1
|
Fu XM, Li CL, Jiang HR, Zhang JY, Sun T, Zhou F. Neuroinflammatory response after subarachnoid hemorrhage: A review of possible treatment targets. Clin Neurol Neurosurg 2025; 252:108843. [PMID: 40107192 DOI: 10.1016/j.clineuro.2025.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
A serious neurosurgical emergency, subarachnoid hemorrhage (SAH) is characterized by vascular and neuropathy, as well as complex pathological mechanisms like vascular lesions, inflammatory responses, and nerve cell damage. The inflammatory response is an essential aspect of SAH's pathophysiology, causing the release of a number of inflammatory mediators and oxidative stress products like TNF-α, MCP-1, MMPs, and so on, which either directly or indirectly contribute to the development of SAH.It has recently been discovered that some antibodies against inflammatory mediators, antioxidant stress, botanicals, and traditional Chinese medicine decrease the inflammatory response of SAH. Additionally, certain biomarkers linked to inflammation may serve as a foundation for clinical diagnosis.Although these mechanisms are still not completely understood, we can explore potential therapeutic targets by studying the role of inflammatory responses and bioactive molecules in the formation of SAH.
Collapse
Affiliation(s)
- Xiao-Man Fu
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chen-Lu Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ru Jiang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Yun Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Tao Sun
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Feng Zhou
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| |
Collapse
|
2
|
Wang P, Okada-Rising S, Scultetus AH, Bailey ZS. The Relevance and Implications of Monoclonal Antibody Therapies on Traumatic Brain Injury Pathologies. Biomedicines 2024; 12:2698. [PMID: 39767605 PMCID: PMC11672875 DOI: 10.3390/biomedicines12122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) is a global public health concern. It remains one of the leading causes of morbidity and mortality. TBI pathology involves complex secondary injury cascades that are associated with cellular and molecular dysfunction, including oxidative stress, coagulopathy, neuroinflammation, neurodegeneration, neurotoxicity, and blood-brain barrier (BBB) dysfunction, among others. These pathological processes manifest as a diverse array of clinical impairments. They serve as targets for potential therapeutic intervention not only in TBI but also in other diseases. Monoclonal antibodies (mAbs) have been used as key therapeutic agents targeting these mechanisms for the treatment of diverse diseases, including neurological diseases such as Alzheimer's disease (AD). MAb therapies provide a tool to block disease pathways with target specificity that may be capable of mitigating the secondary injury cascades following TBI. This article reviews the pathophysiology of TBI and the molecular mechanisms of action of mAbs that target these shared pathological pathways in a wide range of diseases. Publicly available databases for various applications of mAb therapy were searched and further classified to assess relevance to TBI pathology and evaluate current stages of development. The authors intend for this review to highlight the potential impact of current mAb technology within pathological TBI processes.
Collapse
Affiliation(s)
- Ping Wang
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.O.-R.); (A.H.S.); (Z.S.B.)
| | | | | | | |
Collapse
|
3
|
Hong EP, Han SW, Kim BJ, Youn DH, Rhim JK, Jeon JP, Park JJ. Target Gene-Based Association Study of High Mobility Group Box Protein 1 in Intracranial Aneurysms in Koreans. Brain Sci 2024; 14:969. [PMID: 39451983 PMCID: PMC11505682 DOI: 10.3390/brainsci14100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: We investigated the effect of high mobility group box 1 (HMGB1) on intracranial aneurysms (IAs) by analyzing single-nucleotide polymorphisms (SNPs) based on genome-wide association study (GWAS) data. HMGB1 mRNA and protein expression levels in plasma were also analyzed. Methods: This study was a comprehensive analysis of a GWAS dataset, including 250 patients with IAs and 294 controls. The HMGB1 gene region was targeted within SNP rs3742305 ± 10 kbp. Multivariate logistic regression analysis determined its association with IAs after adjusting for relevant clinical factors. HMGB1 mRNA expression was analyzed in the plasma of 24 patients selected from the GWAS dataset. The HMGB1 protein was analyzed by Western blotting. Results: A total of seven polymorphisms, including rs1360485, rs185382445, rs2039338, rs1045411, rs3742305, rs2249825, and rs189034241, were observed. Two SNPs, including rs1045411 (UTR-3) and rs3742305 (intron), showed strong linkage disequilibrium (r2 = 0.99). However, none of the seven SNPs associated with IAs had an adjusted p-value of < 0.0016 on multiple comparison analysis. HMGB1 mRNA levels (2-ΔCt) did not differ significantly between patients with IAs and the control subjects [1.07 (1.00-1.15) in patients with IAs vs. 1.05 (0.94-1.12) in controls; p = 0.67)]. Also, no significant difference in the degree of plasma HMGB1 protein expression was seen between the two groups (p = 0.82). Conclusions: The number of SNPs associated with HMGB1 and the degree of HMGB1 mRNA and protein expression were not significantly different between patients diagnosed with IAs and the controls.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju 63241, Republic of Korea;
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| |
Collapse
|
4
|
Luzzi S, Bektaşoğlu PK, Doğruel Y, Güngor A. Beyond nimodipine: advanced neuroprotection strategies for aneurysmal subarachnoid hemorrhage vasospasm and delayed cerebral ischemia. Neurosurg Rev 2024; 47:305. [PMID: 38967704 PMCID: PMC11226492 DOI: 10.1007/s10143-024-02543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
The clinical management of aneurysmal subarachnoid hemorrhage (SAH)-associated vasospasm remains a challenge in neurosurgical practice, with its prevention and treatment having a major impact on neurological outcome. While considered a mainstay, nimodipine is burdened by some non-negligible limitations that make it still a suboptimal candidate of pharmacotherapy for SAH. This narrative review aims to provide an update on the pharmacodynamics, pharmacokinetics, overall evidence, and strength of recommendation of nimodipine alternative drugs for aneurysmal SAH-associated vasospasm and delayed cerebral ischemia. A PRISMA literature search was performed in the PubMed/Medline, Web of Science, ClinicalTrials.gov, and PubChem databases using a combination of the MeSH terms "medical therapy," "management," "cerebral vasospasm," "subarachnoid hemorrhage," and "delayed cerebral ischemia." Collected articles were reviewed for typology and relevance prior to final inclusion. A total of 346 articles were initially collected. The identification, screening, eligibility, and inclusion process resulted in the selection of 59 studies. Nicardipine and cilostazol, which have longer half-lives than nimodipine, had robust evidence of efficacy and safety. Eicosapentaenoic acid, dapsone and clazosentan showed a good balance between effectiveness and favorable pharmacokinetics. Combinations between different drug classes have been studied to a very limited extent. Nicardipine, cilostazol, Rho-kinase inhibitors, and clazosentan proved their better pharmacokinetic profiles compared with nimodipine without prejudice with effective and safe neuroprotective role. However, the number of trials conducted is significantly lower than for nimodipine. Aneurysmal SAH-associated vasospasm remains an area of ongoing preclinical and clinical research where the search for new drugs or associations is critical.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, İstanbul, Türkiye
| | - Yücel Doğruel
- Department of Neurosurgery, Health Sciences University, Tepecik Training and Research Hospital, İzmir, Türkiye
| | - Abuzer Güngor
- Faculty of Medicine, Department of Neurosurgery, Istinye University, İstanbul, Türkiye
| |
Collapse
|
5
|
Winardi W, Lo YP, Tsai HP, Huang YH, Tseng TT, Chung CL. CDDO, an Anti-Inflammatory and Antioxidant Compound, Attenuates Vasospasm and Neuronal Cell Apoptosis in Rats Subjected to Experimental Subarachnoid Hemorrhage. Curr Issues Mol Biol 2024; 46:4688-4700. [PMID: 38785551 PMCID: PMC11119475 DOI: 10.3390/cimb46050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of stroke caused by bleeding into the subarachnoid space. SAH is a medical emergency and requires prompt treatment to prevent complications such as seizures, stroke, or other brain damage. Treatment options may include surgery, medication, or a combination of both. 2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), a compound with anti-inflammatory and antioxidant properties, is currently being investigated as a potential treatment for various diseases, including chronic kidney disease and pulmonary arterial hypertension. In this study, the effects of CDDO on rats subjected to SAH were evaluated. Male Sprague-Dawley rats were divided into four groups (n = 6/group): (1) control group, (2) SAH group, (3) SAH + low-dose CDDO (10 mg/kg injected into the subarachnoid space at 24 h after SAH) group, and (4) SAH + high-dose CDDO (20 mg/kg) group. CDDO improved SAH-induced poor neurological outcomes and reduced vasospasm in the basal artery following SAH. It also decreased the SAH-induced expression of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 in both the cerebrospinal fluid and serum samples as determined by ELISA. A Western blot analysis confirmed an increase in the p-NF-κB protein level after SAH, but it was significantly decreased with CDDO intervention. Immunofluorescence staining highlighted the proliferation of microglia and astrocytes as well as apoptosis of the neuronal cells after SAH, and treatment with CDDO markedly reduced the proliferation of these glial cells and apoptosis of the neuronal cells. The early administration of CDDO after SAH may effectively mitigate neuronal apoptosis and vasospasm by suppressing inflammation.
