1
|
Ou Z, Wang Z, Duan C, Shu L, Hu Z. Simultaneously disinfection of amoebae, endosymbiotic bacteria, and resistance genes using a novel two-electron water oxidation strategy. WATER RESEARCH 2025; 284:123894. [PMID: 40449332 DOI: 10.1016/j.watres.2025.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Amoebae, which serve as important vectors for various pathogenic bacteria, are ubiquitous in natural and artificial water systems. Their robust survival capabilities and protective characteristics render conventional disinfection methods largely ineffective. Moreover, amoeba cells provide an ideal environment for the replication and transfer of antibiotic resistance genes, posing a significant threat to human health and safety. In this study, an in-situ activation system for electrocatalytic water oxidation was developed. This system effectively inactivates amoeba spores and their intracellular symbiotic bacteria while simultaneously reducing the abundance of resistance genes through the generation of hydroxyl radicals (•OH) and carbonate free radicals (•CO3-). The results demonstrated a 99.9 % inactivation rate for amoeba spores and a 99.999 % inactivation rate for intracellular bacteria. In addition, the prevalence of resistant genes in bacteria within amoebae, specifically including sul1 (sulfonamide resistance), tetA (tetracycline resistance), blaFOX (cefoxitin resistance), arsB (arsenic resistance), czcA (cadmium resistance), and copA (copper resistance), was significantly reduced by approximately 16 %-62.6 %. Therefore, this study introduces a new technology capable of simultaneously treating amoeba spores, intracellular bacteria, and resistance genes, which holds significant importance for reducing the spread of resistant genes and enhancing public health safety.
Collapse
Affiliation(s)
- Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zihe Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chengyu Duan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Yu Z, Xie Y, Li X, Liu W, Han JL, Zheng C, Zheng Q, Zhao X, Wang A. Why the disinfection efficiency of ultraviolet radiation may become unsatisfactory at low suspended solid concentrations: The mechanism of extracellular polymeric substances secretion induced by different particles. WATER RESEARCH 2025; 274:123122. [PMID: 39799909 DOI: 10.1016/j.watres.2025.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g., Escherichia coli (E. coli) still stay alive excessively at low concentrations of suspended solids (SS) that meets the discharge standards (<10 mg l-1). WWTPs focus on each process's efficiency, while the particle influence of different upstream processes on UV radiation is ignored. This study investigated the changes in extracellular polymeric substances (EPS) structure and biofilm from the perspective of single cell and cell-to-cell interactions at low SS concentrations before and after UV radiation. We disclosed that the effective characteristics of effluent SS particles were mainly related to some specific operation units, like coagulation sedimentation or sand filtration, which induced EPS secretion and biofilm formation, and subsequently caused the different responses of cells within the biofilm to UV radiation. Compared with filtrating sand particles, the magnetic coagulant induced more polysaccharide secretion and expanded the EPS structure, leading to a thicker and more effective protective layer to weaken UV intensity and reduce reactive oxygen species levels inside cells. The microbial community analysis of a real WWTP confirmed the survival of microorganisms with abilities of EPS secretion and sheltering others. Therefore, considering the potential positive effect of particles (such as metal particles) in the upstream process on the microbial aggregation in the subsequent process, it is recommended that the UV disinfection requires a lower SS concentration standard or a higher UV radiation dose. This study provides a basis for effective UV disinfection at the present application standards.
Collapse
Affiliation(s)
- Zhe Yu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yicheng Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xiqi Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Jing-Long Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Chunyuan Zheng
- Beijing Jingshengda Environmental Protection Technology Co., Ltd, Beijing 101106, China
| | - Qun Zheng
- Beijing Jingshengda Environmental Protection Technology Co., Ltd, Beijing 101106, China
| | - Xuezhi Zhao
- Beijing Jingshengda Environmental Protection Technology Co., Ltd, Beijing 101106, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
3
|
Hernández-Zanoletty A, Oller I, Polo-López MI, Jambrina-Hernández E, Plaza-Bolaños P, Agüera A. Upgrade constructed wetlands wastewater quality by solar-driven photochemical quaternary treatments in raceway pond reactor at pilot plant scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178058. [PMID: 39705962 DOI: 10.1016/j.scitotenv.2024.178058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
This study explores the potential application of solar photochemical processes (SPPs) for simultaneous disinfection and decontamination of urban wastewater (UWW) when combined with constructed wetlands (CWs). Two SPPs based on the addition of low concentrations of hydrogen peroxide and peroxymonosulfate (PMS) were evaluated. SPPs were carried out at pilot plant scale using low-cost solar open photoreactors (Raceway Pond Reactor (RPR)) under natural sunlight. The performance of the SPPs was analyzed by monitoring naturally occurring bacteria (Escherichia coli, Enterococcus spp. and Salmonella spp.) and Contaminants of Emerging Concern (CECs), such as pharmaceutical products, pesticides, antibiotics and their metabolites, simultaneously. SPP best operating conditions were determined by testing a wide range of oxidant concentrations (0-5.9 mM, 0-3.0 mM) and liquid depths (5, 10 and 15 cm) in the RPR. SPP treatment efficacy was tested on the actual inlet and outlet of the CW system, showing the high influence of their different physicochemical characteristics on the oxidants' performance. H2O2/solar SPP in the actual inlet of the CWs showed slightly higher inactivation kinetics when increasing H2O2 concentration at both water depths (5 and 10 cm), while no significant CECs degradation rates were obtained. However, much higher efficacy was obtained with PMS/solar process attaining high bacteria inactivation under dark conditions and 79 % CEC degradation at 3.0 mM after only 10 min of reaction time. SPPs assessment on the outlet of the CWs also showed better efficacy of the PMS as oxidant compared to the H2O2 for the simultaneous CECs removal (95 % at 1.0 mM of PMS, after only 5 min of treatment) and bacteria inactivation (confirming the no-regrown after 24 h). SPPs have demonstrated to be a low-cost and eco-sustainable polishing alternative to regenerate CW effluents complying with the actual European regulation on the minimum water quality requirements for reusing treated UWW in agriculture.
Collapse
Affiliation(s)
- Alba Hernández-Zanoletty
- Plataforma Solar de Almería-CIEMAT, Ctra. de Senes km 4.5, 04200 Tabernas, Almería, Spain; CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. de Senes km 4.5, 04200 Tabernas, Almería, Spain; CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain.
| | - M Inmaculada Polo-López
- Plataforma Solar de Almería-CIEMAT, Ctra. de Senes km 4.5, 04200 Tabernas, Almería, Spain; CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain
| | - Eva Jambrina-Hernández
- CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - Ana Agüera
- CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
4
|
Spunde K, Rudevica Z, Korotkaja K, Skudra A, Gudermanis R, Zajakina A, Revalde G. Bacteria and RNA virus inactivation with a high-irradiance UV-A source. Photochem Photobiol Sci 2024; 23:1841-1856. [PMID: 39305443 DOI: 10.1007/s43630-024-00634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/09/2024] [Indexed: 11/01/2024]
Abstract
Disinfection with LED lamps is a promising ecological and economical substitute for mercury lamps. However, the optimal time/dose relationship needs to be established. Pathogen inactivation by UV-A primarily relies on induced reactive oxygen species (ROS) formation and subsequent oxidative damage. While effective against bacteria and enveloped viruses, non-enveloped viruses are less sensitive. In this study, we explored the disinfection properties of 10 W UV-A LED, emitting in the 365-375 nm range. UV-A at high values of irradiance (~ 0.46 W/cm2) can potentially induce ROS formation and direct photochemical damage of the pathogen nucleic acids, thus improving the disinfection. The UV-A inactivation was evaluated for the bacterium Escherichia coli (E. coli), non-enveloped RNA bacteriophage MS2, and enveloped mammalian RNA virus-Semliki Forest virus (SFV). The 4 log10 reduction doses for E. coli and SFV were 268 and 241 J/cm2, respectively. Furthermore, in irradiated E. coli, ROS production positively correlated with the inactivation rate. In the case of MS2 bacteriophage, the 2.5 log10 inactivation was achieved by 679 J/cm2 within 30 min of irradiation. The results demonstrate significant disinfection efficiency of non-enveloped virus MS2 using high-irradiance UV-A. This suggests a potential strategy for improving the inactivation of UV-A-unsusceptible pathogens, particularly non-enveloped viruses. Additionally, the direct UV-A irradiation of self-replicating viral RNA from SFV led to a significant loss of viral gene expression in cells transfected with the irradiated RNA. Therefore, the virus inactivation mechanism of high-irradiance UV-A LED can be partially determined by the direct damage of viral RNA.
Collapse
Affiliation(s)
- Karina Spunde
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, 1067, Latvia
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, 1067, Latvia
| | - Ksenija Korotkaja
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, 1067, Latvia
| | - Atis Skudra
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Str. 3, Riga, 1004, Latvia
| | - Rolands Gudermanis
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Str. 3, Riga, 1004, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, 1067, Latvia.
| | - Gita Revalde
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Str. 3, Riga, 1004, Latvia.
