1
|
Zai W, Yang M, Jiang K, Guan J, Wang H, Hu K, Huang C, Chen J, Fu W, Zhan C, Yuan Z. Optimized RNA interference therapeutics combined with interleukin-2 mRNA for treating hepatitis B virus infection. Signal Transduct Target Ther 2024; 9:150. [PMID: 38902241 PMCID: PMC11189933 DOI: 10.1038/s41392-024-01871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
This study aimed to develop a pan-genotypic and multifunctional small interfering RNA (siRNA) against hepatitis B virus (HBV) with an efficient delivery system for treating chronic hepatitis B (CHB), and explore combined RNA interference (RNAi) and immune modulatory modalities for better viral control. Twenty synthetic siRNAs targeting consensus motifs distributed across the whole HBV genome were designed and evaluated. The lipid nanoparticle (LNP) formulation was optimized by adopting HO-PEG2000-DMG lipid and modifying the molar ratio of traditional polyethylene glycol (PEG) lipid in LNP prescriptions. The efficacy and safety of this formulation in delivering siHBV (tLNP/siHBV) along with the mouse IL-2 (mIL-2) mRNA (tLNP/siHBVIL2) were evaluated in the rAAV-HBV1.3 mouse model. A siRNA combination (terms "siHBV") with a genotypic coverage of 98.55% was selected, chemically modified, and encapsulated within an optimized LNP (tLNP) of high efficacy and security to fabricate a therapeutic formulation for CHB. The results revealed that tLNP/siHBV significantly reduced the expression of viral antigens and DNA (up to 3log10 reduction; vs PBS) in dose- and time-dependent manners at single-dose or multi-dose frequencies, with satisfactory safety profiles. Further studies showed that tLNP/siHBVIL2 enables additive antigenic and immune control of the virus, via introducing potent HBsAg clearance through RNAi and triggering strong HBV-specific CD4+ and CD8+ T cell responses by expressed mIL-2 protein. By adopting tLNP as nucleic acid nanocarriers, the co-delivery of siHBV and mIL-2 mRNA enables synergistic antigenic and immune control of HBV, thus offering a promising translational therapeutic strategy for treating CHB.
Collapse
Affiliation(s)
- Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, P. R. China
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- Eye Institute and Department of Ophthamology, Eye and ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Juan Guan
- Pharmacy Department of Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, P. R. China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, P. R. China.
| |
Collapse
|
2
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
3
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
4
|
Kostyushev D, Brezgin S, Kostyusheva A, Ponomareva N, Bayurova E, Zakirova N, Kondrashova A, Goptar I, Nikiforova A, Sudina A, Babin Y, Gordeychuk I, Lukashev A, Zamyatnin AA, Ivanov A, Chulanov V. Transient and tunable CRISPRa regulation of APOBEC/AID genes for targeting hepatitis B virus. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:478-493. [PMID: 37187708 PMCID: PMC10176074 DOI: 10.1016/j.omtn.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
APOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels). Using this new strategy, we were able to control APOBEC/AID expression and monitor their effects on HBV replication, mutation, and cellular toxicity. CRISPRa prominently reduced HBV replication (∼90%-99% decline of viral intermediates), deaminated and destroyed cccDNA, but induced mutagenesis in cancer-related genes. By coupling CRISPRa with attenuated sgRNA technology, we demonstrate that APOBEC/AID activation can be precisely controlled, eliminating off-site mutagenesis in virus-containing cells while preserving prominent antiviral activity. This study untangles the differences in the effects of physiologically expressed APOBEC/AID on HBV replication and cellular genome, provides insights into the molecular mechanisms of HBV cccDNA mutagenesis, repair, and degradation, and, finally, presents a strategy for a tunable control of APOBEC/AID expression and for suppressing HBV replication without toxicity.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Natalia Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | | | - Anna Sudina
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Yurii Babin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Vladimir Chulanov
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
5
|
Illuminating the Live-Cell Dynamics of Hepatitis B Virus Covalently Closed Circular DNA Using the CRISPR-Tag System. mBio 2023; 14:e0355022. [PMID: 36840581 PMCID: PMC10128046 DOI: 10.1128/mbio.03550-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major obstacle to curing chronic hepatitis B (CHB). Current cccDNA detection methods are mostly based on biochemical extraction and bulk measurements. They nevertheless generated a general sketch of its biological features. However, an understanding of the spatiotemporal features of cccDNA is still lacking. To achieve this, we established a system combining CRISPR-Tag and recombinant HBV minicircle technology to visualize cccDNA at single-cell level in real time. Using this system, we found that the observed recombinant cccDNA (rcccDNA) correlated quantitatively with its active transcripts when a low to medium number of foci (<20) are present, but this correlation was lost in cells harboring high copy numbers (≥20) of rcccDNA. The disruption of HBx expression seems to displace cccDNA from the dCas9-accessible region, while HBx complementation restored the number of observable cccDNA foci. This indicated