1
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
2
|
Bhattacharjee P, Sarkar P, Bhadra K. Evaluation of therapeutic role of harmaline: in vitro cytotoxicity targeting nucleic acids. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:519-533. [PMID: 37656039 DOI: 10.1080/10286020.2023.2251116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Use of small molecules as valuable drugs against diseases is still an indefinable purpose due to the lack of in-detail knowledge regarding proper bio-target identification, specificity aspects, mode-mechanism of binding and proper in vitro study. Harmaline, an important beta-carboline alkaloid, shows effective anti-proliferative action against different types of human cancers and is also found to be a nucleic acid targeting natural molecule. This review sought to address the different signal pathways of apoptosis by harmaline in different cancer cell lines and simultaneously to characterize the structure activity aspects of the alkaloid with different motifs of nucleic acid to show its preference, biological efficacy and genotoxicity. The results open up new insights for the design and development of small molecule-based nucleic acid therapeutic agents.
Collapse
Affiliation(s)
| | - Paromita Sarkar
- Department of Zoology, University of Kalyani, Nadia, W. Bengal 741235, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, W. Bengal 741235, India
| |
Collapse
|
3
|
Aksenov NA, Arutiunov NA, Aksenov AV, Kirilov NK, Aksenova IV, Aksenov DA, Aleksandrova EV, Rubin M, Kornienko A. Synthesis of β-Carbolines with Electrocyclic Cyclization of 3-Nitrovinylindoles. Int J Mol Sci 2023; 24:13107. [PMID: 37685914 PMCID: PMC10487476 DOI: 10.3390/ijms241713107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The β-carboline motif is common in drug discovery and among numerous biologically active natural products. However, its synthetic preparation relies on multistep sequences and heavily depends on the type of substitution required in the core of the desired β-carboline target. Herein, we demonstrate that this structural motif can be accessed with the microwave-assisted electrocyclic cyclization of heterotrienic aci (alkylideneazinic acid) forms of 3-nitrovinylindoles. The reaction can start with 3-nitrovinylindoles themselves under two sets of conditions. The first one involves microwave irradiation of butanolic solutions of 3-nitrovinylindoles, whereas the second one consists of prior Boc protection of indolic nitrogen, where the protecting group cleanly comes off during the course of the reaction. Alternatively, the reaction can start with 3-nitrovinylindoles prepared in situ using various processes. Finally, the reaction may utilize indoles with β-nitrostyrenes, likely involving the intermediacy of spirocyclic oxazolines, which rearrange to similar heterotrienic systems undergoing cyclization to β-carbolines. As part of this study, several natural products, namely, alkaloids norharmane, harmane, and eudistomin N, were synthesized.
Collapse
Affiliation(s)
- Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Nikolai A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Nikita K. Kirilov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Inna V. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Elena V. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| |
Collapse
|
4
|
Poje G, Marinović M, Pavić K, Mioč M, Kralj M, de Carvalho LP, Held J, Perković I, Rajić Z. Harmicens, Novel Harmine and Ferrocene Hybrids: Design, Synthesis and Biological Activity. Int J Mol Sci 2022; 23:ijms23169315. [PMID: 36012590 PMCID: PMC9408872 DOI: 10.3390/ijms23169315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/β-carboline and ferrocene scaffolds. Structural diversity was achieved by varying the type and length of the linker between the β-carboline ring and ferrocene, as well as its position on the β-carboline ring. Triazole-type harmicens were prepared using Cu(I)-catalyzed azide-alkyne cycloaddition, while the synthesis of amide-type harmicens was carried out by applying a standard coupling reaction. The results of in vitro biological assays showed that the harmicens exerted moderate antiplasmodial activity against the erythrocytic stage of P. falciparum (IC50 in submicromolar and low micromolar range) and significant and selective antiproliferative activity against the MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range, SI > 5.9). Cell localization experiments showed different localizations of nonselective harmicene 36 and HCT116-selective compound 28, which clearly entered the nucleus. A cell cycle analysis revealed that selective harmicene 28 had already induced G1 cell cycle arrest after 24 h, followed by G2/M arrest with a concomitant drastic reduction in the percentage of cells in the S phase, whereas the effect of nonselective compound 36 on the cell cycle was much less pronounced, which agreed with their different localizations within the cell.
