1
|
Janečková E, Juarez-Balarezo J, Tucker AS, Matalová E, Holomková K, Gaete M. Metalloproteinases are involved in the regulation of prenatal tooth morphogenesis. Am J Physiol Cell Physiol 2025; 328:C323-C333. [PMID: 39510136 DOI: 10.1152/ajpcell.00656.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
Collapse
Affiliation(s)
- Eva Janečková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Division of Biology, Glendale Community College, Glendale, California, United States
| | - Jesus Juarez-Balarezo
- Department of Anatomy, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
- 1st Faculty of Medicine, Institute of Histology and Embryology, Charles University, Prague, Czech Republic
| | - Eva Matalová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Studies and Innovation in Dentistry, Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
2
|
Yin X, Liang D, He SQ, Zhang LY, Xu GK. Local Mechanical Modulation-Driven Evagination in Invaginated Epithelia. NANO LETTERS 2024; 24:7069-7076. [PMID: 38808684 DOI: 10.1021/acs.nanolett.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Local cells can actively create reverse bending (evagination) in invaginated epithelia, which plays a crucial role in the formation of elaborate organisms. However, the precise physical mechanism driving the evagination remains elusive. Here, we present a three-dimensional vertex model, incorporating the intrinsic cell polarity, to explore the complex morphogenesis induced by local mechanical modulations. We find that invaginated tissues can spontaneously generate local reverse bending due to the shift of the apicobasal polarity. Their exact shapes can be analytically determined by the local apicobasal differential tension and the internal stress. Our continuum theory exhibits three regions in a phase diagram controlled by these two parameters, showing curvature transitions from ordered to disordered states. Additionally, we delve into epithelial curvature transition induced by the nucleus repositioning, revealing its active contribution to the apicobasal force generation. The uncovered mechanical principles could potentially guide more studies on epithelial folding in diverse systems.
Collapse
Affiliation(s)
- Xu Yin
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dong Liang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang-Quan He
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Yuan Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Shankar S, Chew TW, Chichili VPR, Low BC, Sivaraman J. Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP. Cell Mol Life Sci 2024; 81:216. [PMID: 38740643 PMCID: PMC11090974 DOI: 10.1007/s00018-024-05238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the β5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial β5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Ti Weng Chew
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | | | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- NUS College, National University of Singapore, Singapore, 138593, Singapore.
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Loffet EA, Durel JF, Nerurkar NL. Evo-Devo Mechanobiology: The Missing Link. Integr Comp Biol 2023; 63:1455-1473. [PMID: 37193661 DOI: 10.1093/icb/icad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
While the modern framework of evolutionary development (evo-devo) has been decidedly genetic, historic analyses have also considered the importance of mechanics in the evolution of form. With the aid of recent technological advancements in both quantifying and perturbing changes in the molecular and mechanical effectors of organismal shape, how molecular and genetic cues regulate the biophysical aspects of morphogenesis is becoming increasingly well studied. As a result, this is an opportune time to consider how the tissue-scale mechanics that underlie morphogenesis are acted upon through evolution to establish morphological diversity. Such a focus will enable a field of evo-devo mechanobiology that will serve to better elucidate the opaque relations between genes and forms by articulating intermediary physical mechanisms. Here, we review how the evolution of shape is measured and related to genetics, how recent strides have been made in the dissection of developmental tissue mechanics, and how we expect these areas to coalesce in evo-devo studies in the future.
