1
|
Wolska J, Rapacz D, Smolińska-Kempisty K. Core-shell molecularly imprinted polymers for the monitoring of dimethyl phthalate in the children's toys 1. Talanta 2025; 293:128075. [PMID: 40188673 DOI: 10.1016/j.talanta.2025.128075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Plastic materials contain many additives, among which plasticizers from the group of phthalates are added during the production of everyday products, including children's toys. Even if the European Union and many other regions, for example Canada and the United States, have established restrictions on phthalate esters in children's toys or food contact materials and electronic and electrical products, there is still a danger that products imported from regions where there are no such restrictions can contain these dangerous compounds belonging to the group of endocrine disruptors. The additives introduced into plastics are not chemically bound to the polymer chain, so they can easily migrate to the external environment. This paper presents the process of synthesis of the core-shell type of molecularly imprinted polymers (MIPs) toward dimethyl phthalate (DMP). The most suitable polymerization mixture, which was selected to obtain the MIP layer, was prepared from the 4:6 wt ratio of methyl methacrylate and ethylene glycol dimethacrylate in the n-octane environment and with the addition of 5 wt% of the template. This material was characterized with the highest value of DMP removal, the maximum sorption capacity of this thin layer of MIP was about 3.0 mg/L. Additionally, DMP was about 3 times and about 5 times more efficient sorbed by core-shell MIP, than diethyl phthalate (DEP) and dibutyl phthalate (DBP), respectively. The best sorbed core-shell molecularly imprinted polymer was used as a column filler for solid phase extraction and was used to identify the phthalates present from rubber duck extraction solutions, showing the presence of this compound in the analyzed samples. The method developed in this work has a low limit of detection (LOD) and a low limit of quantification (LOQ) and a wide linear range, allowing DMP to be determined at both at trace levels (0.151 mg/L) and at higher concentrations.
Collapse
Affiliation(s)
- Joanna Wolska
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Dominika Rapacz
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Katarzyna Smolińska-Kempisty
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Li P, Liu Z. Glycan-specific molecularly imprinted polymers towards cancer diagnostics: merits, applications, and future perspectives. Chem Soc Rev 2024; 53:1870-1891. [PMID: 38223993 DOI: 10.1039/d3cs00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Aberrant glycans are a hallmark of cancer states. Notably, emerging evidence has demonstrated that the diagnosis of cancers with tumour-specific glycan patterns holds great potential to address unmet medical needs, especially in improving diagnostic sensitivity and selectivity. However, despite vast glycans having been identified as potent markers, glycan-based diagnostic methods remain largely limited in clinical practice. There are several reasons that prevent them from reaching the market, and the lack of anti-glycan antibodies is one of the most challenging hurdles. With the increasing need for accelerating the translational process, numerous efforts have been made to find antibody alternatives, such as lectins, boronic acids and aptamers. However, issues concerning affinity, selectivity, stability and versatility are yet to be fully addressed. Molecularly imprinted polymers (MIPs), synthetic antibody mimics with tailored cavities for target molecules, hold the potential to revolutionize this dismal progress. MIPs can bind a wide range of glycan markers, even those without specific antibodies. This capacity effectively broadens the clinical applicability of glycan-based diagnostics. Additionally, glycoform-resolved diagnosis can also be achieved through customization of MIPs, allowing for more precise diagnostic applications. In this review, we intent to introduce the current status of glycans as potential biomarkers and critically evaluate the challenges that hinder the development of in vitro diagnostic assays, with a particular focus on glycan-specific recognition entities. Moreover, we highlight the key role of MIPs in this area and provide examples of their successful use. Finally, we conclude the review with the remaining challenges, future outlook, and emerging opportunities.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Testa V, Anfossi L, Cavalera S, Di Nardo F, Serra T, Baggiani C. The Amount of Cross-Linker Influences Affinity and Selectivity of NanoMIPs Prepared by Solid-Phase Polymerization Synthesis. Polymers (Basel) 2024; 16:532. [PMID: 38399910 PMCID: PMC10892272 DOI: 10.3390/polym16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The cross-linker methylene-bis-acrylamide is usually present in nanoMIPs obtained by solid-phase polymerization synthesis at 2 mol% concentration, with very few exceptions. Here, we studied the influence of variable amounts of methylene-bis-acrylamide in the range between 0 (no cross-linker) and 50 mol% concentration on the binding properties of rabbit IgG nanoMIPs. The binding parameters were determined by equilibrium binding experiments and the results show that the degree of cross-linking defines three distinct types of nanoMIPs: (i) those with a low degree of cross-linking, including nanoMIPs without cross-linker (0-05 mol%), showing a low binding affinity, high density of binding sites, and low selectivity; (ii) nanoMIPs with a medium degree of cross-linking (1-18 mol%), showing higher binding affinity, low density of binding sites, and high selectivity; (iii) nanoMIPs with a high degree of cross-linking (32-50 mol%), characterized by non-specific nanopolymer-ligand interactions, with low binding affinity, high density of binding sites, and no selectivity. In conclusion, the results are particularly relevant in the synthesis of high-affinity, high-selectivity nanoMIPs as they demonstrate that a significant gain in affinity and selectivity could be achieved with pre-polymerization mixtures containing quantities of cross-linker up to 10-20 mol%, well higher than those normally used in this technique.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy; (V.T.); (L.A.); (S.C.); (F.D.N.); (T.S.)
| |
Collapse
|
4
|
Massey RS, Appadurai RR, Prakash R. A Surface Imprinted Polymer EIS Sensor for Detecting Alpha-Synuclein, a Parkinson's Disease Biomarker. MICROMACHINES 2024; 15:273. [PMID: 38399001 PMCID: PMC10892569 DOI: 10.3390/mi15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L-5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker.
Collapse
Affiliation(s)
| | | | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (R.S.M.); (R.R.A.)
| |
Collapse
|
5
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
6
|
Ikbal MDA, Kang S, Chen X, Gu L, Wang C. Picomolar-Level Sensing of Cannabidiol by Metal Nanoparticles Functionalized with Chemically Induced Dimerization Binders. ACS Sens 2023; 8:4696-4706. [PMID: 38084058 PMCID: PMC11500188 DOI: 10.1021/acssensors.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Simple and fast detection of small molecules is critical for health and environmental monitoring. Methods for chemical detection often use mass spectrometers or enzymes; the former relies on expensive equipment, and the latter is limited to those that can act as enzyme substrates. Affinity reagents like antibodies can target a variety of small-molecule analytes, but the detection requires the successful design of chemically conjugated targets or analogs for competitive binding assays. Here, we developed a generalizable method for the highly sensitive and specific in-solution detection of small molecules, using cannabidiol (CBD) as an example. Our sensing platform uses gold nanoparticles (AuNPs) functionalized with a pair of chemically induced dimerization (CID) nanobody binders (nanobinders), where CID triggers AuNP aggregation and sedimentation in the presence of CBD. Despite moderate binding affinities of the two nanobinders to CBD (equilibrium dissociation constants KD of ∼6 and ∼56 μM), a scheme consisting of CBD-AuNP preanalytical incubation, centrifugation, and electronic detection (ICED) was devised to demonstrate a high sensitivity (limit of detection of ∼100 picomolar) in urine and saliva, a relatively short sensing time (∼2 h), a large dynamic range (5 logs), and a sufficiently high specificity to differentiate CBD from its analog, tetrahydrocannabinol. The high sensing performance was achieved with the multivalency of AuNP sensing, the ICED scheme that increases analyte concentrations in a small assay volume, and a portable electronic detector. This sensing system is readily applicable for wide molecular diagnostic applications.
