1
|
Xiao H, Li Y. From Teeth to Body: The Complex Role of Streptococcus mutans in Systemic Diseases. Mol Oral Microbiol 2025; 40:65-81. [PMID: 39865888 DOI: 10.1111/omi.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Streptococcus mutans, the principal pathogen associated with dental caries, impacts individuals across all age groups and geographic regions. Beyond its role in compromising oral health, a growing body of research has established a link between S. mutans and various systemic diseases, including immunoglobulin A nephropathy (IgAN), nonalcoholic steatohepatitis (NASH), infective endocarditis (IE), ulcerative colitis (UC), cerebral hemorrhage, and tumors. The pathogenic mechanisms associated with S. mutans frequently involve collagen-binding proteins (CBPs) and protein antigens (PA) present on the bacterial surface. These components facilitate intricate interactions with the host immune system, thereby potentially contributing to various pathological processes. Specifically, CBP is implicated in the deposition of IgA and complement component C3, which exhibits characteristics reminiscent of IgAN-like lesions through animal models, recent clinical studies suggest a potential involvement of S. mutans in IgAN. In addition, CBP binds to complement component C1q, effectively inhibiting the classical activation pathway of the complement system. In addition, CBP promotes the induction of host cells to produce interferon-gamma (IFN-γ). Furthermore, CBP leads to direct inhibitory effects on platelets and the activation of matrix metalloproteinase-9 (MMP-9) at sites of vascular injury. Moreover, PA enhances the ability of S. mutans to invade hepatic tissue. Through utilization of its PAc, S. mutans excessively produces kynurenine (KYNA), which promotes the development and progression of oral squamous cell carcinoma (OSCC). This article synthesizes the latest advancements in understanding the mechanisms of intricate interactions between S. mutans and various systemic conditions in humans, expanding our perspective beyond the traditional focus on dental caries.
Collapse
Affiliation(s)
- Haowen Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Fang Y, Chen X, Chu CH, Yu OY, He J, Li M. Roles of Streptococcus mutans in human health: beyond dental caries. Front Microbiol 2024; 15:1503657. [PMID: 39749137 PMCID: PMC11693680 DOI: 10.3389/fmicb.2024.1503657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Streptococcus mutans (S. mutans) is the main pathogenic bacterium causing dental caries, and the modes in which its traits, such as acid production, acid tolerance, and adhesion that contribute to the dental caries process, has been clarified. However, a growing number of animal experiments and clinical revelations signify that these traits of S. mutans are not restricted to the detriment of dental tissues. These traits can assist S. mutans in evading the immune system within body fluids; they empower S. mutans to adhere not merely to the surface of teeth but also to other tissues such as vascular endothelium; they can additionally trigger inflammatory reactions and inflict damage on various organs, thereby leading to the occurrence of systemic diseases. These traits mostly originate from some correlative findings, lacking a comprehensive evaluation of the impact of S. mutans on systemic diseases. Therefore, this review mainly centers on the dissemination route of S. mutans: "Entering the blood circulation - Occurrence of tissue adhesion - Extensive possible proinflammatory mechanisms - Concentration in individual organs" and analyses the specific effects and possible mechanisms of S. mutans in systemic diseases such as cerebral hemorrhage, inflammatory bowel disease, tumors, and infective endocarditis that have been identified hitherto.
Collapse
Affiliation(s)
- Yanke Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ito S, Misaki T, Nagasawa Y, Nomura R, Naka S, Fukunaga A, Matsuoka D, Matayoshi S, Matsumoto-Nakano M, Nakano K. Porphyromonas gingivalis infection in the oral cavity is associated with elevated galactose-deficient IgA1 and increased nephritis severity in IgA nephropathy. Clin Exp Nephrol 2024; 28:192-200. [PMID: 37806974 DOI: 10.1007/s10157-023-02411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The relationship between the major periodontal bacteria, Porphyromonas gingivalis, and the pathogenesis of IgA nephropathy (IgAN)-particularly with respect to galactose-deficient IgA1 (Gd-IgA1)-has not been fully elucidated. METHODS Saliva samples from 30 IgAN patients and 44 patients with chronic kidney disease (CKD) were subjected to analysis of P. gingivalis status via polymerase chain reaction using a set of P. gingivalis-specific primers. The associations between P. gingivalis presence and clinical parameters, including plasma Gd-IgA1, were analyzed in each group. RESULTS Compared with the CKD group, the IgAN group demonstrated significantly higher plasma Gd-IgA1 levels (p < 0.05). Compared with the P. gingivalis-negative subgroup, the P. gingivalis-positive subgroup exhibited significantly higher plasma Gd-IgA1 levels in both IgAN and CKD patients (p < 0.05). Additionally, among IgAN patients, the P. gingivalis-positive subgroup displayed significantly higher plasma Gd-IgA1 and urine protein levels, compared with the P. gingivalis-negative subgroup (p < 0.05). With respect to renal biopsy findings, the frequencies of segmental glomerulosclerosis and tubular atrophy/interstitial fibrosis were significantly greater in the P. gingivalis-positive subgroup than in the P. gingivalis-negative subgroup, according to the Oxford classification of IgAN (p < 0.05). CONCLUSION Our findings suggest an association between the presence of P. gingivalis in the oral cavity and the pathogenesis of IgAN, mediated by increased levels of Gd-IgA1.
Collapse
Affiliation(s)
- Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Force Iruma Hospital, Iruma, Saitama, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan.
