1
|
Wang Q, Hermannsson K, Másson E, Bergman P, Guðmundsson GH. Host-directed therapies modulating innate immunity against infection in hematologic malignancies. Blood Rev 2025; 70:101255. [PMID: 39690006 DOI: 10.1016/j.blre.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Patients with hematologic malignancies (HM) are highly susceptible to bloodstream infection (BSI), particularly those undergoing treatments such as chemotherapy. A common and debilitating side effect of chemotherapy is oral and intestinal mucositis. These Patients are also at high risk of developing sepsis, which can arise from mucosal barrier injuries and significantly increases mortality in these patients. While conventional antibiotics are effective, their use can lead to antimicrobial resistance (AMR) and disrupt the gut microbiota (dysbiosis). In this review, we discuss utilizing host defense peptides (HDPs), key components of the innate immune system, and immune system inducers (ISIs) to maintain mucosal barrier integrity against infection, an underexplored host-directed therapy (HDT) approach to prevent BSI and sepsis. We advocate for the discovery of potent and safe ISIs for clinical use and call for further research into the mechanisms by which these ISIs induce HDPs and strengthen mucosal barriers.
Collapse
Affiliation(s)
- Qiong Wang
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Kristján Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Egill Másson
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland.
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
2
|
Saini S, Pal S, Sharma R. Decoding the Role of Antimicrobial Peptides in the Fight against Mycobacterium tuberculosis. ACS Infect Dis 2025; 11:350-365. [PMID: 39873328 DOI: 10.1021/acsinfecdis.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Tuberculosis (TB), a leading infectious disease caused by the pathogen Mycobacterium tuberculosis, poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets. Antimicrobial peptides (AMPs), which are natural host defense molecules present in all living organisms, offer a promising alternative to traditional small-molecule drugs. AMPs have several advantages, including their broad-spectrum activity and the potential to circumvent existing resistance mechanisms. However, their clinical application faces challenges such as stability, delivery, and potential toxicity. This review aims to provide essential information on AMPs, including their sources, classification, mode of action, induction within the host under stress, efficacy against M. tuberculosis, clinical status and hurdles to their use. It also highlights future research directions to address these challenges and advance the development of AMP-based therapies for TB.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunny Pal
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Santos-Mena A, Gonzalez-Muñiz O, Rodríguez-Carlos A, Guerrero AR, Mendieta CR, Jacobo Delgado YM, Muñoz GS, Rosenstein Y, Trujillo-Paez V, Portales-Perez D, de Jesus Gonzalez LA, Calvillo R, Gonzalez-Curiel I, Vitales-Noyola M, Rivas-Santiago B. Wound Healing Effect of HDACi Repositioned Molecules in the Therapy for Chronic Wounds Models. Exp Dermatol 2025; 34:e70060. [PMID: 39989310 DOI: 10.1111/exd.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/21/2024] [Accepted: 01/03/2025] [Indexed: 02/25/2025]
Abstract
Globally, chronic wounds impact the health of millions of people, negatively affecting quality of life and healthcare budgets. Some of the crucial steps and pathways in healing mechanisms are the hypoxic response and the expression of host defence peptides, which are decreased in diseases related to chronic wounds such as diabetes mellitus and cardiovascular diseases. It has been shown that histone deacetylase inhibitors can induce the expression of Host Defence Peptides (HDP) by inducing the stabilisation and activation of hypoxia-inducible factor 1-α (HIF-1α), promoting wound healing pathways, although their high cost and side effects limit clinical research. With the help of bioinformatics tools, we found potential histone deacetylase inhibitor candidates in an FDA-approved drugs database. The candidates, 1,3-Diphenylurea (DiPU), 2'-Aminoacetanilide (Ace), and Tert-butyl (2-aminophenyl) carbamate (N-boc), show wound healing effects in HaCaT cells, increasing cell migration possibly via HIF-1α, inducing the expression of LL-37 and vascular endothelial growth factor (VEGF), while in a mouse ring angiogenesis model, Ace and N-boc have angiogenic effects. In a model of basal primary keratinocytes from donors with diabetes mellitus (DM), without DM, and from Diabetic Foot Ulcers (DFU), it was observed that only DiPU is capable of inducing LL-37 in all scenarios. There is limited information about histone deacetylase inhibitors and wound healing but in this paper, we observe promising results and a proposed mechanism that involved specifically Histone Deacetylase 1 inhibition (HDAC1).