Collapse
Affiliation(s)
- Elise A Loffet
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - John F Durel
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
5
|
Lee S, Ahn H, Kim H, Lee K, Kim S, Lee JH. Identification of potential key variants in mandibular premolar hypodontia through whole-exome sequencing. Front Genet 2023; 14:1248326. [PMID: 37745851 PMCID: PMC10514915 DOI: 10.3389/fgene.2023.1248326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Determining genotype-phenotype correlations in patients with hypodontia is important for understanding disease pathogenesis, although only a few studies have elucidated it. We aimed to identify genetic variants linked to non-syndromic bilateral mandibular second premolar hypodontia in a Korean population for the first time by specifying the phenotype of hypodontia. Twenty unrelated individuals with non-syndromic bilateral mandibular second premolar hypodontia were enrolled for whole-exome sequencing. Using a tooth agenesis gene set panel consisting of 112 genes based on literature, potential candidate variants were screened through variant filtering and prioritization. We identified 13 candidate variants in 12 genes, including a stop-gain variant (c.4750C>T) in LAMA3. Through the functional enrichment analysis of the prioritized genes, several terms related to tooth development were enriched in a protein-protein interaction network of candidate genes for mandibular premolar hypodontia. The hypodontia group also had approximately 2-fold as many mutated variants in all four genes related to these key terms, which are CDH1, ITGB4, LAMA3, LAMB3, as those in the 100 healthy control group individuals. The relationship between enriched terms and pathways and mandibular premolar hypodontia was also investigated. In addition, we identified some known oligodontia variants in patients with hypodontia, strengthening the possibility of synergistic effects in other genes. This genetic investigation may be a worthwhile preliminary attempt to reveal the pathogenesis of tooth agenesis and sets a background for future studies.
Collapse
Affiliation(s)
- Shinyeop Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyunsoo Ahn
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyeonhye Kim
- Tufts University School of Medicine, Boston, MA, United States
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sanguk Kim
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Stonehouse-Smith D, Cobourne MT, Green JBA, Seppala M. Cellular mechanisms of reverse epithelial curvature in tissue morphogenesis. Front Cell Dev Biol 2022; 10:1066399. [PMID: 36518538 PMCID: PMC9742543 DOI: 10.3389/fcell.2022.1066399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
Epithelial bending plays an essential role during the multiple stages of organogenesis and can be classified into two types: invagination and evagination. The early stages of invaginating and evaginating organs are often depicted as simple concave and convex curves respectively, but in fact majority of the epithelial organs develop through a more complex pattern of curvature: concave flanked by convex and vice versa respectively. At the cellular level, this is far from a geometrical truism: locally cells must passively adapt to, or actively create such an epithelial structure that is typically composed of opposite and connected folds that form at least one s-shaped curve that we here, based on its appearance, term as "reverse curves." In recent years, invagination and evagination have been studied in increasing cellular detail. A diversity of mechanisms, including apical/basal constriction, vertical telescoping and extrinsic factors, all orchestrate epithelial bending to give different organs their final shape. However, how cells behave collectively to generate reverse curves remains less well-known. Here we review experimental models that characteristically form reverse curves during organogenesis. These include the circumvallate papillae in the tongue, crypt-villus structure in the intestine, and early tooth germ and describe how, in each case, reverse curves form to connect an invaginated or evaginated placode or opposite epithelial folds. Furthermore, by referring to the multicellular system that occur in the invagination and evagination, we attempt to provide a summary of mechanisms thought to be involved in reverse curvature consisting of apical/basal constriction, and extrinsic factors. Finally, we describe the emerging techniques in the current investigations, such as organoid culture, computational modelling and live imaging technologies that have been utilized to improve our understanding of the cellular mechanisms in early tissue morphogenesis.
Collapse
Affiliation(s)
- Yiran Wang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Daniel Stonehouse-Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Martyn T. Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jeremy B. A. Green
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
8
|
Smith SJ, Davidson LA, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. eLife 2020; 9:55965. [PMID: 32338602 PMCID: PMC7266619 DOI: 10.7554/elife.55965] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental gaps in our knowledge of how novel anatomical structures evolve is understanding the origins of the morphogenetic processes that form these features. Here, we traced the cellular development of a recently evolved morphological novelty, the posterior lobe of D. melanogaster. We found that this genital outgrowth forms through extreme increases in epithelial cell height. By examining the apical extracellular matrix (aECM), we also uncovered a vast matrix associated with the developing genitalia of lobed and non-lobed species. Expression of the aECM protein Dumpy is spatially expanded in lobe-forming species, connecting the posterior lobe to the ancestrally derived aECM network. Further analysis demonstrated that Dumpy attachments are necessary for cell height increases during posterior lobe development. We propose that the aECM presents a rich reservoir for generating morphological novelty and highlights a yet unseen role for aECM in regulating extreme cell height.