Collapse
Affiliation(s)
- William Winardi
- Department of Neurosurgery, E-DA Hospital, Kaohsiung 82445, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Yun-Ping Lo
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (H.-P.T.); (T.-T.T.)
| | - Yu-Hua Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (H.-P.T.); (T.-T.T.)
| | - Chia-Li Chung
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (H.-P.T.); (T.-T.T.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| |
Collapse
|
6
|
Lyu Y, Tu H, Luo J, Wang C, Li A, Zhou Y, Zhao J, Wang H, Hu J. Increased serum levels of high-mobility group box 1 protein and the location characteristics in the patients of intracranial aneurysms. Brain Res 2024; 1828:148759. [PMID: 38242523 DOI: 10.1016/j.brainres.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Inflammation-related factors play a crucial role in intracranial aneurysms (IA) initiation, progression, and rupture. High mobility group box 1 (HMGB-1) serves as an alarm to drive the pathogenesis of the inflammatory disease. This study aimed to evaluate the role of HMGB-1 in IA and explore the correlation with other inflammatory-related factors. METHODS A total of twenty-eight adult male Japanese white rabbits were included in with elastase-induced aneurysms, n = 18) and the control group (normal rabbits, n = 10). To assess the expression of HMGB-1, both reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) was performed on serum samples obtained from human subjects (10 patients with IA and 10 healthy donors) as well as from rabbits (aneurysm group and control group). Immunohistochemistry and immunofluorescence were employed to evaluate the expression levels of elastic fibers, HMGB-1, tumor necrosis factor-alpha (TNF-α), and triggering receptor expressed on myeloid cells-1 (TREM-1). RESULTS The expression of HMGB-1 was found to be significantly higher in the IA group compared to the control group, both at the mRNA and protein levels (P < 0.0001). Similar findings were observed in the rabbit aneurysm model group compared to the control group (P < 0.0001). HMGB-1 expression was observed to be more abundant in the inner wall of the aneurysm compared to the external wall, whereas in the control group, it was rarely scattered. Additionally, the localization patterns of TNF-α and TREM-1 exhibited similar characteristics to HMGB-1. CONCLUSION Our findings demonstrate that HMGB-1 is highly expressed in both IA patients and rabbit aneurysm models. Furthermore, the similar localization patterns of HMGB-1, TNF-α, and TREM-1 suggest their potential involvement in the inflammatory processes associated with IA. These results highlight the potential of HMGB-1 as a novel therapeutic target for IA.
Collapse
Affiliation(s)
- YanXia Lyu
- Department of Physiology, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - HanJun Tu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - ChaoJia Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - AnRong Li
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yi Zhou
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - JunShuang Zhao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Hui Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - JunTao Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, China.
| |
Collapse
|
7
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Romoli M, Giammello F, Mosconi MG, De Mase A, De Marco G, Digiovanni A, Ciacciarelli A, Ornello R, Storti B. Immunological Profile of Vasospasm after Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:ijms24108856. [PMID: 37240207 DOI: 10.3390/ijms24108856] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) carries high mortality and disability rates, which are substantially driven by complications. Early brain injury and vasospasm can happen after SAH and are crucial events to prevent and treat to improve prognosis. In recent decades, immunological mechanisms have been implicated in SAH complications, with both innate and adaptive immunity involved in mechanisms of damage after SAH. The purpose of this review is to summarize the immunological profile of vasospasm, highlighting the potential implementation of biomarkers for its prediction and management. Overall, the kinetics of central nervous system (CNS) immune invasion and soluble factors' production critically differs between patients developing vasospasm compared to those not experiencing this complication. In particular, in people developing vasospasm, a neutrophil increase develops in the first minutes to days and pairs with a mild depletion of CD45+ lymphocytes. Cytokine production is boosted early on after SAH, and a steep increase in interleukin-6, metalloproteinase-9 and vascular endothelial growth factor (VEGF) anticipates the development of vasospasm after SAH. We also highlight the role of microglia and the potential influence of genetic polymorphism in the development of vasospasm and SAH-related complications.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology and Stroke Unit, Department of Neuroscience, Bufalini Hospital, 47521 Cesena, Italy
| | - Fabrizio Giammello
- Translational Molecular Medicine and Surgery, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98122 Messina, Italy
| | - Maria Giulia Mosconi
- Emergency and Vascular Medicine, University of Perugia-Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| | - Antonio De Mase
- Neurology and Stroke Unit, AORN Cardarelli, 80131 Napoli, Italy
| | - Giovanna De Marco
- Department of Biomedical and NeuroMotor Sciences of Bologna, University of Bologna, 40126 Bologna, Italy
| | - Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66013 Chieti, Italy
| | - Antonio Ciacciarelli
- Stroke Unit, Department of Emergency Medicine, University of Roma La Sapienza-Umberto I Hospital, 00161 Rome, Italy
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Storti
- Cerebrovascular Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| |
Collapse
|
9
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
DeWulf B, Minsart L, Verdonk F, Kruys V, Piagnerelli M, Maze M, Saxena S. High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells 2023; 12:cells12071088. [PMID: 37048161 PMCID: PMC10093266 DOI: 10.3390/cells12071088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) remains a challenge for intensivists that is exacerbated by lack of an effective diagnostic tool and an unambiguous definition to properly identify SAE patients. Risk factors for SAE development include age, genetic factors as well as pre-existing neuropsychiatric conditions. Sepsis due to certain infection sites/origins might be more prone to encephalopathy development than other cases. Currently, ICU management of SAE is mainly based on non-pharmacological support. Pre-clinical studies have described the role of the alarmin high mobility group box 1 (HMGB1) in the complex pathogenesis of SAE. Although there are limited data available about the role of HMGB1 in neuroinflammation following sepsis, it has been implicated in other neurologic disorders, where its translocation from the nucleus to the extracellular space has been found to trigger neuroinflammatory reactions and disrupt the blood–brain barrier. Negating the inflammatory cascade, by targeting HMGB1, may be a strategy to complement non-pharmacologic interventions directed against encephalopathy. This review describes inflammatory cascades implicating HMGB1 and strategies for its use to mitigate sepsis-induced encephalopathy.
Collapse
Affiliation(s)
- Bram DeWulf
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
| | - Laurens Minsart
- Department of Anesthesia, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Franck Verdonk
- Department of Anesthesiology and Intensive Care, GRC 29, DMU DREAM, Hôpital Saint-Antoine and Sorbonne University, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
- Experimental Medicine Laboratory (ULB Unit 222), CHU-Charleroi, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Saxena
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
11
|
Jung H, Youn DH, Park JJ, Jeon JP. Bone-Marrow-Derived Mesenchymal Stem Cells Attenuate Behavioral and Cognitive Dysfunction after Subarachnoid Hemorrhage via HMGB1-RAGE Axis Mediation. Life (Basel) 2023; 13:881. [PMID: 37109411 PMCID: PMC10145212 DOI: 10.3390/life13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We evaluated the therapeutic effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on behavioral and cognitive function in a mouse model of mild subarachnoid hemorrhage (SAH) and explored the underlying mechanisms in conjunction with the HMGB1-RAGE axis. The SAH models were generated in a total of 126 male C57BL/6J mice via endovascular perforation and evaluated 24 h and 72 h after the intravenous administration of BMSCs (3 × 105 cells). The BMSCs were administered once, at 3 h, or twice, at 3 h and 48 h after the model induction. The therapeutic effects of the BMSCs were compared to those of the saline administration. Compared to saline-treated SAH-model mice, at 3 h, the mice with mild SAH treated with the BMSCs showed significant improvements in their neurological scores and cerebral edema. The administration of the BMSCs decreased the mRNA expression of HMGB1, RAGE, TLR4, and MyD88, as well as the protein expression of HMGB1 and phosphorylated NF-kB p65. Furthermore, the numbers of slips per walking time, impairments in short-term memory, and the recognition of novel objects were improved. There was some improvement in inflammatory-marker levels and cognitive function according to the BMSCs' administration times, but no large differences were seen. The administration of BMSCs improved behavioral and cognitive dysfunction by ameliorating HMGB1-RAGE axis-mediated neuroinflammation after SAH.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
12
|
Li Y, Yang S, Zhou X, Lai R. Poor expression of miR-195-5p can assist the diagnosis of cerebral vasospasm after subarachnoid hemorrhage and predict adverse outcomes. Brain Behav 2022; 12:e2766. [PMID: 36350075 PMCID: PMC9759123 DOI: 10.1002/brb3.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/19/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Patients with spontaneous subarachnoid hemorrhage (SAH) may develop refractory arterial cerebral vasospasm (CVS), which is the leading cause of death in SAH patients. This study explored the clinical diagnostic value of serum miR-195-5p levels in CVS after SAH (SAH + CVS) and its relationship with the prognosis of SAH + CVS. METHODS A total of 110 patients with spontaneous SAH were divided into the SAH group (N = 62) and SAH + CVS group (N = 58), with 60 healthy subjects as controls. The clinical data of blood glucose, blood sodium fluctuation, and serum lactic acid were recorded. miR-195-5p serum level was detected by RT-qPCR and its diagnostic value on SAH + CVS was analyzed by receiver operating characteristic curve. Serum levels of PDGF/IL-6/ET-1 and their correlation with miR-195-5p were analyzed using RT-qPCR, enzyme-linked immunosorbent assay, and Pearson's method. The patient prognosis was evaluated by Glasgow Outcome Scale. The effect of miR-195-5p levels on adverse prognosis was analyzed by Kaplan-Meier method and Cox regression analysis. RESULTS miR-195-5p was lowly expressed in the serum of SAH patients and lower in SAH + CVS patients. Serum miR-195-5p level assisted the diagnosis of SAH and SAH + CVS and was negatively correlated with PDGF/IL-6/ET-1 levels and was an independent risk factor together with ET-1 and blood glucose for SAH + CVS. miR-195-5p low expression predicted a higher cumulative incidence of adverse outcomes and was an independent predictor of adverse outcomes. CONCLUSION Poor expression of miR-195-5p can assist the diagnosis of SAH + CVS and predict higher adverse outcomes.