regulation of cccDNA accessibility by HBx. Second, observable HBV and duck HBV (DHBV) cccDNA molecules are substantially lost during cell division, and the remaining ones were distributed randomly to daughter cells. In contrast, Kaposi's sarcoma-associated herpesvirus (KSHV)-derived episomes can be retained in a LANA (latency-associated nuclear antigen)-dependent manner. Last, the dynamics of rcccDNA episomes in nuclei displayed confined diffusion at short time scales, with directional transport over longer time scales. In conclusion, this system enables the study of physiological kinetics of cccDNA at the single-cell level. The differential accessibility of rcccDNA to dCas9 under various physiological conditions may be exploited to elucidate the complex transcriptional and epigenetic regulation of the HBV minichromosome. IMPORTANCE Understanding the formation and maintenance of HBV cccDNA has always been a central issue in the study of HBV pathobiology. However, little progress has been made due to the lack of robust assay systems and its resistance to genetic modification. Here, a live-cell imaging system by grafting CRISPR-Tag into the recombinant cccDNA was established to visualize its molecular behavior in real time. We found that the accessibility of rcccDNA to dCas9-based imaging is related to HBx-regulated mechanisms. We also confirmed the substantial loss of observable rcccDNA in one-round cell division and random distribution of the remaining molecules. Molecular dynamics analysis revealed the confined movement of the rcccDNA episome, suggesting its juxtaposition to chromatin domains. Overall, this novel system offers a unique platform to investigate the intranuclear dynamics of cccDNA within live cells.
Collapse
|
6
|
Sun Y, Teng Y, Wang L, Zhang Z, Chen C, Wang Y, Zhang X, Xiang P, Song X, Lu J, Li N, Gao L, Liang X, Xia Y, Wu Z, Ma C. LINC01431 Promotes Histone H4R3 Methylation to Impede HBV Covalently Closed Circular DNA Transcription by Stabilizing PRMT1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103135. [PMID: 35398991 PMCID: PMC9165498 DOI: 10.1002/advs.202103135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Covalently closed circular DNA (cccDNA) is the transcriptional template of hepatitis B virus (HBV), which interacts with both host and viral proteins to form minichromosome in the nucleus and is resistant to antiviral agents. Identification of host factors involved in cccDNA transcriptional regulation is expected to prove a new venue for HBV therapy. Recent evidence suggests the involvement of long noncoding RNAs (lncRNAs) in mediating the interaction of host factors with various viruses, however, lncRNAs that HBV targets and represses cccDNA transcription have not been fully elucidated. Here, the authors identified LINC01431 as a novel host restriction factor for HBV transcription. Mechanically, LINC01431 competitively bound with type I protein arginine methyltransferase (PRMT1) to block the HBx-mediated PRMT1 ubiquitination and degradation. Consequently, LINC01431 increased the occupancy of PRMT1 on cccDNA, leading to enhanced H4R3me2a modification and reduced acetylation of cccDNA-bound histones, thereby repressing cccDNA transcription. In turn, to facilitate viral replication, HBV transcriptionally repressed LINC01431 expression by HBx-mediated repression of transcription factor Zinc fingers and homeoboxes 2 (ZHX2). Collectively, the study demonstrates LINC01431 as a novel epigenetic regulator of cccDNA minichromosome and highlights a feedback loop of HBx-LINC01431-PRMT1 in HBV replication, which provides potential therapeutic targets for HBV treatment.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and ImmunologyInstitute of Medical VirologySchool of Basic Medical SciencesWuhan UniversityWuhanHubei430072China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - ChaoJia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Jinghui Lu
- Department of Hepatobiliary SurgeryQilu Hospital of Shandong University, JinanShandong250012China
| | - Nailin Li
- Karolinska InstituteDepartment of Medicine‐SolnaClinical Pharmacology GroupStockholm17176Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and ImmunologyInstitute of Medical VirologySchool of Basic Medical SciencesWuhan UniversityWuhanHubei430072China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| |
Collapse
|
7
|
Miyakawa Y, Otsuka M, Sekiba K, Funato K, Koike K. Humanized virus-suppressing factor inhibits hepatitis B virus infection by targeting viral cell entry. Heliyon 2021; 7:e07586. [PMID: 34345745 PMCID: PMC8319007 DOI: 10.1016/j.heliyon.2021.e07586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Although nucleos(t)ide analogs and interferons suppress hepatitis B virus (HBV) replication, they must be taken continuously and have a low response rate. Therefore, therapeutics for HBV with novel modes of action are needed. Humanized virus-suppressing factor (hzVSF) is a monoclonal antibody against vimentin that exhibits broad-spectrum antiviral activity. Here, hzVSF significantly inhibited HBV infection. Although hzVSF inhibited HBV RNA production, it did not affect viral transcription from minicircle DNA mimicking covalently closed circular DNA. Additionally, hzVSF did not inhibit viral protein or DNA release from infected cells. Rather, hzVSF inhibited the cell entry of viral preS1 peptides, possibly by altering intracellular vimentin localization, which is important for HBV cell entry. These results suggest that hzVSF has therapeutic potential for HBV infection with a novel mode of action.
