1
|
Ferreira H, Duarte D, Rodrigues JA, Vasconcelos MW, Pinto E, Gil AM. Urine Metabolomics during a Legume Diet Intervention Suggests Altered Metabolic Signatures and Potential New Intake Markers: First Insights. ACS OMEGA 2024; 9:43453-43468. [PMID: 39494014 PMCID: PMC11525520 DOI: 10.1021/acsomega.4c04795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/05/2024]
Abstract
Given the general increase in legume consumption worldwide, there is a need to characterize the resulting human metabolic adaptations in order to demonstrate potential legume diet/health relationships. A nuclear magnetic resonance (NMR) metabolomics urine study was carried out on a small cohort (n = 18) to characterize the excretory effects of a pilot longitudinal 8-week legume-based dietary intervention. Despite the expected high interindividual variability in the excreted metabolome, the results suggested a nonlinear metabolic response, with higher metabolic activity in the first 4 weeks and a tendency toward baseline at the end of the intervention. The excretion of isoleucine, leucine, and threonine increased, along with metabolite changes suggestive of activation of the tricarboxylic acid cycle (through anaplerosis), ketogenesis, fat catabolism, and glycoprotein biosynthesis. Gut microbiota adaptations were also suggested based on the increased excretion of 2-hydroxyisobutyrate, allantoin, and hippurate. Increased levels of trigonelline were consistent with its role as a legume intake marker, whereas malonate and pseudouridine were suggested as possible additional markers. Correlation of NMR data with nutritional parameters aided putative explanatory hypotheses to be advanced. Our results suggest a dynamic response to legume consumption, mainly through increased amino acid excretion and altered energy metabolism, while advancing potential new markers of legume intake. These results require confirmation in larger cohorts but pave the way for an informed interpretation of the effects of legume-based diets on human health.
Collapse
Affiliation(s)
- Helena Ferreira
- CBQF
- Centro de Biotecnologia e Química Fina − Laboratório
Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto 4200-072, Portugal
| | - Daniela Duarte
- Department
of Chemistry and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João A. Rodrigues
- Department
of Chemistry and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Marta W. Vasconcelos
- CBQF
- Centro de Biotecnologia e Química Fina − Laboratório
Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto 4200-072, Portugal
| | - Elisabete Pinto
- CBQF
- Centro de Biotecnologia e Química Fina − Laboratório
Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto 4200-072, Portugal
- EPIUnit
- Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, Porto 4050-600, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
2
|
Yang J, Bernard L, Wong KE, Yu B, Steffen LM, Sullivan VK, Rebholz CM. Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet. Metabolomics 2024; 20:118. [PMID: 39432124 DOI: 10.1007/s11306-024-02184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet. OBJECTIVES Our study explored serum metabolites associated with adherence to the MIND diet. METHODS In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics. RESULTS Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF). CONCLUSION Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Bernard
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kari E Wong
- Metabolon, Research Triangle Park, Morrisville, NC, USA
| | - Bing Yu
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Valerie K Sullivan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Luo X, Liu Y, Balck A, Klein C, Fleming RMT. Identification of metabolites reproducibly associated with Parkinson's Disease via meta-analysis and computational modelling. NPJ Parkinsons Dis 2024; 10:126. [PMID: 38951523 PMCID: PMC11217404 DOI: 10.1038/s41531-024-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Many studies have reported metabolomic analysis of different bio-specimens from Parkinson's disease (PD) patients. However, inconsistencies in reported metabolite concentration changes make it difficult to draw conclusions as to the role of metabolism in the occurrence or development of Parkinson's disease. We reviewed the literature on metabolomic analysis of PD patients. From 74 studies that passed quality control metrics, 928 metabolites were identified with significant changes in PD patients, but only 190 were replicated with the same changes in more than one study. Of these metabolites, 60 exclusively increased, such as 3-methoxytyrosine and glycine, 54 exclusively decreased, such as pantothenic acid and caffeine, and 76 inconsistently changed in concentration in PD versus control subjects, such as ornithine and tyrosine. A genome-scale metabolic model of PD and corresponding metabolic map linking most of the replicated metabolites enabled a better understanding of the dysfunctional pathways of PD and the prediction of additional potential metabolic markers from pathways with consistent metabolite changes to target in future studies.
Collapse
Affiliation(s)
- Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Yanjun Liu
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Alexander Balck
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Ronan M T Fleming
- School of Medicine, University of Galway, University Rd, Galway, Ireland.
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands.
| |
Collapse
|
4
|
de Lope EG, Loo RTJ, Rauschenberger A, Ali M, Pavelka L, Marques TM, Gomes CPC, Krüger R, Glaab E. Comprehensive blood metabolomics profiling of Parkinson's disease reveals coordinated alterations in xanthine metabolism. NPJ Parkinsons Dis 2024; 10:68. [PMID: 38503737 PMCID: PMC10951366 DOI: 10.1038/s41531-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.
Collapse
Affiliation(s)
- Elisa Gómez de Lope
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebecca Ting Jiin Loo
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Muhammad Ali
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P C Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Tipton M, Baxter BA, Pfluger BA, Sayre-Chavez B, Muñoz-Amatriaín M, Broeckling CD, Shani I, Steiner-Asiedu M, Manary M, Ryan EP. Urine and Dried Blood Spots From Children and Pregnant Women Reveal Phytochemicals, Amino Acids, and Carnitine Metabolites as Cowpea Consumption Biomarkers. Mol Nutr Food Res 2024; 68:e2300222. [PMID: 38233141 DOI: 10.1002/mnfr.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/23/2023] [Indexed: 01/19/2024]
Abstract
SCOPE Legumes consumption has been proven to promote health across the lifespan; cowpeas have demonstrated efficacy in combating childhood malnutrition and growth faltering, with an estimated malnutrition prevalence of 35.6% of children in Ghana. This cowpea feeding study aimed to identify a suite of metabolic consumption biomarkers in children and adults. METHODS AND RESULTS Urine and dried blood spots (DBS) from 24 children (9-21 months) and 21 pregnant women (>18 years) in Northern Ghana are collected before and after dose-escalated consumption of four cowpea varieties for 15 days. Untargeted metabolomics identified significant increases in amino acids, phytochemicals, and lipids. The carnitine metabolism pathway is represented by 137 urine and 43 DBS metabolites, with significant changes to tiglylcarnitine and acetylcarnitine. Additional noteworthy candidate biomarkers are mansouramycin C, N-acetylalliin, proline betaine, N2, N5-diacetylornithine, S-methylcysteine, S-methylcysteine sulfoxide, and cis-urocanate. S-methylcysteine and S-methylcysteine sulfoxide are targeted and quantified in urine. CONCLUSION This feeding study for cowpea biomarkers supports the utility of a suite of key metabolites classified as amino acids, lipids, and phytochemicals for dietary legume and cowpea-specific food exposures of global health importance.
