1
|
Liu R, Huang Y, Li D, Cui H, Tang Y, Hu Y, Xu L, Lin C, Qi G, Chen L, Zhang Z, Tan S, Zhu X. Dihydroartemisinin alleviates diethylnitrosamine-induced hepatocarcinogenesis by targeting a novel MAZ/TRIM50 axis. Int Immunopharmacol 2025; 156:114733. [PMID: 40288151 DOI: 10.1016/j.intimp.2025.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Dihydroartemisinin (DHA) has demonstrated a range of anticancer effects, and the myc-associated zinc finger protein (MAZ) has been shown to influence its anti-glioma activity. However, the role and underlying mechanisms of MAZ in DHA's anti-liver cancer effects remains poorly understood. In this study, we first established a diethylnitrosamine (DEN)-induced hepatocarcinogenesis rat model and found that DHA treatment alleviated DEN-induced liver cancer by reducing hepatotoxicity and lipid peroxidation, likely through increasing autophagy proteins. Moreover, DHA treatment suppressed MAZ expression in both liver tissues of the DEN-induced rat model and liver cancer cells. We further identified that MAZ knockdown led to the upregulation of autophagy proteins, including p62 and Beclin 1, and increased autophagosome formation in liver cancer cells, as observed under a transmission electron microscope. Notably, MAZ knockdown also enhanced the transcription of TRIM50, an E3 ubiquitin ligase involved in regulating autophagy proteins, by binding to its promoter following DHA treatment, as confirmed by dual-luciferase reporter assays. Further experiments involving TRIM50 overexpression in liver cancer cells revealed that TRIM50 promoted the expression of DHA-induced autophagy proteins through the MAPK and mTOR signaling pathways. Additionally, TRIM50 was downregulated in hepatocellular carcinoma (HCC) tissues and had a relationship with the prognosis of HCC patients. Bioinformatics analyses showed a significant correlation between TRIM50 expression and immune cell infiltration in HCC. Our findings provide new insights into the molecular mechanisms by which MAZ mediates DHA anti-liver cancer through TRIM50 transcription, supporting MAZ and TRIM50 as potential therapeutic targets for liver cancer treatment.
Collapse
Affiliation(s)
- Ruyuan Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yuanyuan Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Huanyu Cui
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ye Tang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yansong Hu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Li Xu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Cheng Lin
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangzi Qi
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China.
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
2
|
Tang L, Ding J, Yang K, Zong Z, Wu R, Li H. New insights into the mechanisms and therapeutic strategies of chondrocyte autophagy in osteoarthritis. J Mol Med (Berl) 2024; 102:1229-1244. [PMID: 39145815 DOI: 10.1007/s00109-024-02473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease with an unclear cause characterized by secondary osteophytes and degenerative changes in the articular cartilage. More than 250 million people are expected to be affected by it by 2050, putting a tremendous socioeconomic strain on the entire world. OA cannot currently be treated with any effective medications that change the illness. Over time, chondrocytes undergo gradual metabolic, structural, and functional changes as a result of aging or abuse. The degenerative progression of osteoarthritis is significantly influenced by the imbalance of chondrocyte homeostasis. By continuously recycling and rebuilding macromolecules or organelles, autophagy functions as a crucial regulatory system to maintain homeostasis during an individual's growth and development. This review uses chondrocytes as its starting point and establishes a strong connection between autophagy and osteoarthritis in order to thoroughly examine the mechanisms behind chondrocyte autophagy in osteoarthritis. Biomarkers of chondrocyte autophagy will be identified, and prospective targeted medications and novel treatment approaches for slowing or preventing the course of OA will be developed based on chondrocyte senescence, autophagy, and apoptosis in OA. KEY MESSAGES: Currently, OA has not been treated with any drugs that can effectively cure it. We hope that by exploring specific targets in the course of osteoarthritis, we can promote the progress of treatment strategies. The degenerative progression of osteoarthritis is significantly influenced by the imbalance of chondrocyte balance. Through the continuous recovery and reconstruction of macromolecules or organelles, autophagy is an important regulatory system for maintaining homeostasis during individual growth and development. In this paper, the close relationship between autophagy and osteoarthritis was established with chondrocytes as the starting point, in order to further explore the mechanism of chondrocyte autophagy in osteoarthritis. The development process of osteoarthritis was studied from the perspective of chondrocytes, and the change of autophagy level had a significant impact on osteoarthritis. Chondrocyte autophagy is mainly determined by intracellular mitochondrial autophagy, so we are committed to finding relevant molecules. Through PI3K/AKT- and MAPK-related pathways, the biomarkers of chondrocyte autophagy were identified, and chondrocyte senescence, autophagy, and apoptosis based on osteoarthritis provided a constructive idea for the development of prospective targeted drugs and new therapies to slow down or prevent the progression of osteoarthritis.
Collapse
Affiliation(s)
- Lujia Tang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Third Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Lashkarboloki M, Jahanbakhshi A, Mowla SJ, Bjeije H, Soltani BM. Oncogenic roles of long non-coding RNAs in essential glioblastoma signaling pathways. J Neurogenet 2024; 38:62-78. [PMID: 39169886 DOI: 10.1080/01677063.2024.2390403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and diffuse type of glioma with the lowest survival rate in patients. The recent failure of multiple treatments suggests that targeting several targets at once may be a different strategy to overcome GBM carcinogenesis. Normal function of oncogenes and tumor suppressor genes need for the preservation of regular cellular processes, so any defects in these genes' activity, operate the corresponding signaling pathways, which initiate carcinogenic processes. Long non-coding RNAs (lncRNAs) that can be found in the cytoplasm or nucleus of the cells, control the transcription and translation of genes. LncRNAs perform a variety of functions, including epigenetic alteration, protein modification and stability, transcriptional regulation, and competition for miRNA that regulate mRNA translation through sponging miRNAs. Identification of various oncogenic lncRNAs and their multiple roles in brain cancers making them potential candidates for use as glioma diagnostic, prognostic, and therapeutic targets in the future. This study highlighted multiple oncogenic lncRNAs and classified them into different signaling pathways based on the regulated target genes in glioblastoma.
Collapse
Affiliation(s)
- Mina Lashkarboloki
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Jahanbakhshi
- Skull Base Research Center, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Bjeije
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Xie K, Li Z, Zhang Y, Wu H, Zhang T, Wang W. Artemisinin and its derivatives as promising therapies for autoimmune diseases. Heliyon 2024; 10:e27972. [PMID: 38596057 PMCID: PMC11001780 DOI: 10.1016/j.heliyon.2024.e27972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Artemisinin, a traditional Chinese medicine with remarkable antimalarial activity. In recent years, studies demonstrated that artemisinin and its derivatives (ARTs) showed anti-inflammatory and immunoregulatory effects. ARTs have been developed and gradually applied to treat autoimmune and inflammatory diseases. However, their role in the treament of patients with autoimmune and inflammatory diseases in particular is less well recognized. This review will briefly describe the history of ARTs use in patients with autoimmune and inflammatory diseases, the theorized mechanisms of action of the agents ARTs, their efficacy in patients with autoinmmune and inflammatory diseases. Overall, ARTs have numerous beneficial effects in patients with autoimmune and inflammatory diseases, and have a good safety profile.