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka, Japan.
| | - Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Akiko Fukunaga
- Division of Dentistry, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
4
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
5
|
Wei J, Luo J, Yang F, Dai W, Pan X, Luo M. Identification of commensal gut bacterial strains with lipogenic effects contributing to NAFLD in children. iScience 2024; 27:108861. [PMID: 38313052 PMCID: PMC10835367 DOI: 10.1016/j.isci.2024.108861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Gut microbiota is known to have a significant impact on nonalcoholic fatty liver disease (NAFLD), particularly in children with obesity. However, the specific functions of microbiota at the strain level in this population have not been fully elucidated. In this study, we successfully isolated and identified several commensal gut bacterial strains that were dominant in children with obesity and NAFLD. Among these, four novel isolates were found to have significant lipogenic effects in vitro. These strains exhibited a potential link to hepatocyte steatosis by regulating the expression of genes involved in lipid metabolism and inflammation. Moreover, a larger cohort analysis confirmed that these identified bacterial strains were enriched in the NAFLD group. The integrated analysis of these strains effectively distinguished NASH from NAFL. These four strains might serve as potential biomarkers in children with NAFLD. These findings provided new insights into the exploration of therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Xiongfeng Pan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
6
|
Misaki T, Naka S, Suzuki H, Lee M, Aoki R, Nagasawa Y, Matsuoka D, Ito S, Nomura R, Matsumoto-Nakano M, Suzuki Y, Nakano K. cnm-positive Streptococcus mutans is associated with galactose-deficient IgA in patients with IgA nephropathy. PLoS One 2023; 18:e0282367. [PMID: 36862654 PMCID: PMC9980772 DOI: 10.1371/journal.pone.0282367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
The presence of Streptococcus mutans expressing Cnm protein encoded by cnm (cnm-positive S. mutans) in the oral cavity is associated with immunoglobulin A (IgA) nephropathy (IgAN). However, the precise mechanism by which cnm-positive S. mutans is involved in the pathogenesis of IgAN remains unclear. The present study evaluated glomerular galactose-deficient IgA1 (Gd-IgA1) to clarify the association between the presence of cnm-positive S. mutans and glomerular Gd-IgA1 in patients with IgAN. The presence of S. mutans and cnm-positive S. mutans was evaluated by polymerase chain reaction in saliva specimens from 74 patients with IgAN or IgA vasculitis. Immunofluorescent staining of IgA and Gd-IgA1 using KM55 antibody in clinical glomerular tissues was then performed. There was no significant association between the glomerular staining intensity of IgA and the positive rate of S. mutans. However, there was a significant association between the glomerular staining intensity of IgA and the positive rate of cnm-positive S. mutans (P < 0.05). There was also a significant association between the glomerular staining intensity of Gd-IgA1 (KM55) and the positive rate of cnm-positive S. mutans (P < 0.05). The glomerular staining intensity of Gd-IgA1 (KM55) was not associated with the positive rate of S. mutans. These results suggest that cnm-positive S. mutans in the oral cavity is associated with the pathogenesis of Gd-IgA1 in patients with IgAN.
Collapse
Affiliation(s)
- Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mingfeng Lee
- Department of Nephrology, Juntendo University Faculty of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Aoki
- Department of Nephrology, Juntendo University Faculty of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Nagasawa
- Department of General Internal Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Iruma Hospital, Iruma, Saitama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Division of Oral Infection and Disease Control, Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Nakano
- Division of Oral Infection and Disease Control, Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
7
|
Huang L, Lu W, Ning Y, Liu J. Reverse effects of Streptococcus mutans physiological states on neutrophil extracellular traps formation as a strategy to escape neutrophil killing. Front Cell Infect Microbiol 2022; 12:1023457. [PMID: 36439223 PMCID: PMC9687095 DOI: 10.3389/fcimb.2022.1023457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 03/07/2024] Open
Abstract
Bacteria in nature are present in different lifestyles with distinct characteristics. Streptococcus mutans is the etiologic pathogen of dental caries and could easily gain access into the bloodstream after oral surgery and adopt a biofilm lifestyle, resulting in infective endocarditis. A growing amount of evidence have revealed that the large web-like structure composed of extracellular DNA and antimicrobial proteins released by neutrophils, named Neutrophil Extracellular Traps (NETs), play an active role in the defense against bacterial invasion. The present study demonstrated that NETs formation was discriminatively affected by S. mutans biofilm and its planktonic counterpart. The free-floating planktonic S. mutans exhibited an active NETs response, whereas the biofilm community exhibited a reverse negative NETs response. Besides, impaired biofilm killing correlated with the decrease in NETs production. Unlike planktonic cells, biofilm avoided the burst of reactive oxygen species (ROS) when co-culture with neutrophils, and the NADPH-oxidase pathway was partially involved. A mice infection model also supported the distinguishing response of neutrophils challenged by different lifestyles of S. mutans. In conclusion, different bacterial physiological states can affect the distinct response of the host-microbe interaction, thus contributing to the anti-pathogen immune response activation and immune surveillance survival.