Collapse
Affiliation(s)
- Madison Tipton
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brigitte A Pfluger
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Brooke Sayre-Chavez
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
| | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
- Departamento de Biología Molecular - Área de Genética, Universidad de León, León, 24071, Spain
| | - Corey D Broeckling
- Analytical Resources Core: Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Issah Shani
- Department of Nutrition and Food Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, P.O. Box LG 134 Legon, Ghana
| | - Matilda Steiner-Asiedu
- Department of Nutrition and Food Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, P.O. Box LG 134 Legon, Ghana
| | - Mark Manary
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, 63110, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
6
|
Liikonen V, Gomez-Gallego C, Kolehmainen M. The effects of whole grain cereals on tryptophan metabolism and intestinal barrier function: underlying factors of health impact. Proc Nutr Soc 2024; 83:42-54. [PMID: 37843435 DOI: 10.1017/s0029665123003671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This review aims to investigate the relationship between the health impact of whole grains mediated via the interaction with intestinal microbiota and intestinal barrier function with special interest on tryptophan metabolism, focusing on the role of the intestinal microbiota and their impact on barrier function. Consuming various types of whole grains can lead to the growth of different microbiota species, which in turn leads to the production of diverse metabolites, including those derived from tryptophan metabolism, although the impact of whole grains on intestinal microbiota composition results remains inconclusive and vary among different studies. Whole grains can exert an influence on tryptophan metabolism through interactions with the intestinal microbiota, and the presence of fibre in whole grains plays a notable role in establishing this connection. The impact of whole grains on intestinal barrier function is closely related to their effects on the composition and activity of intestinal microbiota, and SCFA and tryptophan metabolites serve as potential links connecting whole grains, intestinal microbiota and the intestinal barrier function. Tryptophan metabolites affect various aspects of the intestinal barrier, such as immune balance, mucus and microbial barrier, tight junction complexes and the differentiation and proliferation of epithelial cells. Despite the encouraging discoveries in this area of research, the evidence regarding the effects of whole grain consumption on intestine-related activity remains limited. Hence, we can conclude that we are just starting to understand the actual complexity of the intestinal factors mediating in part the health impacts of whole grain cereals.
Collapse
Affiliation(s)
- Vilma Liikonen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Carlos Gomez-Gallego
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Rhee J, Loftfield E, Albanes D, Layne TM, Stolzenberg-Solomon R, Liao LM, Playdon MC, Berndt SI, Sampson JN, Freedman ND, Moore SC, Purdue MP. A metabolomic investigation of serum perfluorooctane sulfonate and perfluorooctanoate. ENVIRONMENT INTERNATIONAL 2023; 180:108198. [PMID: 37716341 PMCID: PMC10591812 DOI: 10.1016/j.envint.2023.108198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Exposures to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), environmentally persistent chemicals detectable in the blood of most Americans, have been associated with several health outcomes. To offer insight into their possible biologic effects, we evaluated the metabolomic correlates of circulating PFOS and PFOA among 3,647 participants in eight nested case-control serum metabolomic profiling studies from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. METHODS Metabolomic profiling was conducted by Metabolon Inc., using ultra high-performance liquid chromatography/tandem accurate mass spectrometry. We conducted study-specific multivariable linear regression analyses estimating the associations of metabolite levels with levels of PFOS or PFOA. For metabolites measured in at least 3 of 8 nested case-control studies, random effects meta-analysis was used to summarize study-specific results (1,038 metabolites in PFOS analyses and 1,100 in PFOA analyses). RESULTS The meta-analysis identified 51 and 38 metabolites associated with PFOS and PFOA, respectively, at a Bonferroni-corrected significance level (4.8x10-5 and 4.6x10-5, respectively). For both PFOS and PFOA, the most common types of associated metabolites were lipids (sphingolipids, fatty acid metabolites) and xenobiotics (xanthine metabolites, chemicals). Positive associations were commonly observed with lipid metabolites sphingomyelin (d18:1/18:0) (P = 2.0x10-10 and 2.0x10-8, respectively), 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (P = 2.7x10-15, 1.1x10-17), and lignoceroylcarnitine (C24) (P = 2.6x10-8, 6.2x10-6). The strongest positive associations were observed for chemicals 3,5-dichloro-2,6-dihydroxybenzoic acid (P = 3.0x10-112 and 6.8x10-13, respectively) and 3-bromo-5-chloro-2,6-dihydroxybenzoic acid (P = 1.6x10-14, 2.3x10-6). Other metabolites positively associated with PFOS included D-glucose (carbohydrate), carotene diol (vitamin A metabolism), and L-alpha-aminobutyric acid (glutathione metabolism), while uric acid (purine metabolite) was positively associated with PFOA. PFOS associations were consistent even after adjusting for PFOA as a covariate, while PFOA associations were greatly attenuated with PFOS adjustment. CONCLUSIONS In this large metabolomic study, we observed robust positive associations with PFOS for several molecules. Further investigation of these metabolites may offer insight into PFOS-related biologic effects.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tracy M Layne
- Department of Obstetrics, Gynecology, and Reproductive Science, and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Linda M Liao
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
8
|
Oesterle I, Pristner M, Berger S, Wang M, Verri Hernandes V, Rompel A, Warth B. Exposomic Biomonitoring of Polyphenols by Non-Targeted Analysis and Suspect Screening. Anal Chem 2023; 95:10686-10694. [PMID: 37409760 PMCID: PMC10357401 DOI: 10.1021/acs.analchem.3c01393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Polyphenols, prevalent in plants and fungi, are investigated intensively in nutritional and clinical settings because of their beneficial bioactive properties. Due to their complexity, analysis with untargeted approaches is favorable, which typically use high-resolution mass spectrometry (HRMS) rather than low-resolution mass spectrometry (LRMS). Here, the advantages of HRMS were evaluated by thoroughly testing untargeted techniques and available online resources. By applying data-dependent acquisition on real-life urine samples, 27 features were annotated with spectral libraries, 88 with in silico fragmentation, and 113 by MS1 matching with PhytoHub, an online database containing >2000 polyphenols. Moreover, other exogenous and endogenous molecules were screened to measure chemical exposure and potential metabolic effects using the Exposome-Explorer database, further annotating 144 features. Additional polyphenol-related features were explored using various non-targeted analysis techniques including MassQL for glucuronide and sulfate neutral losses, and MetaboAnalyst for statistical analysis. As HRMS typically suffers a sensitivity loss compared to state-of-the-art LRMS used in targeted workflows, the gap between the two instrumental approaches was quantified in three spiked human matrices (urine, serum, plasma) as well as real-life urine samples. Both instruments showed feasible sensitivity, with median limits of detection in the spiked samples being 10-18 ng/mL for HRMS and 4.8-5.8 ng/mL for LRMS. The results demonstrate that, despite its intrinsic limitations, HRMS can readily be used for comprehensively investigating human polyphenol exposure. In the future, this work is expected to allow for linking human health effects with exposure patterns and toxicological mixture effects with other xenobiotics.