Collapse
Affiliation(s)
- Kaidi Xie
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Yang Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Wen Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| |
Collapse
|
5
|
Hu Y, Peng X, Du G, Zhai Y, Xiong X, Luo X. Dihydroartemisinin ameliorates the liver steatosis in metabolic associated fatty liver disease mice by attenuating the inflammation and oxidative stress and promoting autophagy. Acta Cir Bras 2023; 38:e385023. [PMID: 37851788 PMCID: PMC10578105 DOI: 10.1590/acb385023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE To explore the effect and potential mechanism of dihydroartemisinin (DHA) on metabolism-related fatty liver disease. METHODS A metabolic associated fatty liver disease (MAFLD) mice model was induced with continuous supplies of high-fat diet. DHA was intraperitoneally injected into mice. The weight of mice was monitored. The concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) in serum were detected by an automatic biochemical analyzer. The liver tissues were stained by hematoxylin and eosin and oil red O. The level of inflammation, oxidative stress, and autophagy was assessed by reverse transcription polymerase chain reaction, biochemical examination, Western blot and transmission electron microscope assays. RESULTS DHA treatment reduced theMAFLD-enhanced the level of weight gain, the concentrations of TC, TG, LDL and malonaldehyde, while increasedthe MAFLD-decreased the concentrations of HDL and superoxide dismutase. DHA ameliorated the MAFLD-aggravated pathological changes and the number of lipid droplets. Low dose of DHA declined the MAFLD-induced the enhancement of the expression of inflammatory factor. DHA treatment increased the MAFLD-enhanced the level of autophagy related protein, while decreased the MAFLD-reduced the protein level of p62. The increased level of autophagy was confirmed by transmission electron microscope. CONCLUSIONS DHA can improve liver steatosis in MAFLD mice by inhibiting inflammation and oxidative stress and promoting autophagy.
Collapse
Affiliation(s)
- Yiyi Hu
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
- Shunde Hospital of Southern Medical University – Department of VIP Medical Center – Foshan – China
| | - Xuetao Peng
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Guoping Du
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Yingji Zhai
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Xingbo Xiong
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Xiaoliang Luo
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| |
Collapse
|
6
|
Liao J, Yu X, Chen J, Wu Z, He Q, Zhang Y, Song W, Luo J, Tao Q. Knowledge mapping of autophagy in osteoarthritis from 2004 to 2022: A bibliometric analysis. Front Immunol 2023; 14:1063018. [PMID: 36969240 PMCID: PMC10033547 DOI: 10.3389/fimmu.2023.1063018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundAutophagy in osteoarthritis (OA) has become an active area of research with substantial value and potential. Nevertheless, few bibliometric studies have systematically analyzed the available research in the field. The main goal of this study was to map the available literature on the role of autophagy in OA and identify global research hotspots and trends.MethodsThe Web of Science Core Collection and Scopus databases were interrogated for studies of autophagy in OA published between 2004 and 2022. Microsoft Excel, VOSviewer and CiteSpace software were used to analyze and visualize the number of publications and associated citations, and reveal global research hotspots and trends in the autophagy in OA field.Results732 outputs published by 329 institutions from 55 countries/regions were included in this study. From 2004 to 2022, the number of publications increased. China produced the most publications (n=456), prior to the USA (n=115), South Korea (n=33), and Japan (n=27). Scripps Research Institute (n=26) was the most productive institution. Martin Lotz (n=30) was the highest output author, while Caramés B (n=302) was the highest output author. Osteoarthritis and Cartilage was the most prolific and most co-cited journal. Currently, the autophagy in OA research hotspots include chondrocyte, transforming growth factor beta 1 (TGF-β1), inflammatory response, stress, and mitophagy. The emerging research trends in this field are AMPK, macrophage, senescence, apoptosis, tougu xiaotong capsule (TXC), green tea extract, rapamycin, and dexamethasone. Novel drugs targeting specific molecule such as TGF-β and AMPK have shown therapeutic potential but are still in the preclinical stage of development.ConclusionsResearch on the role of autophagy in OA is flourishing. Martin Lotz, Beatriz Caramés, and Osteoarthritis and Cartilage have made outstanding contributions to the field. Prior studies of OA autophagy mainly focused on mechanisms underlying OA and autophagy, including AMPK, macrophages, TGF-β1, inflammatory response, stress, and mitophagy. Emerging research trends, however, are centered around the relationship between autophagy, apoptosis, and senescence, as well as drug candidates such as TXC and green tea extract. The development of new targeted drugs that enhance or restore autophagic activity is a promising strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Zihua Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jing Luo, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jing Luo, ; Qingwen Tao,
| |
Collapse
|
7
|
Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 2022; 10:1089668. [PMID: 36544901 PMCID: PMC9760856 DOI: 10.3389/fcell.2022.1089668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation system that maintains the stable state of cell energy metabolism. Some recent findings have indicated that autophagy dysfunction is an important driving factor for the occurrence and development of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of damaged organelles and macromolecules in chondrocytes, which affects the survival of chondrocytes and ultimately leads to OA. An appropriate level of autophagic activation may be a new method to prevent articular cartilage degeneration in OA. This minireview discussed the mechanism of autophagy and OA, key autophagy targets regulating OA progression, and evaluated therapeutic applications of drugs targeting autophagy in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
- Xiaoman Lv
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Dihydroartemisinin Attenuated Intervertebral Disc Degeneration via Inhibiting PI3K/AKT and NF-κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8672969. [PMID: 36120596 PMCID: PMC9481359 DOI: 10.1155/2022/8672969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain (LBP). However, effective therapeutic drugs for IDD remain to be further explored. Inflammatory cytokines play a pivotal role in the onset and progression of IDD. Dihydroartemisinin (DHA) has been well reported to have powerful anti-inflammatory effects, but whether DHA could ameliorate the development of IDD remained unclear. In this study, the effects of DHA on extracellular matrix (ECM) metabolism and cellular senescence were firstly investigated in nucleus pulposus cells (NPCs) under tumor necrosis factor alpha (TNFα)-induced inflammation. Meanwhile, AKT agonist sc-79 was used to determine whether DHA exerted its actions through regulating PI3K/AKT and NF-κB signaling pathways. Next, the therapeutic effects of DHA were tested in a puncture-induced rat IDD model. Finally, we detected the activation of PI3K/AKT and NF-κB signaling pathways in clinical degenerative nucleus pulposus specimens. We demonstrated that DHA ameliorated the imbalance between anabolism and catabolism of extracellular matrix and alleviated NPCs senescence induced by TNFα in vitro. Further, we illustrated that DHA mitigated the IDD progression in a puncture-induced rat model. Mechanistically, DHA inhibited the activation of PI3K/AKT and NF-κB signaling pathways induced by TNFα, which was undermined by AKT agonist sc-79. Molecular docking predicted that DHA bound to the PI3K directly. Intriguingly, we also verified the activation of PI3K/AKT and NF-κB signaling pathways in clinical degenerative nucleus pulposus specimens, suggesting that DHA may qualify itself as a promising drug for mitigating IDD.