Collapse
Affiliation(s)
- Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Yan K, Feng J, Liu X, Wang H, Li Q, Li J, Xu T, Sajid M, Ullah H, Zhou L, Zhou L, Chen Y. Inhibition of Hepatitis B Virus by AAV8-Derived CRISPR/SaCas9 Expressed From Liver-Specific Promoters. Front Microbiol 2021; 12:665184. [PMID: 34254007 PMCID: PMC8271097 DOI: 10.3389/fmicb.2021.665184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Curative therapies for chronic hepatitis B virus (HBV) infection remain a distant goal, and the persistence of stable covalently closed circular DNA (cccDNA) during HBV replication is a key barrier that is hard to break through using the drugs currently approved for HBV treatment. Due to the accuracy, efficiency, and cost-effectiveness of genome editing, CRISPR/Cas technologies are being widely used for gene therapy and in antiviral strategies. Although CRISPR/Cas could possibly clear cccDNA, ensuring its safety is requirement for application. In our study, we analyzed the liver specificity of several promoters and constructed candidate promoters in the CRISPR/Staphylococcus aureus Cas9 (SaCas9) system combined with hepatotropic AAV8 (whereby AAV refers to adeno-associated virus) to verify the efficacy against HBV. The results revealed that the reconstructed CRISPR/SaCas9 system in which the original promoter replaced with a liver-specific promoter could still inhibit HBV replication both in vitro and in vivo. Three functional guide RNAs (gRNAs), T2, T3, and T6, which target the conserved regions of different HBV genotypes, demonstrated consistently better anti-HBV effects with different liver-specific promoters. Moreover, the three gRNAs inhibited the replication of HBV genotypes A, B, and C to varying degrees. Under the action of the EnhII-Pa1AT promoter and AAV8, the expression of SaCas9 was further decreased in other organs or tissues in comparison to liver. These results are helpful for clinical applications in liver by ensuring the effects of the CRISPR/Cas9 system remain restricted to liver and, thereby, reducing the probability of undesired and harmful effects through nonspecific targeting in other organs.
