1
|
Husch JFA, Araújo-Gomes N, Willemen NGA, Cofiño-Fabrés C, van Creij N, Passier R, Leijten J, van den Beucken JJJP. Upscaling Osteoclast Generation by Enhancing Macrophage Aggregation Using Hollow Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403272. [PMID: 39087382 DOI: 10.1002/smll.202403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Osteoclasts, the bone resorbing cells of hematopoietic origin formed by macrophage fusion, are essential in bone health and disease. However, in vitro research on osteoclasts remains challenging due to heterogeneous cultures that only contain a few multinucleated osteoclasts. Indeed, a strategy to generate homogeneous populations of multinucleated osteoclasts in a scalable manner has remained elusive. Here, the investigation focuses on whether microencapsulation of human macrophages in microfluidically generated hollow, sacrificial tyramine-conjugated dextran (Dex-TA) microgels could facilitate macrophage precursor aggregation and formation of multinucleated osteoclasts. Therefore, human mononuclear cells are isolated from buffy coats and differentiated toward macrophages. Macrophages are encapsulated in microgels using flow focus microfluidics and outside-in enzymatic oxidative phenolic crosslinking, and differentiated toward osteoclasts. Morphology, viability, and osteoclast fusion of microencapsulated cells are assessed. Furthermore, microgels are degraded to allow cell sorting of released cells based on osteoclastic marker expression. The successful encapsulation and osteoclast formation of human macrophages in Dex-TA microgels are reported for the first time using high-throughput droplet microfluidics. Intriguingly, osteoclast formation within these 3D microenvironments occurs at a significantly higher level compared to the conventional 2D culture system. Furthermore, the feasibility of establishing a pure osteoclast culture from cell transfer and release from degradable microgels is demonstrated.
Collapse
Affiliation(s)
- Johanna F A Husch
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nuno Araújo-Gomes
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Niels G A Willemen
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Carla Cofiño-Fabrés
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nils van Creij
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen J J P van den Beucken
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| |
Collapse
|
2
|
Jiang J, Zhu J, Lin H, Jin S, He Q, Ji W. High-Throughput Preosteoblastic Spheroids Elevate Fibroblast Growth Factor 23 via Parathyroid Hormone Signaling Pathway. Tissue Eng Part C Methods 2024; 30:402-413. [PMID: 39109940 DOI: 10.1089/ten.tec.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays a crucial role in managing renal phosphate and the synthesis of 1,25(OH)2-vitamin D3, which is essential for bone homeostasis. Developing robust in vitro systems to study FGF23-regulating mechanisms is crucial for advancing our knowledge and identifying potential therapeutic targets. The traditional in vitro 2D culture system results in relatively low expression of FGF23, complicating further exploration of its regulatory mechanisms and potential therapeutic targets. Herein, we reported a high-throughput approach to generate preosteoblastic cell spheroids with enhanced FGF23 production. For this purpose, murine preosteoblast cell line (MC3T3-E1) was cultured in our previously reported nonadherent microwells (200 µm in diameter, 148 µm in depth, and 100 µm space in between) and self-assembled into spheroids with a diameter of 92.3 ± 15.0 µm after 24 h. Compared with monolayer culture, the MC3T3-E1 spheroids showed a significant upregulation of FGF23 in both gene and protein levels after 24 h of serum-free induction. RNA sequencing and western blotting analysis further suggested that the enhanced FGF23 production in MC3T3-E1 spheroids was attributed to the activation of the parathyroid hormone (PTH)/PTH1R signaling pathway. Impressively, inhibition of PTH signaling through small molecular inhibitors or short hairpin RNA targeting PTH1R effectively reduced FGF23 production. In summary, the current study revealed the efficacy of the high-throughput formation of preosteoblast cell spheroid in stimulating FGF23 expression for mechanistic studies. Importantly, our findings highlight the potential of the current 3D spheroid system for target identification and drug discovery.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haojie Lin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qing He
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
van Loo B, Schot M, Gurian M, Kamperman T, Leijten J. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation. Adv Healthc Mater 2024; 13:e2300095. [PMID: 37793116 PMCID: PMC11468307 DOI: 10.1002/adhm.202300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/06/2023]
Abstract
3D cellular spheroids offer more biomimetic microenvironments than conventional 2D cell culture technologies, which has proven value for many tissue engineering applications. Despite beneficiary effects of 3D cell culture, clinical translation of spheroid tissue engineering is challenged by limited scalability of current spheroid formation methods. Although recent adoption of droplet microfluidics can provide a continuous production process, use of oils and surfactants, generally low throughput, and requirement of additional biofabrication steps hinder clinical translation of spheroid culture. Here, the use of clean (e.g., oil-free and surfactant-free), ultra-high throughput (e.g., 8.5 mL min-1 , 10 000 spheroids s-1 ), single-step, in-air microfluidic biofabrication of spheroid forming compartmentalized hydrogels is reported. This novel technique can reliably produce 1D fibers, 2D planes, and 3D volumes compartmentalized hydrogel constructs, which each allows for distinct (an)isotropic orientation of hollow spheroid-forming compartments. Spheroids produced within ink-jet bioprinted compartmentalized hydrogels outperform 2D cell cultures in terms of chondrogenic behavior. Moreover, the cellular spheroids can be harvested from compartmentalized hydrogels and used to build shape-stable centimeter-sized biomaterial-free living tissues in a bottom-up manner. Consequently, it is anticipated that in-air microfluidic production of spheroid-forming compartmentalized hydrogels can advance production and use of cellular spheroids for various biomedical applications.