Collapse
Affiliation(s)
- Lijia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong, Guangzhou, China
| | - Yang Ning
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
8
|
Otsugu M, Mikasa Y, Kitamura T, Suehiro Y, Matayoshi S, Nomura R, Nakano K. Clinical characteristics of children and guardians possessing CBP-positive Streptococcus mutans strains: a cross-sectional study. Sci Rep 2022; 12:17510. [PMID: 36266432 PMCID: PMC9585102 DOI: 10.1038/s41598-022-22378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Streptococcus mutans is a major etiological agent for dental caries. We previously demonstrated that S. mutans strains expressing collagen-binding proteins (CBPs) were related to the pathogenesis of systemic diseases. However, their acquisition and colonization remain unknown. Here, we investigated the detection rates of CBP-positive S. mutans strains in children and their guardians to clarify the background for the acquisition and colonization in children. Saliva samples were collected from children and their mothers, and detection of S. mutans and collagen-binding genes (cnm, cbm) was performed by PCR after DNA extraction. The oral status of each child was examined, and their mothers were asked to complete a questionnaire. The isolation rate of Cnm-positive S. mutans was significantly higher in mothers than in children. Notably, the possession rates of CBP-positive strains in children were significantly higher in children whose mothers had CBP-positive strains than in children whose mothers did not have these strains. Furthermore, children with CBP-positive strains had a significantly shorter breastfeeding period than children without these strains. The present results suggest that nutritional feeding habits in infancy are one of the factors involved in the acquisition and colonization of CBP-positive S. mutans strains.
Collapse
Affiliation(s)
- Masatoshi Otsugu
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yusuke Mikasa
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Takahiro Kitamura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yuto Suehiro
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Saaya Matayoshi
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Ryota Nomura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan ,grid.257022.00000 0000 8711 3200Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiko Nakano
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
9
|
Naka S, Matsuoka D, Goto K, Misaki T, Nagasawa Y, Ito S, Nomura R, Nakano K, Matsumoto-Nakano M. Cnm of Streptococcus mutans is important for cell surface structure and membrane permeability. Front Cell Infect Microbiol 2022; 12:994014. [PMID: 36176579 PMCID: PMC9513430 DOI: 10.3389/fcimb.2022.994014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is a major pathogen of dental caries. The protein Cnm of S. mutans is involved in collagen binding, but its other biological functions are unknown. In this study, a Cnm-deficient isogenic mutant and a complementation strain were generated from a Cnm-positive S. mutans strain to help determine the properties of Cnm. Initially, comparison of the cell surface structure was performed by electron microscopy, which demonstrated that Cnm appears to be localized on the cell surface and associated with a protruding cell surface structure. Deep RNA sequencing of the strains revealed that the defect in Cnm caused upregulated expression of many genes related to ABC transporters and cell-surface proteins, while a few genes were downregulated. The amount of biofilm formed by the Cnm-defective strain increased compared with the parental and complemented strains, but the biofilm structure was thinner because of elevated expression of genes encoding glucan synthesis enzymes, leading to increased production of extracellular polysaccharides. Particular antibiotics, including bacitracin and chloramphenicol, had a lower minimum inhibitory concentration for the Cnm-defective strain than particular antibiotics, including bacitracin and chloramphenicol, compared with the parental and complemented strains. Our results suggest that S. mutans Cnm is located on the cell surface, gives rise to the observed protruding cell surface, and is associated with several biological properties related to membrane permeability.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kana Goto
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Japan
| | - Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Iruma Hospital, Iruma, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Michiyo Matsumoto-Nakano,
| |
Collapse
|
10
|
Misaki T, Naka S, Nagasawa Y, Matsuoka D, Ito S, Nomura R, Matsumoto-Nakano M, Nakano K. Simultaneous Presence of Campylobacter rectus and Cnm-Positive Streptococcus mutans in the Oral Cavity Is Associated with Renal Dysfunction in IgA Nephropathy Patients: 5-Year Follow-Up Analysis. Nephron Clin Pract 2022; 147:134-143. [PMID: 35998579 DOI: 10.1159/000525511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The simultaneous presence of Streptococcus mutans expressing the Cnm protein encoded by cnm (i.e., cnm-positive S. mutans) and Campylobacter rectus in the oral cavity has been associated with proteinuria in patients with IgA nephropathy (IgAN). OBJECTIVES The present study evaluated the relationship between renal function and oral bacteria in patients with IgAN over 5 years of follow-up. METHODS The presence of C. rectus and cnm-positive S. mutans in saliva samples of 117 patients with IgAN was initially evaluated by polymerase chain reaction. Patients were then divided into four groups according to the results of C. rectus and cnm-positive S. mutans detection: group A: C. rectus (-), cnm-positive S. mutans (-); group B: C. rectus (+), cnm-positive S. mutans (-); group C: C. rectus (-), cnm-positive S. mutans (+); and group D: C. rectus (+), cnm-positive S. mutans (+). Clinical characteristics were prospectively followed for 5 years. RESULTS Serum creatinine levels were significantly higher in group D than in group A over 5 years of follow-up. Additionally, the proportion of patients with an estimated glomerular filtration rate <45 mL/min increased over time; it was significantly greater in group D than in group A over 5 years of follow-up. CONCLUSION These results suggest that the simultaneous presence of C. rectus and cnm-positive S. mutans in the oral cavity is associated with renal dysfunction in IgAN patients.