Collapse
Affiliation(s)
- Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
9
|
Seino Y, Nakatomi M, Ida-Yonemochi H, Koga D, Ushiki T, Ohshima H. Three-dimensional configuration of apical epithelial compartments including stem cell niches in guinea pig cheek teeth. J Oral Biosci 2019; 61:55-63. [PMID: 30929803 DOI: 10.1016/j.job.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Continuously growing rodent incisors have an apically located epithelial stem cell compartment, known as an "apical bud" (AB). Few studies have described the morphological features of ABs and stem cell niches in continuously growing premolars/molars. We attempted to clarify the relationship between the three-dimensional configuration of ABs and the stem cell niches in guinea pig cheek teeth. METHODS We perfusion-fixed four-week-old guinea pigs, then decalcified their premolars/molars to produce serial paraffin sections, which we immunostained for Sox2. We reconstructed the serial sections using image processing and analysis software. We processed undecalcified samples for scanning electron microscopy by KOH digestion. RESULTS Two types of epithelia with M and Δ shapes surrounded the S-shaped dental papilla in the apical region of the premolars/molars, and there were three Sox2-positive epithelial bulges above the M- and Δ-shaped epithelia. Sox2-positive epithelial stem cell niches were restricted to the apical side, and cell proliferation and differentiation immediately proceeded in the crown-analogue dentin. The Sox2-positive epithelial stem cell niches were sparsely distributed and extended to the occlusal side. We also detected continuously proliferating cells in the cervical loop and Hertwig's epithelial root sheath of the root-analogue dentin. CONCLUSIONS Our findings suggest that guinea pig cheek teeth have three ABs, and the complex configuration of these types of teeth may be attributed to the prompt formation of crown-analogue dentin followed by the long-term formation of root-analogue dentin.
Collapse
Affiliation(s)
- Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
10
|
Chiba Y, He B, Yoshizaki K, Rhodes C, Ishijima M, Bleck CKE, Stempinski E, Chu EY, Nakamura T, Iwamoto T, de Vega S, Saito K, Fukumoto S, Yamada Y. The transcription factor AmeloD stimulates epithelial cell motility essential for tooth morphology. J Biol Chem 2018; 294:3406-3418. [PMID: 30504223 DOI: 10.1074/jbc.ra118.005298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Indexed: 02/05/2023] Open
Abstract
The development of ectodermal organs, such as teeth, requires epithelial-mesenchymal interactions. Basic helix-loop-helix (bHLH) transcription factors regulate various aspects of tissue development, and we have previously identified a bHLH transcription factor, AmeloD, from a tooth germ cDNA library. Here, we provide both in vitro and in vivo evidence that AmeloD is important in tooth development. We created AmeloD-knockout (KO) mice to identify the in vivo functions of AmeloD that are critical for tooth morphogenesis. We found that AmeloD-KO mice developed enamel hypoplasia and small teeth because of increased expression of E-cadherin in inner enamel epithelial (IEE) cells, and it may cause inhibition of the cell migration. We used the CLDE dental epithelial cell line to conduct further mechanistic analyses to determine whether AmeloD overexpression in CLDE cells suppresses E-cadherin expression and promotes cell migration. Knockout of epiprofin (Epfn), another transcription factor required for tooth morphogenesis and development, and analysis of AmeloD expression and deletion revealed that AmeloD also contributed to multiple tooth formation in Epfn-KO mice by promoting the invasion of dental epithelial cells into the mesenchymal region. Thus, AmeloD appears to play an important role in tooth morphogenesis by modulating E-cadherin and dental epithelial-mesenchymal interactions. These findings provide detailed insights into the mechanism of ectodermal organ development.