Collapse
Affiliation(s)
- Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiaohong Li
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hafiz Ullah
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Li F, Wang Z, Hu F, Su L. Cell Culture Models and Animal Models for HBV Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1179:109-135. [PMID: 31741335 DOI: 10.1007/978-981-13-9151-4_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly representative and relevant cell and mouse models are required for HBV study, including uncovering its lifecycle, investigation of the viral-host interaction, and development and evaluation of the novel antiviral therapy. During the past 40 years, both HBV cell culture models and animal models have evolved over several generations, each with significant improvement for specific purposes. In one aspect, HBV cell culture models experienced the original noninfection model including HBV plasmid DNA transfection and HBV genome integrated stable cells such as HepG2.2.15 which constitutively produces HBV virus and HepAD38 cells and its derivatives which drug-regulated HBV production. As for HBV infection models, HepaRG cells once dominated the HBV infection field for over a decade, but its complicated and labor-extensive cell differentiation procedures discouraged primary researchers from stepping in the field. The identification of human NTCP as HBV receptor evoked great enthusiasm of the whole HBV field, and its readily adaptive characteristic makes it popular in many HBV laboratories. Recombinant cccDNA (rc-cccDNA) emerged recently aiming to tackle the very basic question of how to eventually eradicate cccDNA without HBV real virus infection. In the other aspect, HBV transgenic mouse was firstly generated in the 1990s, which was helpful to decipher HBV production in vivo. However, the HBV transgenic mice were naturally immune tolerant to HBV viral products. Subsequently, a series of nonintegrated HBV mouse models were generated through plasmid hydrodynamic tail vein injection and viral vector-mediated delivery approaches, and HBV full life cycle was incomplete as cccDNA was not formed from HBV relaxed circular DNA (rcDNA). Human NTCP transgenic mouse still could not support productive HBV infection, and humanized mouse liver with human hepatocytes which supported whole HBV life cycle still dominates HBV infection in vivo, a value but expensive model until now. Other methods to empower mouse to carry HBV cccDNA were also exploited. In this chapter, we summarized the advantages and disadvantages of each model historically and provided protocols for HBV infection in HepG2-NTCP cells, HBV rc-cccDNA transfection in HepG2 cells, and HBV infection in NRG-Fah-/- liver humanized mouse.
Collapse
Affiliation(s)
- Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zhuo Wang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Kostyusheva A, Brezgin S, Bayurova E, Gordeychuk I, Isaguliants M, Goptar I, Urusov F, Nikiforova A, Volchkova E, Kostyushev D, Chulanov V. ATM and ATR Expression Potentiates HBV Replication and Contributes to Reactivation of HBV Infection upon DNA Damage. Viruses 2019; 11:E997. [PMID: 31683589 PMCID: PMC6893526 DOI: 10.3390/v11110997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus infection (CHB) caused by the hepatitis B virus (HBV) is one of the most common viral infections in the world. Reactivation of HBV infection is a life-threatening condition observed in patients with CHB receiving chemotherapy or other medications. Although HBV reactivation is commonly attributed to immune suppression, other factors have long been suspected to play a role, including intracellular signaling activated in response to DNA damage. We investigated the effects of DNA-damaging factors (doxorubicin and hydrogen peroxide) on HBV reactivation/replication and the consequent DNA-damage response. Dose-dependent activation of HBV replication was observed in response to doxorubicin and hydrogen peroxide which was associated with a marked elevation in the mRNA levels of ataxia-telangiectasia mutated (ATM) and ATM- and RAD3-related (ATR) kinases. Downregulation of ATM or ATR expression by shRNAs substantially reduced the levels of HBV RNAs and DNA. In contrast, transcriptional activation of ATM or ATR using CRISPRa significantly increased HBV replication. We conclude that ATM and ATR are essential for HBV replication. Furthermore, DNA damage leading to the activation of ATM and ATR transcription, results in the reactivation of HBV replication.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia.
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia.
- Institute of Immunology, Federal Medical Biological Agency, Moscow 115522, Russia.
| | - Ekaterina Bayurova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow 123098, Russia.
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Gordeychuk
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow 123098, Russia.
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| | - Maria Isaguliants
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow 123098, Russia.
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, Gene Engineering and Biotechnology, Moscow 105275, Russia.
| | - Felix Urusov
- Izmerov Research Institute of Occupational Health, Gene Engineering and Biotechnology, Moscow 105275, Russia.
| | - Anastasiya Nikiforova
- Izmerov Research Institute of Occupational Health, Gene Engineering and Biotechnology, Moscow 105275, Russia.
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia.
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia.
- Sechenov First Moscow State Medical University, Moscow 119146, Russia.
- Central Research Institute of Epidemiology, Moscow 111123, Russia.
| |
Collapse
|
11
|
Exonuclease I and III improve the detection efficacy of hepatitis B virus covalently closed circular DNA. Hepatobiliary Pancreat Dis Int 2019; 18:458-463. [PMID: 30522829 DOI: 10.1016/j.hbpd.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/29/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatitis B virus covalently closed circular DNA (HBV cccDNA) is an important biomarker of hepatitis B virus infection. However, the current methods are not specific and sensitive. The present study aimed to develop a specific and sensitive assay method for the quantification of HBV cccDNA. METHODS Exonuclease I (Exo I) & Exonuclease III (Exo III) and specific primer probes are used in real-time PCR. The virus particles isolated from peripheral blood mononuclear cells were used as negative control and HBV1.3 recombinant plasmid 3.2 kb circular DNA fragment was used as positive control. The methods of cccDNA detection were evaluated in cell lines, plasmid, animal model, patient serum and liver biopsies. RESULTS A linear range of 101-107 copies/assay using specific primers for HBV cccDNA was established. HBV cccDNA were only detected in cell lines, animal model and liver tissue. It cannot be detected in serum samples. Intrahepatic HBV cccDNA level had good correlation with intrahepatic total HBV DNA level (r = 0.765, P < 0.001). CONCLUSIONS The real-time quantitative PCR is an effective and feasible method for sensitive and specific detection of low copy number of cccDNA. The novel detection method is fast, provides high sensitivity and specificity and can be used in clinical practice.