- Institute of Technical Physics, Riga Technical University, P. Valdena Str. 7, Riga, 1048, Latvia.
| |
Collapse
|
5
|
Sadowska JM, Power RN, Genoud KJ, Matheson A, González-Vázquez A, Costard L, Eichholz K, Pitacco P, Hallegouet T, Chen G, Curtin CM, Murphy CM, Cavanagh B, Zhang H, Kelly DJ, Boccaccini AR, O'Brien FJ. A Multifunctional Scaffold for Bone Infection Treatment by Delivery of microRNA Therapeutics Combined With Antimicrobial Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307639. [PMID: 38009631 DOI: 10.1002/adma.202307639] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Rachael N Power
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Katelyn J Genoud
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Austyn Matheson
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Lara Costard
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Kian Eichholz
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Pierluca Pitacco
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Tanguy Hallegouet
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- University of Strasbourg, Strasbourg, 67412, France
| | - Gang Chen
- Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Huijun Zhang
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Daniel J Kelly
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| |
Collapse
|
6
|
Zhang M, Cheng J, Shen Z, He K, Zheng B. Red light-triggered release of ROS and carbon monoxide for combinational antibacterial application. J Mater Chem B 2024; 12:1077-1086. [PMID: 38168810 DOI: 10.1039/d3tb01829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The abuse of antibiotics has led to the emergence of a wide range of drug-resistant bacteria. To address the challenge of drug-resistant bacterial infections and related infectious diseases, several effective antibacterial strategies have been developed. To achieve enhanced therapeutic effects, combinational treatment approaches should be employed. With this in mind, a metal-organic framework (MOF) based nanoreactor with integrated photodynamic therapy (PDT) and gas therapy which can release reactive oxygen species (ROS) and carbon monoxide (CO) under red light irradiation has been developed. The release of ROS and CO under red light irradiation exerts a preferential antibacterial effect on Gram-positive/Gram-negative bacteria. The bactericidal effects of ROS and CO on Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) are better than ROS only, showing a combinational antibacterial effect. Furthermore, the fluorescence emission properties of porphyrin moieties can be leveraged for real-time tracking and imaging of the nanoreactors. The simple preparation procedures of this material further enhance its potential as a versatile and effective antibacterial candidate, thereby presenting a new strategy for PDT and gas combinational treatment.
Collapse
Affiliation(s)
- Mengdan Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Cheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China.
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China.
| |
Collapse
|
7
|
Raro OHF, Poirel L, Nordmann P. Effect of Zinc Oxide and Copper Sulfate on Antibiotic Resistance Plasmid Transfer in Escherichia coli. Microorganisms 2023; 11:2880. [PMID: 38138025 PMCID: PMC10745819 DOI: 10.3390/microorganisms11122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Heavy metals such as zinc (Zn) and copper (Cu) may be associated with antibiotic resistance dissemination. Our aim was to investigate whether sub-lethal dosage of Zn and Cu may enhance plasmid transfer and subsequently resistance genes dissemination. Plasmid conjugation frequencies (PCF) were performed with Escherichia coli strains bearing IncL-blaOXA-48, IncA/C-blaCMY-2, IncI1-blaCTX-M-1, IncF-blaCTX-M-1, and IncX3-blaNDM-5 as donors. Mating-out assays were performed with sub-dosages of zinc oxide (ZnO) and Cu sulfate (CuSO4). Quantification of the SOS response-associated gene expression levels and of the production of reactive oxygen species were determined. Increased PCF was observed for IncL, IncA/C, and IncX3 when treated with ZnO. PCF was only increased for IncL when treated with CuSO4. The ROS production presented an overall positive correlation with PCF after treatment with ZnO for IncL, IncA/C, and IncX3. For CuSO4 treatment, the same was observed only for IncL. No increase was observed for expression of SOS response-associated genes under CuSO4 treatment, and under ZnO treatment, we observed an increase in SOS response-associated genes only for IncX3. Our data showed that sub-dosages of ZnO and CuSO4 could significantly enhance PCF in E. coli, with a more marked effect observed with IncL, IncA/C, and IncX3 scaffolds. Our study suggested that use of certain heavy metals is not the panacea for avoiding use of antibiotics in order to prevent the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Hallal Ferreira Raro O, Poirel L, Tocco M, Nordmann P. Impact of veterinary antibiotics on plasmid-encoded antibiotic resistance transfer. J Antimicrob Chemother 2023; 78:2209-2216. [PMID: 37486104 PMCID: PMC10477142 DOI: 10.1093/jac/dkad226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Resistance genes can be genetically transmitted and exchanged between commensal and pathogenic bacterial species, and in different compartments including the environment, or human and animal guts (One Health concept). The aim of our study was to evaluate whether subdosages of antibiotics administered in veterinary medicine could enhance plasmid transfer and, consequently, resistance gene exchange in gut microbiota. METHODS Conjugation frequencies were determined with Escherichia coli strains carrying IncL- (blaOXA-48) or IncI1-type (blaCTX-M-1) plasmids subjected to a series of subinhibitory concentrations of antibiotics used in veterinary medicine, namely amoxicillin, ceftiofur, apramycin, neomycin, enrofloxacin, colistin, erythromycin, florfenicol, lincomycin, oxytetracycline, sulfamethazine, tiamulin and the ionophore narasin. Treatments with subinhibitory dosages were performed with and without supplementation with the antioxidant edaravone, known as a mitigator of the inducibility effect of several antibiotics on plasmid conjugation frequency (PCF). Expression of SOS-response associated genes and fluorescence-based reactive oxygen species (ROS) detection assays were performed to evaluate the stress oxidative response. RESULTS Increased PCFs were observed for both strains when treating with florfenicol and oxytetracycline. Increased expression of the SOS-associated recA gene also occurred concomitantly, as well as increased ROS production. Addition of edaravone to the treatments reduced their PCF and also showed a decreasing effect on SOS and ROS responses for both plasmid scaffolds. CONCLUSIONS We showed here that some antibiotics used in veterinary medicine may induce transfer of plasmid-encoded resistance and therefore may contribute to the worldwide spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Maurine Tocco
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Application of Antimicrobial Photodynamic Therapy for Inactivation of Acinetobacter baumannii Biofilms. Int J Mol Sci 2022; 24:ijms24010722. [PMID: 36614160 PMCID: PMC9820809 DOI: 10.3390/ijms24010722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of A. baumannii to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated. We found that the antibacterial effect of riboflavin-based antimicrobial photodynamic therapy depends on the ability of photoactivated riboflavin to generate intracellular reactive oxygen species but does not depend on the concentration of riboflavin and pre-incubation time before irradiation. Moreover, our results suggest a clear interconnection between the inactivation efficiency of chlorophyllin-based antimicrobial photodynamic therapy and the sensitivity of A. baumannii biofilms to used light. In summary, all the analyzed results suggest that riboflavin-based antimicrobial photodynamic therapy and chlorophyllin-based antimicrobial photodynamic therapy have the potential to be applied as an antibacterial treatment against A. baumannii biofilms or as a preventive measure against biofilm formation.
Collapse
|
10
|
Thakur I, Verma A, Örmeci B, Sangal V. Applications of waste-derived visibly active Fe-TiO 2 composite incorporating the hybrid process of photocatalysis and photo-Fenton for the inactivation of E. coli. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72247-72259. [PMID: 35175524 DOI: 10.1007/s11356-022-19202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The study reports the applications of waste-derived visibly active Fe-TiO2 composite for the inactivation of E. coli present in water. The Fe/TiO2 catalyst holds remarkable properties of in situ hybrid effect via combining the TiO2-photocatalytic and photo-Fenton process in one system causing increased production of OH˚. The quantum yield (QY) and reaction rate constant of this hybrid process at 40 W m-2 (UV-A irradiation) were found to be significantly higher in less treatment time (45 min) of E. coli inactivation. 23% synergy of in situ hybrid process over single processes was also observed. The increase in the K+ concentration at regular intervals confirmed the cell wall damage. In fully inactivated samples, no regrowth of cells was observed even after 24 and 48 h of dark study. Additionally, even after 100 recycles, the Fe/TiO2 catalyst demonstrated an exceptional durability/recyclability efficacy. The findings of this study highlight the potential of the hybrid process as a viable idea for post-treatment of the wastewater that can be implemented effectively in practice.
Collapse
Affiliation(s)
- Ina Thakur
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
| | - Banu Örmeci
- Civil and Environmental Department, Carleton University, Ottawa, ON, KIS 5B6, Canada
| | - Vikas Sangal
- Department of Chemical Engineering, MNIT, Jaipur, 302017, India
| |
Collapse
|
11
|
Morena A, Bassegoda A, Natan M, Jacobi G, Banin E, Tzanov T. Antibacterial Properties and Mechanisms of Action of Sonoenzymatically Synthesized Lignin-Based Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37270-37279. [PMID: 35960019 PMCID: PMC9412960 DOI: 10.1021/acsami.2c05443] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/01/2022] [Indexed: 06/02/2023]
Abstract
In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.