Collapse
|
9
|
TGF-β induces GBM mesenchymal transition through upregulation of CLDN4 and nuclear translocation to activate TNF-α/NF-κB signal pathway. Cell Death Dis 2022; 13:339. [PMID: 35418179 PMCID: PMC9008023 DOI: 10.1038/s41419-022-04788-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. The unregulated expression of Claudin-4 (CLDN4) plays an important role in tumor progression. However, the biological role of CLDN4 in GBM is still unknown. This study aimed to determine whether CLDN4 mediates glioma malignant progression, if so, it would further explore the molecular mechanisms of carcinogenesis. Our results revealed that CLDN4 was significantly upregulated in glioma specimens and cells. The inhibition of CLND4 expression could inhibit mesenchymal transformation, cell invasion, cell migration and tumor growth in vitro and in vivo. Moreover, combined with in vitro analysis, we found that CLDN4 can modulate tumor necrosis factor-α (TNF-α) signal pathway. Meanwhile, we also validated that the transforming growth factor-β (TGF-β) signal pathway can upregulate the expression of CLDN4, and promote the invasion ability of GBM cells. Conversely, TGF-β signal pathway inhibitor ITD-1 can downregulate the expression of CLDN4, and inhibit the invasion ability of GBM cells. Furthermore, we found that TGF-β can promote the nuclear translocation of CLDN4. In summary, our findings indicated that the TGF-β/CLDN4/TNF-α/NF-κB signal axis plays a key role in the biological progression of glioma. Disrupting the function of this signal axis may represent a new treatment strategy for patients with GBM.
Collapse
|
10
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
11
|
Huang RZ, Zheng J, Liu FL, Li QL, Huang WH, Zhang DM, Wu QC. A Novel Autophagy-Related Marker for Improved Differential Diagnosis of Rheumatoid Arthritis and Osteoarthritis. Front Genet 2021; 12:743560. [PMID: 34712268 PMCID: PMC8546229 DOI: 10.3389/fgene.2021.743560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are two most common rheumatic diseases in the world. Although there are standard methods for the diagnosis of both RA and OA, the differentials in some cases are poor. With deepening research, the role of autophagy in maintaining cell homeostasis and thus enabling cells adapt to external environments has become increasingly prominent. Both RA and OA, two diseases with inherent differences in pathogenesis, gradually show differences in autophagy levels. Our study therefore aims to further understand differences in pathogenesis of RA and OA through in-depth studies of autophagy in RA and OA. We also define appropriate autophagy-related markers as recognition indicators. Differences in autophagy levels between RA and OA were found based on analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and single-sample gene set enrichment (ssGSEA). These differences were mainly caused by 134 differentially expressed genes (DEGs). In two autophagy-related genes, CXCR4 and SERPINA1, there existed significant statistical difference between RA and OA. An autophagy related index (ARI) was thus successfully constructed based on CXCR4 and SERPINA by binary logistic regression of the generalized linear regression (GLR) algorithm. Pearson analysis indicated that the expression of CXCR4, SERPINA1, and ARI were closely correlated with autophagy scores and immune infiltration. Moreover, ARI showed high disease identification through receiver operating characteristic (ROC) analysis (AUCtesting cohort = 0.956, AUCtraining cohort = 0.867). These results were then verified in GSE12021 independent cohort. In conclusion, ARI associated with autophagy and immune infiltration was successfully constructed for accurately identifying OA and RA. The index, thus, has great potential in clinical applications.
Collapse
Affiliation(s)
- Rong-zhi Huang
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
| | - Jie Zheng
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
- First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Feng-ling Liu
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
- First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Qing-ling Li
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
- First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Wen-hui Huang
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
- First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Dan-meng Zhang
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
- First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Qiang-chu Wu
- Traumatic Orthopaedic Hand Surgery, The First People’s Hospital of Qinzhou, Qinzhou, China
| |
Collapse
|
12
|
Niu Y, Zhao Y, He J, Yun Y, Shen M, Gan Z, Zhang L, Wang T. Dietary dihydroartemisinin supplementation alleviates intestinal inflammatory injury through TLR4/NOD/NF-κB signaling pathway in weaned piglets with intrauterine growth retardation. ACTA ACUST UNITED AC 2021; 7:667-678. [PMID: 34430721 PMCID: PMC8361298 DOI: 10.1016/j.aninu.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/10/2023]
Abstract
The aim of present study was to evaluate whether diets supplemented with dihydroartemisinin (DHA) could alleviate intestinal inflammatory injury in weaned piglets with intrauterine growth retardation (IUGR). Twelve normal birth weight (NBW) piglets and 12 piglets with IUGR were fed a basal diet (NBW-CON and IUCR-CON groups), and another 12 piglets with IUGR were fed the basal diet supplemented with DHA at 80 mg/kg (IUGR-DHA group) from 21 to 49 d of age. At 49 d of age, 8 piglets with similar body weight in each group were sacrificed. The jejunal and ileal samples were collected for further analysis. The results showed that IUGR impaired intestinal morphology, increased intestinal inflammatory response, raised enterocyte apoptosis and reduced enterocyte proliferation and activated transmembrane toll-like receptor 4 (TLR4)/nucleotide-binding and oligomerization domain (NOD)/nuclear factor-κB (NF-κB) signaling pathway. Dihydroartemisinin inclusion ameliorated intestinal morphology, indicated by increased villus height, villus height-to-crypt depth ratio, villus surface area and decreased villus width of piglets with IUGR (P < 0.05). Compared with NBW piglets, IUGR piglets supplemented with DHA exhibited higher apoptosis index and caspase-3 expression, and lower proliferation index and proliferating cell nuclear antigen expression in the intestine (P < 0.05). Dihydroartemisinin supplementation attenuated the intestinal inflammation of piglets with IUGR, indicated by increased concentrations of intestinal inflammatory cytokines and lipopolysaccharides (P < 0.05). In addition, DHA supplementation down-regulated the related mRNA expressions of TLR4/NOD/NF-κB signaling pathway and upregulated mRNA expressions of negative regulators of TLR4 and NOD signaling pathway in the intestine of piglets with IUGR (P < 0.05). Piglets in the IUGR-DHA group showed lower protein expressions of TLR4, phosphorylated NF-κB (pNF-κB) inhibitor α, nuclear pNF-κB, and higher protein expression of cytoplasmic pNF-κB in the intestine than those in the IUGR-CON group (P < 0.05). In conclusion, DHA supplementation could improve intestinal morphology, regulate enterocyte proliferation and apoptosis, and alleviate intestinal inflammation through TLR4/NOD/NF-κB signaling pathway in weaned piglets with IUGR.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongwei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhending Gan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Zhang TW, Li ZF, Ding W, Wang HR, Ding SL, Han GJ, Li XL, Dong J, Jiang LB. Decorin inhibits nucleus pulposus apoptosis by matrix-induced autophagy via the mTOR pathway. J Orthop Res 2021; 39:1777-1788. [PMID: 33034924 DOI: 10.1002/jor.24882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/08/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
Decorin (Dcn) is a member of the class I small leucine-rich proteoglycans, whose expression in the nucleus pulposus (NP) of intervertebral discs (IVDs) has been shown to increase with aging in humans and sheep. Dcn induces autophagy in endothelial cells; however, its precise role in NP and IVD degeneration during aging is not well understood. We addressed this question in the present study by treating rat nucleus pulposus cells (NPCs) with different concentrations of Dcn. The Western blot analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling assay results showed that Dcn treatment induced autophagy and decreased apoptosis caused by interleukin (IL)-1β application. This effect was dependent on the protein kinase B/mechanistic target of rapamycin (mTOR)/p70 S6 kinase signaling. Dcn treatment also decreased the expression of matrix metalloproteinase-3 and -13 and decreased the IL-1β-induced attenuation of collagen type II and aggrecan levels. The role of Dcn in stimulating autophagy was further supported by the fact that the observed effects were abrogated by knocking down autophagy-related protein 7 with Atg7 small interfering RNA. Thus, Dcn protects NPCs in IVDs from IL-1β-induced apoptosis and degeneration by promoting autophagy through mTOR signaling.