Collapse
Affiliation(s)
- Bas van Loo
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| | - Maik Schot
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| | - Melvin Gurian
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
- IamFluidics B.V.De Veldmaat 17Enschede7522 NMThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522 NBThe Netherlands
| |
Collapse
|
4
|
Zhu J, Zhang S, Jin S, Huang C, Shi B, Chen Z, Ji W. Endochondral Repair of Jawbone Defects Using Periosteal Cell Spheroids. J Dent Res 2024; 103:31-41. [PMID: 37968792 DOI: 10.1177/00220345231205273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Recapitulation of the natural healing process is receiving increasing recognition as a strategy to induce robust tissue regeneration. Endochondral ossification has been recognized as an essential reparative approach in natural jawbone defect healing. However, such an approach has been overlooked in the recent development of cell-based therapeutics for jawbone repair. Therefore, this study aimed to explore a bioinspired stem cell-based strategy for jawbone repair by mimicking the mesenchymal condensation of progenitor cells during the early endochondral ossification process. For this purpose, passage 3 of jawbone periosteum-derived cells (jb-PDCs) was cultured in our previously reported nonadherent microwells (200 µm in diameter, 148 µm in depth, and 100 µm space in between) and self-assembled into spheroids with a diameter of 96.4 ± 5.8 µm after 48 h. Compared to monolayer culture, the jb-PDC spheroids showed a significant reduction of stemness marker expression evidenced by flow cytometry. Furthermore, a significant upregulation of chondrogenic transcription factor SOX9 in both gene and protein levels was observed in the jb-PDC spheroids after 48 h of chondrogenic induction. RNA sequencing and Western blotting analysis further suggested that the enhanced SOX9-mediated chondrogenic differentiation in jb-PDC spheroids was attributed to the activation of the p38 MAPK pathway. Impressively, inhibition of p38 kinase activity significantly attenuated chondrogenic differentiation jb-PDC spheroids, evidenced by a significant decline of SOX9 in both gene and protein levels. Strikingly, the jb-PDC spheroids implanted in 6- to 8-wk-old male C57BL/6 mice with critical-size jawbone defects (1.8 mm in diameter) showed an evident contribution to cartilaginous callus formation after 1 wk, evidenced by histological analysis. Furthermore, micro-computed tomography analysis showed that the jb-PDC spheroids significantly accelerated bone healing after 2 wk in the absence of exogenous growth factors. In sum, the presented findings represent the successful development of cell-based therapeutics to reengineer the endochondral bone repair process and illustrate the potential application to improve bone repair and regeneration in the craniofacial skeleton.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - B Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - W Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Cao R, Chen B, Li Q, Qiu P, Liang X, Cao Y. Potential of periosteal cells in bone and cartilage regeneration: a systematic review. Front Bioeng Biotechnol 2023; 11:1292483. [PMID: 38026851 PMCID: PMC10666167 DOI: 10.3389/fbioe.2023.1292483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The unavailability of adequate human primary cells presents multiple challenges in terms of bone and cartilage regeneration and disease modeling experiments in vitro. Periosteal cells (PCs), which represent promising skeletal stem cell sources, could be a promising strategy in tissue engineering. The present study aimed to summarize the characteristics of PCs to investigate the efficacy of these cells in bone and cartilage regeneration in different models, paying special attention to the comparison of bone marrow stromal cells (BMSCs). Methods: A comprehensive literature search was conducted in Embase, PubMed/MEDLINE, Web of Science, and Scopus for articles published in English until April 2023. Only original researches in which PCs were employed for bone or cartilage regeneration experiments were included. Results: A total of 9140 references were retrieved. After screening the results, 36 publications were considered to be eligible for inclusion in the present literature review. Overall, PCs demonstrated beneficial bone and cartilage regenerative efficacy compared to the bare scaffold since almost all included studies reported positive results. The 9 studies assessing the differences in bone formation capacity between PCs and BMSCs indicated that PCs exhibited stronger in vivo osteogenic differentiation capabilities compared to BMSCs, while the other study demonstrated stronger chondrogenic potential of BMSCs. Discussion: PCs demonstrated beneficial to bone regenerative efficacy compared to the bare scaffold with a low risk of most studies included. However, the cartilage formation capacity of BMSCs still needs to be investigated due to the limited research available and the certain risk of bias. PCs exhibited higher osteogenic capabilities compared to BMSCs in combination with various scaffolds in vivo with good evidence. Further researches are needed to elucidate the comparative benefits of cartilage regeneration. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023411522, CRD42023411522.
Collapse
Affiliation(s)
- Rongkai Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Beibei Chen
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qianru Li
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Piaopiao Qiu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaojie Liang
- Department of Stomatology, People’s Hospital of Xiangyun Affiliated to Dali University, Dali, China
| | - Yujie Cao
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Wen Y, Chen Y, Wu W, Zhang H, Peng Z, Yao X, Zhang X, Jiang W, Liao Y, Xie Y, Shen X, Sun H, Hu J, Liu H, Chen X, Chen J, Ouyang H. Hyperplastic Human Macromass Cartilage for Joint Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301833. [PMID: 37395375 PMCID: PMC10502860 DOI: 10.1002/advs.202301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Cartilage damage affects millions of people worldwide. Tissue engineering strategies hold the promise to provide off-the-shelf cartilage analogs for tissue transplantation in cartilage repair. However, current strategies hardly generate sufficient grafts, as tissues cannot maintain size growth and cartilaginous phenotypes simultaneously. Herein, a step-wise strategy is developed for fabricating expandable human macromass cartilage (macro-cartilage) in a 3D condition by employing human polydactyly chondrocytes and a screen-defined serum-free customized culture (CC). CC-induced chondrocytes demonstrate improved cell plasticity, expressing chondrogenic biomarkers after a 14.59-times expansion. Crucially, CC-chondrocytes form large-size cartilage tissues with average diameters of 3.25 ± 0.05 mm, exhibiting abundant homogenous matrix and intact structure without a necrotic core. Compared with typical culture, the cell yield in CC increases 2.57 times, and the expression of cartilage marker collagen type II increases 4.70 times. Transcriptomics reveal that this step-wise culture drives a proliferation-to-differentiation process through an intermediate plastic stage, and CC-chondrocytes undergo a chondral lineage-specific differentiation with an activated metabolism. Animal studies show that CC macro-cartilage maintains a hyaline-like cartilage phenotype in vivo and significantly promotes the healing of large cartilage defects. Overall, an efficient expansion of human macro-cartilage with superior regenerative plasticity is achieved, providing a promising strategy for joint regeneration.
Collapse
|
7
|
Baer A, Hoffmann I, Mahmoudi N, Poulhazan A, Harrington MJ, Mayer G, Schmidt S, Schneck E. The Internal Structure of the Velvet Worm Projectile Slime: A Small-Angle Scattering Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300516. [PMID: 36828797 DOI: 10.1002/smll.202300516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Indexed: 06/02/2023]
Abstract
For prey capture and defense, velvet worms eject an adhesive slime which has been established as a model system for recyclable complex liquids. Triggered by mechanical agitation, the liquid bio-adhesive rapidly transitions into solid fibers. In order to understand this mechanoresponsive behavior, here, the nanostructural organization of slime components are studied using small-angle scattering with neutrons and X-rays. The scattering intensities are successfully described with a three-component model accounting for proteins of two dominant molecular weight fractions and nanoscale globules. In contrast to the previous assumption that high molecular weight proteins-the presumed building blocks of the fiber core-are contained in the nanoglobules, it is found that the majority of slime proteins exist freely in solution. Only less than 10% of the slime proteins are contained in the nanoglobules, necessitating a reassessment of their function in fiber formation. Comparing scattering data of slime re-hydrated with light and heavy water reveals that the majority of lipids in slime are contained in the nanoglobules with homogeneous distribution. Vibrating mechanical impact under exclusion of air neither leads to formation of fibers nor alters the bulk structure of slime significantly, suggesting that interfacial phenomena and directional shearing are required for fiber formation.