Collapse
Affiliation(s)
- Yuta Chiba
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences and
| | - Bing He
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keigo Yoshizaki
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - Craig Rhodes
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Muneaki Ishijima
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Department of Medicine for Orthopaedics and Motor Organ and
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Erin Stempinski
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Emily Y Chu
- Laboratory of Oral Connective Tissue Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Takashi Nakamura
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Tsutomu Iwamoto
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Susana de Vega
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Research Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences and
| | - Satoshi Fukumoto
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences and
| | - Yoshihiko Yamada
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
11
|
Zheng J, Nie X, He L, Yoon A, Wu L, Zhang X, Vats M, Schiff M, Xiang L, Tian Z, Ling J, Mao J. Epithelial Cdc42 Deletion Induced Enamel Organ Defects and Cystogenesis. J Dent Res 2018; 97:1346-1354. [PMID: 29874522 PMCID: PMC6199676 DOI: 10.1177/0022034518779546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cdc42, a Rho family small GTPase, regulates cytoskeleton organization, vesicle trafficking, and other cellular processes in development and homeostasis. However, Cdc42's roles in prenatal tooth development remain elusive. Here, we investigated Cdc42 functions in mouse enamel organ. Cdc42 showed highly dynamic temporospatial patterns in the developing enamel organ, with robust expression in the outer enamel epithelium, stellate reticulum (SR), and stratum intermedium layers. Strikingly, epithelium-specific Cdc42 deletion resulted in cystic lesions in the enamel organ. Cystic lesions were first noted at embryonic day 15.5 and progressively enlarged during gestation. At birth, cystic lesions occupied the bulk of the entire enamel organ, with intracystic erythrocyte accumulation. Ameloblast differentiation was retarded upon epithelial Cdc42 deletion. Apoptosis occurred in the Cdc42 mutant enamel organ prior to and synchronously with cystogenesis. Transmission electron microscopy examination showed disrupted actin assemblies, aberrant desmosomes, and significantly fewer cell junctions in the SR cells of Cdc42 mutants than littermate controls. Autophagosomes were present in the SR cells of Cdc42 mutants relative to the virtual absence of autophagosome in the SR cells of littermate controls. Epithelium-specific Cdc42 deletion attenuated Wnt/β-catenin and Shh signaling in dental epithelium and induced aberrant Sox2 expression in the secondary enamel knot. These findings suggest that excessive cell death and disrupted cell-cell connections may be among multiple factors responsible for the observed cystic lesions in Cdc42 mutant enamel organs. Taken together, Cdc42 exerts multidimensional and pivotal roles in enamel organ development and is particularly required for cell survival and tooth morphogenesis.
Collapse
Affiliation(s)
- J. Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - X. Nie
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - L. He
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - A.J. Yoon
- Oral and Maxillofacial Pathology Division, College of Dental Medicine, Columbia University, New York, NY, USA
| | - L. Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - X. Zhang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - M. Vats
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - M.D. Schiff
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - L. Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Z. Tian
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - J. Ling
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - J.J. Mao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
From pattern to process: studies at the interface of gene regulatory networks, morphogenesis, and evolution. Curr Opin Genet Dev 2018; 51:103-110. [PMID: 30278289 DOI: 10.1016/j.gde.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
The development of anatomical structures is complex, beginning with patterning of gene expression by multiple gene regulatory networks (GRNs). These networks ultimately regulate the activity of effector molecules, which in turn alter cellular behavior during development. Together these processes biomechanically produce the three-dimensional shape that the anatomical structure adopts over time. However, the interfaces between these processes are often overlooked and also include counter-intuitive feedback mechanisms. In this review, we examine each step in this extraordinarily complex process and explore how evolutionary developmental biology model systems, such as butterfly scales, vertebrate teeth, and the Drosophila dorsal appendage offer a complementary approach to expose the multifactorial integration of genetics and morphogenesis from an alternative perspective.
