1
|
Perez-Miller S, Gomez K, Khanna R. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. ACS Pharmacol Transl Sci 2024; 7:1916-1936. [PMID: 39022365 PMCID: PMC11249630 DOI: 10.1021/acsptsci.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Ion channels serve pleiotropic functions. Often found in complexes, their activities and functions are sculpted by auxiliary proteins. We discovered that collapsin response mediator protein 2 (CRMP2) is a binding partner and regulator of the N-type voltage-gated calcium channel (CaV2.2), a genetically validated contributor to chronic pain. Herein, we trace the discovery of a new peptidomimetic modulator of this interaction, starting from the identification and development of CBD3, a CRMP2-derived CaV binding domain peptide. CBD3 uncouples CRMP2-CaV2.2 binding to decrease CaV2.2 surface localization and calcium currents. These changes occur at presynaptic sites of nociceptive neurons and indeed, CBD3 ameliorates chronic pain in preclinical models. In pursuit of a CBD3 peptidomimetic, we exploited a unique approach to identify a dipeptide with low conformational flexibility and high solvent accessibility that anchors binding to CaV2.2. From a pharmacophore screen, we obtained CBD3063, a small-molecule that recapitulated CBD3's activity, reversing nociceptive behaviors in rodents of both sexes without sensory, affective, or cognitive effects. By disrupting the CRMP2-CaV2.2 interaction, CBD3063 exerts these effects indirectly through modulating CaV2.2 trafficking, supporting CRMP2 as an auxiliary subunit of CaV2.2. The parent peptide CBD3 was also found by us and others to have neuroprotective properties at postsynaptic sites, through N-methyl-d-aspartate receptor and plasmalemmal Na+/Ca2+ exchanger 3, potentially acting as an auxiliary subunit for these pathways as well. Our new compound is poised to address several open questions regarding CRMP2's role in regulating the CaV2.2 pathways to treat pain with the potential added benefit of neuroprotection.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Kimberly Gomez
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Rajesh Khanna
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
- Pain
and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Caldi Gomes L, Hänzelmann S, Hausmann F, Khatri R, Oller S, Parvaz M, Tzeplaeff L, Pasetto L, Gebelin M, Ebbing M, Holzapfel C, Columbro SF, Scozzari S, Knöferle J, Cordts I, Demleitner AF, Deschauer M, Dufke C, Sturm M, Zhou Q, Zelina P, Sudria-Lopez E, Haack TB, Streb S, Kuzma-Kozakiewicz M, Edbauer D, Pasterkamp RJ, Laczko E, Rehrauer H, Schlapbach R, Carapito C, Bonetto V, Bonn S, Lingor P. Multiomic ALS signatures highlight subclusters and sex differences suggesting the MAPK pathway as therapeutic target. Nat Commun 2024; 15:4893. [PMID: 38849340 PMCID: PMC11161513 DOI: 10.1038/s41467-024-49196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Oller
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mojan Parvaz
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Tzeplaeff
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marie Gebelin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Melanie Ebbing
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Holzapfel
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Serena Scozzari
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Johanna Knöferle
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Isabell Cordts
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Antonia F Demleitner
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Marcus Deschauer
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sebastian Streb
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Endre Laczko
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Paul Lingor
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), München, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
3
|
Luo X, Zhang J, Tolö J, Kügler S, Michel U, Bähr M, Koch JC. Axonal autophagic vesicle transport in the rat optic nerve in vivo under normal conditions and during acute axonal degeneration. Acta Neuropathol Commun 2024; 12:82. [PMID: 38812004 PMCID: PMC11134632 DOI: 10.1186/s40478-024-01791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.
Collapse
Affiliation(s)
- Xiaoyue Luo
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jiong Zhang
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Johan Tolö
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Cytoskeletal assembly in axonal outgrowth and regeneration analyzed on the nanoscale. Sci Rep 2022; 12:14387. [PMID: 35999340 PMCID: PMC9399097 DOI: 10.1038/s41598-022-18562-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
The axonal cytoskeleton is organized in a highly periodic structure, the membrane-associated periodic skeleton (MPS), which is essential to maintain the structure and function of the axon. Here, we use stimulated emission depletion microscopy of primary rat cortical neurons in microfluidic chambers to analyze the temporal and spatial sequence of MPS formation at the distal end of growing axons and during regeneration after axotomy. We demonstrate that the MPS does not extend continuously into the growing axon but develops from patches of periodic βII-spectrin arrangements that grow and coalesce into a continuous scaffold. We estimate that the underlying sequence of assembly, elongation, and subsequent coalescence of periodic βII-spectrin patches takes around 15 h. Strikingly, we find that development of the MPS occurs faster in regenerating axons after axotomy and note marked differences in the morphology of the growth cone and adjacent axonal regions between regenerating and unlesioned axons. Moreover, we find that inhibition of the spectrin-cleaving enzyme calpain accelerates MPS formation in regenerating axons and increases the number of regenerating axons after axotomy. Taken together, we provide here a detailed nanoscale analysis of MPS development in growing axons.