Collapse
Affiliation(s)
- Yong Li
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Senyuan Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xiaobin Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Runlong Lai
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
13
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
14
|
Heinz R, Schneider UC. TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. Int J Mol Sci 2022; 23:ijms232012618. [PMID: 36293468 PMCID: PMC9603851 DOI: 10.3390/ijms232012618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Subarachnoid hemorrhage is associated with severe neurological deficits for survivors. Among survivors of the initial bleeding, secondary brain injury leads to additional brain damage. Apart from cerebral vasospasm, secondary brain injury mainly results from cerebral inflammation taking place in the brain parenchyma after bleeding. The brain’s innate immune system is activated, which leads to disturbances in brain homeostasis, cleavage of inflammatory cytokines and, subsequently, neuronal cell death. The toll-like receptor (TLR)4 signaling pathway has been found to play an essential role in the pathophysiology of acute brain injuries such as subarachnoid hemorrhage (SAH). TLR4 is expressed on the cell surface of microglia, which are key players in the cellular immune responses of the brain. The participants in the signaling pathway, such as TLR4-pathway-like ligands, the receptor itself, and inflammatory cytokines, can act as biomarkers, serving as clues regarding the inflammatory status after SAH. Moreover, protein complexes such as the NLRP3 inflammasome or receptors such as TREM1 frame the TLR4 pathway and are indicative of inflammation. In this review, we focus on the activity of the TLR4 pathway and its contributors, which can act as biomarkers of neuroinflammation or even offer potential new treatment targets for secondary neuronal cell death after SAH.
Collapse
Affiliation(s)
- Rebecca Heinz
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Ulf C. Schneider
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurosurgery, Cantonal Hospital of Lucerne, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Chaudhry SR, Shafique S, Sajjad S, Hänggi D, Muhammad S. Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation. Int J Mol Sci 2022; 23:ijms231911216. [PMID: 36232519 PMCID: PMC9569479 DOI: 10.3390/ijms231911216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH), resulting majorly from the rupture of intracranial aneurysms, is a potentially devastating disease with high morbidity and mortality. The bleeding aneurysms can be successfully secured; however, the toxic and mechanical impact of the blood extravasation into the subarachnoid space damages the brain cells leading to the release of different damage-associated molecular pattern molecules (DAMPs). DAMPs upregulate the inflammation after binding their cognate receptors on the immune cells and underlies the early and delayed brain injury after aSAH. Moreover, these molecules are also associated with different post-aSAH complications, which lead to poor clinical outcomes. Among these DAMPs, HMGB1 represents a prototypical protein DAMP that has been well characterized for its proinflammatory role after aSAH and during different post-aSAH complications. However, recent investigations have uncovered yet another face of HMGB1, which is involved in the promotion of brain tissue remodeling, neurovascular repair, and anti-inflammatory effects after SAH. These different faces rely on different redox states of HMGB1 over the course of time after SAH. Elucidation of the dynamics of these redox states of HMGB1 has high biomarker as well as therapeutic potential. This review mainly highlights these recent findings along with the conventionally described normal role of HMGB1 as a nuclear protein and as a proinflammatory molecule during disease (aSAH).
Collapse
Affiliation(s)
- Shafqat Rasul Chaudhry
- Department of Pharmacy, Obaid Noor Institute of Medical Sciences (ONIMS), Mianwali 42200, Pakistan
| | - Sumaira Shafique
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Saba Sajjad
- Department of Oral-, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine, University Hospital Düsseldorf, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Faculty of Medicine, University Hospital Düsseldorf, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence: ; Tel.: +49-15168460755
| |
Collapse
|
16
|
Li YY, Feng YP, Liu L, Ke J, Long X. Inhibition of HMGB1 suppresses inflammation and catabolism in temporomandibular joint osteoarthritis <em>via</em> NF-κB signaling pathway. Eur J Histochem 2022; 66. [PMID: 35726537 PMCID: PMC9251613 DOI: 10.4081/ejh.2022.3357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
HMGB1 is a highly conserved nuclear protein that is rapidly released into the extracellular environment during infection or tissue damage. In osteoarthritis, HMGB1 acts as a pro-inflammatory cytokine inducing a positive feedback loop for synovial inflammation and cartilage degradation. The aim of this study was to explore the role of HMGB1 in inflammation and catabolism of temporomandibular joint osteoarthritis (TMJOA) and whether inhibition of HMGB1 affects TMJOA. Human synovial fibroblasts were incubated with HMGB1, the expression of pro-inflammatory cytokines and catabolic mediators were measured by Western blot and ELISA. NF-κB signaling pathway involvement was studied by the NF-κB inhibitor and detected by Western blotting and immunofluorescence staining. TMJOA was induced by an injection of complete Freund’s adjuvant (CFA) into anterosuperior compartment of rat’s joint. An anti-HMGB1 antibody was used to assess the effect to HMGB1 in the synovium and cartilage of the CFA-induced TMJOA rats by hematoxylin and eosin, Safranin O, Masson trichrome staining, immunohistochemistry and immunofluorescence. HMGB1 markedly increased the production of MMP13, ADAMTS5, IL-1β and IL-6 through activating NF-κB signaling pathway in human synovial fibroblasts. In vivo, application of the HMGB1 neutralizing antibody effectively ameliorated the detrimental extent of TMJOA. Furthermore, the HMGB1 neutralizing antibody reduced the expression of NF-κB, pro-inflammatory cytokines and catabolic mediators in the synovium and cartilage of CFA-induced TMJOA rats. HMGB1 inhibition alleviates TMJOA by reducing synovial inflammation and cartilage catabolism possibly through suppressing the NF-κB signaling pathway and may become a therapeutic method against TMJOA.
Collapse
Affiliation(s)
- Yan Yan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| | - Ya Ping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| | - Li Liu
- Department of Prosthodontics, School of Stomatology Kunming Medical University, Kunming.