Collapse
Affiliation(s)
- Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Marina Marinović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Kristina Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Marija Mioč
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruder Boškovic Institute, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruder Boškovic Institute, 10 000 Zagreb, Croatia
| | | | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72074 Tübingen, Germany
| | - Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Shalini, Lata S, Saha ST, Kaur M, Awolade P, Ebenezer O, Singh P, Kumar V. Tetrahydro-β-carboline-naphthalimide hybrids: Synthesis and anti-proliferative evaluation on estrogen-dependent and triple-negative breast cancer cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yusuf H, Fahriani M, Murzalina C, Mawaddah RD. Inhibitory effects on HepG2 cell proliferation and induction of cell cycle arrest by Chromolaena odorata leaf extract and fractions. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Concern about the side effects of liver cancer treatment has driven studies on anticancer to find compounds from plants that can act as chemotherapy. The anticancer activity of Chromolaena odorata against colorectal cancer, lung cancer, leukemia, cervical cancer, breast cancer, and liver cancer has been proven. However, this plant’s mechanism that can inhibit liver cancer cell growth is still undetermined. This study aims to investigate the anticancer activity of C. odorata against HepG2 cells. Extraction of C. odorata leaves was done by maceration method using 80% ethanol and further fractionated. Total flavonoid and major compound of the crude extract were determined by aluminum chloride colorimetric assay and Liquid Chromatography-Mass Spectrometry method. The IC50 and proliferation analysis was performed by MTT assay. Cell cycle was analyzed by using flowcytometry. Total flavonoid of 1.95% and compounds such as 5,7,8,3ʹ,4ʹ-Pentamethoxyflavonone, 1-Carboethoxy-β-carboline, 3-Methylcanthin-2, 6- dion, Canthin-6-one were found in C. odorata. The proliferation of HepG2 was significantly lower after 72 hours of incubation with ½ IC50 of C. odorata fractions. HepG2 cells treated with C. odorata extract and fractions were accumulated in the G0-G1 phase. These results indicated that C. odorata leaves could inhibit the proliferation of HepG2 cells and induce cell cycle arrest.
Collapse
|
8
|
Sharma YB, Singh R, Singh CP, Bharitkar YP, Hazra A. Design, Synthesis and Cytotoxicity Evaluation of Tetrahydro β‐Carboline‐Attached Spiroindolones/ Spiroacenapthylene by Using Lemon Juice as a Green Biocatalyst System. ChemistrySelect 2022. [DOI: 10.1002/slct.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogesh Brijwashi Sharma
- Department of Medicinal Chemistry Department of Natural Products National Institute of Pharmaceutical Education and Research (NIPER) 168, Maniktala Main Road Kolkata 700 054 India
| | - Rajveer Singh
- Department of Medicinal Chemistry Department of Natural Products National Institute of Pharmaceutical Education and Research (NIPER) 168, Maniktala Main Road Kolkata 700 054 India
| | - Chetan Paul Singh
- Natural Products & Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine (IIIM), Post Bag No. 3 Canal Road Jammu 180001 (J&K) India
| | - Yogesh P. Bharitkar
- Department of Medicinal Chemistry Department of Natural Products National Institute of Pharmaceutical Education and Research (NIPER) 168, Maniktala Main Road Kolkata 700 054 India
- Natural Products & Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine (IIIM), Post Bag No. 3 Canal Road Jammu 180001 (J&K) India
| | - Abhijit Hazra
- Department of Medicinal Chemistry Department of Natural Products National Institute of Pharmaceutical Education and Research (NIPER) 168, Maniktala Main Road Kolkata 700 054 India
| |
Collapse
|
9
|
Singh M, Jamra. R, Paul AK, Malakar CC, Singh V. KI‐assisted Sulfur Activation/Insertion/Denitration Strategy towards Dual C−S Bond Formation for One‐pot Synthesis of β‐Carboline‐tethered 2‐Acylbenzothiophenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Rahul Jamra.