Collapse
|
7
|
Drown BS, Jooß K, Melani RD, Lloyd-Jones C, Camarillo JM, Kelleher NL. Mapping the Proteoform Landscape of Five Human Tissues. J Proteome Res 2022; 21:1299-1310. [PMID: 35413190 PMCID: PMC9087339 DOI: 10.1021/acs.jproteome.2c00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A functional understanding of the human body requires structure-function studies of proteins at scale. The chemical structure of proteins is controlled at the transcriptional, translational, and post-translational levels, creating a variety of products with modulated functions within the cell. The term "proteoform" encapsulates this complexity at the level of chemical composition. Comprehensive mapping of the proteoform landscape in human tissues necessitates analytical techniques with increased sensitivity and depth of coverage. Here, we took a top-down proteomics approach, combining data generated using capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (RPLC) hyphenated to mass spectrometry to identify and characterize proteoforms from the human lungs, heart, spleen, small intestine, and kidneys. CZE and RPLC provided complementary post-translational modification and proteoform selectivity, thereby enhancing the overall proteome coverage when used in combination. Of the 11,466 proteoforms identified in this study, 7373 (64%) were not reported previously. Large differences in the protein and proteoform level were readily quantified, with initial inferences about proteoform biology operative in the analyzed organs. Differential proteoform regulation of defensins, glutathione transferases, and sarcomeric proteins across tissues generate hypotheses about how they function and are regulated in human health and disease.
Collapse
Affiliation(s)
- Bryon S Drown
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin Jooß
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Cameron Lloyd-Jones
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeannie M Camarillo
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
A Review on Microfluidic Platforms Applied to Nerve Regeneration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, microfluidics have significantly advanced nerve regeneration research. Microfluidic devices can provide an accurate simulation of in vivo microenvironment for different research purposes such as analyzing myelin growth inhibitory factors, screening drugs, assessing nerve growth factors, and exploring mechanisms of neural injury and regeneration. The microfluidic platform offers technical supports for nerve regeneration that enable precise spatio-temporal control of cells, such as neuron isolation, single-cell manipulation, neural patterning, and axon guidance. In this paper, we review the development and recent advances of microfluidic platforms for nerve regeneration research.
Collapse
|
9
|
Zhang KS, Nadkarni AV, Paul R, Martin AM, Tang SKY. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem Rev 2022; 122:7097-7141. [PMID: 35049287 DOI: 10.1021/acs.chemrev.1c00616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System. Int J Mol Sci 2022; 23:816. [PMID: 35055003 PMCID: PMC8775373 DOI: 10.3390/ijms23020816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.
Collapse
Affiliation(s)
| | | | | | | | - Sahadev A. Shankarappa
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (P.V.); (G.R.); (P.M.); (C.J.)
| |
Collapse
|
11
|
Ribas VT, Vahsen BF, Tatenhorst L, Estrada V, Dambeck V, Almeida RA, Bähr M, Michel U, Koch JC, Müller HW, Lingor P. AAV-mediated inhibition of ULK1 promotes axonal regeneration in the central nervous system in vitro and in vivo. Cell Death Dis 2021; 12:213. [PMID: 33637688 PMCID: PMC7910615 DOI: 10.1038/s41419-021-03503-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Axonal damage is an early step in traumatic and neurodegenerative disorders of the central nervous system (CNS). Damaged axons are not able to regenerate sufficiently in the adult mammalian CNS, leading to permanent neurological deficits. Recently, we showed that inhibition of the autophagic protein ULK1 promotes neuroprotection in different models of neurodegeneration. Moreover, we demonstrated previously that axonal protection improves regeneration of lesioned axons. However, whether axonal protection mediated by ULK1 inhibition could also improve axonal regeneration is unknown. Here, we used an adeno-associated viral (AAV) vector to express a dominant-negative form of ULK1 (AAV.ULK1.DN) and investigated its effects on axonal regeneration in the CNS. We show that AAV.ULK1.DN fosters axonal regeneration and enhances neurite outgrowth in vitro. In addition, AAV.ULK1.DN increases neuronal survival and enhances axonal regeneration after optic nerve lesion, and promotes long-term axonal protection after spinal cord injury (SCI) in vivo. Interestingly, AAV.ULK1.DN also increases serotonergic and dopaminergic axon sprouting after SCI. Mechanistically, AAV.ULK1.DN leads to increased ERK1 activation and reduced expression of RhoA and ROCK2. Our findings outline ULK1 as a key regulator of axonal degeneration and regeneration, and define ULK1 as a promising target to promote neuroprotection and regeneration in the CNS.