Collapse
Affiliation(s)
- MD Ashif Ikbal
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, WA 98195, USA
| | - Xiahui Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Liangcai Gu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, WA 98195, USA
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Ikbal MDA, Kang S, Chen X, Gu L, Wang C. Picomolar-Level Sensing of Cannabidiol by Metal Nanoparticles Functionalized with Chemically Induced Dimerization Binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557660. [PMID: 37745324 PMCID: PMC10515952 DOI: 10.1101/2023.09.13.557660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Simple and fast detection of small molecules is critical to health and environmental monitoring. Methods for chemical detection often use mass spectrometers or enzymes; the former relies on expensive equipment and the latter is limited to those that can act as enzyme substrates. Affinity reagents like antibodies can target a variety of small-molecule analytes, but the detection requires successful design of chemically conjugated targets or analogs for competitive binding assays. Here, we developed a generalizable method for highly sensitive and specific in-solution detection of small molecules, using cannabidiol (CBD) as an example. Our sensing platform uses gold nanoparticles (AuNPs) functionalized with a pair of chemically induced dimerization (CID) nanobody binders (nano-binders), where CID triggers AuNPs aggregation and sedimentation in the presence of CBD. Despite moderate binding affinities of the two nano-binders to CBD (KDs of ~6 and ~56 μM), a scheme consisting of CBD-AuNP pre-analytical incubation, centrifugation, and electronic detection (ICED) was devised to demonstrate a high sensitivity (limit of detection of ~100 picomolar) in urine and saliva, a relatively short assay time (~2 hours), a large dynamic range (5 logs), and a sufficiently high specificity to differentiate CBD from its analog, tetrahydrocannabinol. The high sensing performance was achieved with the multivalency of AuNP sensing, the ICED scheme that increases analyte concentrations in a small assay volume, and a portable electronic detector. This sensing system is readily coupled to other binders for wide molecular diagnostic applications.
Collapse
Affiliation(s)
- MD Ashif Ikbal
- School of Electrical, Computer and Energy Engineering, Arizona State University Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, WA 98195, USA
| | - Xiahui Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Liangcai Gu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, WA 98195, USA
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Kang MS, Cho E, Choi HE, Amri C, Lee JH, Kim KS. Molecularly imprinted polymers (MIPs): emerging biomaterials for cancer theragnostic applications. Biomater Res 2023; 27:45. [PMID: 37173721 PMCID: PMC10182667 DOI: 10.1186/s40824-023-00388-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a disease caused by abnormal cell growth that spreads through other parts of the body and threatens life by destroying healthy tissues. Therefore, numerous techniques have been employed not only to diagnose and monitor the progress of cancer in a precise manner but also to develop appropriate therapeutic agents with enhanced efficacy and safety profiles. In this regard, molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. Taken together, the topics discussed in this review provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment. Molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for cancer theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. The topics discussed in this review aim to provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment.
Collapse
Affiliation(s)
- Min Seok Kang
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Euni Cho
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Cáceres C, del Pilar Garcia Morgado M, Bozo FC, Piletsky S, Moczko E. Rapid Selective Detection and Quantification of β-Blockers Used in Doping Based on Molecularly Imprinted Nanoparticles (NanoMIPs). Polymers (Basel) 2022; 14:5420. [PMID: 36559787 PMCID: PMC9787605 DOI: 10.3390/polym14245420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Human performance enhancing drugs (PEDs), frequently used in sport competitions, are strictly prohibited by the World Anti-Doping Agency (WADA). Biological samples collected from athletes and regular patients are continuously tested regarding the identification and/or quantification of the banned substances. Current work is focused on the application of a new analytical method, molecularly imprinted nanoparticles (nanoMIPs), to detect and determine concentrations of certain prohibited drugs, such as β-blockers, in water and human urine samples. These medications are used in the treatment of cardiovascular conditions, negative effects of adrenaline (helping to relief stress), and hypertension (slowing down the pulse and softening the arteries). They can also significantly increase muscle relaxation and improve heart efficiency. The new method of the detection and quantification of β-blockers is based on synthesis, characterization, and implementation of nanoMIPs (so-called plastic antibodies). It offers numerous advantages over the traditional methods, including high binding capacity, affinity, and selectivity for target molecules. Additionally, the whole process is less complicated, cheaper, and better controlled. The size and shape of the nanoMIPs is evaluated by dynamic light scattering (DLS) and transmission electron microscope (TEM). The affinity and selectivity of the nanoparticles are investigated by competitive pseudo enzyme-linked immunosorbent assay (pseudo-ELISA) similar to common immunoassays employing natural antibodies. To provide reliable results towards either doping detection or therapeutic monitoring using the minimal invasive method, the qualitative and quantitative analysis of these drugs is performed in water and human urine samples. It is demonstrated that the assay can detect β-blockers in water within the linear range 1 nmol·L-1-1 mmol·L-1 for atenolol with the detection limit 50.6 ng mL-1, and the linear range 1 mmol·L-1-10 mmol·L-1 for labetalol with the detection limit of 90.5 ng·mL-1. In human urine samples, the linear range is recorded in the concentration range 0.1 mmol·L-1-10 nmol·L-1 for atenolol and 1 mmol·L-1-10 nmol·L-1 for labetalol with a detection limit of 61.0 ng·mL-1 for atenolol and 99.4 ng·mL-1 for labetalol.
Collapse
Affiliation(s)
- César Cáceres
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile
| | - Macarena del Pilar Garcia Morgado
- Laboratorio de Procesos Fotónicos y Electroquímicos, Departamento de Ciencias y Geografia, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Subida Carvallo 270, Playa Ancha, Valparaiso 2340000, Chile
| | - Freddy Celis Bozo
- Laboratorio de Procesos Fotónicos y Electroquímicos, Departamento de Ciencias y Geografia, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Subida Carvallo 270, Playa Ancha, Valparaiso 2340000, Chile
| | - Sergey Piletsky
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile
| |
Collapse
|
10
|
Manshaei F, Bagheri H. A soluble-fluorescent surface molecularly imprinted polymer sensor based on combined soluble solid phase-and liquid-liquid-microextraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Massey RS, Gamero B, Prakash R. A System-on-Board Integrated Multi-analyte PoC Biosensor for Combined Analysis of Saliva and Exhaled Breath. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:904-909. [PMID: 36086150 DOI: 10.1109/embc48229.2022.9870980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The need for oral health monitoring Point of Care (PoC) systems is ever growing. This is effectively highlighted by the ongoing COVID-19 pandemic where the lack of rapid PoC testing has placed an unsustainable burden on centralized laboratory testing. Urgent development has furthered pathogenic nucleic acid and antibody detection in oral samples throat swabs, but without corresponding advancements in biochemical monitoring through oral biosensing. We have recently reported two novel biosensor technologies for detection of high impact hormones: cortisol in saliva by organic electrolyte gated FETs (OEGFETs), and 8-isoprostane in exhaled breath condensate (EBC) using molecularly imprinted electroimpedance spectroscopy biosensors (MIP EIS). In this work, we report a first stage integration of the two biosensors - previously bench-top proven - with a miniaturized semi-hermetically sealed soft-fluidic enclosure, onto a low-power (<300 mW) customized printed circuit board. Our findings established comparable detection thresholds for the miniaturized board-based configuration and a lab-based test setup, and their ability to characterize, calibrate, and operate these small footprint biosensors. Testing with the 8-isoprostane EBC MIP EIS biosensors showed the system-on-board had an effective frequency range of 100-100kHz, comparable to lab bench impedance analyzers. Despite internal impedance increases of 210%, the expected data features are present in the impedance graphs collected with the PCB. The system-on-board experiments using OEGFET aptasensor showed a predictable behavior and comparable sensor detection range and resolution using unadulterated supernatant and serial dilutions of cortisol over a range of 273 μM to 2.73pM. The portable, multi-analyte oral biosensor is a promising prototype for future packaging and clinical validation.