Collapse
Affiliation(s)
- Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan.,Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Nagasawa
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Iruma Hospital, Iruma, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Division of Oral Infection and Disease Control, Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Division of Oral Infection and Disease Control, Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
11
|
Suehiro Y, Nomura R, Matayoshi S, Otsugu M, Iwashita N, Nakano K. Evaluation of the collagen-binding properties and virulence of killed Streptococcus mutans in a silkworm model. Sci Rep 2022; 12:2800. [PMID: 35181690 PMCID: PMC8857238 DOI: 10.1038/s41598-022-06345-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, is also known as a causative agent of cardiovascular disease. A 120 kDa collagen-binding protein (Cnm) of S. mutans is an important contributor to the pathogenicity of cardiovascular disease. Although dead bacteria have been detected in cardiovascular specimens by molecular biological methods, the pathogenicity of the bacteria remains unknown. Here, we analyzed the pathogenicity of killed S. mutans by focusing on collagen-binding ability and the effects on silkworms. In live S. mutans, Cnm-positive S. mutans had high collagen-binding activity, while Cnm-negative S. mutans had no such activity. After treatment with killed Cnm-positive S. mutans, amoxicillin-treated bacteria still had collagen-binding ability, while lysozyme-treated bacteria lost this ability. When live and amoxicillin-treated S. mutans strains were administered to silkworms, the survival rates of the silkworms were reduced; this reduction was more pronounced in Cnm-positive S. mutans infection than in Cnm-negative S. mutans infection. However, the administration of any of the lysozyme-treated bacteria did not reduce the survival rate of the silkworms. These results suggest that amoxicillin-killed Cnm-positive S. mutans strains maintain collagen-binding properties and pathogenicity in the silkworm model, and are possibly associated with pathogenicity in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masatoshi Otsugu
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Naoki Iwashita
- Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Nagasawa Y, Misaki T, Ito S, Naka S, Wato K, Nomura R, Matsumoto-Nakano M, Nakano K. Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis. Int J Mol Sci 2022; 23:725. [PMID: 35054910 PMCID: PMC8775524 DOI: 10.3390/ijms23020725] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
A relationship between IgA nephropathy (IgAN) and bacterial infection has been suspected. As IgAN is a chronic disease, bacteria that could cause chronic infection in oral areas might be pathogenetic bacteria candidates. Oral bacterial species related to dental caries and periodontitis should be candidates because these bacteria are well known to be pathogenic in chronic dental disease. Recently, several reports have indicated that collagen-binding protein (cnm)-(+) Streptococcs mutans is relate to the incidence of IgAN and the progression of IgAN. Among periodontal bacteria, Treponema denticola, Porphyromonas gingivalis and Campylobacte rectus were found to be related to the incidence of IgAN. These bacteria can cause IgAN-like histological findings in animal models. While the connection between oral bacterial infection, such as infection with S. mutans and periodontal bacteria, and the incidence of IgAN remains unclear, these bacterial infections might cause aberrantly glycosylated IgA1 in nasopharynx-associated lymphoid tissue, which has been reported to cause IgA deposition in mesangial areas in glomeruli, probably through the alteration of microRNAs related to the expression of glycosylation enzymes. The roles of other factors related to the incidence and progression of IgA, such as genes and cigarette smoking, can also be explained from the perspective of the relationship between these factors and oral bacteria. This review summarizes the relationship between IgAN and oral bacteria, such as cnm-(+) S. mutans and periodontal bacteria.
Collapse
Affiliation(s)
- Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Shizuoka, Japan;
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu 433-8558, Shizuoka, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Gifu Hospital, Kakamigahara 502-0817, Gifu, Japan;
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| |
Collapse
|
13
|
Hirohashi Y, Kamijo S, Khan M, Ikeda M, Oki M, Matin K, Rashed F, Aoki K. Tetracycline, an Appropriate Reagent for Measuring Bone-Formation Activity in the Murine Model of the Streptococcus mutans-Induced Bone Loss. Front Cell Infect Microbiol 2021; 11:714366. [PMID: 34589443 PMCID: PMC8473704 DOI: 10.3389/fcimb.2021.714366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Tetracycline is used as a fluorescent reagent to measure bone formation activity in bone histomorphometric analyses. However, there is a possibility to lead a different conclusion when it is used in a bacteria-infected murine model since the tetracycline is considered to work as an antibiotic reagent. There are non-antibiotic fluorescent reagents such as alizarin and calcein for measuring bone formation activity. The purpose of this study was to clarify whether tetracycline could be an appropriate reagent to measure bone formation activity in a murine bacterial model in the same way as a non-antibiotic fluorescent reagent. We used Streptococcus mutans (S. mutans), a normal inhabitant in the oral cavity and tetracycline-sensitive bacteria, for inducing the bacterial model. The murine bacterial model was generated by intravenously inoculating S. mutans to the tail vein, followed immediately by the injection of the first fluorescent reagent, and the second one was injected 2 days prior to euthanization. After one day of inoculation with S. mutans, the subcutaneously injected alizarin had a similar colony count derived from the liver and the bone marrow tissue compared to the phosphate buffered saline (PBS)-injected control group. On the other hand, subcutaneous injection of tetracycline led to a significantly lower colony count from the liver compared to alizarin- or calcein-injected group. However, on day seven, after S. mutans intravenous injections, bone mineral density of distal femurs was significantly reduced by the bacteria inoculation regardless of which fluorescent reagents were injected subcutaneously. Finally, S. mutans inoculation reduced bone-formation-activity indices in both the tetracycline-alizarin double-injected mice and the calcein-alizarin double-injected mice. These results suggested that a one-time injection of tetracycline did not affect bone formation indices in the S. mutans-induced bone loss model. Tetracycline could be used for measuring bone formation activity in the same way as non-antibiotic fluorescent reagent such as calcein and alizarin, even in a tetracycline-sensitive bacterium-infected model.