Collapse
Affiliation(s)
- Angela
Gala Morena
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Arnau Bassegoda
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Michal Natan
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Gila Jacobi
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Ehud Banin
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Tzanko Tzanov
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
12
|
Giannakis S, Gupta A, Pulgarin C, Imlay J. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. WATER RESEARCH 2022; 221:118740. [PMID: 35717710 PMCID: PMC11136163 DOI: 10.1016/j.watres.2022.118740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Solar disinfection (SODIS) was probed for its underlying mechanism. When Escherichia coli was exposed to UVA irradiation, the dominant solar fraction acting in SODIS process, cells exhibited a shoulder before death ensued. This profile resembles cell killing by hydrogen peroxide (H2O2). Indeed, the use of specialized strains revealed that UVA exposure triggers intracellular H2O2 formation. The resultant H2O2 stress was especially impactful because UVA also inactivated the processes that degrade H2O2-peroxidases through the suppression of metabolism, and catalases through direct enzyme damage. Cell killing was enhanced when water was replaced with D2O, suggesting that singlet oxygen plays a role, possibly as a precursor to H2O2 and/or as the mediator of catalase damage. UVA was especially toxic to mutants lacking miniferritin (dps) or recombinational DNA repair (recA) enzymes, indicating that reactions between ferrous iron and UVA-generated H2O2 lead to lethal DNA damage. Importantly, experiments showed that the intracellular accumulation of H2O2 alone is insufficient to kill cells; therefore, UVA must do something more to enable death. A possibility is that UVA stimulates the reduction of intracellular ferric iron to its ferrous form, either by stimulating O2•- formation or by generating photoexcited electron donors. These observations and methods open the door to follow-up experiments that can probe the mechanisms of H2O2 formation, catalase inactivation, and iron reduction. Of immediate utility, the data highlight the intracellular pathways formed under UVA light during SODIS, and that the presence of micromolar iron accelerates the rate at which radiation disinfects water.
Collapse
Affiliation(s)
- Stefanos Giannakis
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA; School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, Universidad Politécnica de Madrid (UPM), c/ Profesor Aranguren, s/n, Madrid ES-28040, Spain.
| | - Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - James Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Son HB, Bae WB, Jhee KH. Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition. MICROBIOLOGY AND BIOTECHNOLOGY LETTERS 2022; 50:211-217. [DOI: 10.48022/mbl.2204.04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 09/01/2023]
Affiliation(s)
- Hyeon-Bin Son
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Won-Bin Bae
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Kwang-Hwan Jhee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
14
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Gmurek M, Borowska E, Schwartz T, Horn H. Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153001. [PMID: 35031375 DOI: 10.1016/j.scitotenv.2022.153001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The common occurrence of antibiotic-resistance genes (ARGs) originating from pathogenic and facultative pathogenic bacteria pose a high risk to aquatic environments. Low removal of ARGs in conventional wastewater treatment processes and horizontal dissemination of resistance genes between environmental bacteria and human pathogens have made antibiotic resistance evolution a complex global health issue. The phenomenon of regrowth of bacteria after disinfection raised some concerns regarding the long-lasting safety of treated waters. Despite the inactivation of living antibiotic-resistant bacteria (ARB), the possibility of transferring intact and liberated DNA containing ARGs remains. A step in this direction would be to apply new types of disinfection methods addressing this issue in detail, such as light-based advanced oxidation, that potentially enhance the effect of direct light interaction with DNA. This study is devoted to comprehensively and critically review the current state-of-art for light-driven disinfection. The main focus of the article is to provide an insight into the different photochemical disinfection methods currently being studied worldwide with respect to ARGs removal as an alternative to conventional methods. The systematic comparison of UV/chlorination, UV/H2O2, sulfate radical based-AOPs, photocatalytic processes and photoFenton considering their mode of action on molecular level, operational parameters of the processes, and overall efficiency of removal of ARGs is presented. An in-depth discussion of different light-dependent inactivation pathways, influence of DBP and DOM on ARG removal and the potential bacterial regrowth after treatment is presented. Based on presented revision the risk of ARG transfer from reactivated bacteria has been evaluated, leading to a future direction for research addressing the challenges of light-based disinfection technologies.
Collapse
Affiliation(s)
- M Gmurek
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany.
| | - E Borowska
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| | - T Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany
| | - H Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; DVGW German Technical and Scientific Association for Gas and Water Research Laboratories, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Fabrication of Novel Chitosan–Hydroxyapatite Nanostructured Thin Films for Biomedical Applications. COATINGS 2021. [DOI: 10.3390/coatings11121561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we develop chitosan–hydroxyapatite (CS–HAp) composite layers that were deposited on Si substrates in radio frequency (RF) magnetron sputtering discharge in argon gas. The composition and structure of CS–HAp composite layers were investigated by analytical techniques, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), metallographic microscopy (MM), and atomic force microscopy (AFM). On the other hand, in the present study the second order derivative of FT-IR–ATR spectra, for compositional analyses of CS–HAp, were used. The SEM, MM, and AFM data have shown the formation of CS–HAp composite layers. The surface of CS–HAp composite layers showed uniform growth (at an Ar gas working pressure of p = 2 × 10−3 mbar). The surface of the CS–HAp composites coatings became more nanostructured, becoming granular as the gas pressure increased from 5 × 10−3 to 1.2 × 10−2 mbar. However, our studies revealed that the surface morphology of the CS–HAp composite layers varies with the Ar gas working pressure. At the same time, optical properties are slightly influenced by Ar pressure. Their unique physicochemical properties make them suitable for various applications in the biomedical field, if we consider the already proven antimicrobial properties of chitosan. The antifungal properties and the capacity of the CS–HAp composite layers to inhibit the development of fungal biofilms were also demonstrated using the Candida albicans ATCC 10231 (C. albicans) fungal strain.
Collapse
|
17
|
Influence of the Metabolic Activity of Microorganisms on Disinfection Efficiency of the Visible Light and P25 TiO2 Photocatalyst. Catalysts 2021. [DOI: 10.3390/catal11121432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The beneficial photocatalytic properties of UV light activated TiO2 powder are well-known and have been demonstrated with various pollutants and pathogens. However, traditionally observed photocatalytic activity of visible light activated pristine TiO2 is insignificant but there are a few studies which have reported that under some specific conditions commercially available TiO2 powder could at least partially disinfect microorganisms even under visible light. To better understand this phenomenon, in the current study we focused on bacteria response to the treatment by visible light and P25 TiO2 powder. More specifically, we analyzed the relationship between the bacteria viability, outer membrane permeability, metabolism, and its capacity to generate intracellular reactive oxygen species. During the study we assayed the viability of treated bacteria by the spread plate technique and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction method. Changes in bacterial outer membrane permeability were determined by measuring the fluorescence of N-phenyl-1-naphthylamine (NPN). To detect intracellular reactive oxygen species formation, the fluorescence of dichlorodihydrofluorescein diacetate (DCFH-DA) was assayed. Results of our study indicated that TiO2 and wide spectrum visible light irradiation damaged the integrity of the outer membrane and caused oxidative stress in the metabolizing bacteria. When favorable conditions were created, these effects added up and unexpectedly high bacterial inactivation was achieved.
Collapse
|
18
|
Chaúque BJM, Rott MB. Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. CHEMOSPHERE 2021; 281:130754. [PMID: 34029967 DOI: 10.1016/j.chemosphere.2021.130754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Gastrointestinal waterborne diseases, continue to stand out among the most lethal diseases in developing countries, because of consuming contaminated water taken from unsafe sources. Advances made in recent decades in methods of solar water disinfection (SODIS) have shown that SODIS is an effective and inexpensive method of providing drinking water, capable of substantially reducing the prevalence and mortality of waterborne diseases. The increased impact of SODIS in communities lacking drinking water services depends on a successful upgrade from conventional SODIS (based on PET bottle reactors) in high flow continuous flow systems for solar water disinfection (CFSSWD). This review aimed to identify the main limitations of conventional SODIS that hinder its application as a large-scale drinking water supply strategy, and to propose ways to overcome these limitations (without making it economically inaccessible) based on the current frontier of advances technological. It was found that the successful development of the CFSSWD depends on overcoming the current limitations of conventional SODIS and the development of systems whose configurations allow combining the properties of solar pasteurization (SOPAS) and SODIS. Different improvements need to be made to the main components of the CFSSWD, such as increasing the performance of solar radiation collectors, photo and thermal reactors and heat exchangers. The integration of disinfection technologies based on photocatalytic and photothermal nanomaterials also needs to be achieved. The performance evaluation of the CFSSWD should be made considering resistant microorganisms, such as the environmental resistance structures of bacteria or protozoa (spores or (oo)cysts) as targets of disinfection approaches.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Brazil; Department of Science, Technology, Engineering and Mathematics, Universidade Rovuma, Niassa Branch, Mozambique.