Collapse
Affiliation(s)
- Vinicius Toledo Ribas
- Department of Morphology, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Björn Friedhelm Vahsen
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Raquel Alves Almeida
- Department of Morphology, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Department of Neurology, Rechts der Isar Hospital of the Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|
12
|
Uslubas I, Kanli A, Kasap M, Akpinar G, Karabas L. Effect of aflibercept on proliferative vitreoretinopathy: Proteomic analysis in an experimental animal model. Exp Eye Res 2021; 203:108425. [PMID: 33417914 DOI: 10.1016/j.exer.2020.108425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE The aim of this study was to monitor inflammatory, proliferative and progressive effects of proliferative vitreoretinopathy (PVR) and aflibercept treatment in dispase induced PVR rat model by proteomic analysis. MATERIAL AND METHODS A total of 35 male Long Evans pigmented rats were divided into three groups, namely, PVR (dispase+saline), PVR+aflibercept (dispase+aflibercept) and control. The PVR group received 2 μl of 0.03 IU/μl dispase and 2 μl saline, the PVR+aflibercept group received 2 μl of 0.03 IU/μl and 2 μl of 40 mg/ml aflibercept at the first day of the experiment. At the end of the 6th week all retina and vitreous specimens were collected by evisceration and transferred to the proteomics laboratory for analysis. Proteomic analysis by 2D gel electrophoresis coupled with MALDI-TOF/TOF was performed. RESULTS In the PVR and PVR+aflibercept group 16 different proteins that were identified to be differentially regulated in comparison to the control group. In the PVR+aflibercept group, ENO1, ENO2, LDH-B, PEBP-1 and GS levels were higher than the PVR group. In addition, the association of proteins such as UCHL, PEBP1, PDHB and ENO1 with PVR has been demonstrated for the first time. CONCLUSION STRING analysis elucidated the functional protein-protein interaction among the differentially regulated proteins and highlighted that those proteins mainly played roles in carbon and nucleotide metabolisms. Functional analysis of the differentially regulated proteins indicated the presence of inflammation, gliosis and retinal damage in the PVR group. Aflibercept treatment had pronounced effect on prevention of inflammation and retinal damage while causing a slight increase in gliosis. However, aflibercept treatment was not effective enough to normalize the levels of differentially regulated proteins of the PVR group. Therefore, we predict that the treatment dose of aflibercept used in this study was below of its ideal concentration and should be increased in the future studies. The differential regulation of these structural proteins in this study should shed some light to the mechanism of glial wound formation in the retina and guide future treatment modalities.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Endopeptidases/toxicity
- Eye Proteins/metabolism
- Male
- Proteome/metabolism
- Proteomics
- Rats
- Rats, Long-Evans
- Receptors, Vascular Endothelial Growth Factor/therapeutic use
- Recombinant Fusion Proteins/therapeutic use
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vitreoretinopathy, Proliferative/chemically induced
- Vitreoretinopathy, Proliferative/drug therapy
- Vitreoretinopathy, Proliferative/metabolism
Collapse
Affiliation(s)
- Isil Uslubas
- Kocaeli University School of Medicine, Department of Ophthalmology, Turkey.