Collapse
|
13
|
Gao Z, Wang L, Wang F, Zhang C, Wang J, He J, Wang S. Expression of BMP2/4/7 during the odontogenesis of deciduous molars in miniature pig embryos. J Mol Histol 2018; 49:545-553. [PMID: 30099666 DOI: 10.1007/s10735-018-9792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) play important roles in tooth development. However, their expression has not been studied in miniature pigs, which have many anatomical similarities in oral and maxillofacial region compared to human. This study investigated BMP2/4/7 expression patterns during deciduous molar development in miniature pigs on embryonic days (E) 40, 50, and 60. The mandibles were fixed, decalcified, and embedded before sectioning. H&E staining, immunohistochemistry, in situ hybridization using specific radionuclide-labeled cRNA probes, and real-time PCR were used to detect the BMP expression patterns during morphogenesis of the third deciduous molar. H&E staining showed that for the deciduous third molar, E40 represented the cap stage, E50 represented the early bell stage, and E60 represented the late bell stage or secretory stage. BMP2 was expressed in both the enamel organ and in the dental mesenchyme on E40 and E50 and was expressed mainly in pre-odontoblasts on E60. BMP7 expression was similar to BMP2 expression, but BMP7 was also expressed in the inner enamel epithelium on E60. On E40, BMP4 was expressed mainly in the epithelium, with some weak expression in the mesenchyme. On E50, BMP4 expression was stronger in the mesenchyme but weaker in the epithelium. On E60, BMP4 was expressed mainly in the mesenchyme. These data indicated that BMP2/4/7 showed differential spatial and temporal expression during the morphogenesis and odontogenesis of deciduous molars, suggesting that these molecules were associated with tooth morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Zhenhua Gao
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.,Outpatient Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Fu Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China. .,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Abstract
Enamel knot (EK) is known to be a central organ in tooth development, especially for cusp patterning. To trace the exact position and movement among the inner dental epithelium (IDE) and EK cells, and to monitor the relationship between the EK and cusp patterning, it is essential that we understand the cell cycle status of the EK in early stages of tooth development. In this study, thymidine analogous (IdU, BrdU) staining was used to evaluate the cell cycle phase of the primary EK at the early casp stage (E13.0) and the gerbil embryo (E19) in a developing mouse embryo. The centerpiece of this study was to describe the cell cycle phasing and sequencing during proliferation in the IDE according to the expression of IdU and BrdU following their injection at calculated time points. The interval time between IdU injection and BrdU injection was set at 4 h. As a result, the cell cycle in the IDE of the mouse and gerbil was found to be synchronous. Conversely, the cell cycle in primary EKs of mice was much longer than that of the IDE. Therefore, the difference of cell cycle of the IDE and the EK is related to the diversity of cusp patterning and would provide a new insight into tooth morphogenesis.
Collapse
|
15
|
Li L, Tang Q, Kwon HJE, Wu Z, Kim EJ, Jung HS. An Explanation for How FGFs Predict Species-Specific Tooth Cusp Patterns. J Dent Res 2018; 97:828-834. [PMID: 29489426 DOI: 10.1177/0022034518759625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Species-specific cusp patterns result from the iterative formation of enamel knots, the epithelial signaling centers, at the future cusp positions. The expressions of fibroblast growth factors (FGFs), especially Fgf4, in the secondary enamel knots in the areas of the future cusp tips are generally used to manifest the appearance of species-specific tooth shapes. However, the mechanism underlying the predictive role of FGFs in species-specific cusp patterns remains obscure. Here, we demonstrated that gerbils, which have a lophodont pattern, exhibit a striped expression pattern of Fgf4, whereas mice, which have a bunodont pattern, have a spotted expression pattern, and these observations verify the predictive role of Fgf4 in species-specific cusp patterns. By manipulating FGFs' signaling in the inner dental epithelium of gerbils, we provide evidence for the intracellular participation of FGF signaling, specifically FGF4 and FGF20, in Rac1- and RhoA-regulated cellular geometry remolding during the determination of different cusp patterns. Our study presents a novel explanation of how different FGF expression patterns produce different cusp patterns and implies that a conserved intracellular FGF-GTPase signaling module might represent an underlying developmental basis for evolutionary changes in cusp patterns.
Collapse
Affiliation(s)
- L Li
- 1 Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea.,2 Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Q Tang
- 1 Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea.,2 Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - H-J E Kwon
- 1 Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea.,3 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Z Wu
- 4 Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - E-J Kim
- 1 Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - H-S Jung
- 1 Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea.,4 Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|