1
|
Chop M, Ledo C, Nicolao MC, Loos J, Cumino A, Rodriguez Rodrigues C. Hydatid fluid from Echinococcus granulosus induces autophagy in dendritic cells and promotes polyfunctional T-cell responses. Front Cell Infect Microbiol 2024; 14:1334211. [PMID: 38817444 PMCID: PMC11137651 DOI: 10.3389/fcimb.2024.1334211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-β genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.
Collapse
Affiliation(s)
- Maia Chop
- Instituto IQUIBIM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Camila Ledo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - María Celeste Nicolao
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Julia Loos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Cumino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Christian Rodriguez Rodrigues
- Instituto IQUIBIM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
2
|
Bhoj P, Togre N, Khatri V, Goswami K. Harnessing Immune Evasion Strategy of Lymphatic Filariae: A Therapeutic Approach against Inflammatory and Infective Pathology. Vaccines (Basel) 2022; 10:vaccines10081235. [PMID: 36016123 PMCID: PMC9415972 DOI: 10.3390/vaccines10081235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in effector immune cells, and neutralization of free radicals. This creates an anti-inflammatory and immunoregulatory milieu in the host: a modified Th2 immune response. Therefore, targeting filarial immunomodulators and manipulating the filariae-driven immune system against the filariae can be a potential therapeutic and prophylactic strategy. Filariae-derived immunosuppression can also be exploited to treat other inflammatory diseases and immunopathologic states of parasitic diseases, such as cerebral malaria, and to prevent leishmaniasis. This paper reviews immunomodulatory mechanisms acquired by these filariae for their own survival and their potential application in the development of novel therapeutic approaches against parasitic and inflammatory diseases. Insight into the intricate network of host immune-parasite interactions would aid in the development of effective immune-therapeutic options for both infectious and immune-pathological diseases.
Collapse
Affiliation(s)
| | - Namdev Togre
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
- Correspondence: (N.T.); (K.G.)
| | | | - Kalyan Goswami
- All India Institute of Medical Sciences, Saguna, Kalyani 741245, India
- Correspondence: (N.T.); (K.G.)
| |
Collapse
|
3
|
Oguegbulu JC, Khalaf AI, Suckling CJ, Harnett MM, Harnett W. Lead optimisation efforts on a molecular prototype of the immunomodulatory parasitic protein ES-62. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The immunomodulatory property of some parasitic helminths is well documented. The glycoprotein ES-62 from the nematode, acanthocheilonema viteae has been found to possess immunomodulatory properties. Two small molecule analogues (SMA’s) of ES-62 (S3 and S5) were found to mimic its immunomodulatory properties in vivo and were active in animal models of allergic, inflammatory and autoimmune diseases. In this work, new efforts were made to further optimise the activities of compound S3 by making small but directed structural changes. A variety of analogues based on the S3 prototype were simulated by making variations at one position and then screened in silico. The best compounds were selected based on predicted physiochemical properties and medicinal chemistry indices and synthesised. Structural elucidation was done via HNMR, LCMS, FTIR and HRESIMS. The predicted properties were evaluated by HPLC method. A total of 11 novel molecules were synthesised and characterised. Significant correlation was obtained between the predicted physicochemical properties and their HPLC retention times (RT) for eight of our novel compounds. This suggests that these compounds may behave in a physiological environment as closely as computationally predicted. This entails, lesser host toxicity while maintaining good or better activities compared to the earlier prototype. They hence provide a good opportunity for development of drugs for immune conditions such as asthma, inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Joseph C. Oguegbulu
- Department of Chemical Sciences , Bingham University , PMB 005 , Karu , Nasarawa State , Nigeria
| | - Abedawn I. Khalaf
- Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow G1 1XL , UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow G1 1XL , UK
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow G12 8TA , UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow G4 0RE , UK
| |
Collapse
|
4
|
Corbet M, Pineda MA, Yang K, Tarafdar A, McGrath S, Nakagawa R, Lumb FE, Suckling CJ, Harnett W, Harnett MM. Epigenetic drug development for autoimmune and inflammatory diseases. PLoS Pathog 2021; 17:e1010069. [PMID: 34748611 PMCID: PMC8601611 DOI: 10.1371/journal.ppat.1010069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/18/2021] [Accepted: 10/27/2021] [Indexed: 01/21/2023] Open