Collapse
Affiliation(s)
- Ian Oesterle
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Fakultät
für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Wien 1090, Austria
- Doctoral
School of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Manuel Pristner
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Doctoral
School of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Sabrina Berger
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Mingxun Wang
- Department
of Computer Science, University of California
Riverside, Riverside, California 92521, United States
| | - Vinicius Verri Hernandes
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Hub, Vienna 1090, Austria
| | - Annette Rompel
- Fakultät
für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Wien 1090, Austria
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Hub, Vienna 1090, Austria
| |
Collapse
|
9
|
Li K, Burton-Pimentel KJ, Brouwer-Brolsma EM, Blaser C, Badertscher R, Pimentel G, Portmann R, Feskens EJM, Vergères G. Identifying Plasma and Urinary Biomarkers of Fermented Food Intake and Their Associations with Cardiometabolic Health in a Dutch Observational Cohort. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4426-4439. [PMID: 36853956 PMCID: PMC10021015 DOI: 10.1021/acs.jafc.2c05669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Identification of food intake biomarkers (FIBs) for fermented foods could help improve their dietary assessment and clarify their associations with cardiometabolic health. We aimed to identify novel FIBs for fermented foods in the plasma and urine metabolomes of 246 free-living Dutch adults using nontargeted LC-MS and GC-MS. Furthermore, associations between identified metabolites and several cardiometabolic risk factors were explored. In total, 37 metabolites were identified corresponding to the intakes of coffee, wine, and beer (none were identified for cocoa, bread, cheese, or yoghurt intake). While some of these metabolites appeared to originate from raw food (e.g., niacin and trigonelline for coffee), others overlapped different fermented foods (e.g., 4-hydroxybenzeneacetic acid for both wine and beer). In addition, several fermentation-dependent metabolites were identified (erythritol and citramalate). Associations between these identified metabolites with cardiometabolic parameters were weak and inconclusive. Further evaluation is warranted to confirm their relationships with cardiometabolic disease risk.
Collapse
Affiliation(s)
- Katherine
J. Li
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Elske M. Brouwer-Brolsma
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Carola Blaser
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | | | - Reto Portmann
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Edith J. M. Feskens
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Guy Vergères
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| |
Collapse
|
10
|
Noerman S, Virtanen JK, Lehtonen M, Brunius C, Hanhineva K. Serum metabolites associated with wholegrain consumption using nontargeted metabolic profiling: a discovery and reproducibility study. Eur J Nutr 2023; 62:713-726. [PMID: 36198920 PMCID: PMC9941277 DOI: 10.1007/s00394-022-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To identify fasting serum metabolites associated with WG intake in a free-living population adjusted for potential confounders. METHODS We selected fasting serum samples at baseline from a subset (n = 364) of the prospective population-based Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD) cohort. The samples were analyzed using nontargeted metabolomics with liquid chromatography coupled with mass spectrometry (LC-MS). Association with WG intake was investigated using both random forest followed by linear regression adjusted for age, BMI, smoking, physical activity, energy and alcohol consumption, and partial Spearman correlation adjusted for the same covariates. Features selected by any of these models were shortlisted for annotation. We then checked if we could replicate the findings in an independent subset from the same cohort (n = 200). RESULTS Direct associations were observed between WG intake and pipecolic acid betaine, tetradecanedioic acid, four glucuronidated alkylresorcinols (ARs), and an unknown metabolite both in discovery and replication cohorts. The associations remained significant (FDR<0.05) even after adjustment for the confounders in both cohorts. Sinapyl alcohol was positively correlated with WG intake in both cohorts after adjustment for the confounders but not in linear models in the replication cohort. Some microbial metabolites, such as indolepropionic acid, were positively correlated with WG intake in the discovery cohort, but the correlations were not replicated in the replication cohort. CONCLUSIONS The identified associations between WG intake and the seven metabolites after adjusting for confounders in both discovery and replication cohorts suggest the potential of these metabolites as robust biomarkers of WG consumption.
Collapse
Affiliation(s)
- Stefania Noerman
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. .,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Carl Brunius
- Present Address: Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kati Hanhineva
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland. .,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
11
|
Smith CE, Parnell LD, Lai CQ, Rush JE, Adin DB, Ordovás JM, Freeman LM. Metabolomic profiling in dogs with dilated cardiomyopathy eating non-traditional or traditional diets and in healthy controls. Sci Rep 2022; 12:22585. [PMID: 36585421 PMCID: PMC9803641 DOI: 10.1038/s41598-022-26322-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Dilated cardiomyopathy (DCM), caused by genetic and environmental factors, usually progresses to heart failure, a major cause of death in elderly people. A diet-associated form of DCM was recently identified in pet dogs eating non-traditional (NT) diets. To identify potential dietary causes, we analyzed metabolomic signatures and gene set/pathway enrichment in (1) all dogs based on disease, diet, and their interactions and (2) dogs with DCM based on diet. Metabolomic analysis was performed in 38 dogs with DCM eating NT diets (DCM-NT), 8 dogs with DCM eating traditional diets, 12 healthy controls eating NT diets, and 17 healthy controls eating traditional diets. Overall, 153 and 63 metabolites differed significantly between dogs with DCM versus healthy controls and dogs eating NT versus traditional diets, respectively, with 12 metabolites overlapping both analyses. Protein-protein interaction networks and gene set enrichment analysis identified 105 significant pathways and gene sets including aging-related pathways (e.g., nuclear factor-kappa B, oxidative damage, inflammation). Seventeen metabolites differed significantly in dogs with DCM eating NT versus traditional diets (e.g., fatty acids, amino acids, legume biomarkers), suggesting different mechanisms for primary versus diet-associated DCM. Our multifaceted metabolomic assessment of DCM in dogs highlighted diet's role in some forms of DCM.