Collapse
|
12
|
Torrini F, Caponi L, Bertolini A, Palladino P, Cipolli F, Saba A, Paolicchi A, Scarano S, Minunni M. A biomimetic enzyme-linked immunosorbent assay (BELISA) for the analysis of gonadorelin by using molecularly imprinted polymer-coated microplates. Anal Bioanal Chem 2022; 414:5423-5434. [PMID: 35028691 PMCID: PMC9242967 DOI: 10.1007/s00216-021-03867-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
Abstract
An original biomimetic enzyme-linked immunoassay (BELISA) to target the small peptide hormone gonadorelin is presented. This peptide has been recently listed among the substances banned in sports by the World Antidoping Agency (WADA) since its misuse by male athletes triggers testosterone increase. Hence, in response to this emerging issue in anti-doping controls, we proposed BELISA which involves the growth of a polynorepinephrine (PNE)-based molecularly imprinted polymer (MIP) directly on microwells. PNE, a polydopamine (PDA) analog, has recently displayed impressive performances when it was exploited for MIP preparation, giving even better results than PDA. Gonadorelin quantification was accomplished via a colorimetric indirect competitive bioassay involving the competition between biotinylated gonadorelin linked to the signal reporter and the unlabeled analyte. These compete for the same MIP binding sites resulting in an inverse correlation between gonadorelin concentration and the output color signal (λ = 450 nm). A detection limit of 277 pmol L-1 was achieved with very good reproducibility in standard solutions (avCV% = 4.07%) and in urine samples (avCV% = 5.24%). The selectivity of the assay resulted adequate for biological specimens and non-specific control peptides. In addition, the analytical figures of merit were successfully validated by mass spectrometry, the reference anti-doping benchtop platform for the analyte. BELISA was aimed to open real perspectives for PNE-based MIPs as alternatives to antibodies, especially when the target analyte is a poorly or non-immunogenic small molecule, such as gonadorelin. Biomimetic enzyme-linked immunosorbent assay (BELISA).
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino (FI), Italy
| | - Laura Caponi
- Laboratory of Clinical Pathology, University Hospital of Pisa, Pisa, Italy
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino (FI), Italy
| | - Francesca Cipolli
- Laboratory of Clinical Pathology, University Hospital of Pisa, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Aldo Paolicchi
- Laboratory of Clinical Pathology, University Hospital of Pisa, Pisa, Italy
| | - Simona Scarano
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino (FI), Italy.
| | - Maria Minunni
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
13
|
Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water. MEMBRANES 2022; 12:membranes12050503. [PMID: 35629829 PMCID: PMC9144673 DOI: 10.3390/membranes12050503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
In this study, polypropylene porous membranes with an average pore size of 1.25 µm were modified by barrier discharge plasma. Next, molecularly imprinted layers with an imprint of diethyl phthalate (DEP) ware grafted of their surface. In order to optimize the composition of the modifying mixture various solvents, the ratios of functional monomers and the cross-linking monomer as well as various amounts of phthalate were verified. It was shown that the most effective membranes were obtained during polymerization in n-octane with the participation of functional monomers in the ratio 3:7 and the amount of phthalate 7 wt.%. The membranes were tested in the filtration process as well as static and dynamic sorption. In all of these processes, the imprinted membranes showed better properties than those without the imprint. The diethyl phthalate retention coefficient was 36.12% for membranes with a grafting yield of 1.916 mg/cm2. On the other hand, DEP static sorption for the imprinted membranes was 3.87 µmol/g higher than for non-imprinted membranes. Also, in the process of dynamic sorption higher values were observed for membranes with the imprint (DSMIM, 4.12 µmol/g; DSNIM, 1.18 µmol/g). The membranes were also tested under real conditions. In the process of filtration of tap water contaminated with phthalate, the presence of imprints in the membrane structure resulted in more than three times higher sorption values (3.09 µmol/g) than in the case of non-imprinted membranes (1.12 µmol/g).
Collapse
|
14
|
Molecularly Imprinted Polymer-Amyloid Fibril-Based Electrochemical Biosensor for Ultrasensitive Detection of Tryptophan. BIOSENSORS 2022; 12:bios12050291. [PMID: 35624592 PMCID: PMC9139163 DOI: 10.3390/bios12050291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022]
Abstract
A tryptophan (Trp) sensor was investigated based on electrochemical impedance spectroscopy (EIS) of a molecularly imprinted polymer on a lysozyme amyloid fibril (MIP-AF). The MIP-AF was composed of aniline as a monomer chemically polymerized in the presence of a Trp template molecule onto the AF surface. After extracting the template molecule, the MIP-AF had cavities with a high affinity for the Trp molecules. The obtained MIP-AF demonstrated rapid Trp adsorption and substantial binding capacity (50 µM mg−1). Trp determination was studied using non-Faradaic EIS by drop drying the MIP-AF on the working electrode of a screen-printed electrode. The MIP-AF provided a large linear range (10 pM–80 µM), a low detection limit (8 pM), and high selectivity for Trp determination. Furthermore, the proposed method also indicates that the MIP-AF can be used to determine Trp in real samples such as milk and cancer cell media.