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Brazil.
| |
Collapse
|
19
|
Parsa SM, Momeni S, Hemmat A, Afrand M. Effectiveness of solar water disinfection in the era of COVID-19 (SARS-CoV-2) pandemic for contaminated water/wastewater treatment considering UV effect and temperature. JOURNAL OF WATER PROCESS ENGINEERING 2021; 43:102224. [PMID: 35592836 PMCID: PMC8285244 DOI: 10.1016/j.jwpe.2021.102224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 05/09/2023]
Abstract
Long is the way and hard, that out of COVID-19 leads up to light. The virus is highly contagious and spread rapidly and the number of infections increases exponentially. The colossal number of infections and presence of the novel coronavirus RNA in human wastes (e.g. Excreta/urine) even after the patients recovered and the RT-PCR tests were negative, results in massive load of the viral in water environments. Numerous studies reported the presence of SARS-CoV-2 in wastewater samples. The risk of contaminating water bodies in the regions which suffer from the lack of proper sanitation system and wastewater treatment plants (mostly in developing countries) is higher. Since solar water disinfection (SODIS) is usually used by people in developing countries, there is a concern about using this method during the pandemic. Because the SARS-CoV-2 can be eliminated by high temperature (>56 °C) and UVC wavelength (100-280 nm) while SODIS systems mainly work at lower temperature (<45 °C) and use the available UVA (315-400 nm). Thus, during a situation like the ongoing pandemic using SODIS method for wastewater treatment (or providing drinking water) is not a reliable method. It should be reminded that the main aim of the present study is not just to give insights about the possibilities and risks of using SODIS during the ongoing pandemic but it has broader prospect for any future outbreak/pandemic that results in biological contamination of water bodies. Nevertheless, some experimental studies seem to be necessary by all researchers under conditions similar to developing countries.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Department of Energy Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saba Momeni
- Guilan University of Medical Science, Anzali International Campus, Bandar Anzali, Iran
| | - Ahmadreza Hemmat
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Masoud Afrand
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
20
|
Sankari SS, Dahms HU, Tsai MF, Lo YL, Wang LF. Comparative study of an antimicrobial peptide and a neuropeptide conjugated with gold nanorods for the targeted photothermal killing of bacteria. Colloids Surf B Biointerfaces 2021; 208:112117. [PMID: 34564040 DOI: 10.1016/j.colsurfb.2021.112117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
There are certain disadvantages in treating bacterial infections through conventional methods. For this reason, the current study does focus on combating bacterial wound infections by photothermal therapy assisted by gold nanorod-peptide conjugates (GNR-peptide conjugates). Two peptides, the cationic antimicrobial peptide LL-37 and neuropeptide ANGIOPEP-2 both with specificity for targeted bacterial binding, were conjugated with GNR surface through electrostatic interactions. The GNR-peptide conjugates showed good biocompatibility, sufficient stability, enhanced targeting, potential photothermal killing of bacteria, and possible acceleration of wound healing. The photo-biomodulation properties of NIR improved the wound closure rates through enhanced cell migration. The multifunctional LL37-conjugated GNRs significantly enhanced photothermal therapeutic outcomes based on bacterial targeting with promising wound healing properties.
Collapse
Affiliation(s)
- Sivasoorian Siva Sankari
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Research Centre for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ming-Fong Tsai
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
21
|
Insights into Solar Disinfection Enhancements for Drinking Water Treatment Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su131910570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poor access to drinking water, sanitation, and hygiene has always been a major concern and a main challenge facing humanity even in the current century. A third of the global population lacks access to microbiologically safe drinking water, especially in rural and poor areas that lack proper treatment facilities. Solar water disinfection (SODIS) is widely proven by the World Health Organization as an accepted method for inactivating waterborne pathogens. A significant number of studies have recently been conducted regarding its effectiveness and how to overcome its limitations, by using water pretreatment steps either by physical, chemical, and biological factors or the integration of photocatalysis in SODIS processes. This review covers the role of solar disinfection in water treatment applications, going through different water treatment approaches including physical, chemical, and biological, and discusses the inactivation mechanisms of water pathogens including bacteria, viruses, and even protozoa and fungi. The review also addresses the latest advances in different pre-treatment modifications to enhance the treatment performance of the SODIS process in addition to the main limitations and challenges.
Collapse
|
22
|
Berruti I, Oller I, Polo-López MI. Direct oxidation of peroxymonosulfate under natural solar radiation: Accelerating the simultaneous removal of organic contaminants and pathogens from water. CHEMOSPHERE 2021; 279:130555. [PMID: 34134404 DOI: 10.1016/j.chemosphere.2021.130555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the effectiveness of non-activated peroxymonosulfate (PMS) as oxidative agent for water purification in the presence and absence of natural solar radiation. The inactivation of three pathogens (Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa) and degradation of three Contaminants of Emerging Concern (CECs) (Trimethoprim-TMP, Sulfamethoxazole-SMX and Diclofenac-DCF) was simultaneously assessed in isotonic water (IW) by testing a wide range of PMS concentrations (from 0.0001 to 0.01 mM). A significant oxidative effect of PMS in darkness was obtained for both bacteria and CEC abatement, but when irradiated with solar light, results demonstrated a great enhancement on all bacterial kinetic rates, reaching >5 Log reduction in 30 min (1.5 kJL-1 of QUV) with 0.005 mM of oxidant as the best concentration. For CECs, higher degradation performance was obtained with 0.01 mM, 80% removal of DCF, SMX and TMP was achieved in 16 min (1.5 kJL-1), 27 min (9.4 kJL-1) and 150 min (16.8 kJL-1), respectively. Besides, the influence of inorganic species on the global PMS/solar system performance was assessed by testing its effectiveness in distilled water (DW), natural well water (WeW) and diluted well water (d-WeW) at 0.01 mM. Results revealed that (i) high chloride concentration (IW) has an important positive effect, (ii) the presence of a complex inorganic chemical water composition reduced the system efficiency (WeW), and (iii) no differences were obtained from the presence of low or high contents of carbonates/bicarbonates (WeW versus d-WeW), obtaining the following global PMS/solar efficiency performance order: IW > DW > WeW = d-WeW.
Collapse
Affiliation(s)
- Ilaria Berruti
- CIEMAT-PSA, Carretera de Senés Km 4, 04200, Tabernas, Almería, Spain
| | - Isabel Oller
- CIEMAT-PSA, Carretera de Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - María Inmaculada Polo-López
- CIEMAT-PSA, Carretera de Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain.
| |
Collapse
|
23
|
Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. THE ISME JOURNAL 2021; 15:1751-1766. [PMID: 33432138 PMCID: PMC8163872 DOI: 10.1038/s41396-020-00884-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation-the metabolic currency that fuels redox-stress quenching mechanisms-were inspected when P. putida KT2440 was challenged with a sub-lethal H2O2 dose as a proxy of oxidative conditions. 13C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for H2O2 reduction. These properties not only account for the tolerance of P. putida to environmental insults-some of which end up in the formation of reactive oxygen species-but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering.
Collapse
|
24
|
Antioxidant Molecules as a Source of Mitigation of Antibiotic Resistance Gene Dissemination. Antimicrob Agents Chemother 2021; 65:AAC.02658-20. [PMID: 33753335 DOI: 10.1128/aac.02658-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most commonly identified human pathogen and a prominent microorganism of the gut microbiota. Acquired resistance to antibiotics in this species is driven mainly by horizontal gene transfer and plasmid acquisition. Currently, the main concern is the acquisition of extended-spectrum β-lactamases of the CTX-M type in E. coli, a worldwide-observed phenomenon. Plasmids encoding CTX-M enzymes have different scaffolds and conjugate at different frequencies. Here, we show that the conjugation rates of several plasmid types encoding broad-spectrum β-lactamases are increased when the E. coli donor strain is exposed to subinhibitory concentrations of diverse orally given antibiotics, including fluoroquinolones, such as ciprofloxacin and levofloxacin, but also trimethoprim and nitrofurantoin. This study provides insights into underlying mechanisms leading to increased plasmid conjugation frequency in relation to DNA synthesis inhibitor-type antibiotics, involving reactive oxygen species (ROS) production and probably increased expression of genes involved in the SOS response. Furthermore, we show that some antioxidant molecules currently approved for unrelated clinical uses, such as edaravone, p-coumaric acid, and N-acetylcysteine, may antagonize the ability of antibiotics to increase plasmid conjugation rates. These results suggest that several antioxidative molecules might be used in combination with these "inducer" antibiotics to mitigate the unwanted increased resistance plasmid dissemination.
Collapse
|
25
|
Ghedini E, Pizzolato M, Longo L, Menegazzo F, Zanardo D, Signoretto M. Which Are the Main Surface Disinfection Approaches at the Time of SARS-CoV-2? FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.589202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among many guidelines issued by the World Health Organization to prevent contagion from novel coronavirus (SARS-CoV-2), disinfection of animate and inanimate surfaces has emerged as a key issue. One effective approach to prevent its propagation can be achieved by disinfecting air, skin, or surfaces. A thorough and rational application of an Environmental Protection Agent for disinfection of surfaces, as well as a good personal hygiene, including cleaning hands with appropriate products (e.g., 60–90% alcohol-based product) should minimize transmission of viral respiratory pathogens such as SARS-CoV-2. Critical issues, associated with the potential health hazard of chemical disinfectants and the ineffective duration of most of the treatments, have fostered the introduction of innovative and alternative disinfection approaches. The present review aims to provide an outline of methods currently used for inanimate surface disinfection with a look to the future and a focus on the development of innovative and effective disinfection approaches (e.g., metal nanoparticles, photocatalysis, self-cleaning, and self-disinfection) with particular focus on SARS-CoV-2. The research reviews are, usually, focused on a specific category of disinfection methods, and therefore they are limited. On the contrary, a panoramic review with a wider focus, as the one here proposed, can be an added value for operators in the sector and generally for the scientific community.