Collapse
Affiliation(s)
- Caren E Smith
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - John E Rush
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Darcy B Adin
- Department of Large Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Avenue, Gainesville, FL, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Lisa M Freeman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| |
Collapse
|
12
|
Application of the Updated WCRF/AICR Cancer Prevention Score as an Outcome for Cancer Survivors Participating in a Tailored and Intensive Dietary and Physical Activity Intervention. Nutrients 2022; 14:nu14224751. [PMID: 36432442 PMCID: PMC9699073 DOI: 10.3390/nu14224751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) has defined evidence-based guidelines for cancer prevention. These recommendations have been operationalized into a quantitative index for individual assessment. Survivors of cancer are increasingly desiring guidance for diet and lifestyle, and in the absence of research in survivors, are often instructed to follow cancer prevention and public health guidelines. In this study, we examine the utility of the quantitative updated WCRF/AICR scoring criteria to assess change among cancer survivors with overweight/obesity (OW/OB) following an intensive behavioral intervention. We applied the WCRF/AICR scoring criteria (range 0−7) to examine changes over the duration of the study by paired t-tests. Two cancer survivor cohorts with OW/OB (n = 91) completed a six-month phase II clinical trial designed to improve dietary and physical activity patterns. At enrollment and post-intervention, participants completed assessments including anthropometrics, food frequency questionnaires, and objective evaluation of physical activity. Participants improved adherence to all scored recommendations, with a significant increase in mean score from enrollment (3.22 ± 1.06) to post-intervention (4.28 ± 1.04) (p < 0.001). Mean BMI and waist circumference improved (both p < 0.001). The greatest improvements were noted for fruit and non-starchy vegetable intakes (+39%, p < 0.001); the greatest decreases were observed for processed meat consumption (−70%, p < 0.001). The updated WCRF/AICR Score can be applied to cancer survivor intervention studies and provides a tool to compare trials in regard to the baseline status of populations enrolled and the success of the intervention. Future interventions incorporating standardized assessments will help guide effective strategies to improve the health and quality of life for cancer survivors.
Collapse
|
13
|
Esquivel-Alvarado D, Zhang S, Hu C, Zhao Y, Sang S. Using Metabolomics to Identify the Exposure and Functional Biomarkers of Ginger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12029-12040. [PMID: 36099064 PMCID: PMC9699694 DOI: 10.1021/acs.jafc.2c05117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has become an important tool to increase our understanding of how diet affects human health. However, public and commercial mass spectral libraries of dietary metabolites are limited, resulting in the greatest challenge in converting mass spectrometry data into biological insights. In this study, we constructed an LC-MS/MS ginger library as an example to demonstrate the importance of dietary libraries for discovering food biomarkers. The functional and exposure biomarkers of ginger were investigated using plasma samples from mice treated with control and ginger extract diets. Our results showed clear discrimination between the metabolome of mice on normal and ginger extract diets. Using the in-house ginger library, we identified 20 ginger metabolites that can be used as exposure biomarkers of ginger. However, without the LC-MS/MS ginger library, none of the ginger metabolites could be accurately identified based on online mass databases. In addition, ginger treatment significantly impacts the endogenous metabolome, especially the purine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis. Overall, we demonstrated that the construction of LC-MS/MS spectra dietary libraries would enhance the ability to identify potential dietary biomarkers and correlate potential health benefits associated with food consumption.
Collapse
Affiliation(s)
- Daniel Esquivel-Alvarado
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina 28081, United States
| | - Shuwei Zhang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina 28081, United States
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina 28081, United States
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
14
|
Brachem C, Oluwagbemigun K, Langenau J, Weinhold L, Alexy U, Schmid M, Nöthlings U. Exploring the association between habitual food intake and the urine and blood metabolome in adolescents and young adults: a cohort study. Mol Nutr Food Res 2022; 66:e2200023. [PMID: 35785518 DOI: 10.1002/mnfr.202200023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Indexed: 11/07/2022]
Abstract
SCOPE Habitual diet may be reflected in metabolite profiles that can improve accurate assessment of dietary exposure and further enhance our understanding of their link to health conditions. We aimed to explore the relationship of habitual food intake with blood and urine metabolites in adolescents and young adults. METHODS The study population comprised 228 participants (94 male and 134 female) of the DONALD study. Dietary intake was assessed by yearly repeated 3d-food records. Habitual diet was estimated as the average consumption of 23 food groups in adolescence. Using an untargeted metabolomics approach, we quantified 2638 metabolites in plasma and 1407 metabolites in urine. In each sex, we determined unique diet-metabolite associations using orthogonal projection to latent structures (oPLS) and random forests (RF). RESULTS We observed 6 metabolites in agreement between oPLS and RF in urine, 1 in females (vanillylmandelate to processed/ other meat) and 5 in males (indole-3-acetamide, and N6-methyladenosine to eggs; hippurate, citraconate/glutaconate, and X - 12111 to vegetables). We observed no association in blood in agreement. CONCLUSION We observed a limited reflection of habitual food group intake by single metabolites in urine and not in blood. The explored biomarkers should be confirmed in additional studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Julia Langenau
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany.,Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| |
Collapse
|
15
|
Mapping of population disparities in the cholangiocarcinoma urinary metabolome. Sci Rep 2021; 11:21286. [PMID: 34711878 PMCID: PMC8553759 DOI: 10.1038/s41598-021-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Phenotypic diversity in urinary metabolomes of different geographical populations has been recognized recently. In this study, urinary metabolic signatures from Western (United Kingdom) and South-East Asian (Thai) cholangiocarcinoma patients were characterized to understand spectral variability due to host carcinogenic processes and/or exogenous differences (nutritional, environmental and pharmaceutical). Urinary liquid chromatography mass spectroscopy (LC–MS) spectral profiles from Thai (healthy = 20 and cholangiocarcinoma = 14) and UK cohorts (healthy = 22 and cholangiocarcinoma = 10) were obtained and modelled using chemometric data analysis. Healthy metabolome disparities between the two distinct populations were primarily related to differences in dietary practices and body composition. Metabolites excreted due to drug treatment were dominant in urine specimens from cholangiocarcinoma patients, particularly in Western individuals. Urine from participants with sporadic (UK) cholangiocarcinoma contained greater levels of a nucleotide metabolite (uridine/pseudouridine). Higher relative concentrations of 7-methylguanine were observed in urine specimens from Thai cholangiocarcinoma patients. The urinary excretion of hippurate and methyladenine (gut microbial-host co-metabolites) showed a similar pattern of lower levels in patients with malignant biliary tumours from both countries. Intrinsic (body weight and body composition) and extrinsic (xenobiotic metabolism) factors were the main causes of disparities between the two populations. Regardless of the underlying aetiology, biological perturbations associated with cholangiocarcinoma urine metabolome signatures appeared to be influenced by gut microbial community metabolism. Dysregulation in nucleotide metabolism was associated with sporadic cholangiocarcinoma, possibly indicating differences in mitochondrial energy production pathways between cholangiocarcinoma tumour subtypes. Mapping population-specific metabolic disparities may aid in interpretation of disease processes and identification of candidate biomarkers.