| | - Aylin Kanli
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Murat Kasap
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Gurler Akpinar
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Levent Karabas
- Kocaeli University School of Medicine, Department of Ophthalmology, Turkey
| |
Collapse
|
13
|
Downregulation of hippocampal SIRT6 activates AKT/CRMP2 signaling and ameliorates chronic stress-induced depression-like behavior in mice. Acta Pharmacol Sin 2020; 41:1557-1567. [PMID: 32265492 DOI: 10.1038/s41401-020-0387-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Sirtuin 6 (SIRT6) has been reported to play a key role in cognitive function and mood regulation, yet its role in mood disorders is not completely understood. Here, we confirmed that knockdown of hippocampal SIRT6 alleviated depression-like behaviors induced by chronic unpredictable stress (CUS) in mice. Our in vitro data showed that SIRT6 negatively regulated protein kinase B (AKT) signaling by deacetylating histone 3 at Lys9 and Lys56. Knockdown of SIRT6 significantly increased AKT phosphorylation activity, while decreased collapsin response mediator protein 2 (CRMP2) phosphorylation activity. Furthermore, pharmacologic inhibition of SIRT6 by ferulic acid (FA) (40 or 80 mg· kg-1 per day, i.g.) could activate AKT/CRMP2 pathway in vitro, which has been proved to exert an antidepressant-like effect on CUS-induced depressive models. In conclusion, our study suggested that hippocampal SIRT6 contributes to the performance of depression-like behaviors by suppressing AKT/CRMP2 signaling, and FA ameliorates CUS-induced depression-like behaviors in mice as a potential pharmacologic inhibitor of SIRT6.
Collapse
|
14
|
Synaptic Kalirin-7 and Trio Interactomes Reveal a GEF Protein-Dependent Neuroligin-1 Mechanism of Action. Cell Rep 2020; 29:2944-2952.e5. [PMID: 31801062 PMCID: PMC9012321 DOI: 10.1016/j.celrep.2019.10.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The RhoGEFs Kalirin-7 and Trio are regulators of synaptic plasticity, and their dysregulation is associated with a range of neurodevelopmental and neurodegenerative disorders. Although studies have implicated both Kalirin and Trio in certain diseases, such as tauopathies, they remarkably differ in their association with other disorders. Using unbiased proteomics, we identified interactomes of Kalirin-7 and Trio to ascertain distinct protein association networks associated with their respective function and revealed groups of proteins that preferentially interact with a particular RhoGEF. In comparison, we find Trio interacts with a range of axon guidance and presynaptic complexes, whereas Kalirin-7 associates with several synaptic adhesion molecules. Specifically, we show Kalirin-7 is an interactor of the cell adhesion molecule neuroligin-1 (NLGN1), and NLGN1-dependent synaptic function is mediated through Kalirin-7 in an interaction-dependent manner. Our data reveal not only the interactomes of two important disease-related proteins, but also provide an intracellular effector of NLGN1 function. Paskus et al. use quantitative proteomics to determine the synaptic interactomes of the disease-associated proteins Kalirin-7 and Trio, identifying Kalirin-7 as an interactor of NLGN1. Investigation of this interaction unveils Kalirin-7 as a primary intracellular effector of NLGN1 gain of function.
Collapse
|
15
|
Cai Z, Zhu X, Zhang G, Wu F, Lin H, Tan M. Ammonia induces calpain-dependent cleavage of CRMP-2 during neurite degeneration in primary cultured neurons. Aging (Albany NY) 2020; 11:4354-4366. [PMID: 31278888 PMCID: PMC6660054 DOI: 10.18632/aging.102053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Hyperammonemia in the CNS induces irreversible damages to neurons due to ultimate cell loss. Neurite degeneration, a primary event that leads to neuronal cell death, remains less elucidated especially in hyperammonemia circumstances. Here, we found that the administration of ammonia induced neurite degeneration in cultured cerebellar granule neurons. The resulting altered neuronal morphology, rupture of neurites, and disassembly of the cytoskeleton led to cell death. Calcein and Fluo-4 staining revealed that ammonia induced intracellular calcium dysregulation. Subsequently activated calpain cleaved CRMP-2, a microtubule assembly protein. Pharmacologically inhibition of calpain, but not caspases or GSK-3, suppressed the cleavage of CRMP-2 and reversed neurite degeneration under ammonia treatment. Exposure to ammonia decreased whereas inhibition of calpain restored the amplitude and frequency of miniature excitatory postsynaptic currents. These data suggest a mechanism by which elevated ammonia level may induce neuronal dysfunction via abnormal calcium influx and calpain-dependent CRMP-2 cleavage, leading to abnormal synaptic transmission, cytoskeletal collapse, and neurite degeneration.