Collapse
|
26
|
Ssemakalu CC, Ulaszewska M, Elias S, Spencer AJ. Solar inactivated Salmonella Typhimurium induces an immune response in BALB/c mice. Heliyon 2021; 7:e05903. [PMID: 33553721 PMCID: PMC7855330 DOI: 10.1016/j.heliyon.2021.e05903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella is contracted through the consumption of untreated water and contaminated food. The contraction and spread of water-related Salmonella in resource-poor communities can be reduced by using solar disinfection (SODIS) to treat the water before its consumption. SODIS is a water sanitizing technique that relies on natural sunshine. It is a cost-effective, inexpensive, environmentally, and user-friendly means of treating microbiologically contaminated water. This water disinfection method has saved many lives in communities vulnerable to water-related infections worldwide. At present, the success of SODIS has mainly been attributed to permanent inactivation of water pathogens ability to grow. However, little to no information exists as to whether immune responses to the solar inactivated pathogens are induced in SODIS water consumers. This study assessed the potential for solar inactivated S. Typhimurium to induce an immune response in mice. Results show that solar inactivated S. Typhimurium can induce bactericidal antibodies against S. Typhimurium. Furthermore, an increase in the secretion of interferon-gamma (IFN-γ) was observed in mice given the solar inactivated S. Typhimurium. These findings suggest that solar inactivated S. Typhimurium induces a humoral and cellular immune response. However, the level of protection afforded by these responses requires further investigation.
Collapse
Affiliation(s)
- Cornelius C Ssemakalu
- Cell Biology Research Unit, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, South Africa
| | - Marta Ulaszewska
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sean Elias
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
27
|
Chaúque BJM, Benetti AD, Corção G, Silva CE, Gonçalves RF, Rott MB. A new continuous-flow solar water disinfection system inactivating cysts of Acanthamoeba castellanii, and bacteria. Photochem Photobiol Sci 2021; 20:123-137. [DOI: 10.1007/s43630-020-00008-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
|
28
|
Morse T, Luwe K, Lungu K, Chiwaula L, Mulwafu W, Buck L, Harlow R, Fagan GH, McGuigan K. A Transdisciplinary Methodology for Introducing Solar Water Disinfection to Rural Communities in Malawi-Formative Research Findings. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:871-884. [PMID: 32048797 PMCID: PMC7687190 DOI: 10.1002/ieam.4249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Despite the increasing volume of evidence demonstrating the efficacy of solar water disinfection (SODIS) as a household water treatment technology, there still appear to be significant barriers to uptake in developing countries. The potential of SODIS is often treated with skepticism in terms of effective treatment, volume, and safety, and is dismissed in preference for more accepted technologies such as ceramic filters and dose chlorination. As part of WATERSPOUTT (EU H2020 688928), our study used a transdisciplinary methodology to cocreate an innovative SODIS system in rural Malawi. The formative work focused on the design of 1) an appropriate and acceptable system and 2) a context-specific intervention delivery program using a behavior-centered design. Initial research identified specific water needs and challenges, which were discussed along with a cocreation process with potential end users, through a series of shared dialogue workshops (SDWs). Specifications from end users outlined a desire for higher volume systems (20 L) that were "familiar" and could be manufactured locally. Development of the "SODIS bucket" was then undertaken by design experts and local manufacturers, with input from end users and subject to controlled testing to ensure efficacy and safety. Concurrent data were collated using questionnaires (n = 777 households), water point mapping (n = 121), water quality testing (n = 46), and behavior change modeling (n = 100 households). These identified specific contextual issues (hydrogeology, water access, gender roles, social capital, and socioeconomic status), and behavioral determinants (normative, ability, and self-regulation factors) that informed the development and delivery mechanism for the implementation toolkit. Integr Environ Assess Manag 2020;16:871-884. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Tracy Morse
- Department of Civil and Environmental EngineeringUniversity of StrathclydeGlasgowUnited Kingdom
- Centre for Water, Sanitation, Hygiene and Appropriate Technology Development, University of Malawi (Polytechnic)BlantyreMalawi
| | - Kondwani Luwe
- Centre for Water, Sanitation, Hygiene and Appropriate Technology Development, University of Malawi (Polytechnic)BlantyreMalawi
| | - Kingsley Lungu
- Centre for Water, Sanitation, Hygiene and Appropriate Technology Development, University of Malawi (Polytechnic)BlantyreMalawi
- Department of Environmental HealthUniversity of Malawi (Polytechnic)BlantyreMalawi
| | - Levison Chiwaula
- Faculty of Social Sciences and Humanities, University of Malawi (Chancellor College)ZombaMalawi
| | - Wapulumuka Mulwafu
- Faculty of Social Sciences and Humanities, University of Malawi (Chancellor College)ZombaMalawi
| | - Lyndon Buck
- Department of Product DesignBuckinghamshire New UniversityLondonUnited Kingdom
| | - Richard Harlow
- Department of Product DesignBuckinghamshire New UniversityLondonUnited Kingdom
| | - G Honor Fagan
- Department of Sociology and Social Science Institute (MUSSI)Maynooth UniversityMaynoothIreland
| | - Kevin McGuigan
- Department of Physiology and Medical PhysicsRoyal College of SurgeonsIrelandDublinIreland
| |
Collapse
|
29
|
Ozores Diez P, Giannakis S, Rodríguez-Chueca J, Wang D, Quilty B, Devery R, McGuigan K, Pulgarin C. Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe 2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water. WATER RESEARCH 2020; 186:116387. [PMID: 32920335 DOI: 10.1016/j.watres.2020.116387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Solar disinfection (SODIS) in 2-L bottles is a well-established drinking water treatment technique, suitable for rural, peri‑urban, or isolated communities in tropical or sub-tropical climates. In this work, we assess the enlargement of the treatment volume by using cheap, large scale plastic vessels. The bactericidal performance of SODIS and two solar-Fe2+ based enhancements, namely photo-Fenton (light/H2O2/Fe2+) and peroxymonosulfate activation (light/PMS/Fe2+) were assessed in 19-L polycarbonate (PC) and 25-L polyethylene terephthalate (PET) bottles, in ultrapure and real water matrices (tap water, lake Geneva water). Although SODIS always reached total (5-logU) inactivation, under solar light, enhancement by or both Fe2+/H2O2 or Fe2+/PMS was always beneficial and led to an increase in bacterial elimination kinetics, as high as 2-fold in PC and PET bottles with tap water for light/H2O2/Fe2+, and 8-fold in PET bottles with Lake Geneva water. The toxicological safety of the enhancements and their effects on the plastic container materials was assessed using the E-screen assay and the Ames test, after 1-day or 1-week exposure to SODIS, photo-Fenton and persulfate activation. Although the production of estrogenic compounds was observed, we report that no treatment method, duration of exposure or material resulted in estrogenicity risk for humans, and similarly, no mutagenicity risk was measured. In summary, we suggest that SODIS enhancement by either HO•- or SO4•--based advanced oxidation process is a suitable enhancement of bacterial inactivation in large scale plastic bottles, without any associated toxicity risks.
Collapse
Affiliation(s)
- Paloma Ozores Diez
- School of Biotechnology, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil, Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, Madrid, ES-28040, Spain.
| | - Jorge Rodríguez-Chueca
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne, CH-1015, Switzerland; Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y del Medio Ambiente, c/ de José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Da Wang
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne, CH-1015, Switzerland; College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Bríd Quilty
- School of Biotechnology, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland
| | - Rosaleen Devery
- School of Biotechnology, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland
| | - Kevin McGuigan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne, CH-1015, Switzerland
| |
Collapse
|
30
|
Gleco S, Reddy P, Kirste R, Collazo R, LaJeunesse D, Ivanisevic A. Modulating the Stress Response of E. coli at GaN Interfaces Using Surface Charge, Surface Chemistry, and Genetic Mutations. ACS APPLIED BIO MATERIALS 2020; 3:7211-7218. [DOI: 10.1021/acsabm.0c01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sara Gleco
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Pramod Reddy
- Adroit Materials, 2054 Kildaire Farm Road, Suite 205, Cary, North Carolina 27518, United States
| | - Ronny Kirste
- Adroit Materials, 2054 Kildaire Farm Road, Suite 205, Cary, North Carolina 27518, United States
| | - Ramón Collazo
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dennis LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
31
|
Feng L, Peillex-Delphe C, Lü C, Wang D, Giannakis S, Pulgarin C. Employing bacterial mutations for the elucidation of photo-Fenton disinfection: Focus on the intracellular and extracellular inactivation mechanisms induced by UVA and H 2O 2. WATER RESEARCH 2020; 182:116049. [PMID: 32619683 DOI: 10.1016/j.watres.2020.116049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The bacterial inactivation mechanisms by solar light and the photo-Fenton process is still a matter of debate. In this study, we bring evidence towards the elucidation of the mechanisms that govern photo-Fenton disinfection at near-neutral pH. With the use of porin-deficient and catalase over-producing E. coli strains, in conjunction with measurements of cell wall oxidation and permeability, we are able to i) highlight the role of the aforementioned components in bacterial inactivation and ii) localize the damages in the intracellular domain, despite the addition of the Fenton reagents in the bulk. We report that H2O2 oxidizes cell walls but under light the process is of low significance; UVA initiated an intracellular oxidation process based on excess accumulated H2O2, while the UVA+H2O2 and UVA+H2O2+Fe2+ processes have the same effect with light, albeit enhanced, as shown by malondialdehyde (MDA) production and ONPG hydrolysis rates. Finally, compared to the UVA-assisted photo-Fenton process, its solar counterpart is enhanced by the direct UVB effects on bacterial DNA. In conclusion, we have sufficient evidence to postulate that the photo-Fenton process is intracellular and propose the pathways that form the integrated bacterial inactivation mechanism by photo-Fenton.