Collapse
|
15
|
McClements J, Bar L, Singla P, Canfarotta F, Thomson A, Czulak J, Johnson RE, Crapnell RD, Banks CE, Payne B, Seyedin S, Losada-Pérez P, Peeters M. Molecularly Imprinted Polymer Nanoparticles Enable Rapid, Reliable, and Robust Point-of-Care Thermal Detection of SARS-CoV-2. ACS Sens 2022; 7:1122-1131. [PMID: 35416035 PMCID: PMC9016778 DOI: 10.1021/acssensors.2c00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Rapid antigen tests are currently used for population screening of COVID-19. However, they lack sensitivity and utilize antibodies as receptors, which can only function in narrow temperature and pH ranges. Consequently, molecularly imprinted polymer nanoparticles (nanoMIPs) are synthetized with a fast (2 h) and scalable process using merely a tiny SARS-CoV-2 fragment (∼10 amino acids). The nanoMIPs rival the affinity of SARS-CoV-2 antibodies under standard testing conditions and surpass them at elevated temperatures or in acidic media. Therefore, nanoMIP sensors possess clear advantages over antibody-based assays as they can function in various challenging media. A thermal assay is developed with nanoMIPs electrografted onto screen-printed electrodes to accurately quantify SARS-CoV-2 antigens. Heat transfer-based measurements demonstrate superior detection limits compared to commercial rapid antigen tests and most antigen tests from the literature for both the alpha (∼9.9 fg mL-1) and delta (∼6.1 fg mL-1) variants of the spike protein. A prototype assay is developed, which can rapidly (∼15 min) validate clinical patient samples with excellent sensitivity and specificity. The straightforward epitope imprinting method and high robustness of nanoMIPs produce a SARS-CoV-2 sensor with significant commercial potential for population screening, in addition to the possibility of measurements in diagnostically challenging environments.
Collapse
Affiliation(s)
- Jake McClements
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Laure Bar
- Experimental
Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libré de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium
| | - Pankaj Singla
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Francesco Canfarotta
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Alan Thomson
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Joanna Czulak
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Rhiannon E. Johnson
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Robert D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, John Dalton
Building, Chester Street, Manchester M1 5GD, United Kingdom
| | - Craig E. Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, John Dalton
Building, Chester Street, Manchester M1 5GD, United Kingdom
| | - Brendan Payne
- Department
of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1
4LP, United Kingdom
- Translational
and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Shayan Seyedin
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Patricia Losada-Pérez
- Experimental
Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libré de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium
| | - Marloes Peeters
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
16
|
Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. BIOSENSORS 2022; 12:136. [PMID: 35323406 PMCID: PMC8946830 DOI: 10.3390/bios12030136] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Shin-Young Park
- Department of Dental Education and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
17
|
A linear-polymer-based lactoferrin-selective recognition element for an ELISA mimic: A proof of concept. Anal Chim Acta 2022; 1191:339309. [PMID: 35033252 DOI: 10.1016/j.aca.2021.339309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022]
Abstract
The synthesis of polymers with tailored properties for the recognition of macromolecules such as proteins is challenging. In this work, the synthesis of a new polymer format, a linear polymer (LP), as the selective recognition element for the globular protein lactoferrin (LF) is proposed as a proof-of-concept study. For the synthesis, a solid-phase strategy using the reversible deactivation radical polymerisation (RDRP) mechanism is proposed. This approach, which is usually used in molecular imprinting, involves the immobilisation of LF on the surface of a solid support, but, unlike classical imprinting, a cross-linker in the polymerisation mixture is not required. Consequently, the copolymer is soluble and flexible, thus overcoming the drawbacks associated with traditional synthetic polymers for macromolecule imprinting. This new polymer format has great potential for replacing natural antibodies in bioassays such as enzyme-linked immunosorbent assays (ELISA), dot blot, western blot, or pull-down. In our case, the linear polymer was used as a recognition element to replace natural antibodies in a LF-selective ELISA. The responses of the linear polymer between LF concentrations of 0.1 nM and 0.25 μM were studied, and a significant difference was observed between the non-specific signals and the signals measured in the presence of the polymeric material. Further, the response versus log concentration curves were fitted to a logistic equation, allowing estimation of the EC50 value: 11.8 ± 1.4 nM. We also confirmed the selective detection of LF using the competitive inhibition of the selective LF-biotin conjugate (LF-Bi) binding to the plastic receptor (LP) for closely related proteins (e.g. those having similar molecular weights or isoelectric points) such as human lysozyme, trypsin, and albumin, which are present in human body fluids. The system presents a cross-reactivity value or selectivity of 1.95% for lysozyme, 0.028% for trypsin, and 0.016% for albumin. The applicability of this method for the determination of urine LF levels in inflammatory and infectious diseases of the human urinary tract is also demonstrated.
Collapse
|
18
|
Bossi AM, Maniglio D. BioMIPs: molecularly imprinted silk fibroin nanoparticles to recognize the iron regulating hormone hepcidin. Mikrochim Acta 2022; 189:66. [PMID: 35064352 PMCID: PMC8782820 DOI: 10.1007/s00604-022-05165-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023]
Abstract
The possibility to prepare molecularly imprinted nanoparticles from silk fibroin was recently demonstrated starting from methacrylated silk fibroin and choosing a protein as template. Here, we attempted the imprinting of fibroin-based molecularly imprinted polymers (MIPs), called bioMIPs, using as a template hepcidin that is a iron-metabolism regulator-peptide, possessing a hairpin structure. A homogeneous population (PDI < 0.2) of bioMIPs with size ~50 nm was produced. The bioMIPs were selective for the template; the estimated dissociation constant for hepcidin was KD = 3.6 ± 0.5 10-7 M and the average number of binding sites per bioMIP was equal to 2. The bioMIPs used in a competitive assay for hepcidin in serum showed a detection range of 1.01 10-7- 6.82 10-7 M and a limit of detection of 3.29 10-8 M.
Collapse
Affiliation(s)
- Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Devid Maniglio
- Department of Industrial Engineering, BIOtech Research Center, University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
19
|
Abbott B, Bedwell TS, Grillo F, Piletsky S, Whitcombe MJ, Piletska E, Garcia-Cruz A, Cowen T, Piletsky SA. Use of polymeric solid phase in synthesis of MIP nanoparticles for biotin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Piletsky SA, Bedwell T, Paoletti R, Karim K, Canfarotta F, Norman R, Jones D, Turner N, Piletska E. Modulation of Acetylcholinesterase Activity Using Molecularly Imprinted Polymer Nanoparticles. J Mater Chem B 2022; 10:6732-6741. [DOI: 10.1039/d2tb00278g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulation of enzyme activity allows for control over many biological pathways and while strategies for the pharmaceutical design of inhibitors are well established; methods for promoting activation, that is an...
Collapse
|
21
|
|
22
|
Molecularly imprinted polymers for the extraction and determination of water-soluble vitamins: A review from 2001 to 2020. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
NanoMIP-Based Solid Phase Extraction of Fluoroquinolones from Human Urine: A Proof-of-Concept Study. SEPARATIONS 2021. [DOI: 10.3390/separations8110226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
NanoMIPs that are prepared by solid phase synthesis have proven to be very versatile, but to date only limited attention has been paid to their use in solid phase extraction. Thus, since nanoMIPs show close similarities, in terms of binding behavior, to antibodies, it seems relevant to verify if it is possible to use them as mimics of the natural antibodies that are used in immunoextraction methods. As a proof-of-concept, we considered prepared nanoMIPs against fluoroquinolone ciprofloxacin. Several nanoMIPs were prepared in water with polymerization mixtures of different compositions. The polymer with the highest affinity towards ciprofloxacin was then grafted onto a solid support and used to set up a solid phase extraction–HPLC method with fluorescence detection, for the determination of fluoroquinolones in human urine. The method resulted in successful selection for the fluoroquinolone antibiotics, such that the nanoMIPs were suitable for direct extraction of the antibiotics from the urine samples at the µg mL−1 level. They required no preliminary treatment, except for a 1 + 9 (v/v) dilution with a buffer of pH 4.5 and they had good analyte recovery rates; up to 85% with precision in the range of 3 to 4.5%, without interference from the matrix. These experimental results demonstrate, for the first time, the feasibility of the use of nanoMIPs to develop solid phase extraction methods.