Collapse
Affiliation(s)
- Zhenbin Cai
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaonan Zhu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengming Wu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Girouard MP, Simas T, Hua L, Morquette B, Khazaei MR, Unsain N, Johnstone AD, Rambaldi I, Sanz RL, Di Raddo ME, Gamage KK, Yong Y, Willis DE, Verge VMK, Barker PA, Deppmann C, Fournier AE. Collapsin Response Mediator Protein 4 (CRMP4) Facilitates Wallerian Degeneration and Axon Regeneration following Sciatic Nerve Injury. eNeuro 2020; 7:ENEURO.0479-19.2020. [PMID: 32001550 PMCID: PMC7053045 DOI: 10.1523/eneuro.0479-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022] Open
Abstract
In contrast to neurons in the CNS, damaged neurons from the peripheral nervous system (PNS) regenerate, but this process can be slow and imperfect. Successful regeneration is orchestrated by cytoskeletal reorganization at the tip of the proximal axon segment and cytoskeletal disassembly of the distal segment. Collapsin response mediator protein 4 (CRMP4) is a cytosolic phospho-protein that regulates the actin and microtubule cytoskeleton. During development, CRMP4 promotes growth cone formation and dendrite development. Paradoxically, in the adult CNS, CRMP4 impedes axon regeneration. Here, we investigated the involvement of CRMP4 in peripheral nerve injury in male and female Crmp4-/- mice following sciatic nerve injury. We find that sensory axon regeneration and Wallerian degeneration are impaired in Crmp4-/- mice following sciatic nerve injury. In vitro analysis of dissociated dorsal root ganglion (DRG) neurons from Crmp4-/- mice revealed that CRMP4 functions in the proximal axon segment to promote the regrowth of severed DRG neurons and in the distal axon segment where it facilitates Wallerian degeneration through calpain-dependent formation of harmful CRMP4 fragments. These findings reveal an interesting dual role for CRMP4 in proximal and distal axon segments of injured sensory neurons that coordinately facilitate PNS axon regeneration.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Tristan Simas
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Luyang Hua
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Barbara Morquette
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Mohamad R Khazaei
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5016 Córdoba, Argentina
| | - Aaron D Johnstone
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Isabel Rambaldi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Ricardo L Sanz
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | | | - Kanchana K Gamage
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Yu Yong
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Dianna E Willis
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Burke Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan-CMSNRC, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Philip A Barker
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
17
|
Llobet Rosell A, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019; 9:190118. [PMID: 31455157 PMCID: PMC6731592 DOI: 10.1098/rsob.190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axon loss is a shared feature of nervous systems being challenged in neurological disease, by chemotherapy or mechanical force. Axons take up the vast majority of the neuronal volume, thus numerous axonal intrinsic and glial extrinsic support mechanisms have evolved to promote lifelong axonal survival. Impaired support leads to axon degeneration, yet underlying intrinsic signalling cascades actively promoting the disassembly of axons remain poorly understood in any context, making the development to attenuate axon degeneration challenging. Wallerian degeneration serves as a simple model to study how axons undergo injury-induced axon degeneration (axon death). Severed axons actively execute their own destruction through an evolutionarily conserved axon death signalling cascade. This pathway is also activated in the absence of injury in diseased and challenged nervous systems. Gaining insights into mechanisms underlying axon death signalling could therefore help to define targets to block axon loss. Herein, we summarize features of axon death at the molecular and subcellular level. Recently identified and characterized mediators of axon death signalling are comprehensively discussed in detail, and commonalities and differences across species highlighted. We conclude with a summary of engaged axon death signalling in humans and animal models of neurological conditions. Thus, gaining mechanistic insights into axon death signalling broadens our understanding beyond a simple injury model. It harbours the potential to define targets for therapeutic intervention in a broad range of human axonopathies.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| |
Collapse
|
18
|
Balke D, Tatenhorst L, Dambeck V, Ribas VT, Vahsen BF, Michel U, Bähr M, Lingor P. AAV-Mediated Expression of Dominant-Negative ULK1 Increases Neuronal Survival and Enhances Motor Performance in the MPTP Mouse Model of Parkinson's Disease. Mol Neurobiol 2019; 57:685-697. [PMID: 31446549 DOI: 10.1007/s12035-019-01744-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/09/2022]
Abstract
Loss of nigrostriatal projections by axonal degeneration is a key early event in Parkinson's disease (PD) pathophysiology, being accountable for the lack of dopamine in the nigrostriatal system and resulting in motor symptoms such as bradykinesia, rigidity, and tremor. Since autophagy is an important mechanism contributing to axonal degeneration, we aimed to evaluate the effects of competitive autophagy inhibition in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Adeno-associated viral vector (AAV)-mediated overexpression of a dominant-negative form of the unc-51 like autophagy-initiating kinase (ULK1.DN) in the substantia nigra was induced 3 weeks before MPTP treatment. Analysis of motor behavior demonstrated a significant improvement of ULK1.DN expressing mice after MPTP treatment. Immunohistochemical analyses of dopaminergic nigral neurons and nigrostriatal projections revealed a significant protection from MPTP-induced neurotoxicity after ULK1.DN expression. Western blot analysis linked these findings to an activation of mTOR signaling. Taken together, our results indicate that expression of ULK1.DN can attenuate MPTP-induced axonal neurodegeneration, suggesting that ULK1 could be a promising novel target in the treatment of PD.