Abstract
ES-62 is the major secreted protein of the parasitic filarial nematode, Acanthocheilonema viteae. The molecule exists as a large tetramer (MW, ~240kD), which possesses immunomodulatory properties by virtue of multiple phosphorylcholine (PC) moieties attached to N-type glycans. By suppressing inflammatory immune responses, ES-62 can prevent disease development in certain mouse models of allergic and autoimmune conditions, including joint pathology in collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Such protection is associated with functional suppression of "pathogenic" hyper-responsive synovial fibroblasts (SFs), which exhibit an aggressive inflammatory and bone-damaging phenotype induced by their epigenetic rewiring in response to the inflammatory microenvironment of the arthritic joint. Critically, exposure to ES-62 in vivo induces a stably-imprinted CIA-SF phenotype that exhibits functional responses more typical of healthy, Naïve-SFs. Consistent with this, ES-62 "rewiring" of SFs away from the hyper-responsive phenotype is associated with suppression of ERK activation, STAT3 activation and miR-155 upregulation, signals widely associated with SF pathogenesis. Surprisingly however, DNA methylome analysis of Naïve-, CIA- and ES-62-CIA-SF cohorts reveals that rather than simply preventing pathogenic rewiring of SFs, ES-62 induces further changes in DNA methylation under the inflammatory conditions pertaining in the inflamed joint, including targeting genes associated with ciliogenesis, to programme a novel "resolving" CIA-SF phenotype. In addition to introducing a previously unsuspected aspect of ES-62's mechanism of action, such unique behaviour signposts the potential for developing DNA methylation signatures predictive of pathogenesis and its resolution and hence, candidate mechanisms by which novel therapeutic interventions could prevent SFs from perpetuating joint inflammation and destruction in RA. Pertinent to these translational aspects of ES-62-behavior, small molecule analogues (SMAs) based on ES-62's active PC-moieties mimic the rewiring of SFs as well as the protection against joint disease in CIA afforded by the parasitic worm product.
Collapse
Affiliation(s)
- Marlene Corbet
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kun Yang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anuradha Tarafdar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rinako Nakagawa
- Immunity and Cancer, Francis Crick Institute, London, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail: (MMH); (WH)
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (MMH); (WH)
| |
Collapse
|
5
|
Lothstein KE, Gause WC. Mining Helminths for Novel Therapeutics. Trends Mol Med 2021; 27:345-364. [PMID: 33495068 PMCID: PMC9884063 DOI: 10.1016/j.molmed.2020.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023]
Abstract
Helminths are an emerging source of therapeutics for dysregulated inflammatory diseases. Excretory/secretory (ES) molecules, released during infection, are responsible for many of these immunomodulatory effects and are likely to have evolved as a means for parasite survival in the host. While the mechanisms of action of these molecules have not been fully defined, evidence demonstrates that they target various pathways in the immune response, ranging from initiation to effector cell modulation. These molecules are applied in controlling specific effector mechanisms of type 1 and type 2 immune responses. Recently, studies have further focused on their therapeutic potential in specific disease models. Here we review recent findings on ES molecule modulation of immune functions, specifically highlighting their clinical implications for future use in inflammatory disease therapeutics.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
6
|
Zaiss MM, Joyce Wu HJ, Mauro D, Schett G, Ciccia F. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol 2021; 17:224-237. [PMID: 33674813 DOI: 10.1038/s41584-021-00585-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder that primarily affects the joints. One hypothesis for the pathogenesis of RA is that disease begins at mucosal sites as a consequence of interactions between the mucosal immune system and an aberrant local microbiota, and then transitions to involve the synovial joints. Alterations in the composition of the microbial flora in the lungs, mouth and gut in individuals with preclinical and established RA suggest a role for mucosal dysbiosis in the development and perpetuation of RA, although establishing whether these alterations are the specific consequence of intestinal involvement in the setting of a systemic inflammatory process, or whether they represent a specific localization of disease, is an ongoing challenge. Data from mouse models of RA and investigations into the preclinical stages of disease also support the hypothesis that these alterations to the microbiota predate the onset of disease. In addition, several therapeutic options widely used for the treatment of RA are associated with alterations in intestinal microbiota, suggesting that modulation of intestinal microbiota and/or intestinal barrier function might be useful in preventing or treating RA.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Daniele Mauro