Collapse
Affiliation(s)
- Ling Feng
- School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021, Huhhot, Inner Mongolia, PR China
| | - Céline Peillex-Delphe
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021, Huhhot, Inner Mongolia, PR China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
32
|
Sun Y, Lu Y, Saredy J, Wang X, Drummer Iv C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X, Wang H, Yang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 2020; 37:101696. [PMID: 32950427 PMCID: PMC7767745 DOI: 10.1016/j.redox.2020.101696] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are critical for the progression of cardiovascular diseases, inflammations and tumors. However, the mechanisms of how ROS sense metabolic stress, regulate metabolic pathways and initiate proliferation, inflammation and cell death responses remain poorly characterized. In this analytic review, we concluded that: 1) Based on different features and functions, eleven types of ROS can be classified into seven functional groups: metabolic stress-sensing, chemical connecting, organelle communication, stress branch-out, inflammasome-activating, dual functions and triple functions ROS. 2) Among the ROS generation systems, mitochondria consume the most amount of oxygen; and nine types of ROS are generated; thus, mitochondrial ROS systems serve as the central hub for connecting ROS with inflammasome activation, trained immunity and immunometabolic pathways. 3) Increased nuclear ROS production significantly promotes cell death in comparison to that in other organelles. Nuclear ROS systems serve as a convergent hub and decision-makers to connect unbearable and alarming metabolic stresses to inflammation and cell death. 4) Balanced ROS levels indicate physiological homeostasis of various metabolic processes in subcellular organelles and cytosol, while imbalanced ROS levels present alarms for pathological organelle stresses in metabolic processes. Based on these analyses, we propose a working model that ROS systems are a new integrated network for sensing homeostasis and alarming stress in metabolic processes in various subcellular organelles. Our model provides novel insights on the roles of the ROS systems in bridging metabolic stress to inflammation, cell death and tumorigenesis; and provide novel therapeutic targets for treating those diseases. (Word count: 246).
Collapse
Affiliation(s)
- Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Jason Saredy
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xianwei Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer Iv
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ming Liu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - William Y Yang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
33
|
Varnagiris S, Urbonavicius M, Sakalauskaite S, Daugelavicius R, Pranevicius L, Lelis M, Milcius D. Floating TiO 2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137600. [PMID: 32135289 DOI: 10.1016/j.scitotenv.2020.137600] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The anatase phase TiO2 films with nanocrystalline structure were successfully deposited on a water-floating non-expanded polystyrene (PS) beads via magnetron sputtering. The combination of UVB light and PS beads with TiO2 film was used for decomposition of methylene blue as well as inactivation tests for intact and EDTA-treated Escherichia coli bacteria. Crystal structure, elemental composition, elemental mapping, surface morphology and chemical bonds of TiO2 film were investigated. E. coli inactivation experiments showed that such floating photocatalyst could destroy >90% bacteria in 45 min under UVB irradiation. Results demonstrated that combination of TiO2 and UVB light leads to disruption of the outer membrane which causes effective inactivation of E. coli bacteria.
Collapse
Affiliation(s)
- Sarunas Varnagiris
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania.
| | - Marius Urbonavicius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
| | - Sandra Sakalauskaite
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Rimantas Daugelavicius
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Martynas Lelis
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
| | - Darius Milcius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
| |
Collapse
|
34
|
Mosteo R, Varon Lopez A, Muzard D, Benitez N, Giannakis S, Pulgarin C. Visible light plays a significant role during bacterial inactivation by the photo-fenton process, even at sub-critical light intensities. WATER RESEARCH 2020; 174:115636. [PMID: 32109753 DOI: 10.1016/j.watres.2020.115636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The aim of this research is to clarify the contribution of sunlight wavelengths, irradiance and Fe2+/H2O2 during bacterial disinfection by the photo-Fenton process in clear surface waters. We considered different solar spectrum distributions (visible, UVA-Visible), sub-critical irradiances (0-400 W/m2), focusing on the action modes of E. coli inactivation by the constituents involved in the composite process, at low μM reactants concentration (Fe2+/H2O2) in in ultrapure (MQ) water. We report that solar disinfection improved with Fenton reagents (photo-Fenton process) is a reality from very low light irradiance values (200 W/m2), and made possible even without the presence of UVA radiation, even when using low quantities of the Fenton reagents (0.5 mg/L Fe2+, 5 mg/L H2O2). Under light exposure, H2O2 was found to augment the intracellular Fenton process and Fe2+ to initiate further, distinct oxidative actions. Finally, validation was performed in Lake Geneva water over a wider irradiance range, where the photo-Fenton process was found to be reagent-dependent in low irradiance, shifting to light-driven in the higher values.
Collapse
Affiliation(s)
- Rosa Mosteo
- Department of Chemical Engineering and Environmental Technology, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain; School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Angelica Varon Lopez
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland; Universidad del Valle, Departamento de Química, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A.A. 25360 Cali, Colombia
| | - David Muzard
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Norberto Benitez
- Universidad del Valle, Departamento de Química, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A.A. 25360 Cali, Colombia
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Danwittayakul S, Songngam S, Sukkasi S. Enhanced solar water disinfection using ZnO supported photocatalysts. ENVIRONMENTAL TECHNOLOGY 2020; 41:349-356. [PMID: 29985115 DOI: 10.1080/09593330.2018.1498921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Nano-structured ZnO photocatalysts on cellulose and polyester supports were developed for enhancing solar water disinfection (SODIS). The photocatalysts were fabricated by a two-step hydrothermal method, in which ZnO nanoparticles were synthesized and deposited on a cellulose or polyester support as a seed layer, followed by the growth of one-dimensional ZnO nanorods on the seed layer in a liquid bath containing zinc nitrate and hexamethylenetetramine as sources of precursors. The morphologies and phase compositions of the synthesized ZnO nanorods from different growth conditions were investigated with field emission scanning electron microscope and X-ray diffraction (XRD), respectively. The crystallinity size of the ZnO nanorods was in the range of 17-30 nm and increased with the precursor concentration. The XRD patterns also revealed that higher growth solution concentrations led to higher intensity of XRD peaks, indicating higher crystallinity. Additionally, to test for SODIS enhancement, experiments using 200-mL transparent polyethylene bags as SODIS reactors, with ZnO photocatalysts inside, and water samples containing 106 CFU of Escherichia Coli were conducted in a laboratory UVA setup. The photocatalyst with a polyester support resulted in a 15% higher disinfection efficiency than that of the one with a cellulose support. Moreover, a field test of enhanced SODIS was conducted in actual sunlight, using specially designed SODIS reactors containing ZnO photocatalysts with a polyester support. Nearly total disinfection (97-98% efficiency) was achieved within the first 15 min of every test. The treated water was also tested for zinc contents, which could be released from the photocatalysts, by ICP-OES. The results were lower than 2 mg/L.
Collapse
Affiliation(s)
| | - Supachai Songngam
- MTEC, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sittha Sukkasi
- MTEC, National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
36
|
Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0353-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
García-Fernández I, Miralles-Cuevas S, Oller I, Malato S, Fernández-Ibáñez P, Polo-López MI. Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:85-93. [PMID: 30037565 DOI: 10.1016/j.jhazmat.2018.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 05/03/2023]
Abstract
Photo-Fenton is a solar disinfection technology widely demonstrated to be effective to inactivate microorganisms in water by the combined effect of photoactivated iron species and the direct action of solar photons. Nevertheless, the precipitation of iron as ferric hydroxide at basic pH is the main disadvantage of this process. Thus, challenge in photo-Fenton is looking for alternatives to iron salts. Polycarboxylic acids, such as Ethylendiamine-N',N'-disuccinic acid (EDDS), can form strong complex with Fe3+ and enhance the dissolution of iron in natural water through photochemical process. The aim of this study was to evaluate the disinfection effectiveness of solar photo-Fenton with and without EDDS in water. Several reagent concentrations were assessed, best bacterial (Escherichia coli and Enterococcus faecalis) inactivation was obtained with 0.1:0.2:0.3 mM (Fe3+:EDDS:H2O2) in isotonic water. The benefit of using EDDS complexes to increase the efficiency of kept dissolved iron in water at basic pH was proven. Solar disinfection and H2O2/solar with and without EDDS, and Fe3+:EDDS complexes were also investigated. Bacterial inactivation results in municipal wastewater effluents (MWWE) demonstrated that the competitive role of organic matter and inorganic compounds strongly affect the efficacy of Fe3+:EDDS at all concentrations tested, obtaining the fastest inactivation kinetics with H2O2/solar (0.3 mM).