Collapse
Affiliation(s)
- Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, D-34132, Kassel, Germany
| | - Ingo Hoffmann
- Spectroscopy Group, Institut Laue-Langevin, 38000, Grenoble, France
| | - Najet Mahmoudi
- Small-Angle Neutron Scattering Group, ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Alexandre Poulhazan
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC, H2X 2J6, Canada
| | | | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, D-34132, Kassel, Germany
| | - Stephan Schmidt
- Chemistry Department, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Emanuel Schneck
- Physics Department, Technische Universität Darmstadt, D-64289, Darmstadt, Germany
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, D-14476, Potsdam, Germany
| |
Collapse
|
8
|
Damle EB, Morrison VE, Cioma J, Volic M, Bix GJ. Co-administration of extracellular matrix-based biomaterials with neural stem cell transplantation for treatment of central nervous system injury. Front Neurosci 2023; 17:1177040. [PMID: 37255752 PMCID: PMC10225608 DOI: 10.3389/fnins.2023.1177040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.
Collapse
Affiliation(s)
- Eshan B. Damle
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Vivianne E. Morrison
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jozef Cioma
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Milla Volic
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
9
|
Loverdou N, Cuvelier M, Nilsson Hall G, Christiaens A, Decoene I, Bernaerts K, Smeets B, Ramon H, Luyten FP, Geris L, Papantoniou I. Stirred culture of cartilaginous microtissues promotes chondrogenic hypertrophy through exposure to intermittent shear stress. Bioeng Transl Med 2023; 8:e10468. [PMID: 37206246 PMCID: PMC10189438 DOI: 10.1002/btm2.10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023] Open
Abstract
Cartilage microtissues are promising tissue modules for bottom up biofabrication of implants leading to bone defect regeneration. Hitherto, most of the protocols for the development of these cartilaginous microtissues have been carried out in static setups, however, for achieving higher scales, dynamic process needs to be investigated. In the present study, we explored the impact of suspension culture on the cartilage microtissues in a novel stirred microbioreactor system. To study the effect of the process shear stress, experiments with three different impeller velocities were carried out. Moreover, we used mathematical modeling to estimate the magnitude of shear stress on the individual microtissues during dynamic culture. Identification of appropriate mixing intensity allowed dynamic bioreactor culture of the microtissues for up to 14 days maintaining microtissue suspension. Dynamic culture did not affect microtissue viability, although lower proliferation was observed as opposed to the statically cultured ones. However, when assessing cell differentiation, gene expression values showed significant upregulation of both Indian Hedgehog (IHH) and collagen type X (COLX), well known markers of chondrogenic hypertrophy, for the dynamically cultured microtissues. Exometabolomics analysis revealed similarly distinct metabolic profiles between static and dynamic conditions. Dynamic cultured microtissues showed a higher glycolytic profile compared with the statically cultured ones while several amino acids such as proline and aspartate exhibited significant differences. Furthermore, in vivo implantations proved that microtissues cultured in dynamic conditions are functional and able to undergo endochondral ossification. Our work demonstrated a suspension differentiation process for the production of cartilaginous microtissues, revealing that shear stress resulted to an acceleration of differentiation towards hypertrophic cartilage.
Collapse
Affiliation(s)
- Niki Loverdou
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
- Biomechanics Research UnitGIGA‐R In Silico Medicine, Université de Liege, Avenue de l'Hôpital 11—BAT 34Liège 1Belgium
- Biomechanics Section, KU LeuvenCelestijnenlaanLeuvenBelgium
| | - Maxim Cuvelier
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Biosystems DepartmentMeBioS, KU LeuvenKasteelpark ArenbergLeuvenBelgium
| | - Gabriella Nilsson Hall
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
| | - An‐Sofie Christiaens
- Department of Chemical EngineeringKU LeuvenCelestijnenlaanLeuvenBelgium
- Leuven Chem&TechCelestijnenlaanLeuvenBelgium
| | - Isaak Decoene
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
| | - Kristel Bernaerts
- Department of Chemical EngineeringKU LeuvenCelestijnenlaanLeuvenBelgium
- Leuven Chem&TechCelestijnenlaanLeuvenBelgium
| | - Bart Smeets
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
- Biosystems DepartmentMeBioS, KU LeuvenKasteelpark ArenbergLeuvenBelgium
| | - Herman Ramon
- Biosystems DepartmentMeBioS, KU LeuvenKasteelpark ArenbergLeuvenBelgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
- Biomechanics Research UnitGIGA‐R In Silico Medicine, Université de Liege, Avenue de l'Hôpital 11—BAT 34Liège 1Belgium
- Biomechanics Section, KU LeuvenCelestijnenlaanLeuvenBelgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenHerestraatBelgium
- Skeletal Biology & Engineering Research Centre, Department of Development & RegenerationKU LeuvenLeuvenHerestraatBelgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology‐Hellas (FORTH)Stadiou St, PlataniPatrasGreece
| |
Collapse
|
10
|
Kamperman T, Willemen NGA, Kelder C, Koerselman M, Becker M, Lins L, Johnbosco C, Karperien M, Leijten J. Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205487. [PMID: 36599686 PMCID: PMC10074101 DOI: 10.1002/advs.202205487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Indexed: 06/12/2023]
Abstract
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Cindy Kelder
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Malin Becker
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Luanda Lins
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Castro Johnbosco
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
11
|
Burdis R, Kronemberger GS, Kelly DJ. Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells. Tissue Eng Part C Methods 2023; 29:121-133. [PMID: 36719783 DOI: 10.1089/ten.tec.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Engineering clinically relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large-scale tissues. Combining numerous scaled-down tissue units (herein termed microtissues) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies which support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this article, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications. Impact statement This study addresses a key challenge facing emerging modular biofabrication strategies that use microtissues as biological building blocks. Namely, achieving the necessary robust and consistent differentiation of clinically relevant cell sources, for example, mesenchymal stem/stromal cells (MSCs), and the accumulation of sufficient tissue-specific extracellular matrix (ECM) to engineer tissue of scale. We achieved this by establishing hydrocortisone as a simple and potent method for improving MSC chondrogenesis, resulting in the biofabrication of high-quality (ECM rich) cartilage microtissues. These findings could enable the generation of more scalable engineered cartilage by ensuring the formation of high-quality microtissue building blocks generated using heterogeneous MSC populations.