Collapse
Affiliation(s)
- Alan Santos-Mena
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| | - Oscar Gonzalez-Muñiz
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| | - Adrian Rodríguez-Carlos
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| | - Alejandro Rivas Guerrero
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| | - Crisol Rodriguez Mendieta
- General Hospital "Dr. Emilio Varela Lujan" Mexican Institute of Social Security-IMSS, Zacatecas, Mexico
| | - Yolanda M Jacobo Delgado
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| | - Gerardo Sauceda Muñoz
- General Hospital "Dr. Emilio Varela Lujan" Mexican Institute of Social Security-IMSS, Zacatecas, Mexico
| | - Yvonne Rosenstein
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, UNAM Cuernavaca, Cuernavaca, Mexico
| | - Valentin Trujillo-Paez
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| | - Diana Portales-Perez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Renato Calvillo
- General Hospital of Zacatecas "Luz Gonzáles Cosio" Zacatecas, Zacatecas, Mexico
| | - Irma Gonzalez-Curiel
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ, Siglo XXI, Zacatecas, Mexico
| | - Marlen Vitales-Noyola
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Bruno Rivas-Santiago
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Mexico City, Mexico
| |
Collapse
|
4
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
5
|
Rodríguez-Carlos A, Jacobo-Delgado Y, Santos-Mena AO, García-Hernández MH, De Jesus-Gonzalez LA, Lara-Ramirez EE, Rivas-Santiago B. Histone deacetylase (HDAC) inhibitors- based drugs are effective to control Mycobacterium tuberculosis infection and promote the sensibility for rifampicin in MDR strain. Mem Inst Oswaldo Cruz 2023; 118:e230143. [PMID: 38126492 PMCID: PMC10740574 DOI: 10.1590/0074-02760230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major public health problem, which has been aggravated by the alarming growth of drug-resistant tuberculosis. Therefore, the development of a safer and more effective treatment is needed. OBJECTIVES The aim of this work was repositioning and evaluate histone deacetylases (HDAC) inhibitors- based drugs with potential antimycobacterial activity. METHODS Using an in silico pharmacological repositioning strategy, three molecules that bind to the catalytic site of histone deacetylase were selected. Pneumocytes type II and macrophages were infected with Mycobacterium tuberculosis and treated with pre-selected HDAC inhibitors (HDACi). Subsequently, the ability of each of these molecules to directly promote the elimination of M. tuberculosis was evaluated by colony-forming unit (CFU)/mL. We assessed the expression of antimicrobial peptides and respiratory burst using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). FINDINGS Aminoacetanilide (ACE), N-Boc-1,2-phenylenediamine (N-BOC), 1,3-Diphenylurea (DFU), reduce bacillary loads in macrophages and increase the production of β-defensin-2, LL-37, superoxide dismutase (SOD) 3 and inducible nitric oxide synthase (iNOS). While only the use of ACE in type II pneumocytes decreases the bacterial load through increasing LL-37 expression. Furthermore, the use of ACE and rifampicin inhibited the survival of intracellular multi-drug resistance M. tuberculosis. MAIN CONCLUSIONS Our data support the usefulness of in silico approaches for drug repositioning to provide a potential adjunctive therapy for TB.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Yolanda Jacobo-Delgado
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | | | | | - Edgar E Lara-Ramirez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biotecnología Farmacéutica, Reynosa, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
6
|
Barrier ML, Myszor IT, Sahariah P, Sigurdsson S, Carmena-Bargueño M, Pérez-Sánchez H, Gudmundsson GH. Aroylated phenylenediamine HO53 modulates innate immunity, histone acetylation and metabolism. Mol Immunol 2023; 155:153-164. [PMID: 36812763 DOI: 10.1016/j.molimm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/18/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
In the current context of antibiotic resistance, the need to find alternative treatment strategies is urgent. Our research aimed to use synthetized aroylated phenylenediamines (APDs) to induce the expression of cathelicidin antimicrobial peptide gene (CAMP) to minimize the necessity of antibiotic use during infection. One of these compounds, HO53, showed promising results in inducing CAMP expression in bronchial epithelium cells (BCi-NS1.1 hereafter BCi). Thus, to decipher the cellular effects of HO53 on BCi cells, we performed RNA sequencing (RNAseq) analysis after 4, 8 and 24 h treatment of HO53. The number of differentially expressed transcripts pointed out an epigenetic modulation. Yet, the chemical structure and in silico modeling indicated HO53 as a histone deacetylase (HDAC) inhibitor. When exposed to a histone acetyl transferase (HAT) inhibitor, BCi cells showed a decreased expression of CAMP. Inversely, when treated with a specific HDAC3 inhibitor (RGFP996), BCi cells showed an increased expression of CAMP, indicating acetylation status in cells as determinant for the induction of the expression of the gene CAMP expression. Interestingly, a combination treatment with both HO53 and HDAC3 inhibitor RGFP966 leads to a further increase of CAMP expression. Moreover, HDAC3 inhibition by RGFP966 leads to increased expression of STAT3 and HIF1A, both previously demonstrated to be involved in pathways regulating CAMP expression. Importantly, HIF1α is considered as a master regulator in metabolism. A significant number of genes of metabolic enzymes were detected in our RNAseq data with enhanced expression conveying a shift toward enhanced glycolysis. Overall, we are demonstrating that HO53 might have a translational value against infections in the future through a mechanism leading to innate immunity strengthening involving HDAC inhibition and shifting the cells towards an immunometabolism, which further favors innate immunity activation.