Collapse
Affiliation(s)
- Tai-Wei Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ze-Fang Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Orthopaedic Surgery, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Wang Ding
- Department of Orthopaedic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng-Long Ding
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guan-Jie Han
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
15
|
Li Z, Wang J, Deng X, Huang D, Shao Z, Ma K. Compression stress induces nucleus pulposus cell autophagy by inhibition of the PI3K/AKT/mTOR pathway and activation of the JNK pathway. Connect Tissue Res 2021; 62:337-349. [PMID: 32180463 DOI: 10.1080/03008207.2020.1736578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Reactive oxygen species (ROS) are related to compression stress-induced nucleus pulposus (NP) cell autophagy, but the specific mechanism is unknown in compression stress-induced intervertebral disc degeneration (IVDD). Here, we discuss the specific molecular mechanism and explore whether ROS scavengers could be employed as specific drugs to inhibit compression stress-induced IVDD.Methods: Rat NP cells were exposed to 1.0 MPa compression and pretreatment with the ROS scavenger N-acetylcysteine (NAC) or the JNK-selective inhibitor SP600125 not. Intracellular ROS production was monitored by confocal microscopy. Autophagy was detected by observing the NP cell ultrastructural features using TEM and examining autophagic vacuoles by flow cytometry. The levels of autophagy-associated molecules, the JNK pathway and the PI3K/AKT/mTOR pathway were analyzed by western blotting.Results: Compression-mediated autophagy in rat NP cells was implicated in ROS generation. The ROS scavenger NAC could protect compression-induced NP cell injures by inhibiting ROS production. And SP600125, a JNK inhibitor, attenuated compression-induced NP cell autophagy. Additionally, this is the first report showing that compression induces autophagy in rat NP cells by impeding the compression-induced ROS dependent PI3K/AKT/mTOR pathway and the ROS independent activation of JNK pathway. And the involvement of JNK pathway was in different mechanism of action that when inhibited leaded to increased cell death, increased generation of ROS but decreased autophagy.Conclusions: These results show a new regulatory mechanism involving ROS-mediated autophagy in rat NP cells, which may provide ideas for drug development to improve compression stress-induced IVDD and help avoid eventual surgical treatment of IVD herniation.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Gastroenterology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaige Ma
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Chen X, Sun K, Zhao S, Geng T, Fan X, Sun S, Zheng M, Jin Q. Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt//β-catenin signal pathway. Cytokine 2020; 136:155292. [PMID: 32950809 DOI: 10.1016/j.cyto.2020.155292] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 09/06/2020] [Indexed: 11/30/2022]
Abstract
Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a crucial role in osteoporosis. Irisin, an exercise-induced muscle-dependent myokine, has been reported to stimulate the development of brown adipose tissue and regulate energy expenditure. The present study aimed to investigate the effects of irisin on autophagy in BMSCs. Furthermore, the osteogenic differentiation ability was evaluated, as well as the activation of autophagy. It was found that 40 μM irisin for 48 h was an appropriate concentration and time period, with regards to cell viability, which was measured with a Cell Counting Kit-8. Moreover, the increasing expression levels of microtubule-associated protein light chain 3 (Lc3)-I/II and autophagy related 5 (Atg5) by irisin demonstrated the upregulation of autophagy. Mechanistically, bafilomycin A1 and Atg5 small interfering RNA were used to evaluate the possible mechanism of autophagy activated by irisin, and it was identified that irisin may upregulate autophagy by increasing the Atg12-Atg5-Atg16L complex. In addition, with the increasing level of autophagy, osteogenesis and the Wnt/β-catenin signal pathway were also enhanced. However, inhibition of autophagy by bafilomycin A1 negatively regulated osteogenic differentiation. Collectively, the present results suggested that irisin may stimulate autophagy in BMSCs and that osteogenic differentiation may be enhanced by stimulating autophagy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Kening Sun
- Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Sijia Zhao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng, Beijing 100730, China
| | - Tianxiang Geng
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xin Fan
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shouxuan Sun
- Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Mengxue Zheng
- Department of Surgery, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qunhua Jin
- Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
18
|
Liu Y, Zhang M, Kong D, Wang Y, Li J, Liu W, Fu Y, Xu J. High follicle-stimulating hormone levels accelerate cartilage damage of knee osteoarthritis in postmenopausal women through the PI3K/AKT/NF-κB pathway. FEBS Open Bio 2020; 10:2235-2245. [PMID: 32911565 PMCID: PMC7530390 DOI: 10.1002/2211-5463.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis is the main cause of pain and disability in the elderly, with the most commonly affected joint being the knee. The prevalence of knee osteoarthritis (KOA) is significantly increased in postmenopausal women, although the mechanisms underlying KOA remain unclear. The present study aimed to investigate the association between follicle‐stimulating hormone (FSH) and postmenopausal women with KOA aged between 50 and > 70 years, as well as explore its underlying molecular mechanisms. Here, we report that the 50–60 years age group had the highest level of serum FSH. Compared to the low FSH group (< 40 mIU·mL−1) in the same age group, the high FSH group (> 40 mIU·mL−1) showed more severe cartilage damage. Furthermore, phosphorylated (p)‐phosphoinositide 3‐kinase (PI3K)/PI3K, p‐AKT/AKT and p‐nuclear factor kappa B (NF‐κB)/NF‐κB levels were significantly higher in the high FSH group compared to the low FSH group. Immunofluorescence experiments showed that FSH stimulation promoted the translocation of NF‐κB p65 into the nucleus, and decreased type II collagen and aggrecan in ATDC5 cells. Moreover, we used western blotting in ATDC5 cells to demonstrate that FSH decreased type II collagen and increased p‐PI3K/PI3K, p‐AKT/AKT, p‐NF‐κB/NF‐κB and p‐IKB/IKB in a concentration‐dependent manner. Our results suggest that increased FSH levels are associated with KOA for postmenopausal women aged 50–60 years and that high FSH levels might damage the cartilage tissues through the PI3K/AKT/NF‐κB pathway.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Jining No. 1 People's Hospital, Jining, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Dehuan Kong
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Yan Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Jian Li
- Department of Bone and Joint Surgery, Jining No. 1 People's Hospital, Jining, China
| | - Wenjuan Liu
- Department of Magnetic Resonance Imaging, Jining No. 1 People's Hospital, Jining, China
| | - Yilin Fu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Li C, Li C, Lin J, Zhao G, Xu Q, Jiang N, Wang Q, Peng X, Zhu G, Jiang J. The Role of Autophagy in the Innate Immune Response to Fungal Keratitis Caused by Aspergillus fumigatus Infection. Invest Ophthalmol Vis Sci 2020; 61:25. [PMID: 32084267 PMCID: PMC7326573 DOI: 10.1167/iovs.61.2.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose To determine the role of autophagy in the innate immune response to fungal keratitis (FK) caused by Aspergillus fumigatus infection. Methods Corneal samples obtained from patients and mice with FK were visualized via transmission electron microscopy (TEM). Autophagy-related proteins LC3B-II, Beclin-1, LAMP-1, and p62 in A. fumigatus-infected corneas of C57BL/6 mice were tested by Western blot. After treatment with autophagy inhibitors 3-methyladenine (3-MA), chloroquine (CQ), or inducer rapamycin, autophagy-related proteins were detected by Western blot. Corneas were photographed with slit lamp microscopy and pathological changes were observed by hematoxylin and eosin staining. Polymorphonuclear neutrophilic leukocytes (PMNs) were assessed by immunofluorescent staining and observed under TEM. The levels of CXCL-1, IL-1β, HMGB1, IL-18, TNF-α, and IL-10 were tested by reverse transcription polymerase chain reaction and Western blot. The quantification of fungal loads was detected and photographed. Results The accumulation of autophagosomes in corneas of patients and mice with FK was observed with TEM. The expression of LC3B-II, Beclin-1, and LAMP-1 was elevated in corneas after fungal infection, whereas p62 was reduced. Treatment with 3-MA or CQ upregulated clinical scores, pathological changes, and the expression of CXCL-1, IL-1β, HMGB1, IL-18, and TNF-α except IL-10. The morphology of PMNs was changed and PMN recruitment was increased in mice corneas treated with 3-MA or CQ, whereas rapamycin reduced the inflammatory response to keratitis. These results were statistically significant. Conclusions A. fumigatus infection increases the expression of autophagy in corneas. Autophagy plays an anti-inflammatory role in the innate immune response to A. fumigatus keratitis.