Collapse
Affiliation(s)
- Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol 2023; 11:1125405. [PMID: 36824369 PMCID: PMC9941961 DOI: 10.3389/fcell.2023.1125405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cartilage organoids have emerged as powerful modelling technology for recapitulation of joint embryonic events, and cartilage regeneration, as well as pathophysiology of cartilage-associated diseases. Recent breakthroughs have uncovered "mini-joint" models comprising of multicellular components and extracellular matrices of joint cartilage for development of novel disease-modifying strategies for personalized therapeutics of cartilage-associated diseases. Here, we hypothesized that LGR5-expressing embryonic joint chondroprogenitor cells are ideal stem cells for the generation of cartilage organoids as "mini-joints" ex vivo "in a dish" for embryonic joint development, cartilage repair, and cartilage-associated disease modelling as essential research models of drug screening for further personalized regenerative therapy. The pilot research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells are promising for generation of cartilage organoids through gel embedding method, which may exert various preclinical and clinical applications for realization of personalized regenerative therapy in the future.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Min Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| |
Collapse
|
13
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
14
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
15
|
Deckers T, Hall GN, Papantoniou I, Aerts JM, Bloemen V. A platform for automated and label-free monitoring of morphological features and kinetics of spheroid fusion. Front Bioeng Biotechnol 2022; 10:946992. [PMID: 36091464 PMCID: PMC9461702 DOI: 10.3389/fbioe.2022.946992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spheroids are widely applied as building blocks for biofabrication of living tissues, where they exhibit spontaneous fusion toward an integrated structure upon contact. Tissue fusion is a fundamental biological process, but due to a lack of automated monitoring systems, the in-depth characterization of this process is still limited. Therefore, a quantitative high-throughput platform was developed to semi-automatically select doublet candidates and automatically monitor their fusion kinetics. Spheroids with varying degrees of chondrogenic maturation (days 1, 7, 14, and 21) were produced from two different cell pools, and their fusion kinetics were analyzed via the following steps: (1) by applying a novel spheroid seeding approach, the background noise was decreased due to the removal of cell debris while a sufficient number of doublets were still generated. (2) The doublet candidates were semi-automatically selected, thereby reducing the time and effort spent on manual selection. This was achieved by automatic detection of the microwells and building a random forest classifier, obtaining average accuracies, sensitivities, and precisions ranging from 95.0% to 97.4%, from 51.5% to 92.0%, and from 66.7% to 83.9%, respectively. (3) A software tool was developed to automatically extract morphological features such as the doublet area, roundness, contact length, and intersphere angle. For all data sets, the segmentation procedure obtained average sensitivities and precisions ranging from 96.8% to 98.1% and from 97.7% to 98.8%, respectively. Moreover, the average relative errors for the doublet area and contact length ranged from 1.23% to 2.26% and from 2.30% to 4.66%, respectively, while the average absolute errors for the doublet roundness and intersphere angle ranged from 0.0083 to 0.0135 and from 10.70 to 13.44°, respectively. (4) The data of both cell pools were analyzed, and an exponential model was used to extract kinetic parameters from the time-series data of the doublet roundness. For both cell pools, the technology was able to characterize the fusion rate and quality in an automated manner and allowed us to demonstrate that an increased chondrogenic maturity was linked with a decreased fusion rate. The platform is also applicable to other spheroid types, enabling an increased understanding of tissue fusion. Finally, our approach to study spheroid fusion over time will aid in the design of controlled fabrication of “assembloids” and bottom-up biofabrication of living tissues using spheroids.
Collapse
Affiliation(s)
- Thomas Deckers
- Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium
- Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Gabriella Nilsson Hall
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology—Hellas (FORTH), Patras, Greece
| | - Jean-Marie Aerts
- Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- *Correspondence: Veerle Bloemen,
| |
Collapse
|
16
|
Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, Xia L, Wang H, Chai R. Scaffolds with Anisotropic Structure for Neural Tissue Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol 2022; 10:713934. [PMID: 35399531 PMCID: PMC8987776 DOI: 10.3389/fcell.2022.713934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and tissue regeneration represent two fields of intense research and rapid advancement. Their combination allowed the utilization of the different characteristics of biomaterials to enhance the expansion of stem cells or their differentiation into various lineages. Furthermore, the use of biomaterials in tissue regeneration would help in the creation of larger tissue constructs that can allow for significant clinical application. Several studies investigated the role of one or more biomaterial on stem cell characteristics or their differentiation potential into a certain target. In order to achieve real advancement in the field of stem cell-based tissue regeneration, a careful analysis of the currently published information is critically needed. This review describes the fundamental description of biomaterials as well as their classification according to their source, bioactivity and different biological effects. The effect of different biomaterials on stem cell expansion and differentiation into the primarily studied lineages was further discussed. In conclusion, biomaterials should be considered as an essential component of stem cell differentiation strategies. An intense investigation is still required. Establishing a consortium of stem cell biologists and biomaterial developers would help in a systematic development of this field.
Collapse
Affiliation(s)
- Ahmed Nugud
- Pediatric Department, Aljalila Children Hospital, Dubai, United Arab Emirates
| | - Latifa Alghfeli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
18
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
19
|
Sun Y, Wu Q, Dai K, You Y, Jiang W. Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease. Signal Transduct Target Ther 2021; 6:380. [PMID: 34764239 PMCID: PMC8585871 DOI: 10.1038/s41392-021-00675-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. .,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Wu
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqing You
- Department of Nephrology, Affiliated Hospital of Nanjing Medical University, North District of Suzhou Municipal Hospital, Suzhou, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Burdis R, Kelly DJ. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater 2021; 126:1-14. [PMID: 33711529 DOI: 10.1016/j.actbio.2021.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
The modest clinical impact of musculoskeletal tissue engineering (TE) can be attributed, at least in part, to a failure to recapitulate the structure, composition and functional properties of the target tissue. This has motivated increased interest in developmentally inspired TE strategies, which seek to recapitulate key events that occur during embryonic and post-natal development, as a means of generating truly biomimetic grafts to replace or regenerate damaged tissues and organs. Such TE strategies can be substantially enabled by emerging biofabrication and bioprinting strategies, and in particular the use of cellular aggregates, microtissues and organoids as 'building blocks' for the development of larger tissues and/or organ precursors. Here, the application of such biological building blocks for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. The importance of first scaling-down to later scale-up will be discussed, as this is viewed as a key component of engineering functional grafts using cellular aggregates or microtissues. In the context of engineering anatomically accurate tissues of scale suitable for tissue engineering and regenerative medicine applications, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues fuse and self-organise will be reviewed. Throughout the paper, we will highlight some of the key challenges facing this emerging field. STATEMENT OF SIGNIFICANCE: The field of bioprinting has grown substantially in recent years, but despite the hype and excitement it has generated, there are relatively few examples of bioprinting strategies producing implants with superior regenerative potential to that achievable with more traditional tissue engineering approaches. This paper provides an up-to-date review of emerging biofabrication and bioprinting strategies which use cellular aggregates and microtissues as 'building blocks' for the development of larger musculoskeletal tissues and/or organ precursors - a field of research that can potentially enable functional regeneration of damaged and diseased tissues. The application of cellular aggregates and microtissues for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. In the context of engineering anatomically accurate tissues of scale, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues self-organise is addressed, as well as key challenges facing this emerging field.