Collapse
|
16
|
Identification and Reproducibility of Urinary Metabolomic Biomarkers of Habitual Food Intake in a Cross-Sectional Analysis of the Cancer Prevention Study-3 Diet Assessment Sub-Study. Metabolites 2021; 11:metabo11040248. [PMID: 33920694 PMCID: PMC8072637 DOI: 10.3390/metabo11040248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Previous cross-sectional metabolomics studies have identified many potential dietary biomarkers, mostly in blood. Few studies examined urine samples although urine is preferred for dietary biomarker discovery. Furthermore, little is known regarding the reproducibility of urinary metabolomic biomarkers over time. We aimed to identify urinary metabolomic biomarkers of diet and assess their reproducibility over time. We conducted a metabolomics analysis among 648 racially/ethnically diverse men and women in the Diet Assessment Sub-study of the Cancer Prevention Study-3 cohort to examine the correlation between >100 food groups/items [101 by a food frequency questionnaire (FFQ), and 105 by repeated 24 h diet recalls (24HRs)] and 1391 metabolites measured in 24 h urine sample replicates, six months apart. Diet-metabolite associations were examined by Pearson's partial correlation analysis. Biomarkers were evaluated for prediction accuracy assessed using area under the curve (AUC) calculated from the receiver operating characteristic curve and for reproducibility assessed using intraclass correlation coefficients (ICCs). A total of 1708 diet-metabolite associations were identified after Bonferroni correction for multiple comparisons and restricting correlation coefficients to >0.2 or <-0.2 (1570 associations using the FFQ and 933 using 24HRs), 513 unique metabolites correlated with 79 food groups/items. The median ICCs of the 513 putative biomarkers was 0.53 (interquartile range 0.42-0.62). In this study, with comprehensive dietary data and repeated 24 h urinary metabolic profiles, we identified a large number of diet-metabolite correlations and replicated many found in previous studies. Our findings revealed the promise of urine samples for dietary biomarker discovery in a large cohort study and provide important information on biomarker reproducibility, which could facilitate their utilization in future clinical and epidemiological studies.
Collapse
|
17
|
Jang HH, Lee YM, Choe JS, Kwon O. Validation of soy isoflavone intake and its health effects: a review of the development of exposure biomarkers. Nutr Res Pract 2021; 15:1-11. [PMID: 33542788 PMCID: PMC7838478 DOI: 10.4162/nrp.2021.15.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES It is difficult to consistently demonstrate the health effects of soy isoflavones owing to the multitude of factors contributing to their bioavailability. To accurately verify these health effects, dietary isoflavone intake should be measured using a biologically active dose rather than an intake dose. This concept has been expanded to the development of new exposure biomarkers in nutrition research. This review aims to provide an overview of the development of exposure biomarkers and suggest a novel research strategy for identifying the health effects of soy isoflavone intake. MATERIALS/METHODS We cover recent studies on the health effects of soy isoflavones focusing on isoflavone metabolites as exposure biomarkers. RESULTS Compared to non-fermented soy foods, fermented soy foods cause an increased concentration of isoflavones in the biofluid immediately following ingestion. The correlation between exposure biomarkers in blood and urine and the food frequency questionnaire was slightly lower than that of corresponding 24-h dietary recalls. Urinary and blood isoflavone levels did not show a consistent association with chronic disease and cancer risk. CONCLUSION It is crucial to understand the variable bioavailabilities of soy isoflavones, which may affect evaluations of soy isoflavone intake in health and disease. Further studies on the development of valid exposure biomarkers are needed to thoroughly investigate the health effects of isoflavone.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03765, Korea
| | - Young-Min Lee
- Division of Applied Food System, Major of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| | - Jeong-Sook Choe
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03765, Korea
| |
Collapse
|
18
|
O'Brien DM, Niles KR, Black J, Schoeller DA. The Breath Carbon Isotope Ratio Reflects Short-term Added-Sugar Intake in a Dose-Response, Crossover Feeding Study of 12 Healthy Adults. J Nutr 2021; 151:628-635. [PMID: 33438009 PMCID: PMC7948200 DOI: 10.1093/jn/nxaa352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Objective dietary biomarkers are urgently needed for a wider range of foods and nutrients. The breath carbon isotope ratio (CIR; measured as δ13C values) has potential as a noninvasive measure of short-term added sugar (AS) intake but has not been evaluated in a controlled-feeding study. OBJECTIVE The aim was to evaluate the effect of short-term AS intake on breath CIR in a dose-response, randomized, crossover feeding study. METHODS Six men and 6 women, aged 25 to 60 y, were randomly assigned to a balanced sequence of 5 dietary treatments. Three treatments delivered low (0 g/d), medium (75 g/d), or high (150 g/d) amounts of AS over the course of a single day's breakfast and lunch and 2 switched high and low intake amounts between breakfast and lunch. Experimental meals delivered 60% of daily energy and added-sugar targets. There was a washout period of 1-2 wk between treatments. Breath was collected at 2-h intervals from 08:00 (fasting) to 16:00 h. Breath CIR was measured using cavity ring-down spectroscopy, and the effects of dietary treatments and baseline were evaluated using multivariate linear regression. RESULTS Breath CIR showed a significant response to increasing AS intake at all sampling time points (all P < 0.0001), with a dose-response of 0.030 (95% CI: 0.024, 0.037) ‰/g. Fasting breath CIR (baseline) influenced postfeeding breath CIR at all sampling time points (P < 0.0001); however, effect sizes were largest in the morning. For afternoon-collected samples (14:00 and 16:00), the effect of recent AS intake (lunch) was 4-fold greater than the effect of previous added-sugar intake (breakfast). CONCLUSIONS These findings support the potential of the breath CIR as a biomarker of short-term AS intake in healthy US adults. More work is needed to evaluate other potential dietary effects and whether multiple breath collections could capture daily AS intake.