Collapse
Affiliation(s)
| | - Sara Miralles-Cuevas
- Laboratorio de Investigaciones Medioambientales de Zonas Áridas (LIMZA), EUDIM, Universidad de Tarapacá. Av. General Velásquez 1775, Arica, Chile.
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre University of Almería-CIEMAT, Almería, Spain.
| | - Sixto Malato
- Plataforma Solar de Almería-CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre University of Almería-CIEMAT, Almería, Spain.
| | - Pilar Fernández-Ibáñez
- Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom.
| | - María Inmaculada Polo-López
- Plataforma Solar de Almería-CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre University of Almería-CIEMAT, Almería, Spain.
| |
Collapse
|
38
|
Polo-López MI, Martínez-García A, Abeledo-Lameiro MJ, H Gómez-Couso H, E Ares-Mazás E, Reboredo-Fernández A, Morse TD, Buck L, Lungu K, McGuigan KG, Fernández-Ibáñez P. Microbiological Evaluation of 5 L- and 20 L-Transparent Polypropylene Buckets for Solar Water Disinfection (SODIS). Molecules 2019; 24:molecules24112193. [PMID: 31212699 PMCID: PMC6600371 DOI: 10.3390/molecules24112193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Solar water disinfection (SODIS) is an appropriate technology for household treatment of drinking water in low-to-middle-income communities, as it is effective, low cost and easy to use. Nevertheless, uptake is low due partially to the burden of using small volume polyethylene terephthalate bottles (1.5-2 L). A major challenge is to develop a low-cost transparent container for disinfecting larger volumes of water. (2) Methods: This study examines the capability of transparent polypropylene (PP) buckets of 5 L- and 20 L- volume as SODIS containers using three waterborne pathogen indicators: Escherichia coli, MS2-phage and Cryptosporidium parvum. (3) Results: Similar inactivation kinetics were observed under natural sunlight for the inactivation of all three organisms in well water using 5 L- and 20 L-buckets compared to 1.5 L-polyethylene-terephthalate (PET) bottles. The PP materials were exposed to natural and accelerated solar ageing (ISO-16474). UV transmission of the 20 L-buckets remained stable and with physical integrity even after the longest ageing periods (9 months or 900 h of natural or artificial solar UV exposure, respectively). The 5 L-buckets were physically degraded and lost significant UV-transmission, due to the thinner wall compared to the 20 L-bucket. (4) Conclusion: This work demonstrates that the 20 L SODIS bucket technology produces excellent bacterial, viral and protozoan inactivation and is obtained using a simple transparent polypropylene bucket fabricated locally at very low cost ($2.90 USD per unit). The increased bucket volume of 20 L allows for a ten-fold increase in treatment batch volume and can thus more easily provide for the drinking water requirements of most households. The use of buckets in households across low to middle income countries is an already accepted practice.
Collapse
Affiliation(s)
| | | | - Maria Jesus Abeledo-Lameiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Hipolito H Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Institute of Food Research and Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Elvira E Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Aurora Reboredo-Fernández
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tracy D Morse
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - Lyndon Buck
- School of Art, Design and Performance, Buckinghamshire New University, High Wycombe HP11 2JZ, UK.
| | - Kingsley Lungu
- Department of Environmental Health, University of Malawi, Malawi.
| | - Kevin G McGuigan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI), DO2 YN77 Dublin, Ireland.
| | - Pilar Fernández-Ibáñez
- NIBEC, School of Engineering, Ulster University, Newtownabbey BT37 0QB, Northern Ireland, UK.
| |
Collapse
|
39
|
Zaman S, Yousuf A, Begum A, Bari ML, Rabbani KS. Evaluation of adaptive low cost solar water pasteurization device for providing safe potable water in rural households. JOURNAL OF WATER AND HEALTH 2019; 17:274-286. [PMID: 30942777 DOI: 10.2166/wh.2019.268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was conducted to evaluate the effectiveness of a simplified, low cost, pasteurization device in inactivating the diarrheal pathogens present in pond/lake/river water in order to provide safe potable water to people living in the rural areas of low resource countries. In this process, water in polyethylene bags was exposed to sunshine, where UV radiation emissions and heat absorption from the sunshine occurs simultaneously, and maintaining the heating at <60 °C, and minimum UV radiation emissions of 996.2 W/m2 for approximately 30 minutes was found enough to inactivate diarrheal pathogens in water. The synergistic effect of heat, UV radiation emission and holding time causes the destruction of diarrheal pathogens. However, the performance of the device depends on the thickness of the insulation and the air gap between polyethylene bags. Regardless of sample sources, the highest population reduction of Escherichia coli observed in the bacterial challenge study was 6.8 ± 0.4 log CFU/ml. The physicochemical properties were found acceptable compared with USEPA potable water quality except turbidity, which is acceptable according to the BDS standard, and the shelf-life study results demonstrated that 6 months' storage of pasteurization device-treated water at room temperature is possible without compromising water quality. Therefore, this simplified pasteurization device could be useful in potable water-scarce areas of the world.
Collapse
Affiliation(s)
- Sharmin Zaman
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka 1000, Bangladesh E-mail: ; Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abu Yousuf
- Department of Biomedical Physics and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Latiful Bari
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka 1000, Bangladesh E-mail:
| | - K S Rabbani
- Department of Biomedical Physics and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
40
|
Abstract
The search for alternative water sources is pushing to the reuse of treated water coming from municipal wastewater treatment plants. However, this requires that tightened standards be fulfilled. Among them is the microbiological safety of reused water. Although chlorination is the mostly applied disinfection system, it presents several disadvantages, such as the high doses required and the possibility of formation of dangerous by-products. Moreover, the threat of antibiotic resistance genes (ARGs) spread throughout poorly treated water is requiring the implementation of more efficient disinfection systems. Ozone and photo assisted disinfection technologies are being given special attention to reach treated water with higher quality. Still, much must be done to optimize the processes so that cost-effective systems may be obtained. This review paper gives a critical overview on the application of ozone and photo-based disinfection systems, bearing in mind their advantages and disadvantages when applied to water and municipal wastewater. Also, the possibility of integrated disinfection systems is considered.
Collapse
|
41
|
Govindan K, Angelin A, Rangarajan M. Critical evaluation of mechanism responsible for biomass abatement during electrochemical coagulation (EC) process: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:335-353. [PMID: 30199730 DOI: 10.1016/j.jenvman.2018.08.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
This is a first review paper that delineates fundamental disinfection mechanism undergoes during the simple electrochemical coagulation (EC) process. The elucidation of detailed mechanistic phenomenon of EC process involved would help to enhance the disinfection efficiency. In this context, the biomass (bacteria, virus and algae) abatement mechanism by EC is critically reviewed and rationalized based on the experimental demonstration performed from the recent decade. Whereas, the effect of most significant abiotic operating parameters, dissolved contents and bacteria cell wall composition on biomass reduction are explored in detail. From these analyses, physical removal and chemical inactivation routes are identified for bacteria abatement mechanism during the EC process using sacrificial electrodes. Which includes (i) enmeshment of microbial contaminants by EC flocs, (ii) sweeping flocculation is preferentially for destabilization of negatively charged biomass, and (iii) inactivation/attenuation of micro-organism cell walls by electrochemically induced reactive oxygen species (ROS) or direct interaction of electric field. Perhaps, the overall abatement mechanism attributes due to the aforementioned phenomenon endures independently and/or synergistically during the EC process. Nonetheless, to obtain better understanding of virus and algae abatement mechanism, we require more experimental investigation on algae and virus removal. Eventually, more intensive research efforts on biomass attenuation by EC are most important to reinforce this claim.