Collapse
|
21
|
Hall GN, Tam WL, Andrikopoulos KS, Casas-Fraile L, Voyiatzis GA, Geris L, Luyten FP, Papantoniou I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials 2021; 273:120820. [PMID: 33872857 DOI: 10.1016/j.biomaterials.2021.120820] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks. First, a hierarchical construct was created, composed of three layers of cartilaginous tissue intermediates derived from human periosteum-derived cells: (i) early (SOX9), (ii) mature (COL2) and (iii) (pre)hypertrophic (IHH, COLX) phenotype. Subcutaneous implantation in nude mice generated a hybrid tissue containing one mineralized and one non-mineralized part. However, the non-mineralized part was represented by a collagen type I positive fibrocartilage-like tissue. To engineer a more stable articular cartilage part, iPSC-derived cartilage microtissues (SOX9, COL2; IHH neg) were generated. Subcutaneous implantation of assembled iPSC-derived cartilage microtissues resulted in a homogenous cartilaginous tissue positive for collagen type II but negative for osteocalcin. Finally, iPSC-derived cartilage microtissues in combination with the pre-hypertrophic cartilage organoids (IHH, COLX) could form dual tissues consisting of i) a cartilaginous safranin O positive and ii) a bony osteocalcin positive region upon subcutaneous implantation, corresponding to the pre-engineered zonal pattern. The assembly of functional building blocks, as presented in this work, opens possibilities for the production of complex tissue engineered implants by embedding zone-specific functionality through the use of pre-programmed living building blocks.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - Wai Long Tam
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - Konstantinos S Andrikopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece; Department of Physics, University of Patras, GR-265 00, Rio-Patras, Greece
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, Leuven, 3000, Belgium
| | - George A Voyiatzis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; GIGA in Silico Medicine, Université de Liège, Avenue de L'Hôpital 11 - BAT 34, 4000, Liège 1, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3001, Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium.
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece.
| |
Collapse
|
22
|
Sánchez-Porras D, Durand-Herrera D, Paes AB, Chato-Astrain J, Verplancke R, Vanfleteren J, Sánchez-López JD, García-García ÓD, Campos F, Carriel V. Ex Vivo Generation and Characterization of Human Hyaline and Elastic Cartilaginous Microtissues for Tissue Engineering Applications. Biomedicines 2021; 9:biomedicines9030292. [PMID: 33809387 PMCID: PMC8001313 DOI: 10.3390/biomedicines9030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Considering the high prevalence of cartilage-associated pathologies, low self-repair capacity and limitations of current repair techniques, tissue engineering (TE) strategies have emerged as a promising alternative in this field. Three-dimensional culture techniques have gained attention in recent years, showing their ability to provide the most biomimetic environment for the cells under culture conditions, enabling the cells to fabricate natural, 3D functional microtissues (MTs). In this sense, the aim of this study was to generate, characterize and compare scaffold-free human hyaline and elastic cartilage-derived MTs (HC-MTs and EC-MTs, respectively) under expansion (EM) and chondrogenic media (CM). MTs were generated by using agarose microchips and evaluated ex vivo for 28 days. The MTs generated were subjected to morphometric assessment and cell viability, metabolic activity and histological analyses. Results suggest that the use of CM improves the biomimicry of the MTs obtained in terms of morphology, viability and extracellular matrix (ECM) synthesis with respect to the use of EM. Moreover, the overall results indicate a faster and more sensitive response of the EC-derived cells to the use of CM as compared to HC chondrocytes. Finally, future preclinical in vivo studies are still needed to determine the potential clinical usefulness of these novel advanced therapy products.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
- Doctoral Program in Biomedicine, Doctoral School, University of Granada, 18016 Granada, Spain
| | - Daniel Durand-Herrera
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
| | - Ana B. Paes
- Master Program in Tissue Engineering and Advanced Therapies, International School for Postgraduate Studies, University of Granada, 18016 Granada, Spain;
| | - Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), imec and Ghent University, 9052 Ghent, Belgium; (R.V.); (J.V.)
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), imec and Ghent University, 9052 Ghent, Belgium; (R.V.); (J.V.)
| | - José Darío Sánchez-López
- Division of Maxillofacial Surgery, University Hospital Complex of Granada, 18013 Granada, Spain;
| | - Óscar Darío García-García
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
- Correspondence: (F.C.); (V.C.); Tel.: +34-958-248-295 (V.C.)
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
- Correspondence: (F.C.); (V.C.); Tel.: +34-958-248-295 (V.C.)
| |
Collapse
|
23
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
24
|
Fu Y, Paggi CA, Dudakovic A, van Wijnen AJ, Post JN, Karperien M. Engineering Cartilage Tissue by Co-culturing of Chondrocytes and Mesenchymal Stromal Cells. Methods Mol Biol 2021; 2221:53-70. [PMID: 32979198 DOI: 10.1007/978-1-0716-0989-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Co-culture of chondrocytes and mesenchymal stromal cells (MSCs) has been shown to be beneficial in engineering cartilage tissue in vitro. In these co-cultures, MSCs increase the proliferation and matrix deposition of chondrocytes. The MSCs accomplish this beneficial effect by so-called trophic actions. Thus, large cartilage constructs can be made with a relatively small number of chondrocytes. In this chapter, we describe different methods for making co-cultures of MSCs and chondrocytes. We also provide detailed protocols for analyzing MSC-chondrocyte co-cultures with cell tracking, proliferation assays, species-specific polymerase chain reactions (PCR), rheological analysis, compression analysis, RNA-sequencing analysis, short tandem repeats analysis, and biochemical examination.