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| |
Collapse
|
17
|
Santacruz CA, Vincent JL, Duitama J, Bautista E, Imbault V, Bruneau M, Creteur J, Brimioulle S, Communi D, Taccone FS. The Cerebrospinal Fluid Proteomic Response to Traumatic and Nontraumatic Acute Brain Injury: A Prospective Study. Neurocrit Care 2022; 37:463-470. [PMID: 35523916 DOI: 10.1007/s12028-022-01507-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Quantitative analysis of ventricular cerebrospinal fluid (vCSF) proteins following acute brain injury (ABI) may help identify pathophysiological pathways and potential biomarkers that can predict unfavorable outcome. METHODS In this prospective proteomic analysis study, consecutive patients with severe ABI expected to require intraventricular catheterization for intracranial pressure (ICP) monitoring for at least 5 days and patients without ABI admitted for elective clipping of an unruptured cerebral aneurysm were included. vCSF samples were collected within the first 24 h after ABI and ventriculostomy insertion and then every 24 h for 5 days. In patients without ABI, a single vCSF sample was collected at the time of elective clipping. Data-independent acquisition and sequential window acquisition of all theoretical spectra (SWATH) mass spectrometry were used to compare differences in protein expression in patients with ABI and patients without ABI and in patients with traumatic and nontraumatic ABI. Differences in protein expression according to different ICP values, intensive care unit outcome, subarachnoid hemorrhage (SAH) versus traumatic brain injury (TBI), and good versus poor 3-month functional status (assessed by using the Glasgow Outcome Scale) were also evaluated. vCSF proteins with significant differences between groups were compared by using linear models and selected for gene ontology analysis using R Language and the Panther database. RESULTS We included 50 patients with ABI (SAH n = 23, TBI n = 15, intracranial hemorrhage n = 6, ischemic stroke n = 3, others n = 3) and 12 patients without ABI. There were significant differences in the expression of 255 proteins between patients with and without ABI (p < 0.01). There were intraday and interday differences in expression of seven proteins related to increased inflammation, apoptosis, oxidative stress, and cellular response to hypoxia and injury. Among these, glial fibrillary acidic protein expression was higher in patients with ABI with severe intracranial hypertension (ICH) (ICP ≥ 30 mm Hg) or death compared to those without (log 2 fold change: + 2.4; p < 0.001), suggesting extensive primary astroglial injury or death. There were differences in the expression of 96 proteins between patients with traumatic and nontraumatic ABI (p < 0.05); intraday and interday differences were observed for six proteins related to structural damage, complement activation, and cholesterol metabolism. Thirty-nine vCSF proteins were associated with an increased risk of severe ICH (ICP ≥ 30 mm Hg) in patients with traumatic compared with nontraumatic ABI (p < 0.05). No significant differences were found in protein expression between patients with SAH versus TBI or between those with good versus poor 3-month Glasgow Outcome Scale score. CONCLUSIONS Dysregulated vCSF protein expression after ABI may be associated with an increased risk of severe ICH and death.
Collapse
Affiliation(s)
- Carlos A Santacruz
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive and Critical Care Medicine, Academic Hospital Fundación Santa Fe de Bogota Foundation, Bogota, Colombia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogota, Colombia
| | - Edwin Bautista
- Systems and Computing Engineering Department, Universidad de los Andes, Bogota, Colombia
| | - Virginie Imbault
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Michaël Bruneau
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Route De Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Brimioulle
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - David Communi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
19
|
Wu CH, Tsai HP, Su YF, Tsai CY, Lu YY, Lin CL. 2-PMAP Ameliorates Cerebral Vasospasm and Brain Injury after Subarachnoid Hemorrhage by Regulating Neuro-Inflammation in Rats. Cells 2022; 11:242. [PMID: 35053358 PMCID: PMC8773560 DOI: 10.3390/cells11020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in survivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood-brain barrier easily. Here, we investigated whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers (TNF-α, IL-1β and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cerebral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and ameliorating effects are conferred through the TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
20
|
Chen J, Zheng ZV, Lu G, Chan WY, Zhang Y, Wong GKC. Microglia activation, classification and microglia-mediated neuroinflammatory modulators in subarachnoid hemorrhage. Neural Regen Res 2021; 17:1404-1411. [PMID: 34916410 PMCID: PMC8771101 DOI: 10.4103/1673-5374.330589] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage is a devastating disease with significant mortality and morbidity, despite advances in treating cerebral aneurysms. There has been recent progress in the intensive care management and monitoring of patients with subarachnoid hemorrhage, but the results remain unsatisfactory. Microglia, the resident immune cells of the brain, are increasingly recognized as playing a significant role in neurological diseases, including subarachnoid hemorrhage. In early brain injury following subarachnoid hemorrhage, microglial activation and neuroinflammation have been implicated in the development of disease complications and recovery. To understand the disease processes following subarachnoid hemorrhage, it is important to focus on the modulators of microglial activation and the pro-inflammatory/anti-inflammatory cytokines and chemokines. In this review, we summarize research on the modulators of microglia-mediated inflammation in subarachnoid hemorrhage, including transcriptome changes and the neuroinflammatory signaling pathways. We also describe the latest developments in single-cell transcriptomics for microglia and summarize advances that have been made in the transcriptome-based classification of microglia and the implications for microglial activation and neuroinflammation.
Collapse
Affiliation(s)
- Junfan Chen
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Neurosurgery, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong; Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
21
|
Andersson U, Tracey KJ, Yang H. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells 2021; 10:cells10123323. [PMID: 34943830 PMCID: PMC8699546 DOI: 10.3390/cells10123323] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-(70)-7401740
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| |
Collapse
|
22
|
Yang H, Andersson U, Brines M. Neurons Are a Primary Driver of Inflammation via Release of HMGB1. Cells 2021; 10:cells10102791. [PMID: 34685772 PMCID: PMC8535016 DOI: 10.3390/cells10102791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Recent data show that activation of nociceptive (sensory) nerves turns on localized inflammation within the innervated area in a retrograde manner (antidromically), even in the absence of tissue injury or molecular markers of foreign invaders. This neuroinflammatory process is activated and sustained by the release of neuronal products, such as neuropeptides, with the subsequent amplification via recruitment of immunocompetent cells, including macrophages and lymphocytes. High mobility group box 1 protein (HMGB1) is a highly conserved, well characterized damage-associated molecular pattern molecule expressed by many cells, including nociceptors and is a marker of inflammatory diseases. In this review, we summarize recent evidence showing that neuronal HMGB1 is required for the development of neuroinflammation, as knock out limited to neurons or its neutralization via antibodies ameliorate injury in models of nerve injury and of arthritis. Further, the results of study show that HMGB1 is actively released during neuronal depolarization and thus plays a previously unrecognized key etiologic role in the initiation and amplification of neuroinflammation. Direct targeting of HMGB1 is a promising approach for novel anti-inflammatory therapy.
Collapse
Affiliation(s)
- Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
- Correspondence: (H.Y.); (U.A.)
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: (H.Y.); (U.A.)
| | - Michael Brines
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
| |
Collapse
|
23
|
Zhao Y, Tan SW, Huang ZZ, Shan FB, Li P, Ning YL, Ye SY, Zhao ZA, Du H, Xiong RP, Yang N, Peng Y, Chen X, Zhou YG. NLRP3 Inflammasome-Dependent Increases in High Mobility Group Box 1 Involved in the Cognitive Dysfunction Caused by Tau-Overexpression. Front Aging Neurosci 2021; 13:721474. [PMID: 34539383 PMCID: PMC8446370 DOI: 10.3389/fnagi.2021.721474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Tau hyperphosphorylation is a characteristic alteration present in a range of neurological conditions, such as traumatic brain injury (TBI) and neurodegenerative diseases. Treatments targeting high-mobility group box protein 1 (HMGB1) induce neuroprotective effects in these neuropathologic conditions. However, little is known about the interactions between hyperphosphorylated tau and HMGB1 in neuroinflammation. We established a model of TBI with controlled cortical impacts (CCIs) and a tau hyperphosphorylation model by injecting the virus encoding human P301S tau in mice, and immunofluorescence, western blotting analysis, and behavioral tests were performed to clarify the interaction between phosphorylated tau (p-tau) and HMGB1 levels. We demonstrated that p-tau and HMGB1 were elevated in the spatial memory-related brain regions in mice with TBI and tau-overexpression. Animals with tau-overexpression also had significantly increased nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation, which manifested as increases in apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), activating caspase-1 and interleukin 1 beta (IL-1β) levels. In addition, NLRP3–/– mice and the HMGB1 inhibitor, glycyrrhizin, were used to explore therapeutic strategies for diseases with p-tau overexpression. Compared with wild-type (WT) mice with tau-overexpression, downregulation of p-tau and HMGB1 was observed in NLRP3–/– mice, indicating that HMGB1 alterations were NLRP3-dependent. Moreover, treatment with glycyrrhizin at a late stage markedly reduced p-tau levels and improved performance in the Y- and T-mazes and the ability of tau-overexpressing mice to build nests, which revealed improvements in spatial memory and advanced hippocampal function. The findings identified that p-tau has a triggering role in the modulation of neuroinflammation and spatial memory in an NLRP3-dependent manner, and suggest that treatment with HMGB1 inhibitors may be a better therapeutic strategy for tauopathies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Si-Wei Tan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhi-Zhong Huang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fa-Bo Shan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Shi-Yang Ye
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Du
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Masai K, Kuroda K, Isooka N, Kikuoka R, Murakami S, Kamimai S, Wang D, Liu K, Miyazaki I, Nishibori M, Asanuma M. Neuroprotective Effects of Anti-high Mobility Group Box-1 Monoclonal Antibody Against Methamphetamine-Induced Dopaminergic Neurotoxicity. Neurotox Res 2021; 39:1511-1523. [PMID: 34417986 DOI: 10.1007/s12640-021-00402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box-1 (HMGB1) is a ubiquitous non-histone nuclear protein that plays a key role as a transcriptional activator, with its extracellular release provoking inflammation. Inflammatory responses are essential in methamphetamine (METH)-induced acute dopaminergic neurotoxicity. In the present study, we examined the effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on METH-induced dopaminergic neurotoxicity in mice. BALB/c mice received a single intravenous administration of anti-HMGB1 mAb prior to intraperitoneal injections of METH (4 mg/kg × 2, at 2-h intervals). METH injections induced hyperthermia, an increase in plasma HMGB1 concentration, degeneration of dopaminergic nerve terminals, accumulation of microglia, and extracellular release of neuronal HMGB1 in the striatum. These METH-induced changes were significantly inhibited by intravenous administration of anti-HMGB1 mAb. In contrast, blood-brain barrier disruption occurred by METH injections was not suppressed. Our findings demonstrated the neuroprotective effects of anti-HMGB1 mAb against METH-induced dopaminergic neurotoxicity, suggesting that HMGB1 could play an initially important role in METH toxicity.