Collapse
Affiliation(s)
| | - Kristine R Niles
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jynene Black
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Dale A Schoeller
- Nutrition Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
19
|
Beckmann M, Wilson T, Lloyd AJ, Torres D, Goios A, Willis ND, Lyons L, Phillips H, Mathers JC, Draper J. Challenges Associated With the Design and Deployment of Food Intake Urine Biomarker Technology for Assessment of Habitual Diet in Free-Living Individuals and Populations-A Perspective. Front Nutr 2020; 7:602515. [PMID: 33344495 PMCID: PMC7745244 DOI: 10.3389/fnut.2020.602515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Improvement of diet at the population level is a cornerstone of national and international strategies for reducing chronic disease burden. A critical challenge in generating robust data on habitual dietary intake is accurate exposure assessment. Self-reporting instruments (e.g., food frequency questionnaires, dietary recall) are subject to reporting bias and serving size perceptions, while weighed dietary assessments are unfeasible in large-scale studies. However, secondary metabolites derived from individual foods/food groups and present in urine provide an opportunity to develop potential biomarkers of food intake (BFIs). Habitual dietary intake assessment in population surveys using biomarkers presents several challenges, including the need to develop affordable biofluid collection methods, acceptable to participants that allow collection of informative samples. Monitoring diet comprehensively using biomarkers requires analytical methods to quantify the structurally diverse mixture of target biomarkers, at a range of concentrations within urine. The present article provides a perspective on the challenges associated with the development of urine biomarker technology for monitoring diet exposure in free-living individuals with a view to its future deployment in "real world" situations. An observational study (n = 95), as part of a national survey on eating habits, provided an opportunity to explore biomarker measurement in a free-living population. In a second food intervention study (n = 15), individuals consumed a wide range of foods as a series of menus designed specifically to achieve exposure reflecting a diversity of foods commonly consumed in the UK, emulating normal eating patterns. First Morning Void urines were shown to be suitable samples for biomarker measurement. Triple quadrupole mass spectrometry, coupled with liquid chromatography, was used to assess simultaneously the behavior of a panel of 54 potential BFIs. This panel of chemically diverse biomarkers, reporting intake of a wide range of commonly-consumed foods, can be extended successfully as new biomarker leads are discovered. Towards validation, we demonstrate excellent discrimination of eating patterns and quantitative relationships between biomarker concentrations in urine and the intake of several foods. In conclusion, we believe that the integration of information from BFI technology and dietary self-reporting tools will expedite research on the complex interactions between dietary choices and health.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Amanda J. Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Duarte Torres
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Ana Goios
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Naomi D. Willis
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
20
|
Tang Y, Zhu Y, Sang S. A Novel LC-MS Based Targeted Metabolomic Approach to Study the Biomarkers of Food Intake. Mol Nutr Food Res 2020; 64:e2000615. [PMID: 32997396 DOI: 10.1002/mnfr.202000615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/27/2020] [Indexed: 12/25/2022]
Abstract
SCOPE In this work, an integrated strategy is developed for rapid discovery, precise identification, and automated quantification for the biomarkers of food intake (BFIs) for specific food exposure using an ultra-high-pressure liquid chromatography-high-resolution mass spectrometry (MS) based targeted metabolomics approach. METHODS AND RESULTS Using whole grain (WG) wheat intake as an example, the combination of paired mass distance networking and parallel reaction monitoring analysis is applied to selectively extract and identify WG metabolites in human urine samples. As a result, a total of 76 wheat phytochemical-derived metabolites, including 17 alkylresorcinol metabolites, 20 benzoxazinoid derivatives, and 39 phenolic acid metabolites are identified. Subsequently, a MS spectral database consisting of the identified metabolites is created by mzVault. The characteristics of identified metabolites from the database are incorporated into the TraceFinder software to establish a quantification platform. Using a standardized urine sample, the authors are able to simultaneously quantify both free and conjugated (sulfate and glucuronide) WG wheat metabolites in real samples without further enzymatic hydrolysis, which is validated by using authentic standards to quantify these metabolites. CONCLUSION This novel strategy opens the window to study the biomarkers of specific food intake and make it feasible to validate the BFIs in large-scale human studies.
Collapse
Affiliation(s)
- Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| |
Collapse
|
21
|
Wang Y, Hodge RA, Stevens VL, Hartman TJ, McCullough ML. Identification and Reproducibility of Plasma Metabolomic Biomarkers of Habitual Food Intake in a US Diet Validation Study. Metabolites 2020; 10:metabo10100382. [PMID: 32993181 PMCID: PMC7600452 DOI: 10.3390/metabo10100382] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Previous metabolomic studies have identified putative blood biomarkers of dietary intake. These biomarkers need to be replicated in other populations and tested for reproducibility over time for the potential use in future epidemiological studies. We conducted a metabolomics analysis among 671 racially/ethnically diverse men and women included in a diet validation study to examine the correlation between >100 food groups/items (101 by a food frequency questionnaire (FFQ), 105 by 24-h diet recalls (24HRs)) with 1141 metabolites measured in fasting plasma sample replicates, six months apart. Diet–metabolite associations were examined by Pearson’s partial correlation analysis. Biomarker reproducibility was assessed using intraclass correlation coefficients (ICCs). A total of 677 diet–metabolite associations were identified after Bonferroni adjustment for multiple comparisons and restricting absolute correlation coefficients to greater than 0.2 (601 associations using the FFQ and 395 using 24HRs). The median ICCs of the 238 putative biomarkers was 0.56 (interquartile range 0.46–0.68). In this study, with repeated FFQs, 24HRs and plasma metabolic profiles, we identified several potentially novel food biomarkers and replicated others found in our previous study. Our findings contribute to the growing literature on food-based biomarkers and provide important information on biomarker reproducibility which could facilitate their utilization in future nutritional epidemiological studies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
- Correspondence: ; Tel.: +1-404-329-4341
| | - Rebecca A. Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
| | - Victoria L. Stevens
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
| | - Terryl J. Hartman
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Marjorie L. McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
| |
Collapse
|
22
|
Landberg R, Hanhineva K. Biomarkers of a Healthy Nordic Diet-From Dietary Exposure Biomarkers to Microbiota Signatures in the Metabolome. Nutrients 2019; 12:E27. [PMID: 31877633 PMCID: PMC7019922 DOI: 10.3390/nu12010027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Whole diets and dietary patterns are increasingly highlighted in modern nutrition and health research instead of single food items or nutrients alone. The Healthy Nordic Diet is a dietary pattern typically associated with beneficial health outcomes in observational studies, but results from randomized controlled trials are mixed. Dietary assessment is one of the greatest challenges in observational studies and compliance is a major challenge in dietary interventions. During the last decade, research has shown the great importance of the gut microbiota in health and disease. Studies have have both shown that the Nordic diet affects the gut microbiota and that the gut microbiota predicts the effects of such a diet. Rapid technique developments in the area of high-throughput mass spectrometry have enabled the large-scale use of metabolomics both as an objective measurement of dietary intake as well as in providing the final readout of the endogenous metabolic processes and the impact of the gut microbiota. In this review, we give an update on the current status on biomarkers that reflect a Healthy Nordic Diet or individual components thereof (food intake biomarkers), biomarkers that show the effects of a Healthy Nordic Diet and biomarkers reflecting the role of a Healthy Nordic Diet on the gut microbiota as well as how the gut microbiota or derived molecules may be used to predict the effects of a Healthy Nordic Diet on different outcomes.
Collapse
Affiliation(s)
- Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Kati Hanhineva
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70210 Kuopio, Finland
| |
Collapse
|
23
|
Nutritional Factors Modulating Alu Methylation in an Italian Sample from The Mark-Age Study Including Offspring of Healthy Nonagenarians. Nutrients 2019; 11:nu11122986. [PMID: 31817660 PMCID: PMC6950565 DOI: 10.3390/nu11122986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Alu hypomethylation promotes genomic instability and is associated with aging and age-related diseases. Dietary factors affect global DNA methylation, leading to changes in genomic stability and gene expression with an impact on longevity and the risk of disease. This preliminary study aims to investigate the relationship between nutritional factors, such as circulating trace elements, lipids and antioxidants, and Alu methylation in elderly subjects and offspring of healthy nonagenarians. Alu DNA methylation was analyzed in sixty RASIG (randomly recruited age-stratified individuals from the general population) and thirty-two GO (GeHA offspring) enrolled in Italy in the framework of the MARK-AGE project. Factor analysis revealed a different clustering between Alu CpG1 and the other CpG sites. RASIG over 65 years showed lower Alu CpG1 methylation than those of GO subjects in the same age class. Moreover, Alu CpG1 methylation was associated with fruit and whole-grain bread consumption, LDL2-Cholesterol and plasma copper. The preserved Alu methylation status in GO, suggests Alu epigenetic changes as a potential marker of aging. Our preliminary investigation shows that Alu methylation may be affected by food rich in fibers and antioxidants, or circulating LDL subfractions and plasma copper.