Collapse
Affiliation(s)
- Marjorie Laurence Barrier
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Iwona Teresa Myszor
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Priyanka Sahariah
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Snaevar Sigurdsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Gudmundur Hrafn Gudmundsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
7
|
High-Throughput Screening for Epigenetic Compounds That Induce Human β-Defensin 1 Synthesis. Antibiotics (Basel) 2023; 12:antibiotics12020186. [PMID: 36830097 PMCID: PMC9952773 DOI: 10.3390/antibiotics12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial host defense peptides (HDPs) are critically important for innate immunity. Small-molecule compounds with the ability to induce HDP synthesis are being actively explored for antimicrobial therapy. To facilitate the discovery of the compounds that specifically activate human β-defensin 1 (DEFB1) gene transcription, we established a cell-based high-throughput screening assay that employs HT-29/DEFB1-luc, a stable reporter cell line expressing the luciferase gene driven by a 3-Kb DEFB1 gene promoter. A screening of a library of 148 small-molecule epigenetic compounds led to the identification of 28 hits, with a minimum strictly standardized mean difference of 3.0. Fourteen compounds were further selected and confirmed to be capable of inducing DEFB1 mRNA expression in human HT-29 colonic epithelial cells. Desirably, the human cathelicidin antimicrobial peptide (CAMP) gene was also induced by these epigenetic compounds. Benzamide-containing histone deacetylase inhibitors (HDACi) were among the most potent HDP inducers identified in this study. Additionally, several major genes involved in intestinal barrier function, such as claudin-1, claudin-2, tight junction protein 1, and mucin 2, were differentially regulated by HDP inducers. These findings suggest the potential for the development of benzamide-based HDACi as host-directed antimicrobials for infectious disease control and prevention.
Collapse
|
8
|
Baindara P, Ganguli S, Chakraborty R, Mandal SM. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin Pract 2023; 13:125-147. [PMID: 36648852 PMCID: PMC9844411 DOI: 10.3390/clinpract13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The vast surface area of the respiratory system acts as an initial site of contact for microbes and foreign particles. The whole respiratory epithelium is covered with a thin layer of the airway and alveolar secretions. Respiratory secretions contain host defense peptides (HDPs), such as defensins and cathelicidins, which are the best-studied antimicrobial components expressed in the respiratory tract. HDPs have an important role in the human body's initial line of defense against pathogenic microbes. Epithelial and immunological cells produce HDPs in the surface fluids of the lungs, which act as endogenous antibiotics in the respiratory tract. The production and action of these antimicrobial peptides (AMPs) are critical in the host's defense against respiratory infections. In this study, we have described all the HDPs secreted in the respiratory tract as well as how their expression is regulated during respiratory disorders. We focused on the transcriptional expression and regulation mechanisms of respiratory tract HDPs. Understanding how HDPs are controlled throughout infections might provide an alternative to relying on the host's innate immunity to combat respiratory viral infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO 65211, USA
| | - Sriradha Ganguli
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
9
|
Bolatchiev A, Baturin V, Bolatchieva E. Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis. Antibiotics (Basel) 2022; 11:1629. [PMID: 36421273 PMCID: PMC9686524 DOI: 10.3390/antibiotics11111629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 05/11/2025] Open
Abstract
Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs' clinical use is complicated by the high synthesis costs and rapid proteolytic degradation. The search for small molecules, inducers of endogenous AMP expression, could become a new approach. Here, we investigated for the first time the effect of seven small molecules (andrographolide, levofloxacin, azithromycin, montelukast, 4-phenylbutyric acid, rosuvastatin and valsartan) on AMP (beta-defensin-1, hBD-1 and cathelicidin, LL-37) serum levels in rats. In control groups, the level of hBD-1 was 295.0 (292.9-315.4) pg/mL, and for LL-37, it was 223.8 (213.3-233.6) pg/mL. Andrographolide (ANDR) and 4-phenylbutyric acid (4-PHBA) administration significantly enhanced the level of both AMPs. The hBD-1 level was 581.5 (476.3-607.7) pg/mL for ANDR and 436.9 (399.0-531.6) pg/mL for 4-PHBA. The LL-37 level was 415.4 (376.2-453.8) pg/mL for ANDR and 398.9 (355.7-410.1) pg/mL for 4-PHBA. Moreover, we have shown that these compounds reduce mortality in a murine model of sepsis caused by a carbapenem-resistant Klebsiella aerogenes isolate. From our point of view, these small molecules are promising candidates for further study as potent AMP inducers. The data obtained allow the development of new strategies to combat antibiotic resistance and infectious diseases.
Collapse
Affiliation(s)
- Albert Bolatchiev
- Laboratory of Antimicrobial Peptides (Former Microbiota Laboratory), Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
- AlboGene, LLC, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Elizaveta Bolatchieva
- AlboGene, LLC, 355000 Stavropol, Russia
- Department of Anatomy, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
10
|
Large-Scale Identification of Multiple Classes of Host Defense Peptide-Inducing Compounds for Antimicrobial Therapy. Int J Mol Sci 2022; 23:ijms23158400. [PMID: 35955551 PMCID: PMC9368921 DOI: 10.3390/ijms23158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.