Collapse
Affiliation(s)
- Yuna Hirohashi
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shingo Kamijo
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Endowed Department of International Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama, Japan
| | - Fatma Rashed
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oral Biology, Faculty of Dentistry, Damanhour University, El Behera, Egypt
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Sabharwal A, Stellrecht E, Scannapieco FA. Associations between dental caries and systemic diseases: a scoping review. BMC Oral Health 2021; 21:472. [PMID: 34563194 PMCID: PMC8466895 DOI: 10.1186/s12903-021-01803-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The objective of this study was to evaluate and present evidence from animal and human clinical studies on associations between dental caries and systemic diseases, and to suggest potential mechanisms that might explain such associations. METHODS An electronic search was conducted of PubMed, Embase and Cochrane Central Register of Controlled Trials for articles published from 2010 to 2020 in the English language. From the initial search, 404 full-text studies were assessed for eligibility. After excluding studies for technical and study limitations, a total of 67 studies were included in the summary tables and additional studies were included in the review to support evidence. RESULTS Few systemic disease and conditions were found to be clinically meaningfully associated with caries experience. Best evidence from human and animal studies described association between metabolic diseases and dental caries. Several interesting animal studies were noted that could generate clinical hypotheses and further investigations in rodent models for cardiovascular injury and hyperglycemia. Inadequate data was found to suggest any modifications to current clinical practice or prevention guidelines. CONCLUSIONS Limited clinical evidence was found connecting several systemic diseases and dental caries. Inadequate data was found to suggest any modifications to current clinical practice or prevention guidelines. CLINICAL SIGNIFICANCE Understanding of associations between dental caries and systemic diseases play a crucial role in the treatment planning and education of the dental patient.
Collapse
Affiliation(s)
- Amarpreet Sabharwal
- Division of Periodontics, Schulich School of Medicine and Dentistry, DSB 0156A, Western University, 1151 Richmond St., London, ON N6A 5C1 Canada
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| | - Elizabeth Stellrecht
- Health Sciences Library University at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| | - Frank A. Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main St, Buffalo, NY 14214 USA
| |
Collapse
|
15
|
Lima AR, Herrera DR, Francisco PA, Pereira AC, Lemos J, Abranches J, Gomes BPFA. Detection of Streptococcus mutans in symptomatic and asymptomatic infected root canals. Clin Oral Investig 2021; 25:3535-3542. [PMID: 33170373 PMCID: PMC8152374 DOI: 10.1007/s00784-020-03676-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the presence of Streptococcus mutans in root canals of symptomatic necrotic teeth (SNT) and their associated acute apical abscesses (AAA) and in the root canals of asymptomatic necrotic teeth (ANT). It also aimed to investigate the presence of the cnm and cbm genes in specimens that harbored S. mutans. MATERIALS AND METHODS DNA was extracted from samples collected from 10 patients presenting pulpal necrosis associated with radiographic evidence of apical periodontitis (ANT) and from 10 patients in need of endodontic therapy due to the presence of pulpal necrosis (SNT) and AAA. The control group consisted of 10 patients with teeth with normal vital pulp and requiring endodontic treatment for prosthetic reasons. The presence of S. mutans was detected by quantitative real-time-PCR (qPCR) using species-specific primers. Samples harboring S. mutans were further evaluated for the presence of CBP genes by qPCR as well. RESULTS All studied sites showed a high prevalence of S. mutans, except the control group. Specifically, 60% of ANT and 70% of AAA/SNT paired samples were positive for S. mutans. The cnm gene was detected positive for S. mutans only in ANT samples (66.6%). The cbm gene was not detected in any of the investigated sites. CONCLUSIONS S. mutans was found in high prevalence in both asymptomatic and symptomatic endodontic infections, including in abscesses, but it was not detected in the root canals of teeth with normal vital pulp. Interestingly, cnm+ S. mutans was only detected in asymptomatic/chronic primary endodontic infections associated with apical lesion. Therefore, it appears that cnm, and possibly other CBPs, may play an underestimated role in chronic endodontic infections. CLINICAL RELEVANCE A high prevalence of Streptococcus mutans cnm+ gene was detected only in asymptomatic primary endodontic infections associated with apical lesion. Therefore, it appears that this collagen-binding protein gene plays an underestimated role in asymptomatic/chronic endodontic infections.
Collapse
Affiliation(s)
- Augusto Rodrigues Lima
- Department of Restorative Dentistry, Endodontic Division, Piracicaba Dental School, University of Campinas-UNICAMP, Av Limeira, 901, Bairro Areião, Piracicaba, SP, 13414-903, Brazil
- Department of Oral Biology, University of Florida, UF. College of Dentistry, 1395 Center Drive, Box 100424, Gainesville, FL, 32610-0424, USA
| | - Daniel Rodrigo Herrera
- Department of Restorative Dentistry, Endodontic Division, Piracicaba Dental School, University of Campinas-UNICAMP, Av Limeira, 901, Bairro Areião, Piracicaba, SP, 13414-903, Brazil
- Department of Endodontics, Fluminense Federal University - UFF, Niteroi, RJ, Brazil
| | - Priscila Amanda Francisco
- Department of Restorative Dentistry, Endodontic Division, Piracicaba Dental School, University of Campinas-UNICAMP, Av Limeira, 901, Bairro Areião, Piracicaba, SP, 13414-903, Brazil
| | - Andrea Cardoso Pereira
- Department of Restorative Dentistry, Endodontic Division, Piracicaba Dental School, University of Campinas-UNICAMP, Av Limeira, 901, Bairro Areião, Piracicaba, SP, 13414-903, Brazil
- Department of Oral Biology, University of Florida, UF. College of Dentistry, 1395 Center Drive, Box 100424, Gainesville, FL, 32610-0424, USA
| | - Jose Lemos
- Department of Oral Biology, University of Florida, UF. College of Dentistry, 1395 Center Drive, Box 100424, Gainesville, FL, 32610-0424, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida, UF. College of Dentistry, 1395 Center Drive, Box 100424, Gainesville, FL, 32610-0424, USA.