Collapse
|
24
|
Biomarkers of Whole-Grain and Cereal-Fiber Intake in Human Studies: A Systematic Review of the Available Evidence and Perspectives. Nutrients 2019; 11:nu11122994. [PMID: 31817759 PMCID: PMC6950731 DOI: 10.3390/nu11122994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
High whole-grain consumption is related to better health outcomes. The specific physiological effect of these compounds is still unrevealed, partly because the accurate estimation of the intake of whole grains from dietary assessments is difficult and prone to bias, due to the complexity of the estimation of the intake by the consumer. A biomarker of whole-grain intake and type of whole-grain intake would be useful for quantifying the exposure to whole-grain intake. In this review, we aim to review the evidence on the potential biomarkers for whole-grain intake in the literature. We conducted a systematic search in Medline, Embase, Web of Science, and the Cochrane database. In total, 39 papers met the inclusion criteria following the PRISMA guidelines and were included. The relative validity, responsiveness, and reproducibility of these markers were assessed for short-, medium-, and long-term exposure as important criteria for the potential use of these biomarkers from a clinical and research perspective. We found three major groups of biomarkers: (1) alkylresorcinol, as well as its homologs and metabolites, assessed in plasma, adipose tissue biopsies, erythrocyte membranes, and urine; (2) avenacosides, assessed in urine samples; and (3) benzoxazinoid-derived phenylacetamide sulfates, assessed in blood and urine samples. The reviewed biomarkers may be used for improved assessment of associations between whole-grain intake and health outcomes.
Collapse
|
25
|
Landberg R, Hanhineva K, Tuohy K, Garcia-Aloy M, Biskup I, Llorach R, Yin X, Brennan L, Kolehmainen M. Biomarkers of cereal food intake. GENES AND NUTRITION 2019; 14:28. [PMID: 31632507 PMCID: PMC6790055 DOI: 10.1186/s12263-019-0651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
Background/objectives Cereal foods are major contributors to the daily energy, protein, and dietary fiber intake all over the world. The role of cereals in human health is dependent on whether they are consumed as refined or whole grain and on cereal species. To unravel the underlying mechanisms of health effects attributed to specific cereal foods and to provide more precise dietary advice, there is a need for improved dietary assessment of whole-grain intake. Dietary biomarkers of specific cereals, different fractions or cereal-containing foods could offer such a possibility. The aim of this review was to summarize the current status on biomarkers of different cereals, fractions, and specific cereal foods. Subjects and methods A literature review was conducted and putative biomarkers of different cereals and pseudo-cereals (wheat, oats, rye, barley, rice, and quinoa) as well as for different grain fractions (whole grain, refined grain, bran) and foods were summarized and discussed. Results Several putative biomarkers have been suggested for different cereals, due to their unique presence in these grains. Among the biomarkers, odd-numbered alkylresorcinols are the most well-studied and -evaluated biomarkers and reflect whole-grain wheat and rye intake. Even-numbered alkylresorcinols have been suggested to reflect quinoa intake. Recent studies have also highlighted the potential of avenanthramides and avenacosides as specific biomarkers of oat intake, and a set of biomarkers have been suggested to reflect rice bran intake. However, there are yet no specific biomarkers of refined grains. Most biomarker candidates remain to be evaluated in controlled interventions and free-living populations before applied as biomarkers of intake in food and health studies. Conclusion Several putative biomarkers of different cereals have been suggested and should be validated in human studies using recently developed food intake biomarker validation criteria.
Collapse
Affiliation(s)
- Rikard Landberg
- 1Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kati Hanhineva
- 2Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kieran Tuohy
- 3Nutrition and Nutrigenomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38010 Trento, Italy
| | - Mar Garcia-Aloy
- 4Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,5CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Izabela Biskup
- 1Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rafael Llorach
- 4Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,5CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Institute of Food and Health, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, Belfield, Dublin 4, Ireland
| | - Marjukka Kolehmainen
- 2Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
26
|
Wang R, Shi L, Liu S, Liu Z, Song F, Sun Z, Liu Z. Mass spectrometry-based urinary metabolomics for the investigation on the mechanism of action of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves against ischemic stroke in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111969. [PMID: 31125596 DOI: 10.1016/j.jep.2019.111969] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) can treat ischemic, neurasthenia, and hypertension diseases. However, only few studies have been conducted on the mechanism of action of ESL for ischemic disease treatment. AIM OF THE STUDY This study aimed to discover the potential biomarkers in the rats caused by ischemic stroke and build a gene-enzyme-biomarker network to explore the mechanism of ESL treatment on ischemic stroke further. MATERIALS AND METHODS The urinary metabolomics strategy was developed by combining UPLC-Q-TOF/MS with multivariate data analysis. The gene-enzyme-biomarker network was built by Cytoscape 3.6.0 on the basis of the potential biomarkers filtered out via urinary metabolomic analysis. Then, the potential target enzymes of ESL in the treatment of ischemic stroke were selected for further validation analysis via the ELISA kits. RESULTS A total of 42 biomarkers associated with ischemic stroke have been identified, among which 38 species can be adjusted by ESL, including 5'-methylthioadenosine, prostaglandin A2, l-methionine, aldosterone, 11b-hydroxyprogesterone, prostaglandin E3, dehydroepiandrosterone, taurine, 5-methoxyindoleacetate, and p-cresol glucuronide. These biomarkers were involved in several metabolic pathways, including taurine and hypotaurine, arachidonic acid, cysteine and methionine, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism pathways. The gene-enzyme-biomarker network was built, and three predicted target proteins, including cyclooxygenase-2 (COX-2), monoamine oxidase (MAO), and nitric oxide synthase (NOS), were selected as the potential target enzymes for ESL in ischemic stroke treatment. CONCLUSIONS All results showed that ESL can play a therapeutic role in treating ischemic stroke through different pathways. This study will provide an overall view of the mechanism underlying the action of ESL against ischemic stroke.