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab Bathinda 151401 Punjab India
| | - Avijit K. Paul
- Department of Chemistry National Institute of Technology Kurukshetra 136119 Haryana India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Imphal 795004 Manipur India
| | - Virender Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab Bathinda 151401 Punjab India
| |
Collapse
|
10
|
N,N-Bis(Substituted benzyl)-β-Carbolineum Bromides as Potential Anticancer Therapeutics: Design, Synthesis, Cytotoxicity, Drug-DNA Intercalation and In-Silico Binding Properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Singh M, Jamra R, Mehra S, Rattan S, Singh V. Potassium
Tert
‐Butoxide‐Promoted Synthesis of Fluorescent β‐Carboline Tethered 1,3,5‐Triazines and Assessment of Their Luminescent Properties. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
| | - Rahul Jamra
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| | - Saloni Mehra
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Sunita Rattan
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Virender Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| |
Collapse
|
12
|
A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur J Med Chem 2021; 224:113688. [PMID: 34332400 DOI: 10.1016/j.ejmech.2021.113688] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 07/04/2021] [Indexed: 01/13/2023]
Abstract
β-Carboline alkaloids are a family of natural and synthetic products with structural diversity and outstanding antitumor activities. This review summarizes research developments of β-carboline and its derivatives as anticancer agents, which focused on both natural and synthetic monomers as well as dimers. In addition, the structure-activity relationship (SAR) analysis of β-carboline monomers and dimers are summarized and mechanism of action of β-carboline and its derivatives are also presented. A few possible research directions, suggestions and clues for future work on the development of novel β-carboline-based anticancer agents with improved expected activities and lesser toxicity are also provided.
Collapse
|
13
|
Soni JP, Yeole Y, Shankaraiah N. β-Carboline-based molecular hybrids as anticancer agents: a brief sketch. RSC Med Chem 2021; 12:730-750. [PMID: 34124672 PMCID: PMC8152596 DOI: 10.1039/d0md00422g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/28/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is a huge burden on the healthcare system and is foremost cause of mortality across the globe. Among various therapeutic strategies, chemotherapy plays an enormous role in overcoming the challenges of treating cancer, especially in late stage detection. However, limitations such as extreme side/adverse effects and drug resistance associated with available drugs have impelled the development of novel chemotherapeutic agents. In this regard, we have reviewed the development of β-carboline-based chemotherapeutic agents reported in last five years. The review mainly emphasizes on the molecular hybrids of β-carbolines with various pharmacophores, their synthetic strategies, and in vitro anticancer evaluation. In addition, the mechanisms of action, in silico studies, structural influence on the potency and selectivity among diverse cancer cell lines have been critically presented. The review updates readers on the diverse molecular hybrids prepared and the governing structural features of high potential molecules that can help in the future development of novel cytotoxic agents.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Yogesh Yeole
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
14
|
(E)-4-(3-(3-(4-Methoxyphenyl)acryloyl)phenoxy)butyl 2-Hydroxybenzoate. MOLBANK 2021. [DOI: 10.3390/m1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new hybrid compound of chalcone-salicylate (title compound) has been successfully synthesized using a linker mode approach under reflux condition. The structure of the title compound has been established by spectroscopic analysis including UV-Vis, FT-IR, HRMS, 1D, and 2D NMR. Then, computational approach was also applied in this study through molecular docking and MD simulation to explore its potency against breast cancer. The results of the molecular docking study showed that the title compound exhibited more negative value of binding free energy (−8.15 kcal/mol) than tamoxifen (−7.00 kcal/mol). In addition, no striking change in the positioning of the interacting residues was recorded before and after the MD simulations. Based on the studies, it can be predicted that the title compound has a cytotoxic activity potency against breast cancer through ERα inhibition and it presumably can be developed as anticancer agent candidate.