Collapse
Affiliation(s)
- Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Keita Kuroda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Nami Isooka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Sunao Kamimai
- Department of Medical Neurobiology, Okayama University Medical School, 700-8558, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan.
| |
Collapse
|
25
|
Admission serum high mobility group box 1 (HMGB1) protein predicts delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2021; 45:807-817. [PMID: 34302233 DOI: 10.1007/s10143-021-01607-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
High mobility group box 1 protein (HMGB1) is a prototypical damage associated particle and acts as a key player in aseptic inflammation. HMGB1 appears critical for the crosstalk of a prothrombotic and proinflammatory state that is implicated in mediating and exacerbating ischemic brain injury. The role of HMGB1 in aneurysmal subarachnoid hemorrhage (aSAH) remains to be elucidated. A prospective, single blinded observational study was designed to investigate the role of HMGB1 in aSAH. Serial serum HMGB1 level quantification on admission day 0, 4, 8, and 12 was performed. Primary outcome measures were delayed cerebral ischemia (DCI - new infarction on CT) and poor functional outcome (90-day modified Rankin Scale 4-6). The role of HMGB1 levels for DCI, functional outcome and radiological vasospasm prediction was analyzed. Collectively, 83 aSAH patients were enrolled. Five patients died within 48 h. In 29/78 patients (37.2%), DCI was identified. In multivariable analysis, radiological vasospasm and admission HMGB1 were independent predictors for DCI. Younger age and higher white blood cell count, but not insult burden (World Federation of Neurosurgical Societies scale, modified Fisher scale, intraparenchymal or intraventricular hematoma existence) correlated with admission HMGB1 levels. Serial HMGB1 levels did not differ between patients with or without DCI, poor functional outcome or radiological vasospasm development. Admission serum HMGB1 does not reflect initial insult burden but serves as an independent biomarker predictive of DCI. Further studies are warranted to disentangle the role of HMGB1 surrounding the sequelae of aSAH.
Collapse
|
26
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
27
|
Zhang J, Hua XF, Gu J, Chen F, Gu J, Gong CX, Liu F, Dai CL. High Mobility Group Box 1 Ameliorates Cognitive Impairment in the 3×Tg-AD Mouse Model. J Alzheimers Dis 2021; 74:851-864. [PMID: 32116254 DOI: 10.3233/jad-191110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia. Studies indicate that neuroinflammation plays an important role in the pathophysiology of AD. High-mobility group box 1 (HMGB1) is an important chromatin protein. It can be secreted by immune cells and passively released from damaged cells to promote inflammation. HMGB1 also can recruit stem cells and promote their proliferation and tissue repairing. However, the role of HMGB1 in the progression of AD is currently unknown. OBJECTIVE The aims were to investigate the effect of HMGB1 on the AD-related pathologies and cognitive function using 3×Tg-AD mouse model. METHODS Female 5-month-old 3×Tg-AD mice were intracerebroventricularly injected with 4.5 μg of HMGB1 or with saline as a control. The levels of interesting protein were assessed by western blots or immunofluorescence. The effect of HMGB1 on the cognitive function was evaluated by one-trial novel object recognition test and Morris water maze. RESULTS Intracerebroventricular injection of recombinant HMGB1 ameliorated cognitive impairment in 5-6-month-old 3×Tg-AD mice. The levels of synapsin 1, synaptophysin, MAP2, NeuN, and phosphorylated CREB were increased in HMGB1-treated 3×Tg-AD mouse brains. HMGB1 decreased intracellular amyloid-β level but did not affect tau phosphorylation. HMGB1 treatment also promoted neurogenesis in the dentate gyrus and increased the level of GFAP in the 3×Tg-AD mouse brains. CONCLUSION These results reveal a novel function of HMGB1 in enhancing neuroplasticity and improving cognitive function in 3×Tg-AD mice.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xue-Feng Hua
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jinhua Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Feng Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jianlan Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
28
|
Deng X, Liang C, Qian L, Zhang Q. miR-24 targets HMOX1 to regulate inflammation and neurofunction in rats with cerebral vasospasm after subarachnoid hemorrhage. Am J Transl Res 2021; 13:1064-1074. [PMID: 33841640 PMCID: PMC8014398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of miR-24 and HMOX1 on the inflammatory response and neurological function in rats with cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). METHODS Fifteen Sprague-Dawley rats were randomly assigned to the sham group (sham operation, treated with normal saline). Rat model of SAH-induced CVS was established in 90 rats, and these rats were randomly divided into the model, miR-24 NC (treated with miR-24-NC vector), miR-24 inhibitor (treated with miR-24 inhibitor vector), HMOX-NC (treated with HMOX1-NC vector), oe-HMOX1 (treated with HMOX1 overexpression vector), and miR-24 inhibitor + si-HMOX1 (treated with miR-24 inhibitor and si-HMOX1 vectors) groups. Adenoviral vectors containing the target sequences were injected into the hippocampus of the rats in the corresponding groups. Dual-luciferase reporter assay was conducted to verify the relationship between miR-24 and HMOX1. The learning and memory abilities, neurological function, cerebral edema, permeability of blood-brain barrier, myeloperoxidase activity, and levels of miR-24, HMOX1, interleukin-6, tumor necrosis factor-α, superoxide dismutase, and malondialdehyde in rats were examined. RESULTS miR-24 could negatively regulate HMOX1 expression. SAH-induced CVS was accompanied with increased miR-24 expression and decreased HMOX1 expression. Inhibiting miR-24 expression or enhancing the expression of its down streaming target, HMOX1, could partly reverse the increased oxidation and inflammation as well as functional deficits in the rats. Moreover, the effects of miR-24 inhibitor could be reversed by inhibiting HMOX1 expression. CONCLUSION miR-24 downregulation can promote HMOX1 expression, thereby decreasing the inflammatory response and improving the neurological function of rats with CVS after SAH.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Neurosurgery, The First Affiliated Hospital of China Naval Medical UniversityShanghai City, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of MedicineNanjing, Jiangsu Province, China
| | - Lei Qian
- Department of Neurosurgery, The First Affiliated Hospital of China Naval Medical UniversityShanghai City, China
| | - Qi Zhang
- Department of Cerebrovascular Diseases, Brain Hospital Affiliated to Tongji UniversityShanghai City, China
| |
Collapse
|
29
|
Nishibori M, Wang D, Ousaka D, Wake H. High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells 2020; 9:cells9122650. [PMID: 33321691 PMCID: PMC7764171 DOI: 10.3390/cells9122650] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption.
Collapse
|
30
|
Piva S, Albani F, Fagoni N, Monti E, Signorini L, Turla F, Rasulo FA, Fontanella M, Latronico N. High-mobility group box-1 protein as a novel biomarker to diagnose healthcare-associated ventriculitis and meningitis: a pilot study. Minerva Anestesiol 2020; 87:43-51. [PMID: 33174402 DOI: 10.23736/s0375-9393.20.14222-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The diagnosis of healthcare-associated ventriculitis and meningitis (HAVM) is challenging in the ICU setting. Traditional cerebrospinal fluid (CSF) markers and clinical signs of infection fail to diagnose HAVM in the critically ill setting. We sought to determine the diagnostic accuracy of measuring levels of high-mobility group box 1 (HMGB1) protein in cerebrospinal fluid (CSF) for the diagnosis of HAVM. METHODS In this prospective observational cohort study, we enrolled 29 patients with an implanted external ventricular drainage (EVD). We tested the accuracy of CSF-HMGB1 as a diagnostic test for HAVM when compared to standard CSF parameters. RESULTS HAVM was diagnosed in 11/29 (37.9%) patients. These patients had significantly higher CSF-HMGB1 levels compared to patients without HAVM (median [IQR] 43.39 [83.51] ng/mL vs 6.46 ng/mL [10.94]; P<0.001). CSF-HMGB1 and CSF-glucose were independently related to HAVM, with OR's (95% CI) of 15.43 (15.37 to 15.48, P<0.0001) and 0.31 (0.30 to 0.32, P<0.0001), respectively. The AUC [CI] of CSF-HMGB1 to predict HAVM was 0.83 [0.72 to 0.94]. CONCLUSIONS HMGB1 is an accurate marker of HAVM and it adds incremental diagnostic value when paired with CSF-glucose measurements. Future larger and multicenter studies should assess the incremental diagnostic value of HMGB1 data when used alongside other established CSF markers of infection, and the external validity of these preliminary results.