Collapse
Affiliation(s)
- Dirk Balke
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Vinicius Toledo Ribas
- Department of Morphology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Björn F Vahsen
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Str. 3a, 37075, Göttingen, Germany.
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Straße 22, 81679, Munich, Germany.
| |
Collapse
|
19
|
Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019; 73:100769. [PMID: 31301400 DOI: 10.1016/j.preteyeres.2019.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
Axonal degeneration is an active, highly controlled process that contributes to beneficial processes, such as developmental pruning, but also to neurodegeneration. In glaucoma, ocular hypertension leads to vision loss by killing the output neurons of the retina, the retinal ganglion cells (RGCs). Multiple processes have been proposed to contribute to and/or mediate axonal injury in glaucoma, including: neuroinflammation, loss of neurotrophic factors, dysregulation of the neurovascular unit, and disruption of the axonal cytoskeleton. While the inciting injury to RGCs in glaucoma is complex and potentially heterogeneous, axonal injury is ultimately thought to be the key insult that drives glaucomatous neurodegeneration. Glaucomatous neurodegeneration is a complex process, with multiple molecular signals contributing to RGC somal loss and axonal degeneration. Furthermore, the propagation of the axonal injury signal is complex, with injury triggering programs of degeneration in both the somal and axonal compartment. Further complicating this process is the involvement of multiple cell types that are known to participate in the process of axonal and neuronal degeneration after glaucomatous injury. Here, we review the axonal signaling that occurs after injury and the molecular signaling programs currently known to be important for somal and axonal degeneration after glaucoma-relevant axonal injuries.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
20
|
Proteomic Studies Reveal Disrupted in Schizophrenia 1 as a Player in Both Neurodevelopment and Synaptic Function. Int J Mol Sci 2018; 20:ijms20010119. [PMID: 30597994 PMCID: PMC6337115 DOI: 10.3390/ijms20010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 02/03/2023] Open
Abstract
A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function. Using an unbiased proteomic approach, we found that the expression of 31 proteins related to neurodevelopment (e.g., CRMP-2, stathmin) and synaptic function (e.g., MUNC-18, NCS-1) is altered by DISC1 in primary mouse neurons. Hence, this study reinforces the idea that DISC1 is a unifying regulator of both neurodevelopment and synaptic function, thereby providing a link between these two key anatomical and cellular circuitries.
Collapse
|
21
|
Chirumbolo S, Vella A, Bjørklund G. Quercetin Might Promote Autophagy in a Middle Cerebral Artery Occlusion-Mediated Ischemia Model: Comments on Fawad-Ali Shah et al. Neurochem Res 2018; 44:297-300. [PMID: 30515707 DOI: 10.1007/s11064-018-2692-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 9, 37134, Verona, Italy.
| | - Antonio Vella
- Department of Medicine-University of Verona, Unit of Immunology-AOUI, University Hospital, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
22
|
Curcio M, Bradke F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu Rev Cell Dev Biol 2018; 34:495-521. [DOI: 10.1146/annurev-cellbio-100617-062508] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After an injury in the adult mammalian central nervous system (CNS), lesioned axons fail to regenerate. This failure to regenerate contrasts with axons’ remarkable potential to grow during embryonic development and after an injury in the peripheral nervous system (PNS). Several intracellular mechanisms—including cytoskeletal dynamics, axonal transport and trafficking, signaling and transcription of regenerative programs, and epigenetic modifications—control axon regeneration. In this review, we describe how manipulation of intrinsic mechanisms elicits a regenerative response in different organisms and how strategies are implemented to form the basis of a future regenerative treatment after CNS injury.
