conditioned suppression LTM through differential protein expression profiles, which may be a target for cognitive enhancers and for the prevention or treatment of neurocognitive impairments.
Collapse
Affiliation(s)
- Renan Barretta Gaiardo
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago Ferreira Abreu
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Marques Telles
- Departamento de Ciências Biológicas, Laboratório de Fisiologia Metabólica, Universidade Federal de São Paulo, Diadema, Brazil
| | - Suzete Maria Cerutti
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
47
|
Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019; 20:ijms20010141. [PMID: 30609739 PMCID: PMC6337145 DOI: 10.3390/ijms20010141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein–protein and protein–lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.
Collapse
|
48
|
Kjaergaard M, Dear AJ, Kundel F, Qamar S, Meisl G, Knowles TPJ, Klenerman D. Oligomer Diversity during the Aggregation of the Repeat Region of Tau. ACS Chem Neurosci 2018; 9:3060-3071. [PMID: 29953200 PMCID: PMC6302314 DOI: 10.1021/acschemneuro.8b00250] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
![]()
The
molecular mechanism of protein aggregation is of both fundamental
and clinical importance as amyloid aggregates are linked to a number
of neurodegenerative disorders. Such protein aggregates include macroscopic
insoluble fibrils as well as small soluble oligomeric species. Time-dependent
resolution of these species is prerequisite for a detailed quantitative
understanding of protein aggregation; this remains challenging due
to the lack of methods for detecting and characterizing transient
and heterogeneous protein oligomers. Here we have used single molecule
fluorescence techniques combined with mechanistic modeling to study
the heparin-induced aggregation of the repeat region of tau, which
forms the core region of neurofibrillary tangles found in Alzheimer’s
disease. We distinguish several subpopulations of oligomers with different
stability and follow their evolution during aggregation reactions
as a function of temperature and concentration. Employment of techniques
from chemical kinetics reveals that the two largest populations are
structurally distinct from fibrils and are both kinetically and thermodynamically
unstable. The first population is in rapid exchange with monomers
and held together by electrostatic interactions; the second is kinetically
more stable, dominates at later times, and is probably off-pathway
to fibril formation. These more stable oligomers may contribute to
other oligomer induced effects in the cellular environment, for example,
by overloading protein quality control systems. We also show that
the shortest growing filaments remain suspended in aqueous buffer
and thus comprise a third, smaller population of transient oligomers
with cross-β structure. Overall our data show that a diverse
population of oligomers of different structures and half-lives are
formed during the aggregation reaction with the great majority of
oligomers formed not going on to form fibrils.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Alexander J. Dear
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | - Franziska Kundel
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Georg Meisl
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - David Klenerman
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
49
|
Williams JK, Yang X, Baum J. Interactions between the Intrinsically Disordered Proteins β-Synuclein and α-Synuclein. Proteomics 2018; 18:e1800109. [PMID: 30142698 PMCID: PMC6447293 DOI: 10.1002/pmic.201800109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/18/2018] [Indexed: 12/31/2022]
Abstract
Several intrinsically disordered proteins have been implicated in the process of amyloid fibril formation in neurodegenerative disease, and developing approaches to inhibit the aggregation of these intrinsically disordered proteins is critical for establishing effective therapies against disease progression. The aggregation pathway of the intrinsically disordered protein alpha-synuclein, which is implicated in several neurodegenerative diseases known as synucleinopathies, has been extensively characterized. Less attention has been leveraged on beta-synuclein, a homologous intrinsically disordered protein that co-localizes with alpha-synuclein and is known to delay alpha-synuclein fibril formation. In this review, we focus on beta-synuclein and the molecular-level interactions between alpha-synuclein and beta-synuclein that underlie the delay of fibril formation. We highlight studies that begin to define alpha-synuclein and beta-synuclein interactions at the monomer, oligomer, and surface levels, and suggest that beta-synuclein plays a role in regulation of inhibition at many different stages of alpha-synuclein aggregation.
Collapse
Affiliation(s)
- Jonathan K Williams
- Department of Chemistry and Chemical Biology, Rutgers University, 08854, Piscataway, New Jersey, USA
| | - Xue Yang
- Department of Chemistry and Chemical Biology, Rutgers University, 08854, Piscataway, New Jersey, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, 08854, Piscataway, New Jersey, USA
| |
Collapse
|
50
|
Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. Secondary nucleation in amyloid formation. Chem Commun (Camb) 2018; 54:8667-8684. [PMID: 29978862 DOI: 10.1039/c8cc02204f] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleation of new peptide and protein aggregates on the surfaces of amyloid fibrils of the same peptide or protein has emerged in the past two decades as a major pathway for both the generation of molecular species responsible for cellular toxicity and for the autocatalytic proliferation of peptide and protein aggregates. A key question in current research is the molecular mechanism and driving forces governing such processes, known as secondary nucleation. In this context, the analogies with other self-assembling systems for which monomer-dependent secondary nucleation has been studied for more than a century provide a valuable source of inspiration. Here, we present a short overview of this background and then review recent results regarding secondary nucleation of amyloid-forming peptides and proteins, focusing in particular on the amyloid β peptide (Aβ) from Alzheimer's disease, with some examples regarding α-synuclein from Parkinson's disease. Monomer-dependent secondary nucleation of Aβ was discovered using a combination of kinetic experiments, global analysis, seeding experiments and selective isotope-enrichment, which pinpoint the monomer as the origin of new aggregates in a fibril-catalyzed reaction. Insights into driving forces are gained from variations of solution conditions, temperature and peptide sequence. Selective inhibition of secondary nucleation is explored as an effective means to limit oligomer production and toxicity. We also review experiments aimed at finding interaction partners of oligomers generated by secondary nucleation in an ongoing aggregation process. At the end of this feature article we bring forward outstanding questions and testable mechanistic hypotheses regarding monomer-dependent secondary nucleation in amyloid formation.
Collapse
Affiliation(s)
- Mattias Törnquist
- Lund University, Department of Biochemistry and Structural Biology, Chemical Centre, PO Box 124, SE221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|