Collapse
|
12
|
Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the Interactions of HBV cccDNA with Host Factors. Int J Mol Sci 2019; 20:ijms20174276. [PMID: 31480501 PMCID: PMC6747236 DOI: 10.3390/ijms20174276] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.
Collapse
Affiliation(s)
- Nur K Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore
| | - Zijie Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 119228, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore.
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| |
Collapse
|
13
|
A Novel Cre Recombinase-Mediated In Vivo Minicircle DNA (CRIM) Vaccine Provides Partial Protection against Newcastle Disease Virus. Appl Environ Microbiol 2019; 85:AEM.00407-19. [PMID: 31053588 DOI: 10.1128/aem.00407-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Minicircle DNA (mcDNA), which contains only the necessary components for eukaryotic expression and is thus smaller than traditional plasmids, has been designed for application in genetic manipulation. In this study, we constructed a novel plasmid containing both the Cre recombinase under the phosphoglycerate kinase (PGK) promoter and recombinant lox66 and lox71 sites located outside the cytomegalovirus (CMV) expression cassette. The strictly controlled synthesis of Cre recombinase in vivo maintained the complete form of the plasmid in vitro, whereas the in vivo production of Cre transformed the parental plasmid to mcDNA after transfection. The newly designed Cre recombinase-mediated in vivo mcDNA platform, named CRIM, significantly increased the nuclear entry of mcDNA, followed by increased production of mRNA and protein, using enhanced green fluorescent protein (EGFP) as a model. Similar results were also observed in chickens when the vaccine was delivered by the regulated-delayed-lysis Salmonella strain χ11218, where significantly increased production of EGFP was observed in chicken livers. Then, we used the HN gene of genotype VII Newcastle disease virus as an antigen model to construct the traditional plasmid pYL43 and the novel mcDNA plasmid pYL47. After immunization, our CRIM vaccine provided significantly increased protection against challenge compared with that of the traditional plasmid, providing us with a novel mcDNA vaccine platform.IMPORTANCE Minicircle DNA (mcDNA) has been considered an attractive alternative to DNA vaccines; however, the relatively high cost and complicated process of purifying mcDNA dramatically restricts the application of mcDNA in the veterinary field. We designed a novel in vivo mcDNA platform in which the complete plasmid could spontaneously transform into mcDNA in vivo In combination with the regulated-delayed-lysis Salmonella strain, the newly designed mcDNA vaccine provides us with an elegant platform for veterinary vaccine development.