Collapse
|
24
|
Garnier M, Sabbah M, Ménager C, Griffete N. Hybrid Molecularly Imprinted Polymers: The Future of Nanomedicine? NANOMATERIALS 2021; 11:nano11113091. [PMID: 34835858 PMCID: PMC8618516 DOI: 10.3390/nano11113091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been widely used in nanomedicine in the last few years. However, their potential is limited by their intrinsic properties resulting, for instance, in lack of control in drug release processes or complex detection for in vivo imaging. Recent attempts in creating hybrid nanomaterials combining MIPs with inorganic nanomaterials succeeded in providing a wide range of new interesting properties suitable for nanomedicine. Through this review, we aim to illustrate how hybrid molecularly imprinted polymers may improve patient care with enhanced imaging, treatments, and a combination of both.
Collapse
Affiliation(s)
- Maylis Garnier
- PHysico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France;
- Saint-Antoine Research Center (CRSA), INSERM, CNRS, Sorbonne Université, F-75012 Paris, France;
| | - Michèle Sabbah
- Saint-Antoine Research Center (CRSA), INSERM, CNRS, Sorbonne Université, F-75012 Paris, France;
| | - Christine Ménager
- PHysico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (C.M.); (N.G.)
| | - Nébéwia Griffete
- PHysico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (C.M.); (N.G.)
| |
Collapse
|
25
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Chiarello M, Anfossi L, Cavalera S, Di Nardo F, Artusio F, Pisano R, Baggiani C. Effect of Polymerization Time on the Binding Properties of Ciprofloxacin-Imprinted nanoMIPs Prepared by Solid-Phase Synthesis. Polymers (Basel) 2021; 13:2656. [PMID: 34451197 PMCID: PMC8398629 DOI: 10.3390/polym13162656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
An innovative approach to imprinted nanoparticles (nanoMIPs) is represented by solid-phase synthesis. Since the polymeric chains grow over time and rearrange themselves around the template, the binding properties of nanoMIPs could depend on the polymerization time. Here we present an explorative study about the effect of different polymerization times on the binding properties of ciprofloxacin-imprinted nanoMIPs. The binding properties towards ciprofloxacin were studied by measuring the binding affinity constants (Keq) and the kinetic rate constants (kd, ka). Furthermore, selectivity and nonspecific binding were valued by measuring the rebinding of levofloxacin onto ciprofloxacin-imprinted nanoMIPs and ciprofloxacin onto diclofenac-imprinted nanoMIPs, respectively. The results show that different polymerization times produce nanoMIPs with different binding properties: short polymerization times (15 min) produced nanoMIPs with high binding affinity but low selectivity (Keq > 107 mol L-1, α ≈ 1); medium polymerization times (30 min-2 h) produced nanoMIPs with high binding affinity and selectivity (Keq ≥ 106 mol L-1, α < 1); and long polymerization times (>2 h) produced nanoMIPs with low binding affinity, fast dissociation kinetics and low selectivity (Keq ≤ 106 mol L-1, kdis > 0.2 min-1, α ≈ 1). The results can be explained as the combined effect of rearrangement and progressive stiffening of the polymer chains around the template molecules.
Collapse
Affiliation(s)
- Matteo Chiarello
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (L.A.); (S.C.); (F.D.N.)
| | - Laura Anfossi
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (L.A.); (S.C.); (F.D.N.)
| | - Simone Cavalera
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (L.A.); (S.C.); (F.D.N.)
| | - Fabio Di Nardo
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (L.A.); (S.C.); (F.D.N.)
| | - Fiora Artusio
- Department of Applied Science and Technology, Polytechnic University of Torino, 10125 Torino, Italy; (F.A.); (R.P.)
| | - Roberto Pisano
- Department of Applied Science and Technology, Polytechnic University of Torino, 10125 Torino, Italy; (F.A.); (R.P.)
| | - Claudio Baggiani
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (L.A.); (S.C.); (F.D.N.)
| |
Collapse
|
27
|
Köse K, Kehribar DY, Uzun L. Molecularly imprinted polymers in toxicology: a literature survey for the last 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35437-35471. [PMID: 34024002 DOI: 10.1007/s11356-021-14510-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The science of toxicology dates back almost to the beginning of human history. Toxic chemicals, which are encountered in different forms, are always among the chemicals that should be investigated in criminal field, environmental application, pharmaceutic, and even industry, where many researches have been carried out studies for years. Almost all of not only drugs but also industrial dyes have toxic side and direct effects. Environmental micropollutants accumulate in the tissues of all living things, especially plants, and show short- or long-term toxic symptoms. Chemicals in forensic science can be known by detecting the effect they cause to the body with the similar mechanism. It is clear that the best tracking tool among analysis methods is molecularly printed polymer-based analytical setups. Different polymeric combinations of molecularly imprinted polymers allow further study on detection or extraction using chromatographic and spectroscopic instruments. In particular, methods used in forensic medicine can detect trace amounts of poison or biological residues on the scene. Molecularly imprinted polymers are still in their infancy and have many variables that need to be developed. In this review, we summarized how molecular imprinted polymers and toxicology intersect and what has been done about molecular imprinted polymers in toxicology by looking at the studies conducted in the last 5 years.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, Çorum, Turkey.
| | - Demet Yalçın Kehribar
- Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
28
|
Cavalera S, Chiarello M, Di Nardo F, Anfossi L, Baggiani C. Effect of experimental conditions on the binding abilities of ciprofloxacin-imprinted nanoparticles prepared by solid-phase synthesis. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Boonsriwong W, Chunta S, Thepsimanon N, Singsanan S, Lieberzeit PA. Thin Film Plastic Antibody-Based Microplate Assay for Human Serum Albumin Determination. Polymers (Basel) 2021; 13:polym13111763. [PMID: 34072152 PMCID: PMC8198403 DOI: 10.3390/polym13111763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Herein we demonstrate molecularly imprinted polymers (MIP) as plastic antibodies for a microplate-based assay. As the most abundant plasma protein, human serum albumin (HSA) was selected as the target analyte model. Thin film MIP was synthesized by the surface molecular imprinting approach using HSA as the template. The optimized polymer consisted of acrylic acid (AA) and N-vinylpyrrolidone (VP) in a 2:3 (w/w) ratio, crosslinked with N,N'-(1,2-dihydroxyethylene) bisacrylamide (DHEBA) and then coated on the microplate well. The binding of MIP toward the bound HSA was achieved via the Bradford reaction. The assay revealed a dynamic detection range toward HSA standards in the clinically relevant 1-10 g/dL range, with a 0.01 g/dL detection limit. HSA-MIP showed minimal interference from other serum protein components: γ-globulin had 11% of the HSA response, α-globulin of high-density lipoprotein had 9%, and β-globulin of low-density lipoprotein had 7%. The analytical accuracy of the assay was 89-106% at the 95% confidence interval, with precision at 4-9%. The MIP-coated microplate was stored for 2 months at room temperature without losing its binding ability. The results suggest that the thin film plastic antibody system can be successfully applied to analytical/pseudoimmunological HSA determinations in clinical applications.