Collapse
|
20
|
Li G, Liu S, Wang H, Pan R, Tang H, Yan X, Wang Y, Fu Y, Jing F, Dong J. Ligustrazine ameliorates lipopolysaccharide‑induced neurocognitive impairment by activating autophagy via the PI3K/AKT/mTOR pathway. Int J Mol Med 2020; 45:1711-1720. [PMID: 32236586 PMCID: PMC7169653 DOI: 10.3892/ijmm.2020.4548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 02/03/2023] Open
Abstract
Autophagy is a lysosome-mediated cell content- dependent degradation pathway that leads to enhanced inflammation in an uncontrolled state. This study examined the role of autophagy in lipopolysaccharide (LPS)-induced brain inflammation and the effects of the traditional Chinese medicine ligustrazine on LPS-induced neurocognitive impairment in rats. Furthermore, the molecular mechanisms by which ligustrazine influences neurocognitive impairments were explored. The production of the inflammatory mediators interleukin (IL)-1β and tumor necrosis factor (TNF)-α was analyzed using ELISAs, and the expression levels of the autophagy marker microtubule-associated protein light chain 3 (LC3) II/I were analyzed using western blotting. LPS exposure upregulated the expression of IL-1β and TNF-α and downregulated the expression of LC3 II/I. Ligustrazine activated autophagy by preventing the expression of phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (p-AKT), and phosphorylated mammalian target of rapamycin (p-mTOR). The present results suggest that ligustrazine improved LPS-induced neurocognitive impairments by activating autophagy and ameliorated neuronal injury by regulating the PI3K/AKT/mTOR signaling pathway. These findings provide an important reference for the prevention and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Guangming Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Sisi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Huili Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Rui Pan
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Haijie Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xueqin Yan
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yanping Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yongmei Fu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fujun Jing
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jun Dong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
21
|
Zhao Y, Long Z, Ding Y, Jiang T, Liu J, Li Y, Liu Y, Peng X, Wang K, Feng M, He G. Dihydroartemisinin Ameliorates Learning and Memory in Alzheimer's Disease Through Promoting Autophagosome-Lysosome Fusion and Autolysosomal Degradation for Aβ Clearance. Front Aging Neurosci 2020; 12:47. [PMID: 32210783 PMCID: PMC7067048 DOI: 10.3389/fnagi.2020.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of sesquiterpene trioxane lactone extracted from Artemisia annua, which is used to treat malaria worldwide. DHA can activate autophagy, which is the main mechanism to remove the damaged cell components and recover the harmful or useless substances from eukaryotic cells and maintain cell viability through the autophagy lysosomal degradation system. Autophagy activation and autophagy flux correction are playing an important neuroprotective role in the central nervous system, as they accelerate the removal of toxic protein aggregates intracellularly and extracellularly to prevent neurodegenerative processes, such as Alzheimer's disease (AD). In this study, we explored whether this mechanism can mediate the neuroprotective effect of DHA on the AD model in vitro and in vivo. Three months of DHA treatment improved the memory and cognitive impairment, reduced the deposition of amyloid β plaque, reduced the levels of Aβ40 and Aβ42, and ameliorated excessive neuron apoptosis in APP/PS1 mice brain. In addition, DHA treatment increased the level of LC3 II/I and decreased the expression of p62. After Bafilomycin A1 and Chloroquine (CQ) blocked the fusion of autophagy and lysosome, as well as the degradation of autolysosomes (ALs), DHA treatment increased the level of LC3 II/I and decreased the expression of p62. These results suggest that DHA treatment can correct autophagic flux, improve autophagy dysfunction, inhibit abnormal death of neurons, promote the clearance of amyloid-β peptide (Aβ) fibrils, and have a multi-target effect on the neuropathological process, memory and cognitive deficits of AD.