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
7
|
Joardar N, Mondal C, Sinha Babu SP. A review on the interactions between dendritic cells, filarial parasite and parasite-derived molecules in regulating the host immune responses. Scand J Immunol 2020; 93:e13001. [PMID: 33247468 DOI: 10.1111/sji.13001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Lymphatic filariasis (LF) is the second leading cause of parasitic disabilities that affects millions of people in India and several other tropical countries. The complexity of this disease is endorsed by various immunopathological consequences such as lymphangitis, lymphadenitis and elephantiasis. The immune evasion strategies that a filarial parasite usually follows are chiefly initiated with the communication between the invaded parasites and parasite-derived molecules, with the Toll-like receptors (TLRs) present on the surface of the antigen-presenting cells (APCs). Classically, the filarial parasites interact with the DCs resulting in lowering of CD4+ T-cell responses. These CD4+ T-cell responses are the key players behind the immune-mediated pathologies associated with LF. In chronic stage, the canonical pro-inflammatory immune responses are shifted towards an anti-inflammatory subtype, which is favouring the parasite survivability within the host. The central theme of this review article is to present the overall immune response elicited when an APC, particularly a DC, encounters a filarial parasite.
Collapse
Affiliation(s)
- Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati University, Santiniketan, India
| | - Chandrani Mondal
- Parasitology Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati University, Santiniketan, India
| |
Collapse
|
8
|
Ryan S, Shiels J, Taggart CC, Dalton JP, Weldon S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front Immunol 2020; 11:2182. [PMID: 32983184 PMCID: PMC7492538 DOI: 10.3389/fimmu.2020.02182] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Helminths (worms) are one of the most successful organisms in nature given their ability to infect millions of humans and animals worldwide. Their success can be attributed to their ability to modulate the host immune response for their own benefit by releasing excretory-secretory (ES) products. Accordingly, ES products have been lauded as a potential source of immunomodulators/biotherapeutics for an array of inflammatory diseases. However, there is a significant lack of knowledge regarding the specific interactions between these products and cells of the immune response. Many different compounds have been identified within the helminth "secretome," including antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules (HDMs), each with unique influences on the host inflammatory response. HDMs are a conserved group of proteins initially discovered in the secretome of the liver fluke, Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do not exert antimicrobial activity, suggesting that these peptides evolved specifically for immunomodulatory purposes. A peptide generated from the HDM sequence, termed FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering hope for the development of a new class of therapeutics. In this review, the current knowledge of host immunomodulation by a range of F. hepatica ES products, particularly FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified from other helminths and will also be outlined to broaden our understanding of the variety of effects these potent molecules exert on immune cells.
Collapse
Affiliation(s)
- Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jenna Shiels
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John P Dalton
- Centre of One Health (COH), Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Dong L, Xie J, Wang Y, Zuo D. Gut Microbiota and Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:165-193. [PMID: 32323185 DOI: 10.1007/978-981-15-2385-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota consists of a dynamic multispecies community living within a particular niche in a mutual synergy with the host organism. Recent findings have revealed roles for the gut microbiota in the modulation of host immunity and the development and progression of immune-mediated diseases. Besides, growing evidence supports the concept that some metabolites mainly originated from gut microbiota are linked to the immune regulation implicated in systemic inflammatory and autoimmune disorders. In this chapter, we describe the recent advances in our understanding of how host-microbiota interactions shape the immune system, how they affect the pathogenesis of immune-associated diseases and the impact of these mechanisms in the efficacy of disease therapy.