Collapse
Affiliation(s)
- Simone Piva
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy - .,Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy -
| | - Filippo Albani
- Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Nazzareno Fagoni
- Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Eugenio Monti
- Unit of Biochemistry, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Liana Signorini
- Second Division of Clinical Infectious Diseases, Department of Infectious Diseases, Spedali Civili University Hospital, Brescia, Italy
| | - Fabio Turla
- Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Frank A Rasulo
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.,Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Marco Fontanella
- Division of Neurosurgery, Department of Neuroscience, Spedali Civili University Hospital, Brescia, Italy
| | - Nicola Latronico
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.,Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| |
Collapse
|
31
|
Fan H, Tang HB, Chen Z, Wang HQ, Zhang L, Jiang Y, Li T, Yang CF, Wang XY, Li X, Wu SX, Zhang GL. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J Neuroinflammation 2020; 17:295. [PMID: 33036632 PMCID: PMC7547440 DOI: 10.1186/s12974-020-01973-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.
Collapse
Affiliation(s)
- Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.,Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Zhe Chen
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hu-Qing Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lei Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yu Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cai-Feng Yang
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao-Ya Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xia Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gui-Lian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
32
|
Cardiopulmonary Bypass Induces Acute Lung Injury via the High-Mobility Group Box 1/Toll-Like Receptor 4 Pathway. DISEASE MARKERS 2020; 2020:8854700. [PMID: 33062073 PMCID: PMC7532999 DOI: 10.1155/2020/8854700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
During cardiopulmonary bypass (CPB), pulmonary ischemia/reperfusion (I/R) injury can cause acute lung injury (ALI). Our previous research confirmed that abnormal high-mobility group box 1 (HMGB1) release after CPB was closely related to ALI. However, the mechanism underlying the HMGB1-mediated induction of ALI after CPB is unclear. Our previous study found that HMGB1 binds Toll-like receptor 4 (TLR4), leading to lung injury, but direct evidence of a role for these proteins in the mechanism of CPB-induced lung injury has not been shown. We examined the effects of inhibiting HMGB1 or reducing TLR4 expression on CPB-induced lung injury in rats administered anti-HMBG1 antibody or TLR4 short-hairpin RNA (shTLR4), respectively. In these rat lungs, we studied the histologic changes and levels of interleukin- (IL-) 1β, tumour necrosis factor- (TNF-) α, HMGB1, and TLR4 after CPB. After CPB, the lung tissues from untreated rats showed histologic features of injury and significantly elevated levels of IL-1β, TNF-α, HMGB1, and TLR4. Treatment with anti-HMGB1 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1β, TNF-α, HMGB1, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB. Treatment with shTLR4 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1β, TNF-α, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB, but could not alleviate the HMGB1 protein levels induced by CPB. In summary, the present study demonstrated that the HMGB1/TLR4 pathway mediated the development of ALI induced by CPB.
Collapse
|
33
|
Ding CY, Wang FY, Cai HP, Chen XY, Zheng SF, Yu LH, Lin YX, Lin ZY, Kang DZ. Can admission lipoprotein-associated phospholipase A2 predict the symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage? Chin Neurosurg J 2020; 6:9. [PMID: 32922938 PMCID: PMC7398414 DOI: 10.1186/s41016-020-00188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Inflammation has been believed to be related to the development of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (aSAH). A potential biomarker for vascular inflammation that is well recognized is the lipoprotein-associated phospholipase A2 (Lp-PLA2). However, whether Lp-PLA2 can predict the occurrence of symptomatic cerebral vasospasm (SCV) in aSAH patients is still unknown. Thus, this study aimed to assess the value of Lp-PLA2 for predicting SCV in patients with aSAH. Methods Between March 2017 and April 2018, we evaluated 128 consecutive aSAH patients who were admitted in the First Affiliated Hospital of Fujian Medical University. Their Lp-PLA2 level was obtained within 24 h of the initial bleeding. Factors might be related to SCV were analyzed. Results Compared to patients without SCV, those with SCV (9.4%, 12/128) had significantly higher Lp-PLA2 level. Multivariate logistic analysis revealed that worse modified Fisher grade (OR = 10.08, 95% CI = 2.04-49.86, P = 0.005) and higher Lp-PLA2 level (OR = 6.66, 95% CI = 1.33-3.30, P = 0.021) were significantly associated with SCV, even after adjustment for confounders. Based on the best threshold, Lp-PLA2 had a sensitivity of 83.3% and a specificity of 51.7% for predicting SCV, as shown by the receiver operating characteristic curve analysis. In the poor World Federation of Neurosurgical Societies grade patient sub-group, patients with Lp-PLA2 > 200 μg/L had significantly higher SCV rate than that of patients having Lp-PLA2 ≤ 200 μg/L. Conclusion The admission Lp-PLA2 level might be a helpful predictor for SCV in aSAH.
Collapse
Affiliation(s)
- Chen-Yu Ding
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Fang-Yu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Han-Pei Cai
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Xiao-Yong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Shu-Fa Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Liang-Hong Yu
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - Zhang-Ya Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| | - De-Zhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People's Republic of China
| |
Collapse
|
34
|
Gut Barrier Dysfunction Induced by Aggressive Fluid Resuscitation in Severe Acute Pancreatitis is Alleviated by Necroptosis Inhibition in Rats. Shock 2020; 52:e107-e116. [PMID: 30562238 DOI: 10.1097/shk.0000000000001304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluid resuscitation is the first-line antishock treatment in severe acute pancreatitis (SAP). Currently, although mentions of complications related to aggressive fluid resuscitation are very frequent, a lack of proper handling of complications remains. One of the most important complications is intestinal barrier injury, including intestinal ischemia-reperfusion injury following aggressive fluid resuscitation. Once injured, the intestinal barrier may serve as the source of additional diseases, including systemic inflammatory response syndrome and multiple organ dysfunction syndrome, which aggravate SAP. This study focused on the underlying mechanisms of gut barrier dysfunction in rats induced by aggressive fluid resuscitation in SAP. This study further indicated the important role of necroptosis in intestinal barrier injury which could be relieved by using necroptosis-specific inhibitor Nec-1 before aggressive fluid resuscitation, thus reducing intestinal barrier damage. We also found pancreas damage after intestinal ischemia/reperfusion challenge and indicated the effects of high mobility group protein B1 in the vicious cycle between SAP and intestinal barrier damage.
Collapse
|
35
|
Khey KMW, Huard A, Mahmoud SH. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell Mol Neurobiol 2020; 40:675-693. [PMID: 31808009 PMCID: PMC11448815 DOI: 10.1007/s10571-019-00767-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is an acute cerebrovascular emergency resulting from the rupture of a brain aneurysm. Despite only accounting for 5% of all strokes, SAH imposes a significant health burden on society due to its relatively young age at onset. Those who survive the initial bleed are often afflicted with severe disabilities thought to result from delayed cerebral ischemia (DCI). Consequently, elucidating the underlying mechanistic pathways implicated in DCI development following SAH remains a priority. Neuroinflammation has recently been implicated as a promising new theory for the development of SAH complications. However, despite this interest, clinical trials have failed to provide consistent evidence for the use of anti-inflammatory agents in SAH patients. This may be explained by the complexity of SAH as a plethora of inflammatory pathways have been shown to be activated in the disease. By determining how these pathways may overlap and interact, we hope to better understand the developmental processes of SAH complications and how to prevent them. The goal of this review is to provide insight into the available evidence regarding the molecular pathways involved in the development of inflammation following SAH and how SAH complications may arise as a result of these inflammatory pathways.