Collapse
Affiliation(s)
- Yueyang Zhao
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Zhimin Long
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Ya Ding
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Tingting Jiang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Jiajun Liu
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Yimin Li
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Xuehua Peng
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kejian Wang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Min Feng
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Wu X, Cai Y, Lu S, Xu K, Shi X, Yang L, Huang Z, Xu P. Intra-articular Injection of Chloramphenicol Reduces Articular Cartilage Degeneration in a Rabbit Model of Osteoarthritis. Clin Orthop Relat Res 2019; 477:2785-2797. [PMID: 31764352 PMCID: PMC6907289 DOI: 10.1097/corr.0000000000001016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Studies have found that enhancement of autophagy, an intracellular catabolic process, may limit the pathologic progression of OA. Chloramphenicol is a potent activator of autophagy; however, the effects of chloramphenicol on articular cartilage are unknown. QUESTIONS/PURPOSES Using human OA knee chondrocytes in vitro, we asked, does chloramphenicol (1) activate autophagy in chondrocytes; (2) protect chondrocytes from IL-1β-induced apoptosis; and (3) reduce the expression of matrix metallopeptidase (MMP)-13 and IL-6 (markers associated with articular cartilage degradation and joint inflammation). Using an in vivo rabbit model of OA, we asked, does an intra-articular injection of chloramphenicol in the knee (4) induce autophagy; (5) reduce OA severity; and (6) reduce MMP-13 expression? METHODS Human chondrocytes were extracted from 10 men with OA undergoing TKA. After treatment with 25 μg/mL, 50 μg/mL, or 100μg/mL chloramphenicol, the autophagy of chondrocytes was detected with Western blotting, transmission electron microscopy, or an autophagy detection kit. There were four groups in our study: one group was untreated, one was treated with 100 μg/mL chloramphenicol, another was treated with 10 ng/mL of IL-1β, and the final group was treated with 10 ng/mL of IL-1β and 100 μg/mL of chloramphenicol. All groups were treated for 48 hours; cell apoptosis was detected with Western blotting and flow cytometry. Inflammation marker IL-6 in the cell culture supernatant was detected with an ELISA. Articular cartilage degradation-related enzyme MMP-13 was analyzed with Western blotting. A rabbit model of OA was induced by intra-articular injection of type II collagenase in 20 male 3-month-old New Zealand White rabbits' right hind leg knees; the left hind leg knees served as controls. Rabbits were treated by intra-articular injection of saline or chloramphenicol once a week for 8 weeks. Autophagy of the articular cartilage was detected with Western blotting and transmission electron microscopy. Degeneration of articular cartilage was analyzed with Safranin O-fast green staining and the semi-quantitative index Osteoarthritis Research Society International (OARSI) grading system. Degeneration of articular cartilage was evaluated using the OARSI grading system. The expression of MMP-13 in articular cartilage was detected with immunohistochemistry. RESULTS Chloramphenicol activated autophagy in vitro in the chondrocytes of humans with OA and in an in vivo rabbit model of OA. Chloramphenicol inhibited IL-1-induced apoptosis (flow cytometry results with chloramphenicol, 25.33 ± 3.51%, and without chloramphenicol, 44.00 ± 3.61%, mean difference, 18.67% [95% CI 10.60 to 26.73]; p = 0.003) and the production of proinflammatory cytokine IL-6 (ELISA results, with chloramphenicol, 720.00 ± 96.44 pg/mL, without chloramphenicol, 966.67 ± 85.05 pg/mL; mean difference 74.24 pg/mL [95% CI 39.28 to 454.06]; p = 0.029) in chondrocytes. After chloramphenicol treatment, the severity of cartilage degradation was reduced in the treatment group (OARSI 6.80 ± 2.71) compared with the control group (12.30 ± 2.77), (mean difference 5.50 [95% CI 1.50 to 9.50]; p = 0.013). Furthermore, chloramphenicol treatment also decreased the production of MMP-13 in vitro and in vivo. CONCLUSIONS Chloramphenicol reduced the severity of cartilage degradation in a type II collagen-induced rabbit model of OA, which may be related to induction of autophagy and inhibition of MMP-13 and IL-6. CLINICAL RELEVANCE Our study suggests that an intra-articular injection of chloramphenicol may reduce degeneration of articular cartilage and that induction of autophagy may be a method for treating OA. The animal model we used was type II collagen-induced OA, which was different from idiopathic OA and post-traumatic OA. Therefore, we need to use other types of OA models (idiopathic OA or a surgically induced OA model) to further verify its effect, and the side effects of chloramphenicol also need to be considered, such as myelosuppression.
Collapse
Affiliation(s)
- Xiaoqing Wu
- X. Wu, Y. Cai, K. Xu, L. Yang, P. Xu, Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China S. Lu, Department of Genetics and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China X. Shi, Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, China Z. Huang, Department of Joint Surgery, Shiquan County Hospital of Traditional Chinese Medicine, Ankang, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang XT, Liu W, Zhou Y, Hao CX, Zhou Y, Zhang CY, Sun CC, Luo ZQ, Tang SY. Dihydroartemisinin attenuates lipopolysaccharide‑induced acute lung injury in mice by suppressing NF‑κB signaling in an Nrf2‑dependent manner. Int J Mol Med 2019; 44:2213-2222. [PMID: 31661121 PMCID: PMC6844637 DOI: 10.3892/ijmm.2019.4387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury (ALI) is a severe health issue with significant morbidity and mortality. Artemisinin is used for the treatment of fever and malaria in clinical practice. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, plays a role in anti‑organizational fibrosis and anti‑neuronal cell death. However, whether DHA can attenuate ALI remains unclear. The current study thus examined the effects of DHA on ALI and primary macrophages. The results revealed that DHA attenuated lipopolysaccharide (LPS)‑induced pulmonary pathological damage. DHA suppressed the LPS‑induced infiltration of inflammatory cells, the elevation of myeloperoxidase activity, oxidative stress and the production of pro‑inflammatory cytokines, including interleukin (IL)‑1β, tumor necrosis factor‑α, and IL‑6. Furthermore, DHA reduced the LPS‑induced inflammatory response by suppressing the degradation of I‑κB and the nuclear translocation of nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB)/p65 in vivo and in vitro. DHA activated the nuclear factor‑erythroid 2 related factor 2 (Nrf2) pathway, which was suppressed by LPS treatment. The Nrf2 inhibitor, ML385, diminished the protective effects of DHA against LPS‑induced inflammation in macrophages. On the whole, the findings of this study demonstrate that DHA exerts therapeutic effects against LPS‑induced ALI by inhibiting the Nrf2‑mediated NF‑κB activation in macrophages. The present study also confirmed the therapeutic effects of DHA in mice with LPS‑induced ALI. Thus, these findings demonstrate that DHA exhibits anti‑inflammatory activities and may be a therapeutic candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Cai-Xia Hao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
24
|
Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li X, Sun R, Liu J. Dihydroartemisinin Induces Endothelial Cell Autophagy through Suppression of the Akt/mTOR Pathway. J Cancer 2019; 10:6057-6064. [PMID: 31762815 PMCID: PMC6856569 DOI: 10.7150/jca.33704] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022] Open
Abstract
Aims: Dihydroartemisinin (DHA), a derivative of artemisinin, suppresses angiogenesis by regulating endothelial cell phenotypes. In this study, we investigated the effect of DHA on endothelial cell autophagy and the underlying mechanisms. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with DHA. Formation of autophagosomes in HUVECs was observed by fluorescence microscope after pcDNA3.1-green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) plasmids transfection. Dichlorofluorescein diacetate (DCFH-DA) staining was used to detect intracellular reactive oxygen species (ROS). Western blot was performed to detect the protein levels of LC3, p62, beclin 1, autophagy-related protein (Atg) 5, p-Akt (protein kinase B), p-mTOR (mammalian target of rapamycin), p-4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1), and p-p70S6K (p70 ribosomal S6 kinase). Results: DHA increased LC3-II and the number of fluorescent GFP-LC3 puncta in HUVECs. Silencing ATG5 by siRNA interference attenuated DHA-induced LC3-II elevation. DHA enhanced ROS production, but pretreatment with antioxidant N-acety-l-cysteine (NAC) failed to reduce DHA-induced autophagy in HUVECs. Pretreatment with PD98059, SP600125 and SB203580, the inhibitors of ERK, JNK, and p38 MAPK, did not reverse autophagy in DHA-treated HUVECs. DHA significantly reduced phosphorylation of Akt, mTOR, p70S6K, 4E-BP1 in HUVECs. Rapamycin, an mTOR antagonist, compromised DHA-induced autophagy. Conclusion: DHA induces autophagy in HUVECs by inhibition of the Akt/mTOR pathway
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Yanjun Ren
- Department of Orthopaedics; Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Yinglong Hou
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Caiqing Zhang
- Department of Respiratory Medicine; Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Bei Wang
- Department of Ultrasound, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaorui Li
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan, China.,The Second Hospital of Shandong University, Jinan, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, PR China
| |
Collapse
|
25
|
Ma L, Liu Y, Zhao X, Li P, Jin Q. Rapamycin attenuates articular cartilage degeneration by inhibiting β-catenin in a murine model of osteoarthritis. Connect Tissue Res 2019; 60:452-462. [PMID: 30782019 DOI: 10.1080/03008207.2019.1583223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: To investigate whether systemic injection of rapamycin attenuates articular cartilage degeneration by inhibiting β-catenin in a murine model of osteoarthritis (OA). Materials and methods: Ten-week-old male C57BL/6j wild-type (WT) mice and SOST-knockout (SOST-/-) mice were randomized to a sham group, a vehicle-treated group, and a rapamycin-treated group. Mice in the vehicle-treated group underwent destabilizing of the medial meniscus (DMM) in the right knee, and were then treated with vehicle. Mice in the rapamycin treatment group underwent DMM and were treated with rapamycin. Safranin O-Fast green staining and Osteoarthritis Research Society International (OARSI) modified Mankin score were used to evaluate the histopathological features of the articular cartilage in the knee. The expression of light chain 3 (LC3) was evaluated by immunofluorescence, whereas the expression of ATG5, matrix metallopeptidase 13 (MMP-13), vascular endothelial growth factor (VEGF), sclerostin, and β-catenin were evaluated by immunohistochemistry. TUNEL staining was used to determine apoptosis of chondrocytes. Results: In vehicle-treated mice when compared with mice in the sham group, the OARSI scores, expression of MMP-13, VEGF, sclerostin, β-catenin, and chondrocyte apoptosis were significantly increased, whereas the expression of LC3 and ATG5 were significantly decreased. A systemic injection of rapamycin activated chondrocyte autophagy, which increased the expression of LC3 and ATG-5, and reduced OARSI scores, the expression of β-catenin, MMP-13, and VEGF, and chondrocyte apoptosis in rapamycin treated mice when compared with vehicle-treated mice. Conclusions: Systemic injection of rapamycin attenuated articular cartilage degeneration by inhibiting β-catenin in a murine model of OA.