Collapse
Affiliation(s)
- Lijun Dong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyi Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
10
|
Quinn SM, Cunningham K, Raverdeau M, Walsh RJ, Curham L, Malara A, Mills KHG. Anti-inflammatory Trained Immunity Mediated by Helminth Products Attenuates the Induction of T Cell-Mediated Autoimmune Disease. Front Immunol 2019; 10:1109. [PMID: 31178861 PMCID: PMC6537856 DOI: 10.3389/fimmu.2019.01109] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Recent studies have suggested that the innate immune system can display characteristics of immunological memory and this has been called “innate immune memory” or “trained immunity.” Certain fungal products have been shown to induce epigenetic imprinting on monocytes/macrophages that results in heightened inflammatory responses to subsequent stimuli. Here we report that innate immune cells can be trained to be more anti-inflammatory following exposure to products of a helminth pathogen. Macrophages trained in vitro with Fasciola hepatica total extract (FHTE) had enhanced IL-10 and IL-1RA, but reduced TNF production upon re-stimulation with FHTE or TLR ligands and this was reversed by inhibitors of DNA methylation. In contrast, macrophages trained with β-glucan or Bacillus Calmette–Guérin had enhanced TNF production upon re-stimulation with Pam3cys or LPS. Furthermore, FHTE-trained macrophages had enhanced expression of markers of alternative activated macrophages (AAM). Macrophages from mice treated with FHTE expressed markers of AAM and had heightened IL-10 and IL-1RA production in response to FHTE or TLR ligands and had suppressed TNF and IL-12p40 production. Macrophages from mice treated with FHTE had reduced APC function and inhibited IL-17 production and the encephalitogenic activity of T cells in the experimental autoimmune encephalomyelitis (EAE) model. In addition, mice pre-treated with FHTE were resistant to induction of EAE and this was associated with a significant reduction in IL-17-producing γδ and CD4 T cells infiltrating the CNS. Our findings reveal that cells of the innate immune system can be trained in vitro or in vivo to be more anti-inflammatory by exposure to helminth products and this protects mice against the induction of a T cell-mediated autoimmune disease.
Collapse
Affiliation(s)
- Shauna M Quinn
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kyle Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mathilde Raverdeau
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Robert J Walsh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy Curham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna Malara
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Mukherjee S, Karnam A, Das M, Babu SPS, Bayry J. Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4. Commun Biol 2019; 2:169. [PMID: 31098402 PMCID: PMC6505026 DOI: 10.1038/s42003-019-0392-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Interaction between innate immune cells and parasite plays a key role in the immunopathogenesis of lymphatic filariasis. Despite being professional antigen presenting cells critical for the pathogen recognition, processing and presenting the antigens for mounting T cell responses, the dendritic cell response and its role in initiating CD4+ T cell response to filaria, in particular Wuchereria bancrofti, the most prevalent microfilaria is still not clear. Herein, we demonstrate that a 70 kDa phosphorylcholine-binding W. bancrofti sheath antigen induces human dendritic cell maturation and secretion of several pro-inflammatory cytokines. Further, microfilarial sheath antigen-stimulated dendritic cells drive predominantly Th1 and regulatory T cell responses while Th17 and Th2 responses are marginal. Mechanistically, sheath antigen-induced dendritic cell maturation, and Th1 and regulatory T cell responses are mediated via toll-like receptor 4 signaling. Our data suggest that W. bancrofti sheath antigen exploits dendritic cells to mediate distinct CD4+ T cell responses and immunopathogenesis of lymphatic filariasis.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Antigens, Helminth/pharmacology
- Cell Differentiation
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/parasitology
- Elephantiasis, Filarial/genetics
- Elephantiasis, Filarial/immunology
- Elephantiasis, Filarial/parasitology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression Regulation
- Host-Parasite Interactions/immunology
- Humans
- Immunity, Innate
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Lymphocyte Activation
- Microfilariae/genetics
- Microfilariae/immunology
- Microfilariae/pathogenicity
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/parasitology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/parasitology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/parasitology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/parasitology