Collapse
|
14
|
Zhou L, Ren JH, Cheng ST, Xu HM, Chen WX, Chen DP, Wong VKW, Law BYK, Liu Y, Cai XF, Tang H, Yu HB, Hu JL, Hu Y, Zhou HZ, Ren F, He L, Hu ZW, Jiang H, Xu HY, Huang AL, Chen J. A Functional Variant in Ubiquitin Conjugating Enzyme E2 L3 Contributes to Hepatitis B Virus Infection and Maintains Covalently Closed Circular DNA Stability by Inducing Degradation of Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3A. Hepatology 2019; 69:1885-1902. [PMID: 30614547 DOI: 10.1002/hep.30497] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is a common infectious disease, in which nuclear covalently closed circular DNA (cccDNA) plays a key role in viral persistence, viral reactivation after treatment withdrawal, and drug resistance. A recent genome-wide association study has identified that the ubiquitin conjugating enzyme E2 L3 (UBE2L3) gene is associated with increased susceptibility to chronic HBV (CHB) infection in adults. However, the association between UBE2L3 and children with CHB and the underlying mechanism remain unclear. In this study, we performed two-stage case-control studies including adults and independent children in the Chinese Han population. The rs59391722 allele in the promoter of the UBE2L3 gene was significantly associated with HBV infection in both adults and children, and it increased the promoter activity of UBE2L3. Serum UBE2L3 protein levels were positively correlated with HBV viral load and hepatitis B e antigen (HBeAg) levels in children with CHB. In an HBV infection cell model, UBE2L3 knockdown significantly reduced total HBV RNAs, 3.5-kb RNA, as well as cccDNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and human primary hepatocytes. A mechanistic study found that UBE2L3 maintained cccDNA stability by inducing proteasome-dependent degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A, which is responsible for the degradation of HBV cccDNA. Moreover, interferon-α (IFN-α) treatment markedly decreased UBE2L3 expression, while UBE2L3 silencing reinforced the antiviral activity of IFN-α on HBV RNAs, cccDNA, and DNA. rs59391722 in UBE2L3 was correlated with HBV DNA suppression and HBeAg loss in response to IFN-α treatment of children with CHB. Conclusion: These findings highlight a host gene, UBE2L3, contributing to the susceptibility to persistent HBV infection; UBE2L3 may be involved in IFN-mediated viral suppression and serve as a potential target in the prevention and treatment of HBV infection.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong-Mei Xu
- Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Xian Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da-Peng Chen
- Department of Clinical Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yi Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue-Fei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Jiang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong-Yan Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Seimiya T, Suzuki T, Tanaka E, Ishibashi R, Funato K, Koike K. Pevonedistat, a Neuronal Precursor Cell-Expressed Developmentally Down-Regulated Protein 8-Activating Enzyme Inhibitor, Is a Potent Inhibitor of Hepatitis B Virus. Hepatology 2019; 69:1903-1915. [PMID: 30586159 DOI: 10.1002/hep.30491] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is a major health concern worldwide. To prevent HBV-related mortality, elimination of viral proteins is considered the ultimate goal of HBV treatment; however, currently available nucleos(t)ide analogs rarely achieve this goal, as viral transcription from episomal viral covalently closed circular DNA (cccDNA) is not prevented. HBV regulatory protein X was recently found to target the protein structural maintenance of chromosomes 5/6 (Smc5/6) for ubiquitination and degradation by DDB1-CUL4-ROC1 E3 ligase, resulting in enhanced viral transcription from cccDNA. This ubiquitin-dependent proteasomal pathway requires an additional ubiquitin-like protein for activation, neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8). Here, we show that pevonedistat, a NEDD8-activating enzyme inhibitor, works efficiently as an antiviral agent. Pevonedistat significantly restored Smc5/6 protein levels and suppressed viral transcription and protein production in the HBV minicircle system in in vitro HBV replication models and in human primary hepatocytes infected naturally with HBV. Conclusion: These results indicate that pevonedistat is a promising compound to treat chronic HBV infection.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
16
|
A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol 2019; 4:545-558. [PMID: 30981686 DOI: 10.1016/s2468-1253(19)30119-0] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a global public health challenge on the same scale as tuberculosis, HIV, and malaria. The International Coalition to Eliminate HBV (ICE-HBV) is a coalition of experts dedicated to accelerating the discovery of a cure for chronic hepatitis B. Following extensive consultation with more than 50 scientists from across the globe, as well as key stakeholders including people affected by HBV, we have identified gaps in our current knowledge and new strategies and tools that are required to achieve HBV cure. We believe that research must focus on the discovery of interventional strategies that will permanently reduce the number of productively infected cells or permanently silence the covalently closed circular DNA in those cells, and that will stimulate HBV-specific host immune responses which mimic spontaneous resolution of HBV infection. There is also a pressing need for the establishment of repositories of standardised HBV reagents and protocols that can be accessed by all HBV researchers throughout the world. The HBV cure research agenda outlined in this position paper will contribute markedly to the goal of eliminating HBV infection worldwide.