Collapse
|
11
|
High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel) 2022; 11:antibiotics11070933. [PMID: 35884187 PMCID: PMC9311565 DOI: 10.3390/antibiotics11070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/02/2023] Open
Abstract
Enhancing the synthesis of endogenous host defense peptides (HDPs) has emerged as a novel antibiotic-free approach to infectious disease control and prevention. A number of epigenetic compounds have been identified as HDP inducers and several have proved beneficial in antimicrobial therapy. However, species-specific regulation of HDP synthesis is evident. In attempt to identify epigenetic compounds with potent HDP-inducing activity for poultry-specific application, we developed a stable luciferase reporter cell line, known as HTC/AvBD10-luc, following our earlier construction of HTC/AvBD9-luc. HTC/AvBD10-luc was developed through permanent integration of a chicken macrophage cell line, HTC, with a lentiviral luciferase reporter vector driven by a 4-Kb AvBD10 gene promoter. Using a high throughput screening assay based on the two stable cell lines, we identified 33 hits, mostly being histone deacetylase (HDAC) inhibitors, from a library of 148 epigenetic compounds. Among them, entinostat and its structural analog, tucidinostat, were particularly effective in promoting multiple HDP gene expression in chicken macrophages and jejunal explants. Desirably, neither compounds triggered an inflammatory response. Moreover, oral gavage of entinostat significantly enhanced HDP gene expression in the chicken intestinal tract. Collectively, the high throughput assay proves to be effective in identifying HDP inducers, and both entinostat and tucidinostat could be potentially useful as alternatives to antibiotics to enhance intestinal immunity and disease resistance.
Collapse
|
12
|
Greve JM, Cowan JA. Tackling antimicrobial stewardship through synergy and antimicrobial peptides. RSC Med Chem 2022; 13:511-521. [PMID: 35694695 PMCID: PMC9132191 DOI: 10.1039/d2md00048b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
The unrestricted use of antibiotics has led to rapid development of antibiotic resistance (AR) and renewed calls to address this serious problem. This review summarizes the most common mechanisms of antibiotic action, and in turn antibiotic resistance, as well as pathways to mitigate the harm. Focus is then turned to emerging antibiotic strategies, including antimicrobial peptides (AMPs), with a discussion of their modes of action, biochemical features, and potential challenges for their use as antibiotics. The role of synergy in antimicrobials is also examined, with a focus on the synergy of AMPs and other emerging interactions with synergistic potential.
Collapse
Affiliation(s)
- Jenna M Greve
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA +1 614 292 2703
| | - James A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA +1 614 292 2703
| |
Collapse
|
13
|
Aloul KM, Nielsen JE, Defensor EB, Lin JS, Fortkort JA, Shamloo M, Cirillo JD, Gombart AF, Barron AE. Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Severe COVID-19 Inflammatory Responses and Reduce Microthrombosis. Front Immunol 2022; 13:880961. [PMID: 35634307 PMCID: PMC9134243 DOI: 10.3389/fimmu.2022.880961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet β-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Karim M. Aloul
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Erwin B. Defensor
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, Bryan, TX, United States
| | - Adrian F. Gombart
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
14
|
Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23052499. [PMID: 35269641 PMCID: PMC8910669 DOI: 10.3390/ijms23052499] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.
Collapse
|
15
|
Rodríguez-Carlos A, Jacobo-Delgado YM, Santos-Mena AO, Rivas-Santiago B. Modulation of cathelicidin and defensins by histone deacetylase inhibitors: A potential treatment for multi-drug resistant infectious diseases. Peptides 2021; 140:170527. [PMID: 33744370 DOI: 10.1016/j.peptides.2021.170527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases are an important growing public health problem, which perspective has worsened due to the increasing number of drug-resistant strains in the last few years. Although diverse solutions have been proposed, one viable solution could be the use of immune system modulators. The induction of the immune response can be increased by histone deacetylase inhibitors (iHDAC), which in turn modulate the chromatin and increase the activation of different cellular pathways and nuclear factors such as STAT3, HIF-1α NF-kB, C/EBPα and, AP-1. These pathways are capable to promote several immune response-related molecules including those with antimicrobial properties such as antimicrobial peptides (AMPs) that lead to the elimination of pathogens including multi drug-resistant strains.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Alan O Santos-Mena
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
16
|
Innate Effector Systems in Primary Human Macrophages Sensitize Multidrug-Resistant Klebsiella pneumoniae to Antibiotics. Infect Immun 2020; 88:IAI.00186-20. [PMID: 32513857 DOI: 10.1128/iai.00186-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Infections caused by multidrug-resistant (MDR) Klebsiella pneumoniae are difficult to treat with conventional antibiotics. Thus, alternative strategies to control the growth of MDR Klebsiella are warranted. We hypothesized that activation of innate effector systems could sensitize MDR K. pneumoniae to conventional antibiotics. Thus, human primary macrophages were stimulated with compounds known to activate innate immunity (vitamin D3, phenylbutyrate [PBA], and the aroylated phenylenediamine HO53) and then infected with MDR Klebsiella in the presence or absence of antibiotics. Antibiotics alone were ineffective against MDR Klebsiella in the cellular model, whereas vitamin D3, PBA, and HO53 reduced intracellular growth by up to 70%. The effect was further improved when the innate activators were combined with antibiotics. Vitamin D3- and PBA-induced bacterial killing was dependent on CAMP gene expression, whereas HO53 needed the production of reactive oxygen species (ROS), as shown in cells where the CYBB gene was silenced and in cells from a patient with reduced ROS production due to a deletion in the CYBB gene and skewed lyonization. The combination of innate effector activation by vitamin D3, PBA, and HO53 was effective in sensitizing MDR Klebsiella to conventional antibiotics in a primary human macrophage model. This study provides new evidence for future treatment options for K. pneumoniae.