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Wuchereria bancrofti/genetics
- Wuchereria bancrofti/immunology
- Wuchereria bancrofti/pathogenicity
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, 731235 India
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
- Present Address: Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340 India
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
| | - Santi P. Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, 731235 India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| |
Collapse
|
12
|
Reyes JL, Lopes F, Leung G, Jayme TS, Matisz CE, Shute A, Burkhard R, Carneiro M, Workentine ML, Wang A, Petri B, Beck PL, Geuking MB, McKay DM. Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25 + T cells to suppress colitis. FASEB J 2019; 33:5676-5689. [PMID: 30668930 DOI: 10.1096/fj.201802160r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4. Further, HdAg suppressed LPS-evoked release of TNF-α and IL-1β from macrophages via autocrine IL-10 signaling. In assessing the ability of macrophages treated in vitro with an extract of H. diminuta [M(HdAg)] to affect disease, intravenous, but not peritoneal, injection of M(HdAg) protected wild-type but not RAG1-/- mice from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Administration of splenic CD4+ T cells from in vitro cocultures with M(HdAg), but not those cocultured with M(IL-4) cells, inhibited DNBS-induced colitis; fractionation of the T-cell population indicated that the CD4+CD25+ T cells from cocultures with M(HdAg) drove the suppression of DNBS-induced colitis. Use of IL-4-/- or IL-10-/- CD4+ T cells revealed that neither cytokine alone from the donor cells was essential for the anticolitic effect. These data illustrate that HdAg evokes a unique regulatory program in macrophages, identifies HdAg-evoked IL-10 suppression of macrophage activation, and reveals the ability of HdAg-treated macrophages to educate ( i.e., condition) and mobilize CD4+CD25+ T cells, which could be deployed to treat colonic inflammation.-Reyes, J. L., Lopes, F., Leung, G., Jayme, T. S., Matisz, C. E., Shute, A., Burkhard, R., Carneiro, M., Workentine, M. L., Wang, A., Petri, B., Beck, P. L., Geuking, M. B., McKay, D. M., Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis.
Collapse
Affiliation(s)
- José L Reyes
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-Intestinal, Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla de Baz, México
| | - Fernando Lopes
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Gabriella Leung
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Timothy S Jayme
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Chelsea E Matisz
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Adam Shute
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Regula Burkhard
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matheus Carneiro
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Arthur Wang
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Björn Petri
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Mouse Phenomics Resource Laboratory, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Markus B Geuking
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| |
Collapse
|
13
|
Doonan J, Thomas D, Wong MH, Ramage HJ, Al-Riyami L, Lumb FE, Bell KS, Fairlie-Clarke KJ, Suckling CJ, Michelsen KS, Jiang HR, Cooke A, Harnett MM, Harnett W. Failure of the Anti-Inflammatory Parasitic Worm Product ES-62 to Provide Protection in Mouse Models of Type I Diabetes, Multiple Sclerosis, and Inflammatory Bowel Disease. Molecules 2018; 23:E2669. [PMID: 30336585 PMCID: PMC6222842 DOI: 10.3390/molecules23102669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Parasitic helminths and their isolated secreted products show promise as novel treatments for allergic and autoimmune conditions in humans. Foremost amongst the secreted products is ES-62, a glycoprotein derived from Acanthocheilonema viteae, a filarial nematode parasite of gerbils, which is anti-inflammatory by virtue of covalently-attached phosphorylcholine (PC) moieties. ES-62 has been found to protect against disease in mouse models of rheumatoid arthritis, systemic lupus erythematosus, and airway hyper-responsiveness. Furthermore, novel PC-based synthetic small molecule analogues (SMAs) of ES-62 have recently been demonstrated to show similar anti-inflammatory properties to the parent molecule. In spite of these successes, we now show that ES-62 and its SMAs are unable to provide protection in mouse models of certain autoimmune conditions where other helminth species or their secreted products can prevent disease development, namely type I diabetes, multiple sclerosis and inflammatory bowel disease. We speculate on the reasons underlying ES-62's failures in these conditions and how the negative data generated may help us to further understand ES-62's mechanism of action.