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Endodontic Division, Piracicaba Dental School, University of Campinas-UNICAMP, Av Limeira, 901, Bairro Areião, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
16
|
Non-alcoholic steatohepatitis caused by oral bacteria. PEDIATRIC DENTAL JOURNAL 2021. [DOI: 10.1016/j.pdj.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Naka S, Wato K, Misaki T, Ito S, Matsuoka D, Nagasawa Y, Nomura R, Matsumoto-Nakano M, Nakano K. Streptococcus mutans induces IgA nephropathy-like glomerulonephritis in rats with severe dental caries. Sci Rep 2021; 11:5784. [PMID: 33707585 PMCID: PMC7952735 DOI: 10.1038/s41598-021-85196-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying immunoglobulin A nephropathy (IgAN), the most common chronic form of primary glomerulonephritis, remain poorly understood. Streptococcus mutans, a Gram-positive facultatively anaerobic oral bacterium, is a common cause of dental caries. In previous studies, S. mutans isolates that express Cnm protein on their cell surface were frequently detected in IgAN patients. In the present study, inoculation of Cnm-positive S. mutans in the oral cavities of 2-week-old specific-pathogen free Sprague-Dawley rats fed a high-sucrose diet for 32 weeks produced severe dental caries in all rats. Immunohistochemical analyses of the kidneys using IgA- and complement C3-specific antibodies revealed positive staining in the mesangial region. Scanning electron microscopy revealed a wide distribution of electron dense deposits in the mesangial region and periodic acid-Schiff staining demonstrated prominent proliferation of mesangial cells and mesangial matrix. These results suggest that IgAN-like glomerulonephritis was induced in rats with severe dental caries by Cnm-positive S. mutans.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Nagasawa
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| |
Collapse
|
18
|
Uekita H, Yamamoto H, Niinaga R, Yamane N, Yoshii M, Yamauchi-Takihara K, Kihara S. Reciprocal association of serum Mac-2 binding protein and HDL-cholesterol concentrations. Clin Chim Acta 2021; 516:142-148. [PMID: 33571485 DOI: 10.1016/j.cca.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Mac-2 binding protein (Mac-2BP) is used as a serum biomarker of nonalcoholic steatohepatitis, considered to be a liver phenotype of metabolic syndrome (MetS). In this study, we investigated the serum Mac-2BP concentrations-correlated MetS-related clinical parameters in vivo, and the underlying mechanism in vitro. MATERIALS & METHODS We enrolled 54 healthy Japanese men who underwent health examination at Osaka University Health Care Center in this study. Physical and serum biochemical parameters were obtained from all the subjects. In the cultured HepG2 cells, the effects of interferon (IFN)-γ on the expression of Mac-2BP, apolipoprotein (apo) A-I, and ATP binding cassette transporter A1 (ABCA1) were studied. RESULTS Serum Mac-2BP concentrations correlated negatively with HDL-C, and positively with body mass index and systolic blood pressure in univariate analysis. These results suggested the association between Mac-2BP and MetS, although none of these 3 parameters had significant correlation with serum Mac-2BP concentrations in multivariate analysis. In HepG2 cells, IFN-γ stimulation resulted in the increased Mac-2BP and the decreased ABCA1 and apo A-I mRNA concentrations, while Mac-2BP had no effects on ABCA1 and apo A-I concentrations. CONCLUSIONS The serum Mac-2BP concentrations are negatively correlated with HDL-C concentrations in healthy subjects, as a result of chronic inflammation.
Collapse
Affiliation(s)
- Hiromi Uekita
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Medical Technology, Faculty of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Ryu Niinaga
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriko Yamane
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manami Yoshii
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Tonomura S, Naka S, Tabata K, Hara T, Mori K, Tanaka S, Sumida Y, Kanemasa K, Nomura R, Matsumoto-Nakano M, Ihara M, Takahashi N, Nakano K. Relationship between Streptococcus mutans expressing Cnm in the oral cavity and non-alcoholic steatohepatitis: a pilot study. BMJ Open Gastroenterol 2019; 6:e000329. [PMID: 31645988 PMCID: PMC6781959 DOI: 10.1136/bmjgast-2019-000329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a severe state of non-alcoholic fatty liver disease (NAFLD), which is pathologically characterised by steatosis, hepatocyte ballooning, and lobular inflammation. Host–microbial interaction has gained attention as one of the risk factors for NASH. Recently, cnm-gene positive Streptococcus mutans expressing cell surface collagen-binding protein, Cnm (cnm-positive S. mutans), was shown to aggravate NASH in model mice. Here, we assessed the detection rate of cnm-positive S. mutans in oral samples from patients with NASH among NAFLD. Methods This single hospital cohort study included 41 patients with NAFLD. NASH was diagnosed histologically or by clinical score. The prevalence of cnm-positive S. mutans, oral hygiene and blood tests, including liver enzymes, adipocytokines and inflammatory and fibrosis markers, were assessed in biopsy-proven or clinically suspected NASH among NAFLD. Results Prevalence of cnm-positive S. mutans was significantly higher in patients with NASH than patients without NASH (OR 3.8; 95% CI 1.02 to 15.5). The cnm-positive S. mutans was related to decreased numbers of naturally remaining teeth and increased type IV collagen 7S level (median (IQR) 10.0 (5.0–17.5) vs 20.0 (5.0–25.0), p=0.06; 5.1 (4.0–7.9) vs 4.4 (3.7–5.3), p=0.13, respectively). Conclusions Prevalence of cnm-positive S. mutans in the oral cavity could be related to fibrosis of NASH among NAFLD.