Collapse
Affiliation(s)
| | - Suticha Chunta
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
- Correspondence: ; Tel.: +66-74-28-9125
| | - Nonthawat Thepsimanon
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Sanita Singsanan
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Peter A. Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
30
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
31
|
Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2073:183-194. [PMID: 31612443 DOI: 10.1007/978-1-4939-9869-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Molecularly imprinted polymers are leading technology in the development of protein biomimetics. This chapter describes the protocol for the synthesis of protein imprinted nanoparticles. These materials exhibit exceptional affinity (into the nM/pM range) and selectivity for their target template. The nanoparticles can be developed for a wide range of targets, while exhibiting excellent robustness, solubility, and flexibility in use. They are finding use in the creation of drug delivery vectors and sensing and recognition assays.
Collapse
|
33
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|
34
|
The Use of Aptamers and Molecularly Imprinted Polymers in Biosensors for Environmental Monitoring: A Tale of Two Receptors. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8020032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective molecular recognition remains a major challenge in the development of robust receptors for biosensing applications. Over the last three decades, aptamers and molecularly imprinted polymers (MIPs) have emerged as the receptors of choice for use in biosensors as viable alternatives to natural antibodies, due to their superior stability, comparable binding performance, and lower costs. Although both of these technologies have been developed in parallel, they both suffer from their own unique problems. In this review, we will compare and contrast both types of receptor, with a focus on the area of environmental monitoring. Firstly, we will discuss the strategies and challenges involved in their development. We will also discuss the challenges that are involved in interfacing them with the biosensors. We will then compare and contrast their performance with a focus on their use in the detection of environmental contaminants, namely, antibiotics, pesticides, heavy metals, and pathogens detection. Finally, we will discuss the future direction of these two technologies.
Collapse
|
35
|
Leibl N, Duma L, Gonzato C, Haupt K. Polydopamine-based molecularly imprinted thin films for electro-chemical sensing of nitro-explosives in aqueous solutions. Bioelectrochemistry 2020; 135:107541. [PMID: 32388439 DOI: 10.1016/j.bioelechem.2020.107541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
A sensitive electrochemical sensor was developed for the detection of nitro-explosives in aqueous solutions based on thin molecularly imprinted polydopamine films. Dopamine was identified in silico, based on DFT (density functional theory) calculations with the ωB97X-D/6-31G* basis set, as the best functional monomer and electropolymerized via cyclic voltammetry (CV) in the presence of carboxylic acid-based structural analogues ('dummy' templates) for two model nitro-explosives: TNT (2,4,6-trinitrotoluene) and RDX (Research Department eXplosive, 1,3,5-trinitroperhydro-1,3,5-triazine). This approach afforded a homogenous coverage of gold electrodes with imprinted films of tunable thickness. The electropolymerized molecularly imprinted polydopamine films allowed for a 105-fold sensitivity improvement over a bare gold electrode based on tracking the redox peaks of the targets by CV. This improved sensitivity is ascribed to the ability of the MIP to concentrate its target in proximity to the transduction element. The MIP films showed reproducible binding in phosphate buffer (10 mM, pH 7.4), with a dynamic range from 0.1 nM to 10 nM for both TNT and RDX and an increased selectivity over closely related structural analogues.
Collapse
Affiliation(s)
- Nadja Leibl
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Luminita Duma
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Carlo Gonzato
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| | - Karsten Haupt
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
36
|
Zhang Z, Yu X, Zhao J, Shi X, Sun A, Jiao H, Xiao T, Li D, Chen J. A fluorescence microplate assay based on molecularly imprinted silica coated quantum dot optosensing materials for the separation and detection of okadaic acid in shellfish. CHEMOSPHERE 2020; 246:125622. [PMID: 31918075 DOI: 10.1016/j.chemosphere.2019.125622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Molecularly imprinted polymers (MIPs) are attracting substantial interest as artificial plastic antibodies because of their biometric capability for targeting small molecules. In this study, molecularly imprinted silica material-coated quantum dots (MIS-QDs) with selective recognition capability to okadaic acid (OA) were developed and characterized. The synthesized MIS-QDs with specific imprinting cavities exhibited excellent recognition capability similar to those of biological antibodies and high fluorescence (FL) quenching selectivity for OA. Furthermore, the MIS-QDs with unsaturated bonds were immobilized onto the surface of 96-well microplates by cold plasma-induced grafting. A novel direct competitive microplate assay strategy was then proposed. The FL quenching properties of the developed microplate assay showed an excellent linear relationship with OA in the range of 10.0-100.0 μg/kg with a correlation coefficient of 0.9961. The limit of detection for OA was 0.25 μg/kg in the shellfish samples. The mean quantitative recoveries were 92.5%-101.0% and 92.9%-101.3%, with relative standard deviations of <7.7% and 7.6% for pure solvents and purified shellfish samples, respectively. The established microplate assay strategy can be used as a rapid and high-throughput method for analyzing OA marine toxins in biological samples.