Collapse
Affiliation(s)
- Yao Fu
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Carlo A Paggi
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Janine N Post
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
25
|
Favreau H, Pijnenburg L, Seitlinger J, Fioretti F, Keller L, Scipioni D, Adriaensen H, Kuchler-Bopp S, Ehlinger M, Mainard D, Rosset P, Hua G, Gentile L, Benkirane-Jessel N. Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102253. [PMID: 32619705 DOI: 10.1016/j.nano.2020.102253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
Functional articular cartilage regeneration remains challenging, and it is essential to restore focal osteochondral defects and prevent secondary osteoarthritis. Combining autologous stem cells with therapeutic medical device, we developed a bi-compartmented implant that could promote both articular cartilage and subchondral bone regeneration. The first compartment based on therapeutic collagen associated with bone morphogenetic protein 2, provides structural support and promotes subchondral bone regeneration. The second compartment contains bone marrow-derived mesenchymal stem cell spheroids to support the regeneration of the articular cartilage. Six-month post-implantation, the regenerated articular cartilage surface was 3 times larger than that of untreated animals, and the regeneration of the osteochondral tissue occurred during the formation of hyaline-like cartilage. Our results demonstrate the positive impact of this combined advanced therapy medicinal product, meeting the needs of promising osteochondral regeneration in critical size articular defects in a large animal model combining not only therapeutic implant but also stem cells.
Collapse
Affiliation(s)
- Henri Favreau
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Luc Pijnenburg
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Joseph Seitlinger
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Florence Fioretti
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laetitia Keller
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Dominique Scipioni
- Hôpital Erasme-Cliniques universitaires de Bruxelles, Université libre de Bruxelles (ULB), CHIREC-Hôpital Delta, Belgique
| | - Hans Adriaensen
- CHRU de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, and INRA de tours, Université François Rabelais, Tours, France
| | - Sabine Kuchler-Bopp
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Matthieu Ehlinger
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Didier Mainard
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpital central Nancy, Service d'Orthopédie, Nancy, France
| | - Phillippe Rosset
- CHRU de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, and INRA de tours, Université François Rabelais, Tours, France
| | - Guoqiang Hua
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Luca Gentile
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.
| |
Collapse
|
26
|
van Loo B, Salehi S, Henke S, Shamloo A, Kamperman T, Karperien M, Leijten J. Enzymatic outside-in cross-linking enables single-step microcapsule production for high-throughput three-dimensional cell microaggregate formation. Mater Today Bio 2020; 6:100047. [PMID: 32300754 PMCID: PMC7152680 DOI: 10.1016/j.mtbio.2020.100047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-laden hydrogel microcapsules enable the high-throughput production of cell aggregates, which are relevant for three-dimensional tissue engineering and drug screening applications. However, current microcapsule production strategies are limited by their throughput, multistep protocols, and limited amount of compatible biomaterials. We here present a single-step process for the controlled microfluidic production of single-core microcapsules using enzymatic outside-in cross-linking of tyramine-conjugated polymers. It was hypothesized that a physically, instead of the conventionally explored biochemically, controlled enzymatic cross-linking process would improve the reproducibility, operational window, and throughput of shell formation. Droplets were flown through a silicone delay line, which allowed for highly controlled diffusion of the enzymatic cross-linking initiator. The microcapsules' cross-linking density and shell thickness is strictly depended on the droplet's retention time in the delay line, which is predictably controlled by flow rate. The here presented hydrogel cross-linking method allows for facile and cytocompatible production of cell-laden microcapsules compatible with the formation and biorthogonal isolation of long-term viable cellular spheroids for tissue engineering and drug screening applications.
Collapse
Affiliation(s)
- B. van Loo
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - S.S. Salehi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S. Henke
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - A. Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Corresponding author.
| | - T. Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - M. Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - J. Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
- Corresponding author.
| |
Collapse
|
27
|
Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020; 6:100043. [PMID: 32190832 PMCID: PMC7068131 DOI: 10.1016/j.mtbio.2020.100043] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Unlike other tissue types, the nervous tissue extends to a wide and complex environment that provides a plurality of different biochemical and topological stimuli, which in turn defines the advanced functions of that tissue. As a consequence of such complexity, the traditional transplantation therapeutic methods are quite ineffective; therefore, the restoration of peripheral and central nervous system injuries has been a continuous scientific challenge. Tissue engineering and regenerative medicine in the nervous system have provided new alternative medical approaches. These methods use external biomaterial supports, known as scaffolds, to create platforms for the cells to migrate to the injury site and repair the tissue. The challenge in neural tissue engineering (NTE) remains the fabrication of scaffolds with precisely controlled, tunable topography, biochemical cues, and surface energy, capable of directing and controlling the function of neuronal cells toward the recovery from neurological disorders and injuries. At the same time, it has been shown that NTE provides the potential to model neurological diseases in vitro, mainly via lab-on-a-chip systems, especially in cases for which it is difficult to obtain suitable animal models. As a consequence of the intense research activity in the field, a variety of synthetic approaches and 3D fabrication methods have been developed for the fabrication of NTE scaffolds, including soft lithography and self-assembly, as well as subtractive (top-down) and additive (bottom-up) manufacturing. This article aims at reviewing the existing research effort in the rapidly growing field related to the development of biomaterial scaffolds and lab-on-a-chip systems for NTE applications. Besides presenting recent advances achieved by NTE strategies, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- L. Papadimitriou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - P. Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - A. Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - E. Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
- Physics Department, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
28
|
Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I. Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902295. [PMID: 31993293 PMCID: PMC6974953 DOI: 10.1002/advs.201902295] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Clinical translation of cell-based products is hampered by their limited predictive in vivo performance. To overcome this hurdle, engineering strategies advocate to fabricate tissue products through processes that mimic development and regeneration, a strategy applicable for the healing of large bone defects, an unmet medical need. Natural fracture healing occurs through the formation of a cartilage intermediate, termed "soft callus," which is transformed into bone following a process that recapitulates developmental events. The main contributors to the soft callus are cells derived from the periosteum, containing potent skeletal stem cells. Herein, cells derived from human periosteum are used for the scalable production of microspheroids that are differentiated into callus organoids. The organoids attain autonomy and exhibit the capacity to form ectopic bone microorgans in vivo. This potency is linked to specific gene signatures mimicking those found in developing and healing long bones. Furthermore, callus organoids spontaneously bioassemble in vitro into large engineered tissues able to heal murine critical-sized long bone defects. The regenerated bone exhibits similar morphological properties to those of native tibia. These callus organoids can be viewed as a living "bio-ink" allowing bottom-up manufacturing of multimodular tissues with complex geometric features and inbuilt quality attributes.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Luís Freitas Mendes
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Charikleia Gklava
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue EngineeringKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- GIGA In Silico MedicineUniversité de LiègeAvenue de l'Hôpital 11—BAT 344000Liège 1Belgium
- Biomechanics SectionKU LeuvenCelestijnenlaan 300C, PB 24193001LeuvenBelgium
| | - Frank P. Luyten
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- Present address:
Institute of Chemical Engineering Sciences (ICE‐HT)Foundation for Research and TechnologyHellas (FORTH)Stadiou St.Platani26504PatrasGreece
| |
Collapse
|
29
|
de Melo BAG, Jodat YA, Mehrotra S, Calabrese MA, Kamperman T, Mandal BB, Santana MHA, Alsberg E, Leijten J, Shin SR. 3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1906330. [PMID: 34108852 PMCID: PMC8186324 DOI: 10.1002/adfm.201906330] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Indexed: 06/12/2023]
Abstract
Developing biomimetic cartilaginous tissues that support locomotion while maintaining chondrogenic behavior is a major challenge in the tissue engineering field. Specifically, while locomotive forces demand tissues with strong mechanical properties, chondrogenesis requires a soft microenvironment. To address this challenge, 3D cartilage-like tissue is bioprinted using two biomaterials with different mechanical properties: a hard biomaterial to reflect the macromechanical properties of native cartilage, and a soft biomaterial to create a chondrogenic microenvironment. To this end, a hard biomaterial (MPa order compressive modulus) composed of an interpenetrating polymer network (IPN) of polyethylene glycol (PEG) and alginate hydrogel is developed as an extracellular matrix (ECM) with self-healing properties, but low diffusive capacity. Within this bath supplemented with thrombin, fibrinogen containing human mesenchymal stem cell (hMSC) spheroids is bioprinted forming fibrin, as the soft biomaterial (kPa order compressive modulus) to simulate cartilage's pericellular matrix and allow a fast diffusion of nutrients. The bioprinted hMSC spheroids improve viability and chondrogenic-like behavior without adversely affecting the macromechanical properties of the tissue. Therefore, the ability to print locally soft and cell stimulating microenvironments inside of a mechanically robust hydrogel is demonstrated, thereby uncoupling the micro- and macromechanical properties of the 3D printed tissues such as cartilage.
Collapse
Affiliation(s)
- Bruna A G de Melo
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Yasamin A Jodat
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Shreya Mehrotra
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tom Kamperman
- Department of Developmental BioEngineering, University of Twente, Enschede, Overijssel 7522 NB, The Netherlands
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Maria H A Santana
- Department of Engineering of Materials and Bioprocesses School of Chemical Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
| | - Eben Alsberg
- Departments of Bioengineering and Orthopaedics, University of Illinois, Chicago, IL 60607, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, University of Twente, Enschede, Overijssel 7522 NB, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Baek J, Jung WB, Cho Y, Lee E, Yun GT, Cho SY, Jung HT, Im SG. Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17247-17255. [PMID: 31009192 DOI: 10.1021/acsami.9b03479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As neural stem cells (NSCs) interact with biophysical cues from their niche during development, it is important to understand the biomolecular mechanism of how the NSCs process these biophysical cues to regulate their behaviors. In particular, anisotropic geometric cues in micro-/nanoscale have been utilized to investigate the biophysical effect of the structure on NSCs behaviors. Here, a series of new nanoscale anisotropic wrinkle structures with the a range of wavelength scales (from 50 nm to 37 μm) was developed to demonstrate the effect of the anisotropic nanostructure on the fate commitment of NSCs. Intriguingly, two distinct characteristic length scales promoted the neurogenesis. Each wavelength scale showed a striking variation in terms of dependency on the directionality of the structures, suggesting the existence of at least two different ways in the processing of anisotropic geometries for neurogenesis. Furthermore, the combined effect of the two distinctive length scales was observed by employing hierarchical multiscale wrinkle structures with two characteristic neurogenesis-promoting wavelengths. Taken together, the wrinkle structure system developed in this study can serve as an effective platform to advance the understanding of how cells sense anisotropic geometries for their specific cellular behaviors. Furthermore, this could provide clues for improving nerve regeneration system of stem cell therapies.
Collapse
Affiliation(s)
- Jieung Baek
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for Nanocentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Geun-Tae Yun
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for Nanocentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Soo-Yeon Cho
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for Nanocentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for Nanocentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for Nanocentury , 291 Daehak-ro , Daejeon 34141 , Korea
| |
Collapse
|
31
|
Piluso S, Li Y, Abinzano F, Levato R, Moreira Teixeira L, Karperien M, Leijten J, van Weeren R, Malda J. Mimicking the Articular Joint with In Vitro Models. Trends Biotechnol 2019; 37:1063-1077. [PMID: 31000204 DOI: 10.1016/j.tibtech.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Treating joint diseases remains a significant clinical challenge. Conventional in vitro cultures and animal models have been helpful, but suffer from limited predictive power for the human response. Advanced models are therefore required to mimic the complex biological interactions within the human joint. However, the intricate structure of the joint microenvironment and the complex nature of joint diseases have challenged the development of in vitro models that can faithfully mimic the in vivo physiological and pathological environments. In this review, we discuss the current in vitro models of the joint and the progress achieved in the development of novel and potentially more predictive models, and highlight the application of new technologies to accurately emulate the articular joint.
Collapse
Affiliation(s)
- Susanna Piluso
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Florencia Abinzano
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liliana Moreira Teixeira
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - René van Weeren
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Gan D, Xu T, Xing W, Wang M, Fang J, Wang K, Ge X, Chan CW, Ren F, Tan H, Lu X. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. J Mater Chem B 2019; 7:1716-1725. [DOI: 10.1039/c8tb01664j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for tissue regeneration.