Collapse
|
15
|
A convenient synthesis of β-carbolines by iron-catalyzed aerobic decarboxylative/dehydrogenative aromatization of tetrahydro-β-carbolines under air. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Alzain AA, Brisson L, Delaye PO, Pénichon M, Chadet S, Besson P, Chevalier S, Allouchi H, Mohamed MA, Roger S, Enguehard-Gueiffier C. Bioinspired imidazo[1,2-a:4,5-c']dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur J Med Chem 2021; 218:113258. [PMID: 33813152 DOI: 10.1016/j.ejmech.2021.113258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/24/2022]
Abstract
Herein, we report the design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c']dipyridines. The structural optimization identified four anti-proliferative compounds. Compounds 11, 18, 19 and 20 exhibited excellent anticancer activities in vitro with IC50 of 0.4-5 μM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These four compounds induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: 11 increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds 18 and 19 also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series (8, 15, 18, 22, 23, 24) inhibited cell migration by 41-50% while four compounds (20, 25, 27, 30) inhibited the migration by 53-62% in wound-healing experiments. Interestingly, compound 20 presented both antiproliferative and anti-migration activities and might be a promising anti-metastatic agent for cancer treatment.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O box 20, Gezira, Sudan
| | - Lucie Brisson
- University of Tours, INSERM, UMR 1069 N2C, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Pierre-Olivier Delaye
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Mélanie Pénichon
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Stéphanie Chadet
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Pierre Besson
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Stéphan Chevalier
- University of Tours, INSERM, UMR 1069 N2C, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Hassan Allouchi
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Magdi A Mohamed
- University of Khartoum, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Khartoum, Sudan; Jouf University, College of Pharmacy, Department of Pharmaceutical Chemistry, Saudi Arabia
| | - Sébastien Roger
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France; Institut Universitaire de France, 75006, Paris, France.
| | | |
Collapse
|
17
|
Mak JYW, Wu KC, Gupta PK, Barbero S, McLaughlin MG, Lucke AJ, Tng J, Lim J, Loh Z, Sweet MJ, Reid RC, Liu L, Fairlie DP. HDAC7 Inhibition by Phenacetyl and Phenylbenzoyl Hydroxamates. J Med Chem 2021; 64:2186-2204. [PMID: 33570940 DOI: 10.1021/acs.jmedchem.0c01967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sheila Barbero
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maddison G McLaughlin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhixuan Loh
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Herrera-R A, Castrillón W, Pastrana M, Yepes AF, Cardona-G W. Promising Hybrids Derived from S-Allylcysteine and NSAIDs Fragments against Colorectal Cancer: Synthesis, In-vitro Evaluation, Drug-Likeness and In-silico ADME/tox Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:351-367. [PMID: 34903994 PMCID: PMC8653649 DOI: 10.22037/ijpr.2020.114347.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We synthesized twelve hybrids, S-allyl Cysteine methyl, ethyl and propyl ester-based non-steroidal anti-inflammatory drugs and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of all compounds was evaluated against SW480 human colon adenocarcinoma cells and the non-malignant CHO-K1 cell line. Among the tested compounds, hybrids 10b-c, 11b and 12b displayed the best anticancer activity with IC50 values between 0.131-0.183 mM and selectivity indices higher than 1 after 48 h of treatment. Selectivity indices were comparable to those reported for the reference drug, 5-fluorouracil (SI > 1). The SAR analysis showed that compounds with two carbon atom alkylic chains displayed the best activity (10b, 11b and 12b). Modeling studies including drug-likeness, bioactivity score and ADME/tox studies using online tools like molinspiration and Osiris suggested that these designed hybrids have a good pharmacological profile and can be considered as promising scaffolds for further studies in the search for new therapeutic alternatives to treat colorectal cancer.