Collapse
Affiliation(s)
- Long Ma
- a School of Clinical Medicine , Ningxia Medical University, The General Hospital of Ningxia Medical University , Yinchuan , Ningxia , P.R. China.,b Orthopedics Ward 3, The General Hospital, Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Yibin Liu
- a School of Clinical Medicine , Ningxia Medical University, The General Hospital of Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Xin Zhao
- a School of Clinical Medicine , Ningxia Medical University, The General Hospital of Ningxia Medical University , Yinchuan , Ningxia , P.R. China.,b Orthopedics Ward 3, The General Hospital, Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Peng Li
- b Orthopedics Ward 3, The General Hospital, Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Qunhua Jin
- b Orthopedics Ward 3, The General Hospital, Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| |
Collapse
|
26
|
Design, Synthesis, and Mechanism of Dihydroartemisinin⁻Coumarin Hybrids as Potential Anti-Neuroinflammatory Agents. Molecules 2019; 24:molecules24091672. [PMID: 31035404 PMCID: PMC6539525 DOI: 10.3390/molecules24091672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
Cancer patients frequently suffer from cancer-related fatigue (CRF), which is a complex syndrome associated with weakness and depressed mood. Neuroinflammation is one of the major inducers of CRF. The aim of this study is to find a potential agent not only on the treatment of cancer, but also for reducing CRF level of cancer patients. In this study, total-thirty new Dihydroartemisinin-Coumarin hybrids (DCH) were designed and synthesized. The in vitro cytotoxicity against cancer cell lines (HT-29, MDA-MB-231, HCT-116, and A549) was evaluated. Simultaneously, we also tested the anti-neuroinflammatory activity of DCH. DCH could inhibit the activated microglia N9 release of NO, TNF-α, and IL-6. The docking analysis was shown that MD-2, the coreceptor of TLR4, might be one of the targets of DCH.
Collapse
|
27
|
Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, Zhang C, Yang ND, Wang J, Zhang J. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev 2019; 39:2172-2193. [PMID: 30972803 DOI: 10.1002/med.21580] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation. Autophagy is a well-conserved degradative process that recycles cytoplasmic contents and organelles in lysosomes to maintain cellular homeostasis. The deregulation of autophagy is often observed in cancer cells, where it contributes to tumor adaptation to nutrient-deficient tumor microenvironments. This review discusses recent advances in the anticancer properties of artemisinin and its derivatives via their regulation of autophagy, mitophagy, and ferritinophagy. In particular, we will discuss the mechanisms of artemisinin activation in cancer and novel findings regarding the role of artemisinin in regulating autophagy, which involves changes in multiple signaling pathways. More importantly, with increasing failure rates and the high cost of the development of novel anticancer drugs, the strategy of repurposing traditional therapeutic Chinese medicinal agents such as artemisinin to treat cancer provides a more attractive alternative. We believe that the topics covered here will be important in demonstrating the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Peiyi Yan
- Department of Clinical Laboratory, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China
| | - Yin-Kwan Wong
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yew Mun Lee
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chongjing Zhang
- Institute of Material Medical, Peking Union Medical College, Beijing, China
| | - Nai-Di Yang
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China.,Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Cardio-Cerebrovascular Disease Prevention & Therapy, Gannan Medical University, Ganzhou, China
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
28
|
Liu Y, Li X, Jin A. Rapamycin Inhibits Nf-ΚB Activation by Autophagy to Reduce Catabolism in Human Chondrocytes. J INVEST SURG 2019; 33:861-873. [PMID: 30945580 DOI: 10.1080/08941939.2019.1574321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yibin Liu
- General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aunhua Jin
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
29
|
Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol 2019; 10:2. [PMID: 30713499 PMCID: PMC6345697 DOI: 10.3389/fphys.2019.00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/07/2019] [Indexed: 01/14/2023] Open
Abstract
The blood-brain barrier (BBB) is essential for the exchange of nutrient and ions to maintain the homeostasis of central nervous system (CNS). BBB dysfunction is commonly associated with the disruption of endothelial tight junctions and excess permeability, which results in various CNS diseases. Therefore, maintaining the structural integrity and proper function of the BBB is essential for the homeostasis and physiological function of the CNS. Here, we showed that serum starvation disrupted the function of endothelial barrier as evidenced by decreased trans-endothelial electrical resistance, increased permeability, and redistribution of tight junction proteins such as Claudin-5 (Cldn5). Further analyses revealed that autophagy was activated and protected the integrity of endothelial barrier by scavenging ROS and inhibiting the redistribution of Cldn5 under starvation, as evidenced by accumulation of autophagic vacuoles and increased expression of LC3II/I, ATG5 and LAMP1. In addition, autophagosome was observed to package and eliminate the aggregated Cldn5 in cytosol as detected by immunoelectron microscopy (IEM) and stimulated emission depletion (STED) microscope. Moreover, Akt-mTOR-p70S6K pathway was found to be involved in the protective autophagy induced by starvation. Our data demonstrated that autophagy played an essential role in maintaining the integrity of endothelial barrier by regulating the localization of Cldn5 under starvation.