Collapse
Affiliation(s)
- Michele Curcio
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;,
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;,
| |
Collapse
|
23
|
Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol 2018; 78:978-990. [PMID: 30022605 DOI: 10.1002/dneu.22627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Mardja Bueno
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Victoria Julian
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sienna Drake
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Alexandra B Byrne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alyson E Fournier
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
24
|
Abe H, Jitsuki S, Nakajima W, Murata Y, Jitsuki-Takahashi A, Katsuno Y, Tada H, Sano A, Suyama K, Mochizuki N, Komori T, Masuyama H, Okuda T, Goshima Y, Higo N, Takahashi T. CRMP2-binding compound, edonerpic maleate, accelerates motor function recovery from brain damage. Science 2018; 360:50-57. [DOI: 10.1126/science.aao2300] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Brain damage such as stroke is a devastating neurological condition that may severely compromise patient quality of life. No effective medication-mediated intervention to accelerate rehabilitation has been established. We found that a small compound, edonerpic maleate, facilitated experience-driven synaptic glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic-acid) receptor delivery and resulted in the acceleration of motor function recovery after motor cortex cryoinjury in mice in a training-dependent manner through cortical reorganization. Edonerpic bound to collapsin-response-mediator-protein 2 (CRMP2) and failed to augment recovery in CRMP2-deficient mice. Edonerpic maleate enhanced motor function recovery from internal capsule hemorrhage in nonhuman primates. Thus, edonerpic maleate, a neural plasticity enhancer, could be a clinically potent small compound with which to accelerate rehabilitation after brain damage.
Collapse
|
25
|
Shrirao AB, Kung FH, Omelchenko A, Schloss RS, Boustany NN, Zahn JD, Yarmush ML, Firestein BL. Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 2018; 115:815-830. [PMID: 29251352 DOI: 10.1002/bit.26519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) affects 5.3 million people in the United States, and there are 12,500 new cases of spinal cord injury (SCI) every year. There is yet a significant need for in vitro models of TBI and SCI in order to understand the biological mechanisms underlying central nervous system (CNS) injury and to identify and test therapeutics to aid in recovery from neuronal injuries. While TBI or SCI studies have been aided with traditional in vivo and in vitro models, the innate limitations in specificity of injury, isolation of neuronal regions, and reproducibility of these models can decrease their usefulness in examining the neurobiology of injury. Microfluidic devices provide several advantages over traditional methods by allowing researchers to (1) examine the effect of injury on specific neural components, (2) fluidically isolate neuronal regions to examine specific effects on subcellular components, and (3) reproducibly create a variety of injuries to model TBI and SCI. These microfluidic devices are adaptable for modeling a wide range of injuries, and in this review, we will examine different methodologies and models recently utilized to examine neuronal injury. Specifically, we will examine vacuum-assisted axotomy, physical injury, chemical injury, and laser-based axotomy. Finally, we will discuss the benefits and downsides to each type of injury model and discuss how researchers can use these parameters to pick a particular microfluidic device to model CNS injury.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Frank H Kung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
26
|
Mokhtar SH, Kim MJ, Magee KA, Aui PM, Thomas S, Bakhuraysah MM, Alrehaili AA, Lee JY, Steer DL, Kenny R, McLean C, Azari MF, Birpanagos A, Lipiec E, Heraud P, Wood B, Petratos S. Amyloid-beta-dependent phosphorylation of collapsin response mediator protein-2 dissociates kinesin in Alzheimer's disease. Neural Regen Res 2018; 13:1066-1080. [PMID: 29926835 PMCID: PMC6022475 DOI: 10.4103/1673-5374.233451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles. Prior to the development of these characteristic pathological hallmarks of AD, anterograde axonal transport is impaired. However, the key proteins that initiate these intracellular impairments remain elusive. The collapsin response mediator protein-2 (CRMP-2) plays an integral role in kinesin-1-dependent axonal transport and there is evidence that phosphorylation of CRMP-2 releases kinesin-1. Here, we tested the hypothesis that amyloid-beta (Aβ)-dependent phosphorylation of CRMP-2 disrupts its association with the kinesin-1 (an anterograde axonal motor transport protein) in AD. We found that brain sections and lysates from AD patients demonstrated elevated phosphorylation of CRMP-2 at the T555 site. Additionally, in the transgenic Tg2576 mouse model of familial AD (FAD) that exhibits Aβ accumulation in the brain with age, we found substantial co-localization of pT555CRMP-2 and dystrophic neurites. In SH-SY5Y differentiated neuronal cultures, Aβ-dependent phosphorylation of CRMP-2 at the T555 site was also elevated and this reduced the CRMP-2 association with kinesin-1. The overexpression of an unphosphorylatable form of CRMP-2 in neurons promoted the re-establishment of CRMP-2-kinesin association and axon elongation. These data suggest that Aβ-dependent phosphorylation of CRMP-2 at the T555 site may directly impair anterograde axonal transport protein function, leading to neuronal defects.