Collapse
|
19
|
Singh M, Paul AK, Singh V. A transition metal-free approach towards the regioselective synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1 H-pyrroles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02315a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A transition metal-free one-pot sequential approach has been unfolded for the synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1H-pyrroles by using highly diverse 1-formyl-9H-β-carbolines as a template.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology Kurukshetra
- India
| | - Virender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
- Department of Chemistry
| |
Collapse
|
20
|
Li N, Liu D, Dai JK, Wang JY, Wang JR. Synthesis and In Vitro Antibacterial Activity of Quaternized 10-Methoxycanthin-6-one Derivatives. Molecules 2019; 24:molecules24081553. [PMID: 31010183 PMCID: PMC6514585 DOI: 10.3390/molecules24081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Based on our previous work, we found that 10-methoxycanthin-6-one displayed potential antibacterial activity and quaternization was an available method for increasing the antibacterial activity. Here, we explored the antibacterial activity of quaternized 10-methoxy canthin-6-one derivatives. Methods and Results: Twenty-two new 3-N-benzylated 10-methoxy canthin-6-ones were designed and synthesized through quaternization reaction. The in vitro antibacterial activity against three bacteria was evaluated by the double dilution method. Moreover, the structure–activity relationships (SARs) were carefully summarized in order to guide the development of antibacterial canthin-6-one agents. Two highly active compounds (6p and 6t) displayed 8-fold superiority (MIC = 3.91 µg/mL) against agricultural pathogenic bacteria R. solanacearum and P. syringae compared to agrochemical streptomycin sulfate, and showed potential activity against B. cereus. Moreover, these two compounds exhibited good “drug-like” properties, low cytotoxicity, and no inhibition on seed germination. Conclusions: This work provides two new effective quaternized canthin-6-one derivatives as candidate bactericide, promoting the development of natural-sourced bactericides and preservatives.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Dan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiang-Kun Dai
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin-Yi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun-Ru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
21
|
Abstract
The capsid protein is a promising target for the development of therapeutic anti-virus agents.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
22
|
Design, synthesis and biological evaluations of quaternization harman analogues as potential antibacterial agents. Eur J Med Chem 2018; 160:23-36. [DOI: 10.1016/j.ejmech.2018.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/16/2018] [Accepted: 10/05/2018] [Indexed: 12/30/2022]
|
23
|
Chandra F, Kumar P, Koner AL. Encapsulation and modulation of protolytic equilibrium of β-carboline-based norharmane drug by cucurbit[7]uril and micellar environments for enhanced cellular uptake. Colloids Surf B Biointerfaces 2018; 171:530-537. [PMID: 30096474 DOI: 10.1016/j.colsurfb.2018.07.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023]
Abstract
The effect of supramolecular nanocavity on photophysical and acid-dissociation properties of Norharmane (NHM), a physiologically important, anxiety control and memory-enhancing β-carboline-based drug, has been investigated using steady-state absorption and fluorescence spectroscopy. Self-assembled organization derived from surfactants and rigid water-soluble macrocyclic host Cucurbit[7]uril (CB7) have been selected for this investigation. The confined-space offered by the supramolecular assemblies modulates the pKa value of NHM (up to 3 units) as it can exist in two protolytic forms at near neutral pH. Therefore, the pH-dependent binding properties, modulation of pKa value and its consequences on the photophysical, chemical and solubility properties are investigated in detail. This investigation shows a large shift in the protolytic equilibrium which in turn causes ca. 15 times solubility-enhancement at near neutral pH. Moreover, the effect of enhanced solubility has been further investigated by the augmentation in the cellular uptake of NHM entrapped inside CB7. Thus, the modulation of the acid-base properties and solubility of β-carboline-based drugs will have immense potential for their formulation, cellular uptake and bioavailability.