Collapse
|
17
|
Bergman P, Raqib R, Rekha RS, Agerberth B, Gudmundsson GH. Host Directed Therapy Against Infection by Boosting Innate Immunity. Front Immunol 2020; 11:1209. [PMID: 32595649 PMCID: PMC7304486 DOI: 10.3389/fimmu.2020.01209] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
The innate immune system constitutes the first line of defense against invading pathogens, regulating the normal microbiota and contributes to homeostasis. Today we have obtained detailed knowledge on receptors, signaling pathways, and effector molecules of innate immunity. Our research constellation has focused on ways to induce the expression of antimicrobial peptides (AMPs), the production of oxygen species (ROS and NO), and to activate autophagy, during the last two decades. These innate effectors, with different mechanisms of action, constitute a powerful defense armament in phagocytes and in epithelial cells. Innate immunity does not only protect the host from invading pathogens, but also regulates the composition of the microbiota, which is an area of intense research. Notably, some virulent bacteria have the capacity to downregulate innate defenses and can thereby cause invasive disease. Understanding the detailed mechanisms behind pathogen-mediated suppression of innate effectors are currently in progress. This information can be of importance for the development of novel treatments based on counteraction of the downregulation; we have designated this type of treatment as host directed therapy (HDT). The concept to boost innate immunity may be particularly relevant as many pathogens are developing resistance against classical antibiotics. Many pathogens that are resistant to antibiotics are sensitive to the endogenous effectors included in early host defenses, which contain multiple effectors working in cooperation to control infections. Here, we review recent data related to downregulation of AMPs by pathogenic bacteria, induction of innate effector mechanisms, including cytokine-mediated effects, repurposed drugs and the role of antibiotics as direct modulators of host responses. These findings can form a platform for the development of novel treatment strategies against infection and/or inflammation.
Collapse
Affiliation(s)
- Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,The Immunodeficiency Unit, Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rokeya Sultana Rekha
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
18
|
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution. Science 2020; 368:368/6490/eaau5480. [PMID: 32355003 DOI: 10.1126/science.aau5480] [Citation(s) in RCA: 611] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/25/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are essential components of immune defenses of multicellular organisms and are currently in development as anti-infective drugs. AMPs have been classically assumed to have broad-spectrum activity and simple kinetics, but recent evidence suggests an unexpected degree of specificity and a high capacity for synergies. Deeper evaluation of the molecular evolution and population genetics of AMP genes reveals more evidence for adaptive maintenance of polymorphism in AMP genes than has previously been appreciated, as well as adaptive loss of AMP activity. AMPs exhibit pharmacodynamic properties that reduce the evolution of resistance in target microbes, and AMPs may synergize with one another and with conventional antibiotics. Both of these properties make AMPs attractive for translational applications. However, if AMPs are to be used clinically, it is crucial to understand their natural biology in order to lessen the risk of collateral harm and avoid the crisis of resistance now facing conventional antibiotics.
Collapse
Affiliation(s)
- Brian P Lazzaro
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Institut für Biologie, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|
19
|
Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J. Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides 2020; 123:170177. [PMID: 31704211 DOI: 10.1016/j.peptides.2019.170177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Host defense peptides (HDPs) are crucial components of the body's first line of defense that protect organisms from infections and mediate immune responses. Defensins and cathelicidins are the two most important families of HDPs in mammals. In this review, we summarize the nutrients that are involved in inducible expression of endogenous defensins and cathelicidins. In addition, the mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB) and histone deacetylase (HDAC) signaling pathways that play vital roles in the induction of defensin and cathelicidin expression are highlighted. Endogenous defensins and cathelicidins induced by nutrients may be potential alternatives to antibiotic treatments against infection and diseases. This review mainly focuses on the inducible expression and regulatory mechanisms of defensins and cathelicidins in multiple species by different nutrients and the potential applications of defensin- and cathelicidin-inducing nutrients.