Collapse
Affiliation(s)
- Zhenguo Yang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunnian Huang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongfu Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenqing Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
30
|
Meng Z, Shen B, Gu Y, Wu Z, Yao J, Bian Y, Zeng D, Chen K, Cheng S, Fu J, Peng L, Zhao Y. Diazoxide ameliorates severity of experimental osteoarthritis by activating autophagy via modulation of the osteoarthritis-related biomarkers. J Cell Biochem 2018; 119:8922-8936. [PMID: 29953665 DOI: 10.1002/jcb.27145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 01/05/2023]
Abstract
Accumulating evidence suggests that autophagy plays a protective role in chondrocytes and prevents cartilage degeneration in osteoarthritis (OA). The objective of this study was to investigate the effect of diazoxide on chondrocyte death and cartilage degeneration and to determine whether these effects are correlated to autophagy in experimental OA. In this study, a cellular OA model was established by stimulating SW1353 cells with interleukin 1β. A rat OA model was generated by transecting the anterior cruciate ligament combined with the resection of the medial menisci, followed by treatment with diazoxide or diazoxide combination with 3-methyladenine. The percentage of viable cells was evaluated using calcein-acetoxymethyl/propidium iodide double staining. The messenger RNA expression levels of collagen type II alpha 1 chain (COL2A1), matrix metalloproteinase 13 (MMP-13), TIMP metallopeptidase inhibitor 1 (TIMP-1), and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) were determined using quantitative real-time polymerase chain reaction. The cartilage thickness and joint space were evaluated using ultrasound. SW1353 cell degeneration and autophagosomes were observed using transmission electron microscopy. The expression levels of microtubule-associated protein 1 light chain 3 (LC3), beclin-1, P62, COL2A1, and MMP-13 were evaluated using immunofluorescence staining and Western blot analysis. Diazoxide significantly attenuated articular cartilage degeneration and SW1353 cell death in experimental OA. The restoration of autophagy was observed in the diazoxide-treated group. The beneficial effects of diazoxide were markedly blocked by 3-methyladenine. Diazoxide treatment also modulated the expression levels of OA-related biomarkers. These results demonstrated that diazoxide exerted a chondroprotective effect and attenuated cartilage degeneration by restoring autophagy via modulation of OA-related biomarkers in experimental OA. Diazoxide treatment might be a promising therapeutic approach to prevent the development of OA.
Collapse
Affiliation(s)
- ZhuLong Meng
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - BiXin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - YunTao Gu
- Department of Orthopeadic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZiQuan Wu
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - JiangLing Yao
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - YangYang Bian
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - DeLu Zeng
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - KeWei Chen
- Department of Orthopeadic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ShaoWen Cheng
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jian Fu
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Lei Peng
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - YingZheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Mi B, Wang J, Liu Y, Liu J, Hu L, Panayi AC, Liu G, Zhou W. Icariin Activates Autophagy via Down-Regulation of the NF-κB Signaling-Mediated Apoptosis in Chondrocytes. Front Pharmacol 2018; 9:605. [PMID: 29950992 PMCID: PMC6008570 DOI: 10.3389/fphar.2018.00605] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic and degenerative joint condition that is mainly characterized by cartilage degradation, osteophyte formation, and joint stiffness. The NF-κB signaling pathway in inflammation, autophagy, and apoptosis plays a prominent role in the progression of OA. Icariin, a prenylated flavonol glycoside extracted from Epimedium, have been proven to exert anti-osteoporotic and anti-inflammatory effects in OA. However, the action mechanisms of its effect on chondrocytes have yet to be elucidated. In the present study, we demonstrated that the in vitro therapeutic effects of icariin on rat chondrocytes in a dose-dependent manner. We found that TNF-α induced the production of IL-1, IL-6, IL-12, reactive oxygen species (ROS), nitric oxide (NO), Caspase-3, and Caspase-9 in chondrocytes. We also provided evidence that TNF-α inhibited autophagy markers (Atg 5, Atg 7) and prevented LC3 I translate to LC3 II. Furthermore, TNF-α induced matrix metalloproteinase (MMP)3 and MMP9 expression. The negative effects of TNF-α on chondrocytes can be partially blocked by treating with icariin or ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor). The present study data also suggested that icariin suppressed both TNF-α-stimulated p65 nuclear translocation and IκBα protein degradation. These results indicated that icariin protected against OA by suppressing inflammatory cytokines and apoptosis, through activation of autophagy via NF-κB inhibition. In conclusion, icariin appears to favorably modulate autophagy and apoptosis in chondrocytes making it a promising compound for cartilage tissue engineering in the treatment of OA.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Dihydroartemisinin inhibits ER stress-mediated mitochondrial pathway to attenuate hepatocyte lipoapoptosis via blocking the activation of the PI3K/Akt pathway. Biomed Pharmacother 2018; 97:975-984. [DOI: 10.1016/j.biopha.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
|
33
|
Shen P, Zhu Y, Zhu L, Weng F, Li X, Xu Y. Oxidized low density lipoprotein facilitates tumor necrosis factor‑α mediated chondrocyte death via autophagy pathway. Mol Med Rep 2017; 16:9449-9456. [PMID: 29039543 PMCID: PMC5780002 DOI: 10.3892/mmr.2017.7786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the role of oxidized low density lipoprotein (ox-LDL) in tumor necrosis factor-α (TNF-α) mediated chondrocyte death and explore the mechanisms. Ten osteoarthritis (OA) and normal control cartilage tissue and synovial fluid (SF) samples were collected, and the expression of lectin-like ox-LDL receptor-1 (LOX-1) and ox-LDL level was examined by real time quantitative PCR and enzyme-linked immunosorbent assay (ELISA). An in vitro chondrocyte model was established by the introduction of TNF-α and ox-LDL, cell death was analyzed by trypan blue assay and the mechanisms were explored based on the apoptosis related pathway and autophagy pathway. Significantly increased ox-LDL level (70.30±17.83 vs. 37.22±19.97, P<0.05) in SF sample and LOX-1 expression level (0.51±0.10 vs. 0.32±0.04, P<0.05) in cartilage tissue was found in OA patients compared to those corresponding samples from control subjects. Ox-LDL could facilitate TNF-α mediated chondrocyte death and this effect could be blocked by LOX-1 antibody neutralization. Autophagy inhibition by 3-MA and Atg-5 siRNA could reverse the cell death effect mediated by TNF-α and ox-LDL co-treatment on chondrocytes. Oxidized low density lipoprotein facilitates tumor necrosis factor-α mediated chondrocyte death via its interaction with LOX-1, and autophagy is involved in the mechanisms.
Collapse
Affiliation(s)
- Pengcheng Shen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yu Zhu
- Department of Orthopaedics, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215100, P.R. China
| | - Lifan Zhu
- Department of Orthopaedics, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Fengbiao Weng
- Department of Orthopaedics, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Xiaolin Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
34
|
Cao Z, Huang S, Dou C, Xiang Q, Dong S. Cyanidin suppresses autophagic activity regulating chondrocyte hypertrophic differentiation. J Cell Physiol 2017; 233:2332-2342. [DOI: 10.1002/jcp.26105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zhen Cao
- Department of Biomedical Materials Science; Third Military Medical University; Chongqing China
- Department of Anatomy; Third Military Medical University; Chongqing China
| | - Song Huang
- School of Pathology and Laboratory Medicine; The University of Western Australia; Nedlands Australia
| | - Ce Dou
- Department of Biomedical Materials Science; Third Military Medical University; Chongqing China
| | - Qiang Xiang
- Department of Emergency; Southwest Hospital, Third Military Medical University; Chongqing China
| | - Shiwu Dong
- Department of Biomedical Materials Science; Third Military Medical University; Chongqing China
| |
Collapse
|