Collapse
Affiliation(s)
- Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Tong Xu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Wensi Xing
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Menghao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Ju Fang
- Department of Materials Science and Engineering, South University of Science and Technology, Shenzhen
- Guangdong 518055
- China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University
- Tianjin 300072
- China
| | - Chun Wai Chan
- School of Chinese Medicine, The Chinese University of Hong Kong
- Shatin
- China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, South University of Science and Technology, Shenzhen
- Guangdong 518055
- China
| | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University
- Shenzhen
- China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
33
|
Lam J, Bellayr IH, Marklein RA, Bauer SR, Puri RK, Sung KE. Functional Profiling of Chondrogenically Induced Multipotent Stromal Cell Aggregates Reveals Transcriptomic and Emergent Morphological Phenotypes Predictive of Differentiation Capacity. Stem Cells Transl Med 2018; 7:664-675. [PMID: 30084545 PMCID: PMC6127231 DOI: 10.1002/sctm.18-0065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Multipotent stromal cells (MSCs) are an attractive cell source for bone and cartilage tissue repair strategies. However, the functional heterogeneity of MSCs derived from different donors and manufacturing conditions has limited clinical translation, emphasizing the need for improved methods to assess MSC chondrogenic capacity. We used functionally relevant morphological profiling to dynamically monitor emergent morphological phenotypes of chondrogenically induced MSC aggregates to identify morphological features indicative of MSC chondrogenesis. Toward this goal, we characterized the morphology of chondrogenically stimulated MSC aggregates from eight different human cell-lines at multiple passages and demonstrated that MSC aggregates exhibited unique morphological dynamics that were both cell line- and passage-dependent. This variation in 3D morphology was shown to be informative of long-term MSC chondrogenesis based on multiple quantitative functional assays. We found that the specific morphological features of spheroid area, radius, minimum feret diameter, and minor axis length to be strongly correlated with MSC chondrogenic synthetic activity but not gene expression as early as day 4 in 3D culture. Our high-throughput, nondestructive approach could potentially serve as a tool to identify MSC lines with desired chondrogenic capacity toward improving manufacturing strategies for MSC-based cellular products for cartilage tissue repair. Stem Cells Translational Medicine 2018;1-12.
Collapse
Affiliation(s)
- Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ian H Bellayr
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raj K Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kyung E Sung
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
34
|
Deckers T, Lambrechts T, Viazzi S, Nilsson Hall G, Papantoniou I, Bloemen V, Aerts JM. High-throughput image-based monitoring of cell aggregation and microspheroid formation. PLoS One 2018; 13:e0199092. [PMID: 29953450 PMCID: PMC6023212 DOI: 10.1371/journal.pone.0199092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Studies on monolayer cultures and whole-animal models for the prediction of the response of native human tissue are associated with limitations. Therefore, more and more laboratories are tending towards multicellular spheroids grown in vitro as a model of native tissues. In addition, they are increasingly used in a wide range of biofabrication methodologies. These 3D microspheroids are generated through a self-assembly process that is still poorly characterised, called cellular aggregation. Here, a system is proposed for the automated, non-invasive and high throughput monitoring of the morphological changes during cell aggregation. Microwell patterned inserts were used for spheroid formation while an automated microscope with 4x bright-field objective captured the morphological changes during this process. Subsequently, the acquired time-lapse images were automatically segmented and several morphological features such as minor axis length, major axis length, roundness, area, perimeter and circularity were extracted for each spheroid. The method was quantitatively validated with respect to manual segmentation on four sets of ± 60 spheroids. The average sensitivities and precisions of the proposed segmentation method ranged from 96.67-97.84% and 96.77-97.73%, respectively. In addition, the different morphological features were validated, obtaining average relative errors between 0.78-4.50%. On average, a spheroid was processed 73 times faster than a human operator. As opposed to existing algorithms, our methodology was not only able to automatically monitor compact spheroids but also the aggregation process of individual spheroids, and this in an accurate and high-throughput manner. In total, the aggregation behaviour of more than 700 individual spheroids was monitored over a duration of 16 hours with a time interval of 5 minutes, and this could be increased up to 48,000 for the described culture format. In conclusion, the proposed system has the potential to be used for unravelling the mechanisms involved in spheroid formation and monitoring their formation during large-scale manufacturing protocols.
Collapse
Affiliation(s)
- Thomas Deckers
- M3-BIORES, KU Leuven, Leuven, Belgium
- Biomedical-Health Engineering, KU Leuven Campus Group T, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Toon Lambrechts
- M3-BIORES, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Stefano Viazzi
- M3-BIORES, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Gabriella Nilsson Hall
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Biomedical-Health Engineering, KU Leuven Campus Group T, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Jean-Marie Aerts
- M3-BIORES, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Seo J, Shin JY, Leijten J, Jeon O, Camci-Unal G, Dikina AD, Brinegar K, Ghaemmaghami AM, Alsberg E, Khademhosseini A. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153:85-101. [PMID: 29079207 PMCID: PMC5702937 DOI: 10.1016/j.biomaterials.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
The rapid development of new biomaterials and techniques to modify them challenge our capability to characterize them using conventional methods. In response, numerous high-throughput (HT) strategies are being developed to analyze biomaterials and their interactions with cells using combinatorial approaches. Moreover, these systematic analyses have the power to uncover effects of delivered soluble bioactive molecules on cell responses. In this review, we describe the recent developments in HT approaches that help identify cellular microenvironments affecting cell behaviors and highlight HT screening of biochemical libraries for gene delivery, drug discovery, and toxicological studies. We also discuss HT techniques for the analyses of cell secreted biomolecules and provide perspectives on the future utility of HT approaches in biomedical engineering.
Collapse
Affiliation(s)
- Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Biomaterials, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung-Youn Shin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulden Camci-Unal
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA, 01854-2827, USA
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
36
|
Leijten J, Seo J, Yue K, Santiago GTD, Tamayol A, Ruiz-Esparza GU, Shin SR, Sharifi R, Noshadi I, Álvarez MM, Zhang YS, Khademhosseini A. Spatially and Temporally Controlled Hydrogels for Tissue Engineering. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2017; 119:1-35. [PMID: 29200661 PMCID: PMC5708586 DOI: 10.1016/j.mser.2017.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent years have seen tremendous advances in the field of hydrogel-based biomaterials. One of the most prominent revolutions in this field has been the integration of elements or techniques that enable spatial and temporal control over hydrogels' properties and functions. Here, we critically review the emerging progress of spatiotemporal control over biomaterial properties towards the development of functional engineered tissue constructs. Specifically, we will highlight the main advances in the spatial control of biomaterials, such as surface modification, microfabrication, photo-patterning, and three-dimensional (3D) bioprinting, as well as advances in the temporal control of biomaterials, such as controlled release of molecules, photocleaving of proteins, and controlled hydrogel degradation. We believe that the development and integration of these techniques will drive the engineering of next-generation engineered tissues.
Collapse
Affiliation(s)
- Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guillermo U. Ruiz-Esparza
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Roholah Sharifi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Iman Noshadi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mario Moisés Álvarez
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
37
|
Vas WJ, Shah M, Al Hosni R, Owen HC, Roberts SJ. Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation. J Tissue Eng 2017; 8:2041731417704791. [PMID: 28491274 PMCID: PMC5406151 DOI: 10.1177/2041731417704791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.
Collapse
Affiliation(s)
- Wollis J Vas
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Rawiya Al Hosni
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Owen
- Department of Natural Sciences, School of Science & Technology, Middlesex University, London, UK
| | - Scott J Roberts
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| |
Collapse
|