Collapse
Affiliation(s)
- Jialuo Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongrong Long
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangming Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
20
|
Myszor IT, Parveen Z, Ottosson H, Bergman P, Agerberth B, Strömberg R, Gudmundsson GH. Novel aroylated phenylenediamine compounds enhance antimicrobial defense and maintain airway epithelial barrier integrity. Sci Rep 2019; 9:7114. [PMID: 31068616 PMCID: PMC6506505 DOI: 10.1038/s41598-019-43350-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Aroylated phenylenediamines (APDs) are novel inducers of innate immunity enhancing cathelicidin gene expression in human bronchial epithelial cell lines. Here we present two newly developed APDs and aimed at defining the response and signaling pathways for these compounds with reference to innate immunity and antimicrobial peptide (AMP) expression. Induction was initially defined with respect to dose and time and compared with the APD Entinostat (MS-275). The induction applies to several innate immunity effectors, indicating that APDs trigger a broad spectrum of antimicrobial responses. The bactericidal effect was shown in an infection model against Pseudomonas aeruginosa by estimating bacteria entering cells. Treatment with a selected APD counteracted Pseudomonas mediated disruption of epithelial integrity. This double action by inducing AMPs and enhancing epithelial integrity for one APD compound is unique and taken as a positive indication for host directed therapy (HDT). The APD effects are mediated through Signal transducer and activator of transcription 3 (STAT3) activation. Utilization of induced innate immunity to fight infections can reduce antibiotic usage, might be effective against multidrug resistant bacteria and is in line with improved stewardship in healthcare.
Collapse
Affiliation(s)
- Iwona T Myszor
- Biomedical Center, University of Iceland, Reykjavik, 101, Iceland
| | - Zahida Parveen
- Biomedical Center, University of Iceland, Reykjavik, 101, Iceland
| | - Håkan Ottosson
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14183, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, S-14186, Huddinge, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, S-14186, Huddinge, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14183, Huddinge, Sweden
| | | |
Collapse
|
21
|
Zhou Z, Huang J, Hao H, Wei H, Zhou Y, Peng J. Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Development of a Cell-Based High-Throughput Screening Assay to Identify Porcine Host Defense Peptide-Inducing Compounds. J Immunol Res 2018; 2018:5492941. [PMID: 30581875 PMCID: PMC6276403 DOI: 10.1155/2018/5492941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
Abstract
Novel alternatives to antibiotics are needed for the swine industry, given increasing restrictions on subtherapeutic use of antibiotics. Augmenting the synthesis of endogenous host defense peptides (HDPs) has emerged as a promising antibiotic-alternative approach to disease control and prevention. To facilitate the identification of HDP inducers for swine use, we developed a stable luciferase reporter cell line, IPEC-J2/PBD3-luc, through permanent integration of a luciferase reporter gene driven by a 1.1 kb porcine β-defensin 3 (PBD3) gene promoter in porcine IPEC-J2 intestinal epithelial cells. Such a stable reporter cell line was employed in a high-throughput screening of 148 epigenetic compounds and 584 natural products, resulting in the identification of 41 unique hits with a minimum strictly standardized mean difference (SSMD) value of 3.0. Among them, 13 compounds were further confirmed to give at least a 5-fold increase in the luciferase activity in the stable reporter cell line, with 12 being histone deacetylase (HDAC) inhibitors. Eight compounds were subsequently observed to be comparable to sodium butyrate in inducing PBD3 mRNA expression in parental IPEC-J2 cells in the low micromolar range. Six HDAC inhibitors including suberoylanilide hydroxamine (SAHA), HC toxin, apicidin, panobinostat, SB939, and LAQ824 were additionally found to be highly effective HDP inducers in a porcine 3D4/31 macrophage cell line. Besides PBD3, other HDP genes such as PBD2 and cathelicidins (PG1–5) were concentration-dependently induced by those compounds in both IPEC-J2 and 3D4/31 cells. Furthermore, the antibacterial activities of 3D4/31 cells were augmented following 24 h exposure to HDAC inhibitors. In conclusion, a cell-based high-throughput screening assay was developed for the discovery of porcine HDP inducers, and newly identified HDP-inducing compounds may have potential to be developed as alternatives to antibiotics for applications in swine and possibly other animal species.