Collapse
Affiliation(s)
- Falguni Chandra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Prashant Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Apurba L Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
24
|
Design and synthesis of C modified and ring-truncated canthin-6-one analogues as effective membrane-active antibacterial agents. Bioorg Med Chem Lett 2018; 28:3123-3128. [DOI: 10.1016/j.bmcl.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022]
|
25
|
Synthesis and antibacterial activity of C2 or C5 modified and D ring rejiggered canthin-6-one analogues. Food Chem 2018; 253:211-220. [DOI: 10.1016/j.foodchem.2018.01.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/07/2018] [Accepted: 01/25/2018] [Indexed: 01/25/2023]
|
26
|
Yuan L, Tian J. LIN28B promotes the progression of colon cancer by increasing B-cell lymphoma 2 expression. Biomed Pharmacother 2018; 103:355-361. [PMID: 29669301 DOI: 10.1016/j.biopha.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
RNA-binding protein LIN28B is frequently overexpressed in human colon cancer and is associated with the tumor progression and poor prognosis. The potential molecular mechanisms underlying the role of LIN28B in colon cancer remain unclear. The present study aimed to explore the role of B-cell lymphoma 2 (BCL-2) in promoting colon cancer development associated with LIN28B. The expression pattern of LIN28B in colon cancer tissues and cell lines was detected by RT-PCR, Western blotting analysis, and immunohistochemical staining. A log rank test was carried out to compare the survival times of patients with high/low levels of LIN28B. The effects of LIN28B on cell clonal formation, growth, and apoptosis were detected by clone formation, MTT and flow cytometry assays, respectively. BCL-2 expression and protein stability after LIN28B up-regulation were assessed by Western blotting. The effects of LIN28B and BCL-2 on tumorigenesis were evaluated by an in vivo xenograft assay. The results showed that LIN28B was highly expressed in colon cancer tissues and cell lines, which could promote cell clonal formation and growth and inhibit cell apoptosis. Up-regulation of LIN28B increased BCL-2 expression, enhanced its stability, and reduced its ubiquitination. Overexpression of LIN28B promoted cell tumorigenesis, whereas this effect was repressed by knockdown of BCL-2. This study suggests that overexpression of LIN28B promotes colon cancer development by increasing BCL-2 expression, potentially opening up new avenues for therapeutic approaches to colon cancer treatment.
Collapse
Affiliation(s)
- Leilei Yuan
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong, 272000, China
| | - Junhong Tian
- Department of Colorectal and Anal Surgery, Jining No.1 People's Hospital, Jining, Shandong, 272000, China.
| |
Collapse
|
27
|
Zhang J, Zhang Z, Shu B, Cui G, Zhong G. Cytotoxic and Apoptotic Activity of the Novel Harmine Derivative ZC-14 in Sf9 Cells. Int J Mol Sci 2018. [PMID: 29534494 PMCID: PMC5877672 DOI: 10.3390/ijms19030811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Harmine, one of the natural β-carboline alkaloids extracted from Peganum harmala L., exhibits broad spectrum but limited insecticidal ability against many pests. So there is an urgent need to synthesize novel derivatives with high efficiency. In the present study, a new synthetic compound, [1-(2-naphthyl)-3-(2-thioxo-1,3,4-oxadiazol-5-yl) β-carboline] (ZC-14), showed a strong proliferation inhibition effect against the Spodoptera frugiperda Sf9 cell line in a dose-dependent manner. Simultaneously, apoptosis induced by 7.5 μg/mL ZC-14 was confirmed with physiological and biochemical evidence, including typical apoptosis characteristics with shrinkage, apoptotic bodies, nuclear condensation/fragmentation, a clear DNA ladder, and a series of apoptotic rates. In addition, mitochondria were confirmed to be involved in apoptosis induced by ZC-14 accompanied with the loss of mitochondrial membrane potential (Δψm), the release of cytochrome c from mitochondria into the cytosol and increased expression of cleaved-caspase-3. However, harmine could not induce apoptosis at the same concentration. In summary, these data indicated that compound ZC-14 has a higher cytotoxicity than harmine against Sf9 cells. Besides, it exhibited an anti-proliferative effect in Sf9 cells via inducing apoptosis in which the mitochondrial apoptotic pathway plays a crucial role.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Zhijun Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Tokala R, Thatikonda S, Sana S, Regur P, Godugu C, Shankaraiah N. Synthesis and in vitro cytotoxicity evaluation of β-carboline-linked 2,4-thiazolidinedione hybrids: potential DNA intercalation and apoptosis-inducing studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj03248c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of β-carboline-linked 2,4-thiazolidinedione hybrids was synthesized and studied for their DNA affinities and cytotoxicities. The most potent compound was 19e with IC50 of 0.97 ± 0.13 μM.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | | | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| |
Collapse
|
29
|
|
30
|
Huang Q, Li S, Cheng P, Deng M, He X, Wang Z, Yang CH, Zhao XY, Huang J. High expression of anti-apoptotic protein Bcl-2 is a good prognostic factor in colorectal cancer: Result of a meta-analysis. World J Gastroenterol 2017; 23:5018-5033. [PMID: 28785155 PMCID: PMC5526771 DOI: 10.3748/wjg.v23.i27.5018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/05/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To systematically evaluate the prognostic-predictive capability of Bcl-2 in colorectal cancer (CRC).