Collapse
Affiliation(s)
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiko Tabata
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tasuku Hara
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kojiro Mori
- Department of Gastroenterology and Hepatology, Nara City Hospital, Nara, Japan
| | - Saiyu Tanaka
- Department of Gastroenterology and Hepatology, Nara City Hospital, Nara, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Aichi-gun, Japan
| | - Kazuyuki Kanemasa
- Department of Gastroenterology and Hepatology, Nara City Hospital, Nara, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University School of Dentistry Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center Hospital, Suita, Japan
| | | | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University School of Dentistry Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
20
|
Castillo Pedraza MC, Rosalen PL, de Castilho ARF, Freires IDA, de Sales Leite L, Faustoferri RC, Quivey RG, Klein MI. Inactivation of Streptococcus mutans genes lytST and dltAD impairs its pathogenicity in vivo. J Oral Microbiol 2019; 11:1607505. [PMID: 31143407 PMCID: PMC6522913 DOI: 10.1080/20002297.2019.1607505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Streptococcus mutans orchestrates the development of a biofilm that causes dental caries in the presence of dietary sucrose, and, in the bloodstream, S. mutans can cause systemic infections. The development of a cariogenic biofilm is dependent on the formation of an extracellular matrix rich in exopolysaccharides, which contains extracellular DNA (eDNA) and lipoteichoic acids (LTAs). While the exopolysaccharides are virulence markers, the involvement of genes linked to eDNA and LTAs metabolism in the pathogenicity of S. mutans remains unclear. Objective and Design: In this study, a parental strain S. mutans UA159 and derivative strains carrying single gene deletions were used to investigate the role of eDNA (ΔlytS and ΔlytT), LTA (ΔdltA and ΔdltD), and insoluble exopolysaccharides (ΔgtfB) in virulence in a rodent model of dental caries (rats) and a systemic infection model (Galleria mellonella larvae). Results: Fewer carious lesions were observed on smooth and sulcal surfaces of enamel and dentin of the rats infected with ∆lytS, ∆dltD, and ΔgtfB (vs. the parental strain). Moreover, strains carrying gene deletions prevented the killing of larvae (vs. the parental strain). Conclusions: Altogether, these findings indicate that inactivation of lytST and dltAD impaired S. mutans cariogenicity and virulence in vivo.
Collapse
Affiliation(s)
- Midian C Castillo Pedraza
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Aline Rogéria Freire de Castilho
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil.,Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Irlan de Almeida Freires
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Luana de Sales Leite
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | | | - Robert G Quivey
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| |
Collapse
|
21
|
Hamada M, Nomura R, Ogaya Y, Matayoshi S, Kadota T, Morita Y, Uzawa N, Nakano K. Potential involvement of Helicobacter pylori from oral specimens in overweight body-mass index. Sci Rep 2019; 9:4845. [PMID: 30890723 PMCID: PMC6425031 DOI: 10.1038/s41598-019-41166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
The bacterium Helicobacter pylori was originally classified in the Campylobacter genus, which contains major periodontopathic bacterial species, and H. pylori DNA has been found in the oral cavity. Although many studies show an association between the presence of periodontal bacteria and an overweight body-mass index (BMI; >25 kg/m2), the relationship between body weight and the presence of H. pylori in the oral cavity has not been demonstrated. Herein, we analysed the relationship between H. pylori in the oral cavity and systemic conditions, including the overweight BMI. Saliva specimens and extracted teeth were obtained from 87 subjects; the distribution of H. pylori among these specimens was analysed with the polymerase chain reaction. Subjects with an overweight BMI exhibited significantly higher detection rates of H. pylori in saliva, compared with non-overweight subjects (BMI <25 kg/m2) (P < 0.05). A clinical history of digestive diseases was not associated with the presence of H. pylori in overweight subjects, whereas subjects with both severe dental caries and an overweight BMI showed a higher detection rate of H. pylori in saliva specimens, compared with other groups. These results suggest that the detection of H. pylori in the oral cavity could be associated with the overweight BMI, which was predominant among subjects with severe dental caries.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | - Yuko Ogaya
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tamami Kadota
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yumiko Morita
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
22
|
Su X, Wang M, Wu Y, He Y, Fu Z. Specific chemiluminescent protocol for dual-site recognition of Streptococcus mutans utilizing strong affinity between teicoplanin and Gram-positive bacteria. Talanta 2018; 179:350-355. [DOI: 10.1016/j.talanta.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
|
23
|
Misaki T, Naka S, Wato K, Hatakeyama R, Nagasawa Y, Ito S, Inaba H, Nomura R, Matsumoto-Nakano M, Nakano K. Campylobacter rectus in the Oral Cavity Correlates with Proteinuria in Immunoglobulin A Nephropathy Patients. Nephron Clin Pract 2018; 139:143-149. [PMID: 29428934 DOI: 10.1159/000487103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Periodontitis-related pathogens, such as Campylobacter or Treponema species, have recently been shown to be associated with immunoglobulin A nephropathy (IgAN). Some strains of Streptococcus mutans, a major pathogen of dental caries, harbour the cnm gene that encodes a collagen-binding protein (Cnm). This has also been demonstrated to be associated with urinary protein levels in IgAN patients. OBJECTIVES The purpose of the present study was to analyse the association of IgAN with C. rectus, Treponema denticola and cnm-positive S. mutans in the oral cavity of humans. METHODS The presence of C. rectus, T. denticola and cnm-positive S. mutans strains in saliva samples of 117 IgAN patients and 56 healthy controls was evaluated by PCR, and the subjects' clinical parameters were analysed. RESULTS C. rectus was significantly more prevalent in the IgAN group than in the control group (p < 0.05). The C. rectus-positive group was significantly associated with proteinuria in the IgAN group (p < 0.05). In addition, the C. rectus-positive and cnm-positive S. mutans group was shown to be more closely associated with urinary protein levels than the other groups (p < 0.0083). CONCLUSION Our results suggest that harbouring C. rectus in the oral cavity could be associated with proteinuria in IgAN patients.