Collapse
Affiliation(s)
- Kadarkarai Govindan
- Center of Excellence in Advanced Materials and Green Technologies, Department of Chemical Engineering and Material Science, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, Tamil Nadu, 641 112, India.
| | - Arumugam Angelin
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Murali Rangarajan
- Center of Excellence in Advanced Materials and Green Technologies, Department of Chemical Engineering and Material Science, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, Tamil Nadu, 641 112, India
| |
Collapse
|
42
|
Lee KT, Lu YJ, Chiu SC, Chang WC, Chuang EY, Lu SY. Heterogeneous Fenton Reaction Enabled Selective Colon Cancerous Cell Treatment. Sci Rep 2018; 8:16580. [PMID: 30410055 PMCID: PMC6224383 DOI: 10.1038/s41598-018-34499-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/30/2018] [Indexed: 01/01/2023] Open
Abstract
A selective colon cancer cell therapy was effectively achieved with catalase-mediated intra-cellular heterogeneous Fenton reactions triggered by cellular uptake of SnFe2O4 nanocrystals. The treatment was proven effective for eradicating colon cancer cells, whereas was benign to normal colon cells, thus effectively realizing the selective colon cancer cell therapeutics. Cancer cells possess much higher innate hydrogen peroxide (H2O2) but much lower catalase levels than normal cells. Catalase, an effective H2O2 scavenger, prevented attacks on cells by reactive oxygen species induced from H2O2. The above intrinsic difference between cancer and normal cells was utilized to achieve selective colon cancer cell eradication through endocytosing efficient heterogeneous Fenton catalysts to trigger the formation of highly reactive oxygen species from H2O2. In this paper, SnFe2O4 nanocrystals, a newly noted outstanding paramagnetic heterogeneous Fenton catalyst, have been verified an effective selective colon cancerous cell treatment reagent of satisfactory blood compatibility.
Collapse
Affiliation(s)
- Kuan-Ting Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan, Republic of China
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan, Republic of China
| | - Wen-Chi Chang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan, Republic of China
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University. College of Biomedical Engineering, International PhD program of Biomedical Engineering and Translational Therapies, Taipei, 11042, Taiwan, Republic of China.
| | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China.
| |
Collapse
|
43
|
Giannakis S. Analogies and differences among bacterial and viral disinfection by the photo-Fenton process at neutral pH: a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27676-27692. [PMID: 29255985 DOI: 10.1007/s11356-017-0926-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/03/2017] [Indexed: 04/16/2023]
Abstract
Over the last years, the photo-Fenton process has been established as an effective, green alternative to chemical disinfection of waters and wastewaters. Microorganisms' inactivation is the latest success story in the application of this process at near-neutral pH, albeit without clearly elucidated inactivation mechanisms. In this review, the main pathways of the combined photo-Fenton process against the most frequent pathogen models (Escherichia coli for bacteria and MS2 bacteriophage for viruses) are analyzed. Firstly, the action of solar light is described and the specific inactivation mechanisms in bacteria (internal photo-Fenton) and viruses (genome damage) are presented. The contribution of the external pathways due to the potential presence of organic matter in generating reactive oxygen species (ROS) and their effects on microorganism inactivation are discussed. Afterwards, the effects of the gradual addition of Fe and H2O2 are assessed and the differences among bacterial and viral inactivation are highlighted. As a final step, the simultaneous addition of both reagents induces the photo-Fenton in the bulk, focusing on the differences induced by the homogeneous or heterogeneous fraction of the process and the variation among the two respective targets. This work exploits the accumulated evidence on the mechanisms of bacterial inactivation and the scarce ones towards viral targets, aiming to bridge this knowledge gap and make possible the further application of the photo-Fenton process in the field of water/wastewater treatment.
Collapse
Affiliation(s)
- Stefanos Giannakis
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland.
| |
Collapse
|
44
|
Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates. Processes (Basel) 2018. [DOI: 10.3390/pr6090137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The antibacterial photocatalytic activity of TiO2 supported over two types of substrates, borosilicate glass tubes (TiO2/SiO2-borosilicate glass tubes (BGT)) and low-density polyethylene pellets (TiO2-LDPE pellets), which were placed in a compound parabolic collectors (CPC) reactor, was evaluated against Enterobacter cloacae and Escherichia coli under sunlight. Three solar photocatalytic systems were assessed, suspended TiO2, TiO2/SiO2-BGT and TiO2-LDPE pellets, at three initial bacterial concentrations, 1 × 105; 1 × 103; 1 × 101 CFU/mL of E. coli and total bacteria (E. cloacae and E. coli). The solar photo-inactivation of E. coli was achieved after two hours with 7.2 kJ/L of UV-A, while total bacteria required four hours and 16.5 kJ/L of UV-A. Inactivation order of E. coli was determined, as follows, suspended TiO2/sunlight (50 mg/L) > TiO2-LDPE pellets/sunlight (52 mg/L) > TiO2/SiO2-BGT/sunlight (59 mg/L), the best E. coli. inactivation rate was obtained with TiO2-LDPE pellets/sunlight, within 4.5 kJ/L and 90 min. The highest total bacteria inactivation rate was found for TiO2/sunlight (50 mg/L) and TiO2-LDPE pellets/sunlight (52 mg/L), within 11.2 kJ/L and 180 min. TiO2 deposited over LDPE pellets was the most effective material, which can be successfully used for water disinfection applications. Bacterial regrowth was assessed 24 h after all photocatalytic treatments, none of those microorganisms showed any recovery above the detection limit (2 CFU/mL).
Collapse
|
45
|
Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH, Parker KM, Rodriguez RA, Sassoubre LM, Silverman AI, Wigginton KR, Zepp RG. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1089-1122. [PMID: 30047962 PMCID: PMC7064263 DOI: 10.1039/c8em00047f] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.
Collapse
Affiliation(s)
- Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Misra AJ, Das S, Habeeb Rahman AP, Das B, Jayabalan R, Behera SK, Suar M, Tamhankar AJ, Mishra A, Lundborg CS, Tripathy SK. Doped ZnO nanoparticles impregnated on Kaolinite (Clay): A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J Colloid Interface Sci 2018; 530:610-623. [PMID: 30005238 DOI: 10.1016/j.jcis.2018.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/27/2022]
Abstract
Water contamination by multidrug resistant (MDR) enteric bacteria can be considered as the foremost cause of gastrointestinal infections and poses a threat to global public health. Therefore, there is an urgent need to pursue unorthodox techniques with potential of community scale applications for purging of water borne pathogenic bacteria. We communicate visible-light assisted photocatalytic disinfection (PCD) of an enteric MDR bacterium; Enterobacter sp. using Fe-doped ZnO nanoparticles impregnated on Kaolinite (Clay) (ZnO/K). ZnO/K was synthesized by co-precipitation technique and was found to be more effective than Fe-doped ZnO (ZnO) and Kaolinite for PCD process. Analysis from fluorescence microscopy and electron microscopy (FESEM) proposed complete bacterial cell death via PCD due to damage of bacterial cell membrane. Experimental evidences indicated that O2- could be acting as the most significant component in disinfection of MDR Enterobacter sp. in visible-light assisted PCD process in presence of ZnO/K. Considering the experimental data of Resazurin assay, it is proposed that reactive oxygen species (ROS) generated during PCD might have impeded the oxido-reductase enzyme system of the bacteria and hence trammeling its metabolic activity. Crystal structure and particle size of ZnO/K was found to be unaltered during the photocatalytic process indicating its potential for reusability. When ZnO/K was exposed to HCT-116 Human Colorectal Carcinoma cell lines, about 79% cell survivability was noticed. The synthesized material was successful in completely disinfecting the target microorganism in Zebra Fish model, without producing any adverse effects on the Fish itself, further reinforcing its biocompatibility factor. High effectiveness of PCD process using ZnO/K under visible light in disinfecting enteric MDR bacteria, might have promising outcome as an alternative water disinfection technology to prevent the spread of infectious and resistant bacteria without producing any adverse effect on non-specific flora and fauna.
Collapse
Affiliation(s)
- Ananyo Jyoti Misra
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Sourav Das
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - A P Habeeb Rahman
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Bhaskar Das
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - R Jayabalan
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | | | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Ashok J Tamhankar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India; Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | | | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.
| |
Collapse
|
47
|
García-Fresnadillo D. Singlet Oxygen Photosensitizing Materials for Point-of-Use Water Disinfection with Solar Reactors. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David García-Fresnadillo
- Department of Organic Chemistry; Faculty of Chemical Sciences; Universidad Complutense de Madrid; Avenida Complutense s/n, E- 28040 Madrid Spain
| |
Collapse
|
48
|
Aguas Y, Hincapie M, Fernández-Ibáñez P, Polo-López MI. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1213-1224. [PMID: 28732400 DOI: 10.1016/j.scitotenv.2017.07.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H2O2, solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO2, with and without H2O2, have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO2/H2O2/sunlight (100/50mgL-1)>H2O2/sunlight (40mgL-1)>TiO2/sunlight (100mgL-1)>photo-Fenton with 5/10mgL-1 of Fe2+/H2O2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H2O2/Solar (60mgL-1); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL-1 of Fe2+/H2O2) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL-1), and open a window for future wastewater reclamation and irrigation use.
Collapse
Affiliation(s)
- Yelitza Aguas
- Universidad de Sucre, School of Engineering, Cra 28 No 5-268, Sincelejo, Colombia; Universidad de Medellin, School of Engineering, Cra 87 No 30-65, Medellín, Colombia.
| | - Margarita Hincapie
- Universidad de Medellin, School of Engineering, Cra 87 No 30-65, Medellín, Colombia.
| | - Pilar Fernández-Ibáñez
- Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom.
| | | |
Collapse
|