METHODS A systematic literature search was conducted using PubMed, Web of Science and EMBASE databases. Any eligible study must meet the following criteria: (1) bcl-2 expression was evaluated in human CRC tissues by immunohistochemistry; (2) assessment of the relationships between bcl-2 expression and overall survival (OS), disease free survival (DFS), recurrent free survival (RFS) or clinic-pathological characteristics of CRC was included; (3) sufficient information was provided to estimate the hazard ratio (HR) or odds ratio and their 95% confidence intervals (CIs); and (4) the study was published in English. The impact of Bcl-2 expression on survival of CRC patients were evaluated through this meta-analysis.
RESULTS A total of 40 eligible articles involving 7658 patients were enrolled in our final analysis. We drew the conclusion that Bcl-2 high expression was significantly correlated with favorable OS (pooled HR = 0.69, 95%CI: 0.55-0.87, P = 0.002) and better DFS/RFS (pooled HR = 0.65, 95%CI: 0.50-0.85, P = 0.001). Additionally, the subgroup analysis suggested that Bcl-2 overexpression was significantly associated with prognosis (OS) especially in patients came from Europe and America but not Asian and patients who did not receive any adjuvant therapy before surgery. Finally, our present results indicated that expression of bcl-2 protein was associated with high differentiation grade and A/B Ducks’ stage.
CONCLUSION Bcl-2 high expression was significantly correlated with favorable OS and better DFS/RFS. Hence, we propose that Bcl-2 may be a valuable prognostic-predictive marker in CRC.
Collapse
|
31
|
Dai Y, Cai X, Shi W, Bi X, Su X, Pan M, Li H, Lin H, Huang W, Qian H. Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Amino Acids 2017; 49:1601-1610. [PMID: 28664269 DOI: 10.1007/s00726-017-2453-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
Host defense peptides have been demonstrated to exhibit prominent advantages in cancer therapy with selective binding ability toward tumor cells via electrostatic attractions, which can overcome the limitations of traditional chemotherapy drugs, such as toxicity on non-malignant cells and the emergence of drug resistance. In this work, we redesigned and constructed a series of cationic peptides by inserting hydrophobic residues into hydrophilic surface or replacing lysine (K) with arginine (R), based on the experience from the preliminary work of host defense peptide B1. In-depth studies demonstrated that the engineered peptides exhibited more potent anti-cancer activity against various cancer cell lines and much lower toxicity to normal cells compared with B1. Further investigation revealed that compounds I-3 and I-7 could act on cancer cell membranes and subsequently alter the permeability, which facilitated obvious pro-apoptotic activity in paclitaxel-resistant cell line (MCF-7/Taxol). The result of mitochondrial membrane potential assay (ΔΨm) demonstrated that the peptides induced ΔΨm dissipation and mitochondrial depolarization. The caspase-3 cellular activity assay showed that the anti-cancer activity of peptides functioned via caspase-3-dependent apoptosis. The study yielded compound I-7 with superior properties for antineoplastic activity in comparison to B1, which makes it a promising potential candidate for cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Dai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xingguang Cai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xinzhou Bi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xin Su
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Miaobo Pan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Huilan Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Haiyan Lin
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|