Collapse
|
23
|
Jiang J, Zhang Y, Indra AK, Ganguli-Indra G, Le MN, Wang H, Hollins RR, Reilly DA, Carlson MA, Gallo RL, Gombart AF, Xie J. 1α,25-dihydroxyvitamin D 3-eluting nanofibrous dressings induce endogenous antimicrobial peptide expression. Nanomedicine (Lond) 2018; 13:1417-1432. [PMID: 29972648 PMCID: PMC6219435 DOI: 10.2217/nnm-2018-0011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 01/27/2023] Open
Abstract
AIM The aim of this study was to develop a nanofiber-based dressing capable of local sustained delivery of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and augmenting human CAMP induction. MATERIALS & METHODS Nanofibrous wound dressings containing 1,25(OH)2D3 were successfully prepared by electrospinning, which were examined in vitro, in vivo and ex vivo. RESULTS 1,25(OH)2D3 was successfully loaded into nanofibers with encapsulation efficiency larger than 90%. 1,25(OH)2D3 showed a sustained release from nanofibers over 4 weeks. Treatment of U937 and HaCaT cells with 1,25(OH)2D3-loaded poly(ϵ-caprolactone) nanofibers significantly induced hCAP18/LL37 expression in monocytes and keratinocytes, skin wounds of humanized transgenic mice and artificial wounds of human skin explants. CONCLUSION 1,25(OH)2D3 containing nanofibrous dressings could enhance innate immunity by inducing antimicrobial peptide production.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Surgery, Transplant & Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yang Zhang
- Department of Biochemistry & Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Nutrition Graduate Program, School of Biological & Population Health Sciences, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Arup K Indra
- Department of Biochemistry & Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Mai N Le
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Hongjun Wang
- Department of Surgery, Transplant & Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ronald R Hollins
- Department of Surgery – Plastic & Reconstructive Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Debra A Reilly
- Department of Surgery – Plastic & Reconstructive Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mark A Carlson
- Department of Surgery – General Surgery & Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, VA Nebraska – Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, CA 92093, USA
| | - Adrian F Gombart
- Department of Biochemistry & Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Nutrition Graduate Program, School of Biological & Population Health Sciences, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jingwei Xie
- Department of Surgery, Transplant & Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Li Z, Hu Y, Yang Y, Lu Z, Wang Y. Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge. Anim Front 2018; 8:21-29. [PMID: 32002215 PMCID: PMC6951932 DOI: 10.1093/af/vfy005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhi Li
- Laboratory of Animal Nutrition and Feed Science, Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuhan Hu
- Laboratory of Animal Nutrition and Feed Science, Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuanyuan Yang
- Laboratory of Animal Nutrition and Feed Science, Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zeqing Lu
- Laboratory of Animal Nutrition and Feed Science, Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yizhen Wang
- Laboratory of Animal Nutrition and Feed Science, Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
25
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Estévez RA, Mostazo MGC, Rodriguez E, Espinoza JC, Kuznar J, Jónsson ZO, Guðmundsson GH, Maier VH. Inducers of salmon innate immunity: An in vitro and in vivo approach. FISH & SHELLFISH IMMUNOLOGY 2018; 72:247-258. [PMID: 29108970 DOI: 10.1016/j.fsi.2017.10.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Maintaining fish health is one of the most important aims in aquaculture. Prevention of fish diseases therefore is crucial and can be achieved by various different strategies, including most often a combination of different methods such as optimal feed and fish density, as well as strengthening the immune system. Understanding the fish innate immune system and developing methods to activate it, in an effort to prevent infections in the first place, has been a goal in recent years. In this study we choose different inducers of the innate immune system and examined their effects in vitro on the salmon cell line CHSE-214. We found that the butyrate derivatives 4-phenyl butyrate (PBA) and β-hydroxy-β-methyl butyrate (HMB) induce the expression of various innate immune genes differentially over 24-72 h. Similarly, lipids generated from fish oils were found to have an effect on the expression of the antimicrobial peptides cathelicidin and hepcidin, as well as iNOS and the viral receptor RIG-1. Interestingly we found that vitamin D3, similar as in mammals, was able to increase cathelicidin expression in fish cells. The observed induction of these different innate immune factors correlated with antibacterial activity against Aeromonas salmonicida and antiviral activity against IPNV and ISAV in vitro. To relate this data to the in vivo situation we examined cathelicidin expression in juvenile salmon and found that salmon families vary greatly in their basal cathelicidin levels. Examining cathelicidin levels in families known to be resistant to IPNV showed that these QTL-families had lower basal levels of cathelicidin in gills, than non QTL-families. Feeding fish with HMB caused a robust increase in cathelicidin expression in gills, but not skin and this was independent of the fish being resistant to IPNV. These findings support the use of fish cell lines as a tool to develop new inducers of the fish innate immune system, but also highlight the importance of the tissue studied in vivo. Understanding the response of the innate immune system in different tissues and what effect this might have on infections and downstream cellular pathways is an interesting research topic for the future.