Collapse
Affiliation(s)
- Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Liqiang Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiheng Sun
- School of Chemistry, Jilin University, Changchun, 130000, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
27
|
Lloyd AJ, Willis ND, Wilson T, Zubair H, Chambers E, Garcia-Perez I, Xie L, Tailliart K, Beckmann M, Mathers JC, Draper J. Addressing the pitfalls when designing intervention studies to discover and validate biomarkers of habitual dietary intake. Metabolomics 2019; 15:72. [PMID: 31049735 PMCID: PMC6497620 DOI: 10.1007/s11306-019-1532-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Dietary exposure monitoring within populations is reliant on self-reported measures such as Food Frequency Questionnaires and diet diaries. These methods often contain inaccurate information due to participant misreporting, non-compliance and bias. Urinary metabolites derived from individual foods could provide additional objective indicators of dietary exposure. For biomarker approaches to have utility it is essential that they cover a wide-range of commonly consumed foods and the methodology works in a real-world environment. OBJECTIVES To test that the methodology works in a real-world environment and to consider the impact of the major sources of likely variance; particularly complex meals, different food formulations, processing and cooking methods, as well as the dynamics of biomarker duration in the body. METHODS We designed and tested a dietary exposure biomarker discovery and validation strategy based on a food intervention study involving free-living individuals preparing meals and collecting urine samples at home. Two experimental periods were built around three consecutive day menu plans where all foods and drinks were provided (n = 15 and n = 36). RESULTS The experimental design was validated by confirming known consumption biomarkers in urinary samples after the first menu plan. We tested biomarker performance with different food formulations and processing methods involving meat, wholegrain, fruits and vegetables. CONCLUSION It was demonstrated that spot urine samples, together with robust dietary biomarkers, despite major sources of variance, could be used successfully for dietary exposure monitoring in large epidemiological studies.
Collapse
Affiliation(s)
- A J Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - N D Willis
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - T Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - H Zubair
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - E Chambers
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - I Garcia-Perez
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - L Xie
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - K Tailliart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - M Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - J C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - J Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| |
Collapse
|
28
|
Righetti L, Cirlini M, Folloni S, Ranieri R, Galaverna G, Bertuzzi T, Dall’Asta C, Battilani P, Giorni P. 5-n-alkylresorcinols but not hydroxycinnamic acids are directly related to a lower accumulation of deoxynivalenol and its glucoside in Triticum spp. Genotypes with different ploidity levels. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
QIAN H, YU FJ, LU DY, WU BJ, ZHANG XW, WANG H, MA ZG. Identification of poliumoside metabolites in rat plasma, urine, bile, and intestinal bacteria with UPLC/Q-TOF-MS. Chin J Nat Med 2018; 16:871-880. [DOI: 10.1016/s1875-5364(18)30129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 01/14/2023]
|
30
|
Abstract
There is growing evidence that whole grain (WG) intake may prevent many chronic diseases. However, there are mixed results on this topic in human studies as a result of a lack of accurate tools to assess the intake of WGs and individual metabolic variation. To better understand the effects of WGs on health maintenance and the risk of chronic disease, there is an urgent need to identify the biomarkers for WG intake. The molecular signatures of WG intake remain undefined. This perspective gives an overview of the current knowledge, challenges, and future directions on the biomarkers of WG intake.
Collapse
Affiliation(s)
- Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
31
|
Xu M, Zhong F, Bruno RS, Ballard KD, Zhang J, Zhu J. Comparative Metabolomics Elucidates Postprandial Metabolic Modifications in Plasma of Obese Individuals with Metabolic Syndrome. J Proteome Res 2018; 17:2850-2860. [PMID: 29975061 DOI: 10.1021/acs.jproteome.8b00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although higher intakes of dairy milk are associated with a lower risk of metabolic syndrome (MetS), the underlying protective mechanism remains unclear. This study investigated the dynamic metabolic profile shift following the ingestion of low-fat milk or an isocaloric volume of rice milk in obese individuals with metabolic syndrome (MetS). In a randomized, double-blind, crossover study, postprandial plasma samples ( n = 266) were collected from 19 MetS participants. Plasma samples were analyzed by a targeted metabolomics platform which specifically detects 117 metabolites from 25 metabolic pathways. The comprehensive time-course metabolic profiling in MetS participants indicated that the postprandial metabolic profiles distinguish low-fat milk and rice milk consumption in a time-dependent manner. Metabolic biomarkers, such as orotate, leucine/isoleucine and adenine, showed significantly different trends in the two test beverages. Bayesian statistics identified 12 metabolites associated with clinical characteristics of postprandial vascular endothelial function, such as flow-mediated dilation (FMD), postprandial plasma markers of oxidative stress and NO status. Furthermore, metabolic pathway analysis based on these metabolite data indicated the potential utility of metabolomics to provide mechanistic insights of dietary interventions to regulate postprandial metabolic excursions.
Collapse
Affiliation(s)
- Mengyang Xu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Richard S Bruno
- Human Nutrition Program , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Kevin D Ballard
- Department of Kinesiology and Health , Miami University , Oxford , Ohio 45056 , United States
| | - Jing Zhang
- Department of Statistics , Miami University , Oxford , Ohio 45056 , United States
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
32
|
Landberg R, Wierzbicka R, Shi L, Nybacka S, Kamal-Eldin A, Hedblad B, Lindroos AK, Winkvist A, Forslund HB. New alkylresorcinol metabolites in spot urine as biomarkers of whole grain wheat and rye intake in a Swedish middle-aged population. Eur J Clin Nutr 2018; 72:1439-1446. [DOI: 10.1038/s41430-017-0079-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
|
33
|
Wang P, Yang J, Yerke A, Sang S. Avenacosides: Metabolism, and potential use as exposure biomarkers of oat intake. Mol Nutr Food Res 2017; 61. [PMID: 28493602 DOI: 10.1002/mnfr.201700196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
SCOPE Exposure biomarkers used for objective estimation of whole-grain (WG) intake are essential for epidemiologic studies of WG consumption, however, up to now, no exposure biomarkers were developed for WG oat intake. This study investigates the potential of oat unique components, Avenacoside-B (AVE-B) and -A (AVE-A), as exposure biomarkers of oat intake. METHODS AND RESULTS An in vivo study performed in mice and an in vitro batch fecal fermentation study were used to investigate the potential metabolic routes of AVE-B and -A. Twelve healthy volunteers were recruited in the human urinary pharmacokinetic study, each participant received a single dose of oat bran as breakfast, 48 h urine samples were collected at baseline and after treatment period, and AVE-B and -A were quantified by LC-MS/MS. Deglycosylation metabolic route was identified as the major metabolic path for AVE-B and -A. Urinary AVE-B and -A concentrations increased rapidly after oat ingestion, reached their maximum excretion rates (ERmax ) fairly simultaneously within 5 h, then decreased gradually. And the mean eliminate half-lives (T1/2 ) for AVE-B and -A were determined as 6.22 and 4.55 h, respectively. CONCLUSION Oat AVE-B and -A have great potential to be used as specific exposure biomarkers to reflect oat intake.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Junli Yang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Aaron Yerke
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|