Collapse
Affiliation(s)
- Kevin Min Wei Khey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alec Huard
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sherif Hanafy Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
36
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21134609. [PMID: 32610502 PMCID: PMC7370155 DOI: 10.3390/ijms21134609] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| |
Collapse
|
37
|
Ross BX, Choi J, Yao J, Hager HM, Abcouwer SF, Zacks DN. Loss of High-Mobility Group Box 1 (HMGB1) Protein in Rods Accelerates Rod Photoreceptor Degeneration After Retinal Detachment. Invest Ophthalmol Vis Sci 2020; 61:50. [PMID: 32460314 PMCID: PMC7405795 DOI: 10.1167/iovs.61.5.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Retinal detachment (RD) disrupts the nutritional support and oxygen delivery to photoreceptors (PRs), ultimately causing cell death. High-mobility group box 1 (HMGB1) can serve as an extracellular alarmin when released from stressed cells. PRs release HMGB1 after RD. The purpose of this study was to investigate the relationship between HMGB1 and PR survival after RD. Methods Acute RD was created by injection of hyaluronic acid (1%) into the subretinal space in C57BL/6 mice and mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1ΔRod). Immunofluorescence (IF) in retinal sections was used to localize HMGB1, rhodopsin, and Iba-1 proteins. Optical coherence tomography and electroretinography were used to quantify retinal thickness and function, respectively. The morphology of the retina was assessed by hematoxylin and eosin. Results HMGB1 protein was localized to the nuclei of all retinal neurons, including PRs, with cones staining more intensely than rods. HMGB1 protein was also found in the inner and outer segments of cones but not rods. Creation of RD caused a dramatic increase of HMGB1 protein IF in rods. cKO of HMGB1 in rods did not affect retinal structure or function. However, after RD, loss of rods and reduction in the thickness of the outer nuclear layer were significantly increased in the HMGB1ΔRod retinas as compared to the control. Interestingly, depletion of HMGB1 in rods did not affect the activation and mobilization of microglia/macrophages normally seen after RD. Conclusions Increased HMGB1 expression in stressed rods may represent an intrinsic mechanism regulating their survival after RD.
Collapse
Affiliation(s)
- Bing X. Ross
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Joanne Choi
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Heather M. Hager
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
38
|
Muhammad S, Chaudhry SR, Kahlert UD, Lehecka M, Korja M, Niemelä M, Hänggi D. Targeting High Mobility Group Box 1 in Subarachnoid Hemorrhage: A Systematic Review. Int J Mol Sci 2020; 21:ijms21082709. [PMID: 32295146 PMCID: PMC7215307 DOI: 10.3390/ijms21082709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a complex and potentially deadly disease. Neurosurgical clipping or endovascular coiling can successfully obliterate ruptured aneurysms in almost every case. However, despite successful interventions, the clinical outcomes of aSAH patients are often poor. The reasons for poor outcomes are numerous, including cerebral vasospasm (CVS), post-hemorrhagic hydrocephalus, systemic infections and delayed cerebral ischemia. Although CVS with subsequent cerebral ischemia is one of the main contributors to brain damage after aSAH, little is known about the underlying molecular mechanisms of brain damage. This review emphasizes the importance of pharmacological interventions targeting high mobility group box 1 (HMGB1)-mediated brain damage after subarachnoid hemorrhage (SAH) and CVS. We searched Pubmed, Ovid medline and Scopus for "subarachnoid hemorrhage" in combination with "HMGB1". Based on these criteria, a total of 31 articles were retrieved. After excluding duplicates and selecting the relevant references from the retrieved articles, eight publications were selected for the review of the pharmacological interventions targeting HMGB1 in SAH. Damaged central nervous system cells release damage-associated molecular pattern molecules (DAMPs) that are important for initiating, driving and sustaining the inflammatory response following an aSAH. The discussed evidence suggested that HMGB1, an important DAMP, contributes to brain damage during early brain injury and also to the development of CVS during the late phase. Different pharmacological interventions employing natural compounds with HMGB1-antagonizing activity, antibody targeting of HMGB1 or scavenging HMGB1 by soluble receptors for advanced glycation end products (sRAGE), have been shown to dampen the inflammation mediated brain damage and protect against CVS. The experimental data suggest that HMGB1 inhibition is a promising strategy to reduce aSAH-related brain damage and CVS. Clinical studies are needed to validate these findings that may lead to the development of potential treatment options that are much needed in aSAH.
Collapse
Affiliation(s)
- Sajjad Muhammad
- Department of Neurosurgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (U.D.K.); (D.H.)
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
- Correspondence: ; Tel.: +49-151-6846-0755
| | - Shafqat Rasul Chaudhry
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Ulf Dietrich Kahlert
- Department of Neurosurgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (U.D.K.); (D.H.)
| | - Martin Lehecka
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
| | - Miikka Korja
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
| | - Daniel Hänggi
- Department of Neurosurgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (U.D.K.); (D.H.)
| |
Collapse
|
39
|
Richard SA. Elucidating the novel biomarker and therapeutic potentials of High-mobility group box 1 in Subarachnoid hemorrhage: A review. AIMS Neurosci 2019; 6:316-332. [PMID: 32341986 PMCID: PMC7179354 DOI: 10.3934/neuroscience.2019.4.316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) frequently arises after an aneurysm in a cerebral artery ruptures, resulting into bleeding as well as clot formation. High-mobility group box 1 (HMGB1) is an extremely preserved, universal protein secreted in the nuclei of all cell varieties. This review explores the biomarker as well as therapeutic potentials of HMBG1 in SAH especially during the occurrence of cerebral vasospasms. Plasma HMGB1 levels have proven to be very useful prognosticators of effective outcome as well as death after SAH. Correspondingly, higher HMGB1 levels in the cerebrospinal fluid (CSF) of SAH patients correlated well with poor outcome; signifying that, CSF level of HMGB1 is a novel predictor of outcome following SAH. Nonetheless, the degree of angiographic vasospasm does not always correlate with the degree of neurological deficits in SAH patients. HMGB1 stimulated cerebral vasospasm, augmented gene as well as protein secretory levels of receptor for advance glycation end product (RAGE) in neurons following SAH; which means that, silencing HMGB1 during SAH could be of therapeutic value. Compounds like resveratrol, glycyrrhizin, rhinacanthin, purpurogallin, 4′-O-β-D-Glucosyl-5-O-Methylvisamminol (4OGOMV) as well as receptor-interacting serine/threonine-protein kinase 3 (RIPK3) gene are capable of interacting with HMGB1 resulting in therapeutic benefits following SAH.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho-Volta Region, Ghana West Africa
| |
Collapse
|
40
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
41
|
Akamatsu Y, Pagan VA, Hanafy KA. The role of TLR4 and HO-1 in neuroinflammation after subarachnoid hemorrhage. J Neurosci Res 2019; 98:549-556. [PMID: 31468571 PMCID: PMC6980436 DOI: 10.1002/jnr.24515] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
This review on the mechanisms of neuroinflammation following subarachnoid hemorrhage will focus mainly on toll-like receptor 4 (TLR4), Heme Oxygenase-1 (HO-1), and the role of microglia and macrophages in this process. Vasospasm has long been the focus of research in SAH; however, clinical trials have shown that amelioration of vasospasm does not lead to an improved clinical outcome. This necessitates the need for novel avenues of research. Our work has demonstrated that microglial TLR4 and microglial HO-1, not only affects cognitive dysfunction, but also circadian dysrhythmia in a mouse model of SAH. To attempt to translate these findings, we have also begun investigating macrophages in the cerebrospinal fluid of SAH patients. The goal of this review is to provide an update on the role of TLR4, HO-1, and other signal transduction pathways in SAH-induced neuroinflammation.
Collapse
Affiliation(s)
- Yosuke Akamatsu
- Department of Surgery, Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vicente A Pagan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Khalid A Hanafy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Division of Neurointensive Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Rosciszewski G, Cadena V, Auzmendi J, Cieri MB, Lukin J, Rossi AR, Murta V, Villarreal A, Reinés A, Gomes FCA, Ramos AJ. Detrimental Effects of HMGB-1 Require Microglial-Astroglial Interaction: Implications for the Status Epilepticus -Induced Neuroinflammation. Front Cell Neurosci 2019; 13:380. [PMID: 31507379 PMCID: PMC6718475 DOI: 10.3389/fncel.2019.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is the most common form of human epilepsy and available treatments with antiepileptic drugs are not disease-modifying therapies. The neuroinflammation, neuronal death and exacerbated plasticity that occur during the silent period, following the initial precipitating event (IPE), seem to be crucial for epileptogenesis. Damage Associated Molecular Patterns (DAMP) such as HMGB-1, are released early during this period concomitantly with a phenomenon of reactive gliosis and neurodegeneration. Here, using a combination of primary neuronal and glial cell cultures, we show that exposure to HMGB-1 induces dendrite loss and neurodegeneration in a glial-dependent manner. In glial cells, loss of function studies showed that HMGB-1 exposure induces NF-κB activation by engaging a signaling pathway that involves TLR2, TLR4, and RAGE. In the absence of glial cells, HMGB-1 failed to induce neurodegeneration of primary cultured cortical neurons. Moreover, purified astrocytes were unable to fully respond to HMGB-1 with NF-κB activation and required microglial cooperation. In agreement, in vivo HMGB-1 blockage with glycyrrhizin, immediately after pilocarpine-induced status epilepticus (SE), reduced neuronal degeneration, reactive astrogliosis and microgliosis in the long term. We conclude that microglial-astroglial cooperation is required for astrocytes to respond to HMGB-1 and to induce neurodegeneration. Disruption of this HMGB-1 mediated signaling pathway shows beneficial effects by reducing neuroinflammation and neurodegeneration after SE. Thus, early treatment strategies during the latency period aimed at blocking downstream signaling pathways activated by HMGB-1 are likely to have a significant effect in the neuroinflammation and neurodegeneration that are proposed as key factors in epileptogenesis.