Collapse
Affiliation(s)
- James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - David Thomas
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Michelle H Wong
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Hazel J Ramage
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Kara S Bell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Karen J Fairlie-Clarke
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Colin J Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
14
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Suckling CJ, Alam S, Olson MA, Saikh KU, Harnett MM, Harnett W. Small Molecule Analogues of the parasitic worm product ES-62 interact with the TIR domain of MyD88 to inhibit pro-inflammatory signalling. Sci Rep 2018; 8:2123. [PMID: 29391452 PMCID: PMC5794923 DOI: 10.1038/s41598-018-20388-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
ES-62 is a protein secreted by the parasitic worm Acanthocheilonema viteae that is anti-inflammatory by virtue of covalently attached phosphorylcholine. Previously we have reported that drug-like Small Molecule Analogues (SMAs) of its phosphorylcholine moiety can mimic ES-62 in protecting against disease development in certain mouse models of autoimmune and allergic conditions, due to them causing partial degradation of the TLR/IL-1R adaptor MyD88. We have now taken a molecular modelling approach to investigating the mechanism underlying this effect and this predicts that the SMAs interact directly with the MyD88 TIR domain. Further support for this is provided by assay of LPS-induced MyD88/NF-κB-driven secreted alkaline phosphatase (SEAP) reporter activity in commercially-available stably transfected (TLR4-MD2-NF-κB-SEAP) HEK293 cells, as SMA12b-mediated inhibition of such SEAP activity is blocked by its pre-incubation with recombinant MyD88-TIR domain. Direct binding of SMA12b to the TIR domain is also shown to inhibit homo-dimerization of the adaptor, an event that can explain the observed degradation of the adaptor and inhibition of subsequent downstream signalling. Thus, these new data identify initial events by which drug-like ES-62 SMAs, which we also demonstrate are able to inhibit cytokine production by human cells, homeostatically maintain "safe" levels of MyD88 signalling.
Collapse
Affiliation(s)
- Colin J Suckling
- WestCHEM Research School, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Shahabuddin Alam
- Department of Immunology, Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702, USA
| | - Mark A Olson
- Department of Cell Biology and Biochemistry, Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702, USA
| | - Kamal U Saikh
- Department of Immunology, Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702, USA
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.
| |
Collapse
|
16
|
TLR Specific Immune Responses against Helminth Infections. J Parasitol Res 2017; 2017:6865789. [PMID: 29225962 PMCID: PMC5684585 DOI: 10.1155/2017/6865789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023] Open
Abstract
Despite marked improvement in the quality of lives across the globe, more than 2 million individuals in socioeconomically disadvantaged environments remain infected by helminth (worm) parasites. Owing to the longevity of the worms and paucity of immunologic controls, these parasites survive for long periods within the bloodstream, lymphatics, and gastrointestinal tract resulting in pathologic conditions such as anemia, cirrhosis, and lymphatic filariasis. Despite infection, an asymptomatic state may be maintained by the host immunoregulatory environment, which involves multiple levels of regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. The role of TLR expression and function in relation to intracellular parasites has been documented but limited studies are available for multicellular helminth parasites. In this review, we discuss the unique and shared host effector mechanisms elicited by systemic helminth parasites and their derived products, including the role of TLRs and sphingolipids. Understanding and exploiting the interactions between these parasites and the host regulatory network are likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
17
|
Harnett MM, Harnett W. Can Parasitic Worms Cure the Modern World's Ills? Trends Parasitol 2017; 33:694-705. [PMID: 28606411 DOI: 10.1016/j.pt.2017.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
There has been increasing recognition that the alarming surge in allergy and autoimmunity in the industrialised and developing worlds shadows the rapid eradication of pathogens, such as parasitic helminths. Appreciation of this has fuelled an explosion in research investigating the therapeutic potential of these worms. This review considers the current state-of-play with a particular focus on exciting recent advances in the identification of potential novel targets for immunomodulation that can be exploited therapeutically. Furthermore, we contemplate the prospects for designing worm-derived immunotherapies for an ever-widening range of inflammatory diseases, including, for example, obesity, cardiovascular disease, and ageing as well as neurodevelopmental disorders like autism.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