Collapse
Affiliation(s)
- Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xinru Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jian Zhao
- Ningbo Academy of Agricultural Sciences, 19 Houde Road, Ningbo, 315040, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Tingting Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Dexiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| |
Collapse
|
37
|
Jaria G, Calisto V, Otero M, Esteves VI. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)-a practical overview. Anal Bioanal Chem 2020; 412:3983-4008. [PMID: 32088755 DOI: 10.1007/s00216-020-02509-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations of these contaminants in the aquatic environment, namely high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, usually coupled to different types of detectors, which need to be complemented with time-consuming and costly sample cleaning and pre-concentration procedures. Generally, the enzyme-linked immunosorbent assay (ELISA), as other immunoassay methodologies, is mostly used in biological samples (most frequently urine and blood). However, during the last years, the number of studies referring the use of ELISA for the analysis of pharmaceuticals in complex environmental samples has been growing. Therefore, this work aims to present an overview of the application of ELISA for screening and quantification of pharmaceuticals in the aquatic environment, namely in water samples and biological tissues. The experimental procedures together with the main advantages and limitations of the assay are addressed, as well as new incomes related with the application of molecular imprinted polymers to mimic antibodies in similar, but alternative, approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Guilaine Jaria
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marta Otero
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
38
|
Cowen T, Stefanucci E, Piletska E, Marrazza G, Canfarotta F, Piletsky SA. Synthetic Mechanism of Molecular Imprinting at the Solid Phase. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01913] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Todd Cowen
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH Leicester, U.K
| | - Enrico Stefanucci
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia, 3, 50019 Florence, Sesto Fiorentino, Italy
| | - Elena Piletska
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH Leicester, U.K
| | - Giovanna Marrazza
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia, 3, 50019 Florence, Sesto Fiorentino, Italy
| | - Francesco Canfarotta
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH Leicester, U.K
| | - Sergey A. Piletsky
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH Leicester, U.K
| |
Collapse
|
39
|
Ping Y, Li Y, Lü S, Sun Y, Zhang W, Wu J, Liu T, Li Y. A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction. Biomed Pharmacother 2020; 124:109826. [PMID: 31978766 DOI: 10.1016/j.biopha.2020.109826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Bai-Hu-Tang (BHT), a Chinese herbal decoction used as an antipyretic agent, results from the combination of Anemarrhena asphodeloides Bunge, Glycyrrhizae, Japonica rice, and Gypsum. In our previous study, we identified nanoaggregates in BHT. However, the present study aimed to analyze and elucidate the mechanism of nanoaggregate formation and to investigate its antipyretic effect. METHODS A BHT decoction extract was split into 15 groups, and in each group, the extract was further separated into two solutions: Nano-phase and Decoction. The physicochemical properties of these solutions, such as particle size, salinity, conductivity, and surface tension were investigated, and analyzed the 15 groups of by transmission electron microscopy (TEM) and fingerprint chromatography. Furthermore, the antipyretic effect of nanoaggregates was evaluated through enzyme-linked immunosorbent assays, HE staining, Western Blot, and Real-time PCR. RESULTS In the 15 groups, the salinity and conductivity results showed a promoting and stabilizing effect towards the Nano-phase formation. Analysis of the surface tension indicated good solubilization of Radix Glycyrrhizae. The TEM analysis of the BHT separated extracts revealed that only in the presence of Japonica rice the Nano-phase is formed. Sixteen common peaks were identified in the BHT fingerprint chromatogram, and the main chemical components were Neomangiferin, Mangiferin, Liquiritin, and Ammonium glycyrrhizinate. Furthermore, BHT and nanoaggregates from Bai-Hu-Tang (N-BHT) groups did not differ in the main chemical components. Additionally, the N-BHT group had the same antipyretic effect compared with the BHT group. However, the pathological analysis indicated that treatment with N-BHT could ameliorate the lung damage in the rat. At the same time, N-BHT group inhibited expression of several proteins, specifically IL-1β, TRPV4, NF-κB, and TNF-α, which agreed with the Real-time PCR results. CONCLUSION We identified the key factors that are involved in the nano-phase formation. Also, by Western blot and Real-time PCR methods, we investigated the N-BHT mechanism of antipyretic action. The discovery of the N-BHT formation would provide a new idea of studying traditional Chinese medicine decoction.
Collapse
Affiliation(s)
- Yang Ping
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China; College of Pharmacy, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yali Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wanmeng Zhang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jialin Wu
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ting Liu
- School of Pharmacy, Harbin Medical University (Daqing), 163319, Daqing, China.
| | - Yongji Li
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
40
|
Garcia-Cruz A, Cowen T, Voorhaar A, Piletska E, Piletsky SA. Molecularly imprinted nanoparticles-based assay (MINA) – detection of leukotrienes and insulin. Analyst 2020; 145:4224-4232. [DOI: 10.1039/d0an00419g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel molecularly imprinted polymer nanoparticle-based assay (MINA) performed in magnetic microplates was developed as an improved high-quality alternative to existing antibody-based immunoassays.
Collapse
Affiliation(s)
- Alvaro Garcia-Cruz
- Department of Chemistry
- University of Leicester
- University Road
- Leicester
- UK
| | - Todd Cowen
- Department of Chemistry
- University of Leicester
- University Road
- Leicester
- UK
| | - Annelies Voorhaar
- Department of Chemistry
- University of Leicester
- University Road
- Leicester
- UK
| | - Elena Piletska
- Department of Chemistry
- University of Leicester
- University Road
- Leicester
- UK
| | - Sergey A. Piletsky
- Department of Chemistry
- University of Leicester
- University Road
- Leicester
- UK
| |
Collapse
|
41
|
Vaneckova T, Bezdekova J, Han G, Adam V, Vaculovicova M. Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomater 2020; 101:444-458. [PMID: 31706042 DOI: 10.1016/j.actbio.2019.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Medical diagnostics aims at specific localization of molecular targets as well as detection of abnormalities associated with numerous diseases. Molecularly imprinted polymers (MIPs) represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements such as fluorescent proteins, antibodies, enzymes, or aptamers and can even be created to those targets for which no antibodies are available. In this review, we summarize the methods of polymer fabrication. Further, we provide key for selection of the core material with imaging function depending on the imaging modality used. Finally, MIP-based imaging applications are highlighted and presented in a comprehensive form from different aspects. STATEMENT OF SIGNIFICANCE: In this review, we summarize the methods of polymer fabrication. Key applications of Molecularly imprinted polymers (MIPs) in imaging are highlighted and discussed with regard to the selection of the core material for imaging as well as commonly used imaging targets. MIPs represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements, e.g., antibodies, fluorescent proteins, enzymes, or aptamers, and can even be created to those targets for which no antibodies are available.
Collapse
|
42
|
Zhang H. Molecularly Imprinted Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806328. [PMID: 31090976 DOI: 10.1002/adma.201806328] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
43
|
Rapini R, Canfarotta F, Mazzotta E, Malitesta C, Marrazza G, Piletsky S, Piletska E. NanoMIP-based approach for the suppression of interference signals in electrochemical sensors. Analyst 2019; 144:7290-7295. [PMID: 31710056 DOI: 10.1039/c9an01244c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe the use of molecularly imprinted nanoparticles (nanoMIPs) as sequestering (masking) agents, to suppress the signal coming from interfering molecules and facilitate the detection of the target analyte. In this work, ascorbic acid was used as a model interfering molecule in dopamine electrochemical detection. NanoMIPs selective for ascorbic acid demonstrated to be capable of binding and suppressing electrochemical signal from ascorbic acid, enabling the detection of dopamine in the range 100-500 nM, without any need for sample pre-treatment. Tests in real samples (spiked human serum) were also carried out successfully. Due to the generic nature of the imprinting process, the proposed approach can be tailored to suppress potentially any interfering species, by simply varying the type of nanoMIPs used.
Collapse
Affiliation(s)
- Riccardo Rapini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Piletska EV, Mirkes E, Piletsky SS, Abosoglu H, Cassim A, Chu E, Doughty S, Eganda SJ, Fuchigami H, Hussein A, Olickal M, Parmar N, Sebastian A, Piletsky SA. Combinatorial screening of polymer nanoparticles for their ability to recognize epitopes of AAV-neutralizing antibodies. J Mol Recognit 2019; 33:e2824. [PMID: 31742810 DOI: 10.1002/jmr.2824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/26/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
A library of 17 nanoparticles made of acrylate and methacrylate copolymers is prepared, characterized, and screened against six epitopes of adeno-associated viruses (AAV)-neutralizing antibodies to assess their affinity and specificity. Peptide epitopes are immobilized onto the surface of glass beads, packed in filtration microplates, and incubated with fluorescein-labelled nanoparticles. Following intense washing, the affinity of nanoparticles to immobilized epitopes is assessed by measuring the fluorescence of captured nanoparticles. The results show that polar monomers, acrylic acid in particular, have a positive impact on polymer affinity towards all peptides used in this study. The presence of hydrophobic monomers, on other hand, has a negative impact on polymer binding. The composition of peptides used in this study has no noticeable impact on the affinity of synthesized nanoparticles. The affinity of nanoparticles with the highest affinity to peptide targets does not exceed millimolar level. Overall, it is found that the synthesized library showed modest affinity but lacked specificity, which should be further "tuned," for example, by using molecular imprinting to achieve an acceptable level of affinity and specificity for practical application.