Collapse
Affiliation(s)
- Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Cadena
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Lukin
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia R Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analia Reinés
- Laboratorio de Neurofarmacología, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Anti-high mobility group box-1 antibody attenuated vascular smooth muscle cell phenotypic switching and vascular remodelling after subarachnoid haemorrhage in rats. Neurosci Lett 2019; 708:134338. [PMID: 31226363 DOI: 10.1016/j.neulet.2019.134338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 01/30/2023]
Abstract
Although cerebral vascular smooth muscle cell (VSMC) phenotypic switching is involved in the vascular dysfunction after subarachnoid haemorrhage (SAH), the precise mechanisms are still unclear. High mobility group box-1 (HMGB1) has been identified as a modulator in VSMC proliferation. The purpose of this study was to investigate the potential role of HMGB1 in the VSMC phenotypic switching following SAH. An endovascular perforation SAH model was used in our experiments. The expression levels of HMGB1, α-smooth muscle actin (α-SMA), osteopontin (OPN), smooth muscle myosin heavy chain (SM-MHC), embryonic smooth muscle myosin heavy chain (Smemb), TXA2, PAR-1 and AT1 receptor were evaluated by Western blot analyses. Iba1-positive cells and apoptotic cells were determined by immunofluorescence staining and TUNEL staining, respectively. Vasoconstriction of the isolated basilar artery was stimulated by thrombin and KCl. We found that HMGB1 expression was markedly increased following SAH, and anti-HMGB1 mAb significantly reversed VSMC phenotypic switching and vascular remodelling in rats. However, the effects of HMGB1 on VSMC phenotypic switching were partly blocked in the presence of SC79, a potent activator of phosphatidylinositol-3-kinase-AKT (PI3K/AKT). Furthermore, the enhanced vasoconstriction and decreased cerebral cortical blood flow induced by SAH were reversed by anti-HMGB1 mAb. Finally, we found that anti-HMGB1 mAb attenuated microglial activation and brain oedema, ameliorating neurological dysfunction. These results indicated that HMGB1 is a useful regulator of VSMC phenotypic switching and vascular remodelling following SAH and might be exploited as a novel therapeutic target for delayed cerebral ischaemia.
Collapse
|
44
|
Nishibori M, Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci 2019; 140:94-101. [PMID: 31105025 DOI: 10.1016/j.jphs.2019.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023] Open
Abstract
High mobility group box-1 (HMGB1), a representative damage associated-molecular pattern (DAMP), has been reported to be involved in many inflammatory diseases. Several drugs are thought to have potential to control the translocation and secretion of HMGB1, or to neutralize extracellular HMGB1 by binding to it. One of these drugs, anti-HMGB1 monoclonal antibody (mAb), is highly specific for HMGB1 and has been shown to be effective for the treatment of a wide range of CNS diseases when modeled in animals, including stroke, traumatic brain injury, Parkinson's disease, epilepsy and Alzheimer's disease. Thus, anti-HMGB1 mAb not only is useful for target validation but also has extensive potential for the treatment of the above-mentioned diseases. In this review, we summarize existing knowledge on the effects of anti-HMGB1 mAb on CNS and PNS diseases, the common features of translocation and secretion of HMGB1 and the functional roles of HMGB1 in these diseases. The existing literature suggests that anti-HMGB1 mAb therapy would be effective for a wide range of CNS and PNS diseases.
Collapse
Affiliation(s)
- Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Hideo K Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
45
|
Okuma Y, Wake H, Teshigawara K, Takahashi Y, Hishikawa T, Yasuhara T, Mori S, Takahashi HK, Date I, Nishibori M. Anti–High Mobility Group Box 1 Antibody Therapy May Prevent Cognitive Dysfunction After Traumatic Brain Injury. World Neurosurg 2019; 122:e864-e871. [DOI: 10.1016/j.wneu.2018.10.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
|
46
|
Chaudhry SR, Lehecka M, Niemelä M, Muhammad S. Sterile Inflammation, Potential Target in Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2018; 123:159-160. [PMID: 30580066 DOI: 10.1016/j.wneu.2018.12.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shafqat Rasul Chaudhry
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Martin Lehecka
- Department of Neurosurgery Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery Helsinki University Hospital, Helsinki, Finland
| | - Sajjad Muhammad
- Department of Neurosurgery Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
47
|
Chen T, Pan H, Li J, Xu H, Jin H, Qian C, Yan F, Chen J, Wang C, Chen J, Wang L, Chen G. Inhibiting of RIPK3 attenuates early brain injury following subarachnoid hemorrhage: Possibly through alleviating necroptosis. Biomed Pharmacother 2018; 107:563-570. [DOI: 10.1016/j.biopha.2018.08.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
|
48
|
Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2018; 19:ijms19072035. [PMID: 30011792 PMCID: PMC6073937 DOI: 10.3390/ijms19072035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) represents only a small portion of all strokes, but accounts for almost half of the deaths caused by stroke worldwide. Neurosurgical clipping and endovascular coiling can successfully obliterate the bleeding aneurysms, but ensuing complications such as cerebral vasospasm, acute and chronic hydrocephalus, seizures, cortical spreading depression, delayed ischemic neurological deficits, and delayed cerebral ischemia lead to poor clinical outcomes. The mechanisms leading to these complications are complex and poorly understood. Early brain injury resulting from transient global ischemia can release molecules that may be critical to initiate and sustain inflammatory response. Hence, the events during early brain injury can influence the occurrence of delayed brain injury. Since the damage associated molecular pattern molecules (DAMPs) might be the initiators of inflammation in the pathophysiology of aSAH, so the aim of this review is to highlight their role in the context of aSAH from diagnostic, prognostic, therapeutic, and drug therapy monitoring perspectives. DAMPs represent a diverse and a heterogenous group of molecules derived from different compartments of cells upon injury. Here, we have reviewed the most important DAMPs molecules including high mobility group box-1 (HMGB1), S100B, hemoglobin and its derivatives, extracellular matrix components, IL-1α, IL-33, and mitochondrial DNA in the context of aSAH and their role in post-aSAH complications and clinical outcome after aSAH.
Collapse
|
49
|
Kobayashi M, Tamari K, Al Salihi MO, Nishida K, Takeuchi K. Anti-high mobility group box 1 antibody suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury. J Neuroinflammation 2018; 15:124. [PMID: 29699567 PMCID: PMC5921993 DOI: 10.1186/s12974-018-1168-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Background Refractory olfactory dysfunction is a common finding in head trauma due to olfactory nerve injury. Anti-inflammatory treatment using steroids is known to contribute to functional recovery of the central and peripheral nervous systems in injury models, while there is a concern that steroids can induce side effects. The present study examines if the inhibition of proinflammatory cytokine, high mobility group box 1 (HMGB1), can facilitate olfactory functional recovery following injury. Methods Olfactory nerve transection (NTx) was performed in OMP-tau-lacZ mice to establish injury models. We measured HMGB1 gene expression in the olfactory bulb using semi-quantitative polymerase chain reaction (PCR) assays and examined HMGB1 protein localization in the olfactory bulb using immunohistochemical staining. Anti-HMGB1 antibody was intraperitoneally injected immediately after the NTx and histological assessment of recovery within the olfactory bulb was performed at 5, 14, 42, and 100 days after the drug injection. X-gal staining labeled OMP in the degenerating and regenerating olfactory nerve fibers, and immunohistochemical staining detected the presence of reactive astrocytes and macrophages/microglia. Olfactory function was assessed using both an olfactory avoidance behavioral test and evoked potential recording. Results HMGB1 gene and protein were significantly expressed in the olfactory bulb 12 h after NTx. Anti-HMGB1 antibody-injected mice showed significantly smaller areas of injury-associated tissue, fewer astrocytes and macrophages/microglia and an increase in regenerating nerve fibers. Both an olfactory avoidance behavioral test and evoked potential recordings showed improved functional recovery in the anti-HMGB1 antibody-injected mice. Conclusions These findings suggest that inhibition of HMGB1 could provide a new therapeutic strategy for the treatment of olfactory dysfunction following head injuries.
Collapse
Affiliation(s)
- Masayoshi Kobayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Kengo Tamari
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mohammed Omar Al Salihi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kohei Nishida
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
50
|
Peiseler M, Kubes P. Macrophages play an essential role in trauma-induced sterile inflammation and tissue repair. Eur J Trauma Emerg Surg 2018; 44:335-349. [DOI: 10.1007/s00068-018-0956-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|