18
|
Lumb FE, Doonan J, Bell KS, Pineda MA, Corbet M, Suckling CJ, Harnett MM, Harnett W. Dendritic cells provide a therapeutic target for synthetic small molecule analogues of the parasitic worm product, ES-62. Sci Rep 2017; 7:1704. [PMID: 28490801 PMCID: PMC5431997 DOI: 10.1038/s41598-017-01651-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
ES-62, a glycoprotein secreted by the parasitic filarial nematode Acanthocheilonema viteae, subverts host immune responses towards anti-inflammatory phenotypes by virtue of covalently attached phosphorylcholine (PC). The PC dictates that ES-62 exhibits protection in murine models of inflammatory disease and hence a library of drug-like PC-based small molecule analogues (SMAs) was synthesised. Four sulfone-containing SMAs termed 11a, 11e, 11i and 12b were found to reduce mouse bone marrow-derived dendritic cell (DC) pathogen-associated molecular pattern (PAMP)-induced pro-inflammatory cytokine production, inhibit NF-κB p65 activation, and suppress LPS-induced up-regulation of CD40 and CD86. Active SMAs also resulted in a DC phenotype that exhibited reduced capacity to prime antigen (Ag)-specific IFN-γ production during co-culture with naïve transgenic TCR DO.11.10 T cells in vitro and reduced their ability, following adoptive transfer, to prime the expansion of Ag-specific T lymphocytes, specifically TH17 cells, in vivo. Consistent with this, mice receiving DCs treated with SMAs exhibited significantly reduced severity of collagen-induced arthritis and this was accompanied by a significant reduction in IL-17+ cells in the draining lymph nodes. Collectively, these studies indicate that drug-like compounds that target DCs can be designed from parasitic worm products and demonstrate the potential for ES-62 SMA-based DC therapy in inflammatory disease.
Collapse
Affiliation(s)
- Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Kara S Bell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marlene Corbet
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Colin J Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
19
|
Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, Langsley G. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomed J 2017; 40:9-22. [PMID: 28411887 PMCID: PMC6138802 DOI: 10.1016/j.bj.2016.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022] Open
Abstract
Christian de Duve first coined the expression “autophagy” during his seminal work on the discovery of lysosomes, which led to him being awarded the Nobel Prize in Physiology or Medicine in 1974. The term was adopted to distinguish degradation of intracellular components from the uptake and degradation of extracellular substances that he called “heterophagy”. Studies until the 1990s were largely observational/morphological-based until in 1993 Yoshinori Oshumi described a genetic screen in yeast undergoing nitrogen deprivation that led to the isolation of autophagy-defective mutants now better known as ATG (AuTophaGy-related) genes. The screen identified mutants that fell into 15 complementation groups implying that at least 15 genes were involved in the regulation of autophagy in yeast undergoing nutrient deprivation, but today, 41 yeast ATG genes have been described and many (though not all) have orthologues in humans. Attempts to identify the genetic basis of autophagy led to an explosion in its research and it's not surprising that in 2016 Yoshinori Oshumi was awarded the Nobel Prize in Physiology or Medicine. Our aim here is not to exhaustively review the ever-expanding autophagy literature (>60 papers per week), but to celebrate Yoshinori Oshumi's Nobel Prize by highlighting just a few aspects that are not normally extensively covered. In an accompanying mini-review we address the role of autophagy in early-diverging eukaryote parasites that like yeast, lack lysosomes and so use a digestive vacuole to degrade autophagosome cargo and also discuss how parasitized host cells react to infection by subverting regulation of autophagy.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Perle Latré de Laté
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France
| | - Russell J Eason
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Sébastien Besteiro
- DIMNP, UMR CNRS 5235, Montpellier University, Place Eugène Bataillon, Building 24, CC Montpellier, France
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gordon Langsley
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France.
| |
Collapse
|