Collapse
Affiliation(s)
- Sara H Mokhtar
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Kylie A Magee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Pei Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Speros Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - David L Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rachel Kenny
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, Australia
| | - Michael F Azari
- Department of Anatomy & Developmental Biology, Monash University, Clayton; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Antonis Birpanagos
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Ilisia, Athens, Greece
| | - Ewlina Lipiec
- The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Department of Applied Spectroscopy, Radzikowskiego, Krakow, Poland
| | - Philip Heraud
- Centre for Biospectroscopy and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Bayden Wood
- Centre for Biospectroscopy and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| |
Collapse
|
27
|
Marangoni N, Kowal K, Deliu Z, Hensley K, Feinstein DL. Neuroprotective and neurotrophic effects of Lanthionine Ketimine Ester. Neurosci Lett 2017; 664:28-33. [PMID: 29128626 DOI: 10.1016/j.neulet.2017.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022]
Abstract
Lanthionine ketimine ethyl ester (LKE) is a synthetic derivative of the naturally occurring amino acid lanthionine ketimine. We previously showed that LKE reduced clinical signs in a mouse model of multiple sclerosis (MS) associated with reductions in axonal damage; however, whether LKE has direct beneficial actions on mammalian neuronal cells was not examined. In the current study, we tested the effects of LKE in SH-SY5Y human neuronal cells and in primary mouse cerebellar granule neurons. In both cell types, LKE dose-dependently reduced the cell death that occurred spontaneously followed a change in media. LKE also reduced cell death due to glutamate excitoxicity, accompanied by a reduction in production of reactive oxygen species. LKE induced neuritogenesis in both undifferentiated SH-SY5Y cells and in primary neuron, increasing process numbers and lengths. These results demonstrate that direct neuroprotective and neurotrophic effects of LKE likely contribute to its beneficial actions in vivo.
Collapse
Affiliation(s)
- Natalia Marangoni
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kathy Kowal
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Zane Deliu
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Science, Arkansas College of Osteopathic Medicine, Fort Smith, AK 72916, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States; Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
28
|
Smith AW, Ray SK, Das A, Nozaki K, Rohrer B, Banik NL. Calpain inhibition as a possible new therapeutic target in multiple sclerosis. AIMS MOLECULAR SCIENCE 2017; 4:446-462. [PMID: 40181912 PMCID: PMC11967729 DOI: 10.3934/molsci.2017.4.446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Multiple sclerosis (MS), the most common chronic autoimmune inflammatory disease of the central nervous system (CNS), is characterized by demyelination and neurodegeneration. In particular, neurodegeneration is a major factor in disease progression with neuronal death and irreversible axonal damage leading to disability. MS is manageable with current therapies that are directed towards immunomodulation but there are no available therapies for neuroprotection. The complex pathophysiology and heterogeneity of MS indicate that therapeutic agents should be directed to both the inflammatory and neurodegenerative arms of the disease. Activity of the Ca2+ activated protease calpain has been previously implicated in progression of MS and its primary animal model, experimental autoimmune encephalomyelitis (EAE). The effects of calpain inhibitors in EAE involve downregulation of Th1/Th17 inflammatory responses and promotion of regulatory T cells, overall leading to decreased inflammatory cell infiltration in CNS tissues. Furthermore, analysis of brains, spinal cords and optic nerves from EAE animals revealed decreases in axon degeneration, motor neuron and retinal ganglion cell death. This resulted in improved severity of paralysis and preservation of visual function. Taken together, the studies presented in this brief review suggest that use of calpain inhibitors in combination with an immunomodulatory agent may be a potential therapeutic strategy for MS and optic neuritis.
Collapse
Affiliation(s)
- Amena W. Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kenkichi Nozaki
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L. Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
29
|
Zhang JN, Koch JC. Collapsin response mediator protein-2 plays a major protective role in acute axonal degeneration. Neural Regen Res 2017; 12:692-695. [PMID: 28616018 PMCID: PMC5461599 DOI: 10.4103/1673-5374.206631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2 (CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.
Collapse
Affiliation(s)
- Jian-Nan Zhang
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.,Department of Neurobiology, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, China
| | - Jan C Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|