Collapse
Affiliation(s)
- Rosana A Estévez
- Stofnfiskur Staðarberg 2-4, 221 Hafnarfjörður, Iceland; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Miriam G Contreras Mostazo
- Stofnfiskur Staðarberg 2-4, 221 Hafnarfjörður, Iceland; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | | | - Juan Carlos Espinoza
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Juan Kuznar
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Guðmundur H Guðmundsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Valerie H Maier
- Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland.
| |
Collapse
|
27
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
28
|
Rivas L, Nácher-Vázquez M, Andreu D. The Physical Matrix of the Plasma Membrane as a Target: The Charm of Drugs with Low Specificity. DRUG DISCOVERY FOR LEISHMANIASIS 2017:248-281. [DOI: 10.1039/9781788010177-00248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous through living organisms from different kingdoms. Their role is either defense against invading pathogens, or to strive for survival against microorganisms sharing the same ecological niche. Many AMPs are active against a broad variety of target microorganisms. This, together with their low induction of resistance, heralded the use of AMPs as a new generation of antibiotics. However, studies addressing the feasibility of AMP implementation on leishmaniasis are scarce. This review describes the different approaches to leishmaniasis carried out with AMPs regardless their biological origin. The chapter encompasses studies of AMPs both in vitro and in animal models of Leishmania infection. The mechanisms of action of AMPs both on Leishmania and on the macrophage are described, as well as the underlying molecular determinants of AMPs driving their effectiveness on Leishmania. Finally, the prospects for the feasible implementation of a pharmacological strategy for leishmaniasis based on peptide-based therapies are outlined.
Collapse
Affiliation(s)
- Luis Rivas
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | - Montserrat Nácher-Vázquez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park 08003 Barcelona Spain
| |
Collapse
|
29
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
30
|
de la Fuente-Núñez C, Silva ON, Lu TK, Franco OL. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol Ther 2017; 178:132-140. [DOI: 10.1016/j.pharmthera.2017.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Treatment with Entinostat Heals Experimental Cholera by Affecting Physical and Chemical Barrier Functions of Intestinal Epithelia. Antimicrob Agents Chemother 2017; 61:AAC.02570-16. [PMID: 28438947 DOI: 10.1128/aac.02570-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/15/2017] [Indexed: 12/14/2022] Open
Abstract
We have shown previously that oral treatment with sodium butyrate or phenylbutyrate in an experimental model of shigellosis improves clinical outcomes and induces the expression of the antimicrobial peptide CAP-18 in the large intestinal epithelia. In a subsequent study, we found that entinostat, an aroylated phenylenediamine compound, has similar therapeutic potential against shigellosis. In this study, we aimed to evaluate entinostat as a potential candidate for host-directed therapy against cholera in an experimental model. Vibrio cholerae-infected rabbits were treated with two different dose regimens of entinostat: either 0.5 mg twice daily for 2 days or 1 mg once daily for 2 days. The effects of treatment on clinical outcomes and V. cholerae shedding (CFU count in stool) were observed. Immunohistochemical analysis was carried out to assess CAP-18 expression in ileal and jejunal mucosae. The serum zonulin level was measured by an enzyme-linked immunosorbent assay (ELISA) to evaluate gut permeability. Infection of rabbits with V. cholerae downregulated CAP-18 expression in the ileal epithelium; the expression was replenished by oral treatment with entinostat at either dose regimen. The level of zonulin, a marker of gut permeability, in serum was upregulated after infection, and this upregulation was counteracted after treatment with entinostat. Entinostat treatment also led to recovery from cholera and a decline in the V. cholerae count in stool. In conclusion, the improved clinical outcome of cholera for rabbits treated with entinostat is associated with the induction of CAP-18 and the reduction of gut epithelial permeability.
Collapse
|
32
|
Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 2017; 38:87-96. [PMID: 28399505 PMCID: PMC5494204 DOI: 10.1016/j.cbpa.2017.03.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs), including biofilms. Finally, we highlight AMPs already in use or under clinical trials.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Scott Reiling
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - D Zarena
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; Department of Physics, JNTUA College of Engineering, Anantapur 515002, India
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
33
|
Entinostat up-regulates the CAMP gene encoding LL-37 via activation of STAT3 and HIF-1α transcription factors. Sci Rep 2016; 6:33274. [PMID: 27633343 PMCID: PMC5025742 DOI: 10.1038/srep33274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Bacterial resistance against classical antibiotics is a growing problem and the development of new antibiotics is limited. Thus, novel alternatives to antibiotics are warranted. Antimicrobial peptides (AMPs) are effector molecules of innate immunity that can be induced by several compounds, including vitamin D and phenyl-butyrate (PBA). Utilizing a luciferase based assay, we recently discovered that the histone deacetylase inhibitor Entinostat is a potent inducer of the CAMP gene encoding the human cathelicidin LL-37. Here we investigate a mechanism for the induction and also find that Entinostat up-regulates human β-defensin 1. Analysis of the CAMP promoter sequence revealed binding sites for the transcription factors STAT3 and HIF-1α. By using short hairpin RNA and selective inhibitors, we found that both transcription factors are involved in Entinostat-induced expression of LL-37. However, only HIF-1α was found to be recruited to the CAMP promoter, suggesting that Entinostat activates STAT3, which promotes transcription of CAMP by increasing the expression of HIF-1α. Finally, we provide in vivo relevance to our findings by showing that Entinostat-elicited LL-37 expression was impaired in macrophages from a patient with a STAT3-mutation. Combined, our findings support a role for STAT3 and HIF-1α in the regulation of LL-37 expression.
Collapse
|