Collapse
|
17
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
18
|
Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K. Inhibition of HBV Transcription From cccDNA With Nitazoxanide by Targeting the HBx-DDB1 Interaction. Cell Mol Gastroenterol Hepatol 2018; 7:297-312. [PMID: 30704981 PMCID: PMC6357790 DOI: 10.1016/j.jcmgh.2018.10.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infection is a major health concern worldwide. Although currently used nucleos(t)ide analogs efficiently inhibit viral replication, viral proteins transcribed from the episomal viral covalently closed circular DNA (cccDNA) minichromosome continue to be expressed long-term. Because high viral RNA or antigen loads may play a biological role during this chronicity, the elimination of viral products is an ultimate goal of HBV treatment. HBV regulatory protein X (HBx) was recently found to promote transcription of cccDNA with degradation of Smc5/6 through the interaction of HBx with the host protein DDB1. Here, this protein-protein interaction was considered as a new molecular target of HBV treatment. METHODS To identify candidate compounds that target the HBx-DDB1 interaction, a newly constructed split luciferase assay system was applied to comprehensive compound screening. The effects of the identified compounds on HBV transcription and cccDNA maintenance were determined using HBV minicircle DNA, which mimics HBV cccDNA, and the natural HBV infection model of human primary hepatocytes. RESULTS We show that nitazoxanide (NTZ), a thiazolide anti-infective agent that has been approved by the FDA for protozoan enteritis, efficiently inhibits the HBx-DDB1 protein interaction. NTZ significantly restores Smc5 protein levels and suppresses viral transcription and viral protein production in the HBV minicircle system and in human primary hepatocytes naturally infected with HBV. CONCLUSIONS These results indicate that NTZ, which targets an HBV-related viral-host protein interaction, may be a promising new therapeutic agent and a step toward a functional HBV cure.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Sekiba K, Otsuka M, Ohno M, Kishikawa T, Yamagami M, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018; 9:20953-20964. [PMID: 29765512 PMCID: PMC5940377 DOI: 10.18632/oncotarget.25104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) infection, which is a major health concern worldwide, can lead to liver cirrhosis and hepatocellular carcinoma. Although current nucleos(t)ide analogs efficiently inhibit viral reverse transcription and viral DNA load clinically, episomal viral covalently closed circular DNA (cccDNA) minichromosomes and transcripts from cccDNA continue to be expressed over the long term. We hypothesized that, under these conditions, viral transcripts may have biological functions involved in pathogenesis. Here, we show that the host protein DExH-box helicase 9 (DXH9) is associated with viral RNAs. We also show that viral-derived circular RNA is produced during HBV replication, and the amount is increased by knockdown of the DHX9 protein, which, in turn, results in decreased viral protein levels but does not affect the levels of HBV DNA. These phenomena were observed in the HBV-producing cell culture model and HBV mini-circle model mimicking HBV cccDNA, as well as in human primary hepatocytes infected with HBV. Based on these results, we conclude that, in HBV infection, the RNA binding factor DHX9 is a novel regulator of viral circular RNA and viral protein levels.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
20
|
Wu M, Li J, Yue L, Bai L, Li Y, Chen J, Zhang X, Yuan Z. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays. Antiviral Res 2018; 152:45-52. [PMID: 29432776 DOI: 10.1016/j.antiviral.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs.
Collapse
Affiliation(s)
- Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Yue
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Bai
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhenghong Yuan
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Ji M, Hu K. Recent advances in the study of hepatitis B virus covalently closed circular DNA. Virol Sin 2017; 32:454-464. [PMID: 29280054 DOI: 10.1007/s12250-017-4009-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B infection is caused by hepatitis B virus (HBV) and a total cure is yet to be achieved. The viral covalently closed circular DNA (cccDNA) is the key to establish a persistent infection within hepatocytes. Current antiviral strategies have no effect on the pre-existing cccDNA reservoir. Therefore, the study of the molecular mechanism of cccDNA formation is becoming a major focus of HBV research. This review summarizes the current advances in cccDNA molecular biology and the latest studies on the elimination or inactivation of cccDNA, including three major areas: (1) epigenetic regulation of cccDNA by HBV X protein, (2) immune-mediated degradation, and (3) genome-editing nucleases. All these aspects provide clues on how to finally attain a cure for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Mengying Ji
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Kanghong Hu
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
22
|
Impact of HBV replication in peripheral blood mononuclear cell on HBV intrauterine transmission. Front Med 2017; 11:548-553. [PMID: 29170913 DOI: 10.1007/s11684-017-0597-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023]
Abstract
This study determined the effect of hepatitis B virus (HBV) replication in peripheral blood mononuclear cell (PBMC) from HBsAg-positive mothers on HBV intrauterine transmission. A total of 150 HBsAg-positive mothers and their neonates were recruited in this study. Within 24 h after birth, HBV serological markers, serum HBV DNA, PBMC HBV relaxed circular DNA (rcDNA), and covalently closed circular DNA (cccDNA) were measured in the HBsAg-positive mothers and their neonates before passive-active immune prophylaxis. The relationship between HBV replication in PBMC and HBV intrauterine transmission was examined through Chisquare test and logistic regression. The rate of HBV intrauterine transmission was 8.00% (12/150) in the 150 neonates born to HBsAg-positive mothers. The positivities of PBMC HBV rcDNA and cccDNA in the HBsAg-positive mothers were 36.67% (55/150) and 10% (15/150), respectively. Maternal PBMC HBV cccDNA was a risk factor of HBV intrauterine transmission (OR = 6.003, 95% CI: 1.249-28.855). Maternal serum HBeAg was a risk factor of PBMC HBV rcDNA (OR = 3.896, 95% CI: 1.929-7.876) and PBMC HBV cccDNA (OR = 3.74, 95% CI: 1.186-11.793) in the HBsAg-positive mothers. Administration of hepatitis B immune globulin was a protective factor of PBMC HBV cccDNA (OR = 0.312, 95%CI: 0.102-0.954) during pregnancy. The positivity of PBMC HBV rcDNA was related to that of cccDNA in the HBsAg-positive mothers (χ 2= 5.087, P = 0.024). This study suggests that PBMC is a reservoir of HBV and an extrahepatic site for virus replication and plays a critical role in HBV intrauterine transmission.
Collapse
|
23
|
Li X, Zhao J, Yuan Q, Xia N. Detection of HBV Covalently Closed Circular DNA. Viruses 2017; 9:E139. [PMID: 28587292 PMCID: PMC5490816 DOI: 10.3390/v9060139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA) in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR)-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinghua Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
24
|
Schreiner S, Nassal M. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation-and Beyond? Viruses 2017; 9:v9050125. [PMID: 28531167 PMCID: PMC5454437 DOI: 10.3390/v9050125] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, D-85764 Munich, Germany.
| | - Michael Nassal
- Dept. of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| |
Collapse
|
25
|
Wang L, Cao M, Wei QL, Zhao ZH, Xiang Q, Wang HJ, Zhang HT, Lai GQ. A new model mimicking persistent HBV e antigen-negative infection using covalently closed circular DNA in immunocompetent mice. PLoS One 2017; 12:e0175992. [PMID: 28426720 PMCID: PMC5398701 DOI: 10.1371/journal.pone.0175992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Despite the availability of an effective vaccine, hepatitis B virus (HBV) infection remains a major health problem. HBV e antigen (HBeAg)-negative strains have become prevalent. Previously, no animal model mimicked the clinical course of HBeAg-negative HBV infection. To establish an HBeAg-negative HBV infection model, the 3.2-kb full-length genome of HBeAg-negative HBV was cloned from a clinical sample and then circularized to form covalently closed circular (cccDNA). The resulting cccDNA was introduced into the liver of C57BL/6J mice through hydrodynamic injection. Persistence of the HBeAg-negative infection was monitored at predetermined time points using HBV-specific markers including HBV surface antigen (HBsAg), HBeAg, and HBV core antigen (HBcAg) as well as DNA copies. Throughout the study, pAAV-HBV1.2 was used as a control. In mice injected with HBeAg-negative cccDNA, the HBV infection rate was 100% at the initial stage. HBsAg levels increased up to 1 week, at which point levels peaked and dropped quickly thereafter. In 60% of injected mice, HBsAg and HBcAg persisted for more than 10 weeks. High numbers of HBV DNA copies were detected in the serum and liver. Moreover, cccDNA persisted in the liver tissue of HBeAg-negative mice. In contrast to the pAAV-HBV 1.2 injected mice, no HBeAg was found in mice injected with HBeAg-negative HBV throughout the study period. These results demonstrate the first successful establishment of a model of HBeAg-negative HBV-persistent infection in immunocompetent mice. Compared to pAAV-HBV1.2-injected mice, the infection persistence and levels of serum virological and biochemical markers were approximately equal in the model mice. This model will be useful for mechanistic studies on HBeAg-negative HBV infection and will facilitate the evaluation of new antiviral drugs.
Collapse
Affiliation(s)
- Lei Wang
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Min Cao
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Qing Lu Wei
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Zhong Hua Zhao
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Qin Xiang
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Hui Juan Wang
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Hua Tang Zhang
- Chongqing Academy of Science and Technology, Chongqing, China
- * E-mail: (GL); (HZ)
| | - Guo Qi Lai
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
- * E-mail: (GL); (HZ)
| |
Collapse
|