Collapse
Affiliation(s)
- Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Rina Hatakeyama
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yasuyuki Nagasawa
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
24
|
Naka S, Wato K, Hatakeyama R, Okawa R, Nomura R, Nakano K. Longitudinal comparison of Streptococcus mutans-induced aggravation of non-alcoholic steatohepatitis in mice. J Oral Microbiol 2018; 10:1428005. [PMID: 29503703 PMCID: PMC5795759 DOI: 10.1080/20002297.2018.1428005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background: We previously reported that intravenous administration of Streptococcus mutans strain TW871 caused typical non-alcoholic steatohepatitis (NASH)-like findings in a high-fat diet (HFD) mouse model at 16 weeks after initiating the experiment. Objective: The purpose of the present study was to analyse mice administered S. mutans TW871 fed a HFD for various periods of time. Methods: First, 6-week-old C57BL/6J mice were fed an HFD for 4 weeks, then TW871 (1 × 107 CFU) or phosphate-buffered saline (PBS) were intravenously administered. Mice were euthanized 12, 16, 20, and 48 weeks after starting the experiment, and conventional clinical and histopathological evaluations were performed. Results: Typical NASH-like findings were not identified in the mice at 12 weeks, while they were observed in the TW871 group at 16 weeks, and the severity of NASH symptoms were increased at 20 weeks. Furthermore, signs of severe NASH were also observed at 48 weeks. In contrast, in the PBS-administered group, the NASH findings were identified only at 48 weeks and no typical NASH features were observed at 12, 16, or 20 weeks. Conclusion: These results suggest that intravenous administration of a specific S. mutans strain aggravates NASH in a time-dependent manner in the mice in contrast to mice without S. mutans exposure.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Rina Hatakeyama
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
25
|
Contribution of Streptococcus mutans Strains with Collagen-Binding Proteins in the Presence of Serum to the Pathogenesis of Infective Endocarditis. Infect Immun 2017; 85:IAI.00401-17. [PMID: 28947650 DOI: 10.1128/iai.00401-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans-positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP+)/PA-negative (PA-) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP+/PA-positive (PA+) and CBP-negative (CBP-)/PA+ strains. Aggregation of CBP+/PA- strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP+/PA- strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP+/PA- strains displayed prominent bacterial mass formation, which was not observed following infection with CBP+/PA+ and CBP-/PA+ strains. These results suggest that CBP+/PA-S. mutans strains utilize serum to contribute to their pathogenicity in IE.
Collapse
|
26
|
Liu Y, Xu Y, Song Q, Wang F, Sun L, Liu L, Yang X, Yi J, Bao Y, Ma H, Huang H, Yu C, Huang Y, Wu Y, Li Y. Anti-biofilm Activities from Bergenia crassifolia Leaves against Streptococcus mutans. Front Microbiol 2017; 8:1738. [PMID: 28955316 PMCID: PMC5601420 DOI: 10.3389/fmicb.2017.01738] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. The bacteria can produce glucosyltransferases (Gtfs) to synthesize extracellular polysaccharides (EPSs) that are known as virulence factors for adherence and formation of biofilms. Therefore, an ideal inhibitor for dental caries is one that can inhibit planktonic bacteria growth and prevent biofilm formation. Bergenia crassifolia (L.), widely used as a folk medicine and tea beverage, has been reported to have a variety of bioactivities. The present study aimed to explore the effect of B. crassifolia (L.) leaf extracts on the biofilm of Streptococcus mutans. The B. crassifolia (L.) leaf extracts showed inhibitory effects by decreasing viability of bacteria within the biofilm, as evidenced by the XTT assay, live/dead staining assay and LDH activity assay, and could decrease the adherence property of S. mutans through inhibiting Gtfs to synthesize EPSs. In addition, the reduced quantity of EPSs and the inhibition of Gtfs were positively correlated with concentrations of test samples. Finally, the MTT assay showed that the extracts had no cytotoxicity against normal oral cells. In conclusion, the extracts and sub-extracts of B. crassifolia leaves were found to be antimicrobial and could reduce EPS synthesis by inhibiting activities of Gtfs to prevent bacterial adhesion and biofilm formation. Therefore, B. crassifolia leaves have potential to be developed as a drug to prevent and cure dental caries.
Collapse
Affiliation(s)
- Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Yanjie Xu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Qiuhang Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Fei Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Luguo Sun
- School of Life Sciences, Northeast Normal UniversityChangchun, China
| | - Lei Liu
- School of Life Sciences, Northeast Normal UniversityChangchun, China
| | - Xiaoguang Yang
- School of Physics, Northeast Normal UniversityChangchun, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Haifeng Ma
- People's Liberation Army of China No.401 HospitalQingdao, China
| | - Honglan Huang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin UniversityChangchun, China
| | - Chunlei Yu
- School of Life Sciences, Northeast Normal UniversityChangchun, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Yin Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal UniversityChangchun, China
| |
Collapse
|