Collapse
Affiliation(s)
| | - Eugeny Mirkes
- School of Mathematics, University of Leicester, Leicester, UK
| | | | - Hasan Abosoglu
- School of Chemistry, University of Leicester, Leicester, UK
| | | | - Edmund Chu
- School of Chemistry, University of Leicester, Leicester, UK
| | - Simon Doughty
- School of Chemistry, University of Leicester, Leicester, UK
| | | | | | - Aleah Hussein
- School of Chemistry, University of Leicester, Leicester, UK
| | - Meedhu Olickal
- School of Chemistry, University of Leicester, Leicester, UK
| | - Neelay Parmar
- School of Chemistry, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
45
|
Determination of Fumonisin B1 in maize using molecularly imprinted polymer nanoparticles-based assay. Food Chem 2019; 298:125044. [DOI: 10.1016/j.foodchem.2019.125044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022]
|
46
|
Zhou L, Wang Y, Xing R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron 2019; 145:111729. [PMID: 31581071 DOI: 10.1016/j.bios.2019.111729] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
Sensitive and specific detection methods are critical to the detection of glycoproteins. Immunoassay has been a powerful tool for this purpose, in which antibodies or their mimics particularly molecularly imprinted polymers (MIPs) are used for specific recognition. Epitope and glycan are two structure features of a glycoprotein. However, immunoassays based on simultaneous recognition towards the two characteristics have been scarcely explored so far. Herein we present a new strategy called orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay (odMIP-PISA). It relies on double recognition towards a target glycoprotein by two different types of MIPs, using epitope-imprinted gold nanoparticles (AuNPs)-coated slide as capturing substrate to recognize the peptide epitope and glycans-imprinted Raman-active silver nanoparticles as labeling nanotags to recognize the glycans. Carcinoembryonic antigen (CEA), a routinely used marker for colon cancer, was used as a test glycoprotein. The orthogonal double recognition apparently improved the specificity, reducing the maximum cross-reactivity from 14.4% for epitope recognition and 15.2% for glycan recognition to 8.2% for double recognition. Meanwhile, the plasmonic nanostructure-based Raman detection provided ultrahigh sensitivity, yielding a limit of detection of 5.56 × 10-14 M (S/N = 10). Through measuring the CEA level in human serum, this method permitted differentiation of colon cancer patient from healthy individual. Compared with the traditional immunoassay, odMIP-PISA exhibited multiple advantages, including simplified procedure (6 steps), speed (30 min), reduced cost, and so on. Therefore, this new approach holds great promise in many applications particularly clinical diagnosis.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
47
|
Molecularly Imprinted Nanoparticles Assay (MINA) in Pseudo ELISA: An Alternative to Detect and Quantify Octopamine in Water and Human Urine Samples. Polymers (Basel) 2019; 11:polym11091497. [PMID: 31540212 PMCID: PMC6780943 DOI: 10.3390/polym11091497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/20/2023] Open
Abstract
In 2004, octopamine was added to the list of drugs banned by the world anti-doping agency (WADA) and prohibited in any sport competition. This work aims to develop a new analytical method to detect octopamine in water and human urine samples. We proposed a pseudo-enzyme-linked immunosorbent assay (pseudo-ELISA) by replacing traditional monoclonal antibodies with molecularly imprinted polymer nanoparticles (nanoMIPs). NanoMIPs were synthesised by a solid-phase approach using a persulfate initiated polymerisation in water. Their performance was analysed in pseudo competitive ELISA based on the competition between free octopamine and octopamine-HRP conjugated. The final assay was able to detect octopamine in water within the range 1 nmol·L−1–0.1 mol·L−1 with a detection limit of 0.047 ± 0.00231 µg·mL−1 and in human urine samples within the range 1 nmol·L−1–0.0001 mol·L−1 with a detection limit of 0.059 ± 0.00281 µg·mL−1. In all experiments, nanoMIPs presented high affinity to the target molecules and almost no cross-reactivity with analogues of octopamine such as pseudophedrine or l-Tyrosine. Only slight interference was observed from the human urine matrix. The high affinity and specificity of nanoMIPs and no need to maintain a cold chain logistics makes the nanoMIPs a competitive alternative to antibodies. Furthermore, this work is the first attempt to use nanoMIPs in pseudo-ELISA assays to detect octopamine.
Collapse
|
48
|
Garcia Y, Canfarotta F, Smolinska-Kempisty K, Piletsky SA, Pereira E. Competitive pseudo-ELISA based on molecularly imprinted nanoparticles for microcystin-LR detection in water. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Microcystins (MCs) are dangerous cyanotoxins for the public health, and microcystin-LR (MC-LR) is one of most toxic, dangerous, and frequently found in water bodies. Typically, the detection of MCs is carried out by means of competitive ELISAs which, however, need special precautions for handling and storage, due to the stability of the antibodies used in this test. Molecularly imprinted nanoparticles (nanoMIPs) represents more robust and cost-effective alternative to antibodies. In this work, we developed a competitive pseudo-ELISA based on nanoMIPs (which are used in place of natural antibodies), for the detection of microcystin-LR (MC-LR). This pseudo-ELISA showed a linear response towards MC-LR, showing high affinity and low cross-reactivity against another analogue toxin (microcystin-YR). The analytical recovery of MC-LR in the analysis of water samples by the proposed pseudo-ELISA was 96 %–130 % and the limit of detection was 2.64 × 10−4 nM. The obtained results suggest that this competitive pseudo-ELISA could have high potential in the detection of toxins, due to its rapid, sensitive and accurate detection of toxin in water samples.
Collapse
Affiliation(s)
- Yadiris Garcia
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Science , University of Concepción , Concepción , Chile
| | - Francesco Canfarotta
- MIP Diagnostics Ltd, University of Leicester , Fielding Johnson Building , Leicester LE1 7RH , UK
| | - Katarzyna Smolinska-Kempisty
- Department of Chemistry , University of Leicester , University Road , Leicester, LE1 7RH , UK
- Wroclaw University of Science and Technology , Faculty of Chemistry, Department of Polymer and Carbon Materials , Wyb. St. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Sergey A. Piletsky
- Department of Chemistry , University of Leicester , University Road , Leicester, LE1 7RH , UK
| | - Eduardo Pereira
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Science , University of Concepción , Concepción , Chile
| |
Collapse
|
49
|
Wang X, Chen C, Xu L, Zhang H, Xu Z. Development of molecularly imprinted biomimetic immunoassay method based on quantum dot marker for detection of phthalates. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1649371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ximo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Longhua Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, Jinan, PR People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|
50
|
Vaneckova T, Vanickova L, Tvrdonova M, Pomorski A, Krężel A, Vaculovic T, Kanicky V, Vaculovicova M, Adam V. Molecularly imprinted polymers coupled to mass spectrometric detection for metallothionein sensing. Talanta 2019; 198:224-229. [DOI: 10.1016/j